1
|
Ratnasingham M, Bradding P, Roach KM. The role of TRP channels in lung fibrosis: Mechanisms and therapeutic potential. Int J Biochem Cell Biol 2024; 180:106728. [PMID: 39672503 DOI: 10.1016/j.biocel.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe lung disease affecting around 5 million people globally, with a median survival of 3-4 years. Characterized by excessive scarring of lung tissue, IPF results from the accumulation of myofibroblasts that deposit extracellular matrix (ECM), causing fibrosis. Current treatments, pirfenidone and nintedanib, slow the disease but do not stop its progression. IPF pathogenesis involves repeated alveolar injury, leading to pro-fibrotic mediators like TGFβ1, which trigger fibroblast-to-myofibroblast transitions and ECM deposition. Recent research suggests that transient receptor potential (TRP) channels, such as TRPV4, TRPC6, and TRPA1, play a key role in regulating calcium signalling and mechanical stress, crucial in myofibroblast activation. Targeting TRP channels may disrupt fibrosis and offer new therapeutic strategies. Preclinical studies indicate that inhibiting TRP channels could reduce fibrosis, warranting further trials to explore their efficacy and safety in treating IPF and related fibrotic conditions.
Collapse
Affiliation(s)
- M Ratnasingham
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - P Bradding
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - K M Roach
- NIHR Respiratory BRC, Department of Respiratory Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
2
|
Zhang X, Tian H, Xie C, Yang Y, Li P, Cheng J. The role and mechanism of vascular wall cell ion channels in vascular fibrosis remodeling. Channels (Austin) 2024; 18:2418128. [PMID: 39425532 PMCID: PMC11492694 DOI: 10.1080/19336950.2024.2418128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Fibrosis is usually the final pathological state of many chronic inflammatory diseases and may lead to organ malfunction. Excessive deposition of extracellular matrix (ECM) molecules is a characteristic of most fibrotic tissues. The blood vessel wall contains three layers of membrane structure, including the intima, which is composed of endothelial cells; the media, which is composed of smooth muscle cells; and the adventitia, which is formed by the interaction of connective tissue and fibroblasts. The occurrence and progression of vascular remodeling are closely associated with cardiovascular diseases, and vascular remodeling can alter the original structure and function of the blood vessel. Dysregulation of the composition of the extracellular matrix in blood vessels leads to the continuous advancement of vascular stiffening and fibrosis. Vascular fibrosis reaction leads to excessive deposition of the extracellular matrix in the vascular adventitia, reduces vessel compliance, and ultimately alters key aspects of vascular biomechanics. The pathogenesis of fibrosis in the vasculature and strategies for its reversal have become interesting and important challenges. Ion channels are widely expressed in the cardiovascular system; they regulate blood pressure, maintain cardiovascular function homeostasis, and play important roles in ion transport, cell differentiation, proliferation. In blood vessels, different types of ion channels in fibroblasts, smooth muscle cells and endothelial cells may be relevant mediators of the development of fibrosis in organs or tissues. This review discusses the known roles of ion channels in vascular fibrosis remodeling and discusses potential therapeutic targets for regulating remodeling and repair after vascular injury.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Hai Tian
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Cheng Xie
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Public Center of Experimental Technology, Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
4
|
Song T, Hui W, Huang M, Guo Y, Yu M, Yang X, Liu Y, Chen X. Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges. Int J Mol Sci 2024; 25:6467. [PMID: 38928173 PMCID: PMC11203447 DOI: 10.3390/ijms25126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
Collapse
Affiliation(s)
- Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yan Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Meiyi Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xiaoyu Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| |
Collapse
|
5
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Harrington A, Moore-Morris T. Cardiac fibroblasts in heart failure and regeneration. Front Cell Dev Biol 2024; 12:1388378. [PMID: 38699159 PMCID: PMC11063332 DOI: 10.3389/fcell.2024.1388378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
In heart disease patients, myocyte loss or malfunction invariably leads to fibrosis, involving the activation and accumulation of cardiac fibroblasts that deposit large amounts of extracellular matrix. Apart from the vital replacement fibrosis that follows myocardial infarction, ensuring structural integrity of the heart, cardiac fibrosis is largely considered to be maladaptive. Much work has focused on signaling pathways driving the fibrotic response, including TGF-β signaling and biomechanical strain. However, currently there are very limited options for reducing cardiac fibrosis, with most patients suffering from chronic fibrosis. The adult heart has very limited regenerative capacity. However, cardiac regeneration has been reported in humans perinatally, and reproduced experimentally in neonatal mice. Furthermore, model organisms such as the zebrafish are able to fully regenerate their hearts following massive cardiac damage into adulthood. Increasing evidence points to a transient immuno-fibrotic response as being key for cardiac regeneration to occur. The mechanisms at play in this context are changing our views on fibrosis, and could be leveraged to promote beneficial remodeling in heart failure patients. This review summarizes our current knowledge of fibroblast properties associated with the healthy, failing or regenerating heart. Furthermore, we explore how cardiac fibroblast activity could be targeted to assist future therapeutic approaches.
Collapse
Affiliation(s)
| | - Thomas Moore-Morris
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
7
|
Tytti K, Sanna K, Carla G, Jonatan P, Kaisa R, Sari T. Mechanosensitive TRPV4 channel guides maturation and organization of the bilayered mammary epithelium. Sci Rep 2024; 14:6774. [PMID: 38514727 PMCID: PMC10957991 DOI: 10.1038/s41598-024-57346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Biophysical cues from the cell microenvironment are detected by mechanosensitive components at the cell surface. Such machineries convert physical information into biochemical signaling cascades within cells, subsequently leading to various cellular responses in a stimulus-dependent manner. At the surface of extracellular environment and cell cytoplasm exist several ion channel families that are activated by mechanical signals to direct intracellular events. One of such channel is formed by transient receptor potential cation channel subfamily V member, TRPV4 that is known to act as a mechanosensor in wide variaty of tissues and control ion-influx in a spatio-temporal way. Here we report that TRPV4 is prominently expressed in the stem/progenitor cell populations of the mammary epithelium and seems important for the lineage-specific differentiation, consequently affecting mechanical features of the mature mammary epithelium. This was evident by the lack of several markers for mature myoepithelial and luminal epithelial cells in TRPV4-depleted cell lines. Interestingly, TRPV4 expression is controlled in a tension-dependent manner and it also impacts differentation process dependently on the stiffness of the microenvironment. Furthermore, such cells in a 3D compartment were disabled to maintain normal mammosphere structures and displayed abnormal lumen formation, size of the structures and disrupted cellular junctions. Mechanosensitive TRPV4 channel therefore act as critical player in the homeostasis of normal mammary epithelium through sensing the physical environment and guiding accordingly differentiation and structural organization of the bilayered mammary epithelium.
Collapse
Affiliation(s)
- Kärki Tytti
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Koskimäki Sanna
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Guenther Carla
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pirhonen Jonatan
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rajakylä Kaisa
- School of Social Services and Health Care, Tampere University of Applied Sciences, Tampere, Finland
| | - Tojkander Sari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
8
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 PMCID: PMC10969298 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
9
|
Yáñez-Bisbe L, Moya M, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J, Tajes M, Batlle M, Guasch E, Mas-Stachurska A, Miró E, Rivas N, Ferreira González I, Garcia-Elias A, Benito B. TRPV4 Channels Promote Pathological, but Not Physiological, Cardiac Remodeling through the Activation of Calcineurin/NFAT and TRPC6. Int J Mol Sci 2024; 25:1541. [PMID: 38338818 PMCID: PMC10855372 DOI: 10.3390/ijms25031541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.
Collapse
Affiliation(s)
- Laia Yáñez-Bisbe
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Mar Moya
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Tajes
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Montserrat Batlle
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
| | - Eduard Guasch
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
- Cardiology Department, Hospital Clínic, 08036 Barcelona, Spain
| | - Aleksandra Mas-Stachurska
- Institute for Biomedical Research August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (E.G.); (A.M.-S.)
- Cardiology Department, Hospital del Mar, 08003 Barcelona, Spain
| | - Elisabet Miró
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
| | - Nuria Rivas
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Ignacio Ferreira González
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anna Garcia-Elias
- Department of Clinical Research, ASCIRES-CETIR Biomedic Group, 08029 Barcelona, Spain;
| | - Begoña Benito
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (L.Y.-B.); (A.R.-S.); (M.R.-M.); (J.I.); (E.M.); (I.F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Jiang D, Guo R, Dai R, Knoedler S, Tao J, Machens HG, Rinkevich Y. The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. Int J Mol Sci 2024; 25:1179. [PMID: 38256251 PMCID: PMC10816018 DOI: 10.3390/ijms25021179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Ruiji Guo
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02152, USA
| | - Jin Tao
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| |
Collapse
|
11
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Shibasaki K. Regulation of Neural Functions by Brain Temperature and Thermo-TRP Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:199-211. [PMID: 39289283 DOI: 10.1007/978-981-97-4584-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data that describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, or brain edema. Notably, TRPV4 can detect mechanical stimuli and contributes to various neural functions similar to the mechanosensitive characteristics of TRPV2. In this review, I summarize the findings related to TRPV2/TRPV4 and neural functions.
Collapse
Affiliation(s)
- Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan.
| |
Collapse
|
13
|
Mitrokhin V, Bilichenko A, Kazanski V, Schobik R, Shileiko S, Revkova V, Kalsin V, Kamkina O, Kamkin A, Mladenov M. Transcriptomic profile of the mechanosensitive ion channelome in human cardiac fibroblasts. Exp Biol Med (Maywood) 2023; 248:2341-2350. [PMID: 38158807 PMCID: PMC10903254 DOI: 10.1177/15353702231218488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).
Collapse
Affiliation(s)
- Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andrei Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Viktor Kazanski
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Roman Schobik
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Stanislav Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Veronika Revkova
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir Kalsin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Mitko Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|
14
|
Adapala RK, Katari V, Kanugula AK, Ohanyan V, Paruchuri S, Thodeti CK. Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy. Hypertension 2023; 80:2345-2356. [PMID: 37702061 PMCID: PMC10705842 DOI: 10.1161/hypertensionaha.123.21528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. METHODS We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4ECKO) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. RESULTS We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4lox/lox mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4ECKO hearts after transverse aortic constriction compared with TRPV4lox/lox. Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4ECKO hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. CONCLUSIONS Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.
Collapse
Affiliation(s)
- Ravi K. Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Anantha K. Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| |
Collapse
|
15
|
Teegala LR, Gudneppanavar R, Sabu Kattuman EE, Snyderman M, Thanusha AV, Katari V, Thodeti CK, Paruchuri S. Prostaglandin E 2 attenuates lung fibroblast differentiation via inactivation of yes-associated protein signaling. FASEB J 2023; 37:e23199. [PMID: 37732601 DOI: 10.1096/fj.202300745rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Prostaglandin E2 (PGE2 ) has been implicated in counteracting fibroblast differentiation by TGFβ1 during pulmonary fibrosis. However, the precise mechanism is not well understood. We show here that PGE2 via EP2 R and EP4 R inhibits the expression of mechanosensory molecules Lysyl Oxidase Like 2 (LOXL2), myocardin-related transcription factor A (MRTF-A), ECM proteins, plasminogen activation inhibitor 1 (PAI-1), fibronectin (FN), α-smooth muscle actin (α-SMA), and redox sensor (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4)) required for TGFβ1-mediated fibroblast differentiation. We further demonstrate that PGE2 inhibits fibrotic signaling via Yes-associated protein (YAP) but does so independently from its actions on SMAD phosphorylation and conserved cylindromatosis (CYLD; deubiquitinase) expression. Mechanistically, PGE2 phosphorylates/inactivates YAP downstream of EP2 R/Gαs and restrains its translocation to the nucleus, thus inhibiting its interaction with TEA domain family members (TEADs) and transcription of fibrotic genes. Importantly, pharmacological or siRNA-mediated inhibition of YAP significantly downregulates TGFβ1-mediated fibrotic gene expression and myofibroblast formation. Notably, YAP expression is upregulated in the lungs of D. farinae-treated wild type (WT) mice relative to saline-treated WT mice. Our results unravel a unique role for PGE2 -YAP interactions in fibroblast differentiation, and that PGE2 /YAP inhibition can be used as a novel therapeutic target in the treatment of pathological conditions associated with myofibroblasts like asthma.
Collapse
Affiliation(s)
- Lakshminarayan Reddy Teegala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | - Ravindra Gudneppanavar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | - Emma Elizabeth Sabu Kattuman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | | | - Arani Varamuniprasad Thanusha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | - Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | - Charles K Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Ohio, Toledo, USA
| |
Collapse
|
16
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Niu L, Lu YJ, Zu XW, Yang W, Shen FK, Xu YY, Jiang M, Xie Y, Li SY, Gao J, Bai G. Magnolol alleviates pulmonary fibrosis inchronic obstructive pulmonary disease by targeting transient receptor potential vanilloid 4-ankyrin repeat domain. Phytother Res 2023; 37:4282-4297. [PMID: 37282760 DOI: 10.1002/ptr.7907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) plays a role in regulating pulmonary fibrosis (PF). While several TRPV4 antagonists including magnolol (MAG), have been discovered, the mechanism of action is not fully understood. This study aimed to investigate the effect of MAG on alleviating fibrosis in chronic obstructive pulmonary disease (COPD) based on TRPV4, and to further analyze its mechanism of action on TRPV4. COPD was induced using cigarette smoke and LPS. The therapeutic effect of MAG on COPD-induced fibrosis was evaluated. TRPV4 was identified as the main target protein of MAG using target protein capture with MAG probe and drug affinity response target stability assay. The binding sites of MAG at TRPV4 were analyzed using molecular docking and small molecule interaction with TRPV4-ankyrin repeat domain (ARD). The effects of MAG on TRPV4 membrane distribution and channel activity were analyzed by co-immunoprecipitation, fluorescence co-localization, and living cell assay of calcium levels. By targeting TRPV4-ARD, MAG disrupted the binding between phosphatidylinositol 3 kinase γ and TRPV4, leading to hampered membrane distribution on fibroblasts. Additionally, MAG competitively impaired ATP binding to TRPV4-ARD, inhibiting TRPV4 channel opening activity. MAG effectively blocked the fibrotic process caused by mechanical or inflammatory signals, thus alleviating PF in COPD. Targeting TRPV4-ARD presents a novel treatment strategy for PF in COPD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xing-Wang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yan-Yan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Su-Yun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells 2023; 12:1654. [PMID: 37371124 DOI: 10.3390/cells12121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33604 Pessac, France
| | - Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Romain Guinamard
- UR4650, Physiopathologie et Stratégies d'Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Université de Caen Normandie, 14032 Caen, France
| | - David Benoist
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
19
|
Simard C, Aize M, Chaigne S, Mpweme Bangando H, Guinamard R. Ion Channels in the Development and Remodeling of the Aortic Valve. Int J Mol Sci 2023; 24:5860. [PMID: 36982932 PMCID: PMC10055105 DOI: 10.3390/ijms24065860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The role of ion channels is extensively described in the context of the electrical activity of excitable cells and in excitation-contraction coupling. They are, through this phenomenon, a key element for cardiac activity and its dysfunction. They also participate in cardiac morphological remodeling, in particular in situations of hypertrophy. Alongside this, a new field of exploration concerns the role of ion channels in valve development and remodeling. Cardiac valves are important components in the coordinated functioning of the heart by ensuring unidirectional circulation essential to the good efficiency of the cardiac pump. In this review, we will focus on the ion channels involved in both the development and/or the pathological remodeling of the aortic valve. Regarding valve development, mutations in genes encoding for several ion channels have been observed in patients suffering from malformation, including the bicuspid aortic valve. Ion channels were also reported to be involved in the morphological remodeling of the valve, characterized by the development of fibrosis and calcification of the leaflets leading to aortic stenosis. The final stage of aortic stenosis requires, until now, the replacement of the valve. Thus, understanding the role of ion channels in the progression of aortic stenosis is an essential step in designing new therapeutic approaches in order to avoid valve replacement.
Collapse
Affiliation(s)
- Christophe Simard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Margaux Aize
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Foundation Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33600 Pessac, France
| | - Harlyne Mpweme Bangando
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| | - Romain Guinamard
- UR 4650, Physiopathologie et Stratégies d’Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Unicaen, 14000 Caen, France
| |
Collapse
|
20
|
Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023; 159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
Mechanical cues in the cell microenvironment such as those from extracellular matrix properties, stretching, compression and shear stress, play a critical role in maintaining homeostasis. Upon sensing mechanical stimuli, cells can translate these external forces into intracellular biochemical signals to regulate their cellular behaviors, but the specific mechanisms of mechanotransduction at the molecular level remain elusive. As a subfamily of the Ras superfamily, Rho GTPases have been recognized as key intracellular mechanotransduction mediators that can regulate multiple cell activities such as proliferation, migration and differentiation as well as biological processes such as cytoskeletal dynamics, metabolism, and organ development. However, the upstream mechanosensors for Rho proteins and downstream effectors that respond to Rho signal activation have not been well illustrated. Moreover, Rho-mediated mechanical signals in previous studies are highly context-dependent. In this review, we systematically summarize the types of mechanical cues in the cell microenvironment and provide recent advances on the roles of the Rho-based mechanotransduction in various cell activities, physiological processes and diseases. Comprehensive insights into the mechanical roles of Rho GTPase partners would open a new paradigm of mechanomedicine for a variety of diseases. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical role of Rho GTPases as signal mediators to respond to physical cues in microenvironment. This article will add a distinct contribution to this set of knowledge by intensively addressing the relationship between Rho signaling and mechanobiology/mechanotransduction/mechanomedcine. This topic has not been discussed by the journal, nor has it yet been developed by the field. The comprehensive picture that will develop, from molecular mechanisms and engineering methods to disease treatment strategies, represents an important and distinct contribution to the field. We hope that this review would help researchers in various fields, especially clinicians, oncologists and bioengineers, who study Rho signal pathway and mechanobiology/mechanotransduction, understand the critical role of Rho GTPase in mechanotransduction.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qiuai Shu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ziwei Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Runxin Xue
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhang Wen
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an Shaanxi 710049, China.
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
21
|
Tian G, Ren T. Mechanical stress regulates the mechanotransduction and metabolism of cardiac fibroblasts in fibrotic cardiac diseases. Eur J Cell Biol 2023; 102:151288. [PMID: 36696810 DOI: 10.1016/j.ejcb.2023.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Fibrotic cardiac diseases are characterized by myocardial fibrosis that results in maladaptive cardiac remodeling. Cardiac fibroblasts (CFs) are the main cell type responsible for fibrosis. In response to stress or injury, intrinsic CFs develop into myofibroblasts and produce excess extracellular matrix (ECM) proteins. Myofibroblasts are mechanosensitive cells that can detect changes in tissue stiffness and respond accordingly. Previous studies have revealed that some mechanical stimuli control fibroblast behaviors, including ECM formation, cell migration, and other phenotypic traits. Further, metabolic alteration is reported to regulate fibrotic signaling cascades, such as the transforming growth factor-β pathway and ECM deposition. However, the relationship between metabolic changes and mechanical stress during fibroblast-to-myofibroblast transition remains unclear. This review aims to elaborate on the crosstalk between mechanical stress and metabolic changes during the pathological transition of cardiac fibroblasts.
Collapse
Affiliation(s)
- Geer Tian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China; Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou 310053, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
22
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
24
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
25
|
Cardiac fibroblasts and mechanosensation in heart development, health and disease. Nat Rev Cardiol 2022; 20:309-324. [PMID: 36376437 DOI: 10.1038/s41569-022-00799-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
The term 'mechanosensation' describes the capacity of cells to translate mechanical stimuli into the coordinated regulation of intracellular signals, cellular function, gene expression and epigenetic programming. This capacity is related not only to the sensitivity of the cells to tissue motion, but also to the decryption of tissue geometric arrangement and mechanical properties. The cardiac stroma, composed of fibroblasts, has been historically considered a mechanically passive component of the heart. However, the latest research suggests that the mechanical functions of these cells are an active and necessary component of the developmental biology programme of the heart that is involved in myocardial growth and homeostasis, and a crucial determinant of cardiac repair and disease. In this Review, we discuss the general concept of cell mechanosensation and force generation as potent regulators in heart development and pathology, and describe the integration of mechanical and biohumoral pathways predisposing the heart to fibrosis and failure. Next, we address the use of 3D culture systems to integrate tissue mechanics to mimic cardiac remodelling. Finally, we highlight the potential of mechanotherapeutic strategies, including pharmacological treatment and device-mediated left ventricular unloading, to reverse remodelling in the failing heart.
Collapse
|
26
|
Mechanoresponsive regulation of fibroblast-to-myofibroblast transition in three-dimensional tissue analogues: mechanical strain amplitude dependency of fibrosis. Sci Rep 2022; 12:16832. [PMID: 36207437 PMCID: PMC9547073 DOI: 10.1038/s41598-022-20383-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spatiotemporal interaction and constant iterative feedback between fibroblasts, extracellular matrix, and environmental cues are central for investigating the fibroblast-induced musculoskeletal tissue regeneration and fibroblast-to-myofibroblast transition (FMT). In this study, we created a fibroblast-laden 3D tissue analogue to study (1) how mechanical loading exerted on three-dimensional (3D) tissues affected the residing fibroblast phenotype and (2) to identify the ideal mechanical strain amplitude for promoting tissue regeneration without initiating myofibroblast differentiation. We applied uniaxial tensile strain (0, 4, 8, and 12%) to the cell-laden 3D tissue analogues to understand the interrelation between the degree of applied mechanical loading amplitudes and FMT. Our data demonstrated that 4% mechanical strain created an anabolic effect toward tissue regeneration, but higher strain amplitudes over-stimulated the cells and initiated fibrotic tissue formation. Under increased mechanical strain amplitudes, fibroblasts were activated from a homeostatic state to a proto-myofibroblast state which resulted in increased cellularity accompanied by increased expressions of extracellular matrix (ECM) components, activation stressors (TGF-β1 and TGF-βR1), and profibrotic markers. This further transformed fibroblasts into α-smooth muscle actin expressing myofibroblasts. Understanding the interplay between the applied degree of mechanical loading exerted on 3D tissues and residing fibroblast phenotypic response is important to identify specific mechanomodulatory approaches for tissue regeneration and the informed mechanotherapy-guided tissue healing strategies.
Collapse
|
27
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
28
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
29
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
30
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
31
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Alfawaz Altamimi AS, Singh SK, Dua K, Gupta G. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 2022; 363:110011. [PMID: 35728671 DOI: 10.1016/j.cbi.2022.110011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Cardiomyocyte regeneration following cardiac damage is challenging to study because of the inflammatory process, the multiplication of cells in the stroma, and the creation of scar tissue. In addition to the initial damage, the subsequent decrease in cardiac myocytes adds to heart failure. Piezo1 is remarkably understudied in the heart, which may be related to its recent discovery. Despite this, Piezo1 is expressed in a variety of cardiovascular cell populations, notably epithelial cells (EC), cardiac fibroblasts (CF), and cardiac myocytes (CM), in both animal and human samples, with fibroblasts expressing more than myocytes. Researchers have recently shown that disrupting Piezo1 signaling causes defects in zebrafish developing the outflow tract (OFT) and aortic valves. Platelet plasma membranes may provide lipid substrates, such as phosphatidylinositol bisphosphate, that aid in activating the piezo 1 ion channel in the cardiovascular system. In addition, CXC chemokine ligand 8/CXC chemokine receptor 1/2 (CXCL8-CXCR1/2) signaling was identified to establish the proliferation of coronary endothelial cells during cardiac regeneration. Notably, all these pathways are calcium-dependent, and cell proliferation and angiogenesis were necessary to recover myocardial cells. This review will examine the most current findings to understand further how platelet-rich plasma (PRP) and the piezo 1 channel might aid in cardiomyocyte regeneration.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
32
|
Batan D, Peters DK, Schroeder ME, Aguado BA, Young MW, Weiss RM, Anseth KS. Hydrogel cultures reveal Transient Receptor Potential Vanilloid 4 regulation of myofibroblast activation and proliferation in valvular interstitial cells. FASEB J 2022; 36:e22306. [PMID: 35385164 PMCID: PMC9009405 DOI: 10.1096/fj.202101863r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022]
Abstract
As aortic valve stenosis develops, valve tissue becomes stiffer. In response to this change in environmental mechanical stiffness, valvular interstitial cells (VICs) activate into myofibroblasts. We aimed to investigate the role of mechanosensitive calcium channel Transient Receptor Potential Vanilloid type 4 (TRPV4) in stiffness induced myofibroblast activation. We verified TRPV4 functionality in VICs using live calcium imaging during application of small molecule modulators of TRPV4 activity. We designed hydrogel biomaterials that mimic mechanical features of healthy or diseased valve tissue microenvironments, respectively, to investigate the role of TRPV4 in myofibroblast activation and proliferation. Our results show that TRPV4 regulates VIC proliferation in a microenvironment stiffness-independent manner. While there was a trend toward inhibiting myofibroblast activation on soft microenvironments during TRPV4 inhibition, we observed near complete deactivation of myofibroblasts on stiff microenvironments. We further identified Yes-activated protein (YAP) as a downstream target for TRPV4 activity on stiff microenvironments. Mechanosensitive TRPV4 channels regulate VIC myofibroblast activation, whereas proliferation regulation is independent of the microenvironmental stiffness. Collectively, the data suggests differential regulation of stiffness-induced proliferation and myofibroblast activation. Our data further suggest a regulatory role for TRPV4 regarding YAP nuclear localization. TRPV4 is an important regulator for VIC myofibroblast activation, which is linked to the initiation of valve fibrosis. Although more validation studies are necessary, we suggest TRPV4 as a promising pharmaceutical target to slow aortic valve stenosis progression.
Collapse
Affiliation(s)
- Dilara Batan
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303 USA
| | - Douglas K. Peters
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Megan E. Schroeder
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brian A. Aguado
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Mark W. Young
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristi S. Anseth
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
33
|
Chinigò G, Grolez GP, Audero M, Bokhobza A, Bernardini M, Cicero J, Toillon RA, Bailleul Q, Visentin L, Ruffinatti FA, Brysbaert G, Lensink MF, De Ruyck J, Cantelmo AR, Fiorio Pla A, Gkika D. TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells. Cancers (Basel) 2022; 14:2261. [PMID: 35565390 PMCID: PMC9102551 DOI: 10.3390/cancers14092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Guillaume P. Grolez
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Madelaine Audero
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alexandre Bokhobza
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Michela Bernardini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Julien Cicero
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- UR 2465—Laboratoire de la Barrière Hémato-Encéphalique (LBHE), University of Artois, F-62300 Lens, France
| | - Robert-Alain Toillon
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
| | - Quentin Bailleul
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Luca Visentin
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
| | - Guillaume Brysbaert
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Marc F. Lensink
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Jerome De Ruyck
- CNRS UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, 59000 Lille, France; (G.B.); (M.F.L.); (J.D.R.)
| | - Anna Rita Cantelmo
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy; (G.C.); (M.A.); (M.B.); (L.V.); (F.A.R.); (A.F.P.)
- INSERM, U1003—PHYCEL—Physiologie Cellulaire, University of Lille, F-59000 Lille, France; (G.P.G.); (A.B.); (Q.B.); (A.R.C.)
| | - Dimitra Gkika
- CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France; (J.C.); (R.-A.T.)
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
34
|
Swain SM, Romac JMJ, Vigna SR, Liddle RA. Piezo1-mediated stellate cell activation causes pressure-induced pancreatic fibrosis in mice. JCI Insight 2022; 7:158288. [PMID: 35451372 PMCID: PMC9089793 DOI: 10.1172/jci.insight.158288] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Pancreatic fibrosis is a complication of chronic pancreatitis and is a prominent feature of pancreatic cancer. Pancreatic fibrosis is commonly observed in patients with prolonged pancreatic duct obstruction, which elevates intrapancreatic pressure. We show here that increased pancreatic duct pressure causes fibrosis and describes the mechanism by which pressure increases deposition of extracellular matrix proteins and fibrosis. We found that pancreatic stellate cells (PSCs), the source of the extracellular matrix proteins in fibrosis, express the mechanically activated ion channel Piezo1. By increasing intracellular calcium, mechanical stress or the Piezo1 agonist Yoda1-activated PSCs manifest by loss of perinuclear fat droplets and increased TGF-β1, fibronectin, and type I collagen expression. These effects were blocked by the Piezo1 inhibitor GsMTx4 and absent in PSCs from mice with conditional genetic deletion of Piezo1 in stellate cells, as was pancreatic duct ligation-induced fibrosis. Although TRPV4 has been proposed to have direct mechanosensing properties, we discovered that PSCs from Trpv4-KO mice were protected against Yoda1-triggered activation. Moreover, mice devoid of TRPV4 were protected from pancreatic duct ligation-induced fibrosis. Thus, high pressure within the pancreas stimulates Piezo1 channel opening, and subsequent activation of TRPV4 leads to stellate cell activation and pressure-induced chronic pancreatitis and fibrosis.
Collapse
Affiliation(s)
- Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Joelle M-J Romac
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Steven R Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA.,Department of Veterans Affairs Healthcare System, Durham, North Carolina, USA
| |
Collapse
|
35
|
Morotti M, Garofalo S, Cocozza G, Antonangeli F, Bianconi V, Mozzetta C, De Stefano ME, Capitani R, Wulff H, Limatola C, Catalano M, Grassi F. Muscle Damage in Dystrophic mdx Mice Is Influenced by the Activity of Ca2+-Activated KCa3.1 Channels. Life (Basel) 2022; 12:life12040538. [PMID: 35455028 PMCID: PMC9025295 DOI: 10.3390/life12040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease, caused by a mutant dystrophin gene, leading to muscle membrane instability, followed by muscle inflammation, infiltration of pro-inflammatory macrophages and fibrosis. The calcium-activated potassium channel type 3.1 (KCa3.1) plays key roles in controlling both macrophage phenotype and fibroblast proliferation, two critical contributors to muscle damage. In this work, we demonstrate that pharmacological blockade of the channel in the mdx mouse model during the early degenerative phase favors the acquisition of an anti-inflammatory phenotype by tissue macrophages and reduces collagen deposition in muscles, with a concomitant reduction of muscle damage. As already observed with other treatments, no improvement in muscle performance was observed in vivo. In conclusion, this work supports the idea that KCa3.1 channels play a contributing role in controlling damage-causing cells in DMD. A more complete understanding of their function could lead to the identification of novel therapeutic approaches.
Collapse
Affiliation(s)
- Marta Morotti
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Germana Cocozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Valeria Bianconi
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology-National Research Council (CNR), Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (V.B.); (C.M.)
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA 95616, USA;
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (C.L.)
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
| | - Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (M.M.); (S.G.); (R.C.); (M.C.)
- Correspondence:
| |
Collapse
|
36
|
Vichaikul S, Gurrea-Rubio M, Amin MA, Campbell PL, Wu Q, Mattichak MN, Brodie WD, Palisoc PJ, Ali M, Muraoka S, Ruth JH, Model EN, Rohraff DM, Hervoso JL, Mao-Draayer Y, Fox DA, Khanna D, Sawalha AH, Tsou PS. Inhibition of histone readers bromodomain extra-terminal proteins alleviates skin fibrosis in experimental models of scleroderma. JCI Insight 2022; 7:150871. [PMID: 35349485 PMCID: PMC9090238 DOI: 10.1172/jci.insight.150871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Binding of the bromodomain and extraterminal domain proteins (BETs) to acetylated histone residues is critical for gene transcription. We sought to determine the antifibrotic efficacy and potential mechanisms of BET inhibition in systemic sclerosis (SSc). Blockade of BETs was done using a pan-BET inhibitor, JQ1; BRD2 inhibitor, BIC1; or BRD4 inhibitors AZD5153 or ARV825. BET inhibition, specifically BRD4 blockade, showed antifibrotic effects in an animal model of SSc and in patient-derived diffuse cutaneous SSc (dcSSc) fibroblasts. Transcriptome analysis of JQ1-treated dcSSc fibroblasts revealed differentially expressed genes related to extracellular matrix, cell cycle, and calcium (Ca2+) signaling. The antifibrotic effect of BRD4 inhibition was mediated at least in part by downregulation of Ca2+/calmodulin–dependent protein kinase II α and reduction of intracellular Ca2+ concentrations. On the basis of these results, we propose targeting Ca2+ pathways or BRD4 as potentially novel therapeutic approaches for progressive tissue fibrosis.
Collapse
Affiliation(s)
- Sirapa Vichaikul
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Mikel Gurrea-Rubio
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - M. Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Phillip L. Campbell
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Qi Wu
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan N. Mattichak
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - William D. Brodie
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Pamela J. Palisoc
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Mustafa Ali
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Sei Muraoka
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Jeffrey H. Ruth
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Ellen N. Model
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Dallas M. Rohraff
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Jonatan L. Hervoso
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
| | - Dinesh Khanna
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Amr H. Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology; Department of Medicine
- Lupus Center of Excellence; and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pei-Suen Tsou
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, and
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
TRPV4-dependent signaling mechanisms in systemic and pulmonary vasculature. CURRENT TOPICS IN MEMBRANES 2022; 89:1-41. [DOI: 10.1016/bs.ctm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
39
|
Miller M, Koch SE, Veteto A, Domeier T, Rubinstein J. Role of Known Transient Receptor Potential Vanilloid Channels in Modulating Cardiac Mechanobiology. Front Physiol 2021; 12:734113. [PMID: 34867442 PMCID: PMC8637880 DOI: 10.3389/fphys.2021.734113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential (TRP) channels have been described in almost every mammalian cell type. Several members of the Vanilloid (TRPV) subtype have been found to play important roles in modulating cardiac structure and function through Ca2+ handling in response to systemic and local mechanobiological cues. In this review, we will consider the most studied TRPV channels in the cardiovascular field; transient receptor potential vanilloid 1 as a modulator of cardiac hypertrophy; transient receptor potential vanilloid 2 as a structural and functional protein; transient receptor potential vanilloid 3 in the development of hypertrophy and myocardial fibrosis; and transient receptor potential vanilloid 4 in its roles modulating the fibrotic and functional responses of the heart to pressure overload. Lastly, we will also review the potential overlapping roles of these channels with other TRP proteins as well as the advances in translational and clinical arenas associated with TRPV channels.
Collapse
Affiliation(s)
- Michael Miller
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Adam Veteto
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States.,IonOptix, LLC, Westwood, MA, United States
| | - Timothy Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, KY, United States
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, College of Medicine, University of Cincinnati Medical Center, Cincinnati, OH, United States.,Division of Cardiovascular Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
40
|
Motion Intent Recognition in Intelligent Lower Limb Prosthesis Using One-Dimensional Dual-Tree Complex Wavelet Transforms. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:5631730. [PMID: 34868294 PMCID: PMC8635934 DOI: 10.1155/2021/5631730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022]
Abstract
The motion intent recognition via lower limb prosthesis can be regarded as a kind of short-term action recognition, where the major issue is to explore the gait instantaneous conversion (known as transitional pattern) between each two adjacent different steady states of gait mode. Traditional intent recognition methods usually employ a set of statistical features to classify the transitional patterns. However, the statistical features of the short-term signals via the instantaneous conversion are empirically unstable, which may degrade the classification accuracy. Bearing this in mind, we introduce the one-dimensional dual-tree complex wavelet transform (1D-DTCWT) to address the motion intent recognition via lower limb prosthesis. On the one hand, the local analysis ability of the wavelet transform can amplify the instantaneous variation characteristics of gait information, making the extracted features of instantaneous pattern between two adjacent different steady states more stable. On the other hand, the translation invariance and direction selectivity of 1D-DTCWT can help to explore the continuous features of patterns, which better reflects the inherent continuity of human lower limb movements. In the experiments, we have recruited ten able-bodied subjects and one amputee subject and collected data by performing five steady states and eight transitional states. The experimental results show that the recognition accuracy of the able-bodied subjects has reached 98.91%, 98.92%, and 97.27% for the steady states, transitional states, and total motion states, respectively. Furthermore, the accuracy of the amputee has reached 100%, 91.16%, and 90.27% for the steady states, transitional states, and total motion states, respectively. The above evidence finally indicates that the proposed method can better explore the gait instantaneous conversion (better expressed as motion intent) between each two adjacent different steady states compared with the state-of-the-art.
Collapse
|
41
|
Adapala RK, Katari V, Teegala LR, Thodeti S, Paruchuri S, Thodeti CK. TRPV4 Mechanotransduction in Fibrosis. Cells 2021; 10:cells10113053. [PMID: 34831281 PMCID: PMC8619244 DOI: 10.3390/cells10113053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is an irreversible, debilitating condition marked by the excessive production of extracellular matrix and tissue scarring that eventually results in organ failure and disease. Differentiation of fibroblasts to hypersecretory myofibroblasts is the key event in fibrosis. Although both soluble and mechanical factors are implicated in fibroblast differentiation, much of the focus is on TGF-β signaling, but to date, there are no specific drugs available for the treatment of fibrosis. In this review, we describe the role for TRPV4 mechanotransduction in cardiac and lung fibrosis, and we propose TRPV4 as an alternative therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Ravi K. Adapala
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Venkatesh Katari
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Lakshminarayan Reddy Teegala
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | | | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (R.K.A.); (V.K.); (L.R.T.); (S.P.)
- Correspondence:
| |
Collapse
|
42
|
Goswami R, Arya RK, Sharma S, Dutta B, Stamov DR, Zhu X, Rahaman SO. Mechanosensing by TRPV4 mediates stiffness-induced foreign body response and giant cell formation. Sci Signal 2021; 14:eabd4077. [PMID: 34726952 PMCID: PMC9976933 DOI: 10.1126/scisignal.abd4077] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Implantation of biomaterials or devices into soft tissue often leads to the development of the foreign body response (FBR), an inflammatory condition that can cause implant failure, tissue injury, and death of the patient. Macrophages accumulate and fuse to generate destructive foreign body giant cells (FBGCs) at the tissue-implant interface, leading to the development of fibrous scar tissue around the implant that is generated by myofibroblasts. We previously showed that the FBR in vivo and FBGC formation in vitro require transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel. Here, we report that TRPV4 was required specifically for the FBR induced by implant stiffness independently of biochemical cues and for intracellular stiffening that promotes FBGC formation in vitro. TRPV4 deficiency reduced collagen deposition and the accumulation of macrophages, FBGCs, and myofibroblasts at stiff, but not soft, implants in vivo and inhibited macrophage-induced differentiation of wild-type fibroblasts into myofibroblasts in vitro. Atomic force microscopy demonstrated that TRPV4 was required for implant-adjacent tissue stiffening in vivo and for cytoskeletal remodeling and intracellular stiffening induced by fusogenic cytokines in vitro. Together, these data suggest a mechanism whereby a reciprocal functional interaction between TRPV4 and substrate stiffness leads to cytoskeletal remodeling and cellular force generation to promote FBGC formation during the FBR.
Collapse
Affiliation(s)
- Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Rakesh K. Arya
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Bidisha Dutta
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Dimitar R. Stamov
- JPK BioAFM Business, Nano Surfaces Division, Bruker Nano GmbH, Am Studio 2D, 12489 Berlin, Germany
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.,Corresponding author.:
| |
Collapse
|
43
|
Sánchez J, Trenor B, Saiz J, Dössel O, Loewe A. Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology. Cells 2021; 10:2852. [PMID: 34831076 PMCID: PMC8616446 DOI: 10.3390/cells10112852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
During atrial fibrillation, cardiac tissue undergoes different remodeling processes at different scales from the molecular level to the tissue level. One central player that contributes to both electrical and structural remodeling is the myofibroblast. Based on recent experimental evidence on myofibroblasts' ability to contract, we extended a biophysical myofibroblast model with Ca2+ handling components and studied the effect on cellular and tissue electrophysiology. Using genetic algorithms, we fitted the myofibroblast model parameters to the existing in vitro data. In silico experiments showed that Ca2+ currents can explain the experimentally observed variability regarding the myofibroblast resting membrane potential. The presence of an L-type Ca2+ current can trigger automaticity in the myofibroblast with a cycle length of 799.9 ms. Myocyte action potentials were prolonged when coupled to myofibroblasts with Ca2+ handling machinery. Different spatial myofibroblast distribution patterns increased the vulnerable window to induce arrhythmia from 12 ms in non-fibrotic tissue to 22 ± 2.5 ms and altered the reentry dynamics. Our findings suggest that Ca2+ handling can considerably affect myofibroblast electrophysiology and alter the electrical propagation in atrial tissue composed of myocytes coupled with myofibroblasts. These findings can inform experimental validation experiments to further elucidate the role of myofibroblast Ca2+ handling in atrial arrhythmogenesis.
Collapse
Affiliation(s)
- Jorge Sánchez
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, 46022 Valencia, Spain; (B.T.); (J.S.)
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (Ci2B), Universitàt Politècnica de València, 46022 Valencia, Spain; (B.T.); (J.S.)
| | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (O.D.); (A.L.)
| |
Collapse
|
44
|
Wang M, Sun Y, Li L, Wu P, Dkw O, Shi H. Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Front Pharmacol 2021; 12:702264. [PMID: 34489697 PMCID: PMC8418299 DOI: 10.3389/fphar.2021.702264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Dysfunctional skin barrier and impaired skin homeostasis may lead to or aggravate a series of dermatologic diseases. A large variety of biological events and bioactive molecules are involved in the process of skin wound healing and functional recovery. Calcium ions (Ca2+) released from intracellular stores as well as influx through plasma membrane are essential to skin function. Growing evidence suggests that calcium influx is mainly regulated by calcium-sensing receptors and channels, including voltage-gated, transient potential receptor, store-operated, and receptor-operated calcium channels, which not only maintain cellular Ca2+ homeostasis, but also participate in cell proliferation and skin cell homeostasis through Ca2+-sensitive proteins such as calmodulin (CaM). Furthermore, distinct types of Ca2+ channels not merely work separately, they may work concertedly to regulate cell function. In this review, we discussed different calcium-sensing receptors and channels, including voltage-gated, transient receptor potential, store-operated, and receptor-operated calcium channels, particularly focusing on their regulatory functions and inherent interactions as well as calcium channels-related reagents and drugs, which is expected to bridge basic research and clinical applications in dermatologic diseases.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Linli Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ocansey Dkw
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
46
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
47
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
48
|
Ghionzoli N, Gentile F, Del Franco AM, Castiglione V, Aimo A, Giannoni A, Burchielli S, Cameli M, Emdin M, Vergaro G. Current and emerging drug targets in heart failure treatment. Heart Fail Rev 2021; 27:1119-1136. [PMID: 34273070 PMCID: PMC9197912 DOI: 10.1007/s10741-021-10137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
After initial strategies targeting inotropism and congestion, the neurohormonal interpretative model of heart failure (HF) pathophysiology has set the basis for current pharmacological management of HF, as most of guideline recommended drug classes, including beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists, blunt the activation of detrimental neurohormonal axes, namely sympathetic and renin–angiotensin–aldosterone (RAAS) systems. More recently, sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, combining inhibition of RAAS and potentiation of the counter-regulatory natriuretic peptide system, has been consistently demonstrated to reduce mortality and HF-related hospitalization. A number of novel pharmacological approaches have been tested during the latest years, leading to mixed results. Among them, drugs acting directly at a second messenger level, such as the soluble guanylate cyclase stimulator vericiguat, or other addressing myocardial energetics and mitochondrial function, such as elamipretide or omecamtiv-mecarbil, will likely change the therapeutic management of patients with HF. Sodium glucose cotransporter 2 inhibitors, initially designed for the management of type 2 diabetes mellitus, have been recently demonstrated to improve outcome in HF, although mechanisms of their action on cardiovascular system are yet to be elucidated. Most of these emerging approaches have shifted the therapeutic target from neurohormonal systems to the heart, by improving cardiac contractility, metabolism, fibrosis, inflammation, and remodeling. In the present paper, we review from a pathophysiological perspective current and novel therapeutic strategies in chronic HF.
Collapse
Affiliation(s)
- Nicolò Ghionzoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | | | - Anna Maria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
| | | | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
49
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
50
|
Francisco J, Zhang Y, Nakada Y, Jeong JI, Huang CY, Ivessa A, Oka S, Babu GJ, Del Re DP. AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Sci Rep 2021; 11:10553. [PMID: 34006931 PMCID: PMC8131354 DOI: 10.1038/s41598-021-89989-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is a hallmark of heart disease independent of etiology and is thought to contribute to impaired cardiac dysfunction and development of heart failure. However, the underlying mechanisms that regulate the differentiation of fibroblasts to myofibroblasts and fibrotic responses remain incompletely defined. As a result, effective treatments to mitigate excessive fibrosis are lacking. We recently demonstrated that the Hippo pathway effector Yes-associated protein (YAP) is an important mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Yet, whether YAP activation in cardiac fibroblasts is sufficient to drive fibrosis, and how fibroblast YAP affects myocardial inflammation, a significant component of adverse cardiac remodeling, are largely unknown. In this study, we leveraged adeno-associated virus (AAV) to target cardiac fibroblasts and demonstrate that chronic YAP expression upregulated indices of fibrosis and inflammation in the absence of additional stress. YAP occupied the Ccl2 gene and promoted Ccl2 expression, which was associated with increased macrophage infiltration, pro-inflammatory cytokine expression, collagen deposition, and cardiac dysfunction in mice with cardiac fibroblast-targeted YAP overexpression. These results are consistent with other recent reports and extend our understanding of YAP function in modulating fibrotic and inflammatory responses in the heart.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Yasuki Nakada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Jae Im Jeong
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Chun-Yang Huang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Gopal J Babu
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|