1
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
2
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
3
|
Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol 2022; 10:1044923. [PMID: 36531958 PMCID: PMC9757164 DOI: 10.3389/fcell.2022.1044923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2024] Open
Abstract
Obesity and sudden cardiac death (SCD) share common risk factors. Obesity, in and of itself, can result in the development of SCD. Numerous epidemiologic and clinical studies have demonstrated the close relationships between obesity and SCD, however, the underlying mechanisms remain incompletely understood. Various evidences support the significance of excess adiposity in determining the risk of SCD, including anatomical remodeling, electrical remodeling, metabolic dysfunction, autonomic imbalance. Weight reduction has improved obesity related comorbidities, and reversed abnormal cardiac remodeling. Indeed, it is still unknown whether weight loss contributes to decreased risk of SCD. Further high-quality, prospective trials are needed to strengthen our understanding on weight management and SCD.
Collapse
Affiliation(s)
- Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
4
|
Chen Y, Lu Y, Wu W, Lin Y, Chen Y, Chen S, Chen Y. Advanced glycation end products modulate electrophysiological remodeling of right ventricular outflow tract cardiomyocytes: A novel target for diabetes-related ventricular arrhythmogenesis. Physiol Rep 2022; 10:e15499. [PMID: 36325589 PMCID: PMC9630757 DOI: 10.14814/phy2.15499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/11/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular disease and cardiac arrhythmia. Accumulation of advanced glycation end products closely correlates with cardiovascular complications through mitochondrial dysfunction or oxidative stress and evoke proliferative, inflammatory, and fibrotic reactions, which might impair cardiac electrophysiological characteristics and increase the incidence of cardiac arrhythmia. This study examined the mechanisms how advanced glycation end products may contribute to arrhythmogenesis of right ventricular outflow tract-a unique arrhythmogenic substrate. A whole-cell patch clamp, conventional electrophysiological study, fluorescence imaging, Western blot, and confocal microscope were used to study the electrical activity, and Ca2+ homeostasis or signaling in isolated right ventricular outflow tract myocytes with and without advanced glycation end products (100 μg/ml). The advanced glycation end products treated right ventricular outflow tract myocytes had a similar action potential duration as the controls, but exhibited a lower L-type Ca2+ current, higher late sodium current and transient outward current. Moreover, the advanced glycation end products treated right ventricular outflow tract myocytes had more intracellular Na+ , reverse mode Na+ -Ca2+ exchanger currents, intracellular and mitochondrial reactive oxygen species, and less intracellular Ca2+ transient and sarcoplasmic reticulum Ca2+ content with upregulated calcium homeostasis proteins and advanced glycation end products related signaling pathway proteins. In conclusions, advanced glycation end products modulate right ventricular outflow tract electrophysiological characteristics with larger late sodium current, intracellular Na+ , reverse mode Na+ -Ca2+ exchanger currents, and disturbed Ca2+ homeostasis through increased oxidative stress mediated by the activation of the advanced glycation end products signaling pathway.
Collapse
Affiliation(s)
- Yao‐Chang Chen
- Department of Biomedical EngineeringNational Defense Medical CenterTaipeiTaiwan
| | - Yen‐Yu Lu
- Division of CardiologySijhih Cathay General HospitalNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wen‐Shiann Wu
- Department of CardiologyChi‐Mei Medical CenterTainanTaiwan
| | - Yung‐Kuo Lin
- Taipei Heart Institute, Taipei Medical UniversityTaipeiTaiwan
- Division of Cardiovascular Medicine, Department of Internal MedicineWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yi‐Ann Chen
- Division of CardiologySijhih Cathay General HospitalNew Taipei CityTaiwan
- Division of NephrologySijhih Cathay General HospitalNew Taipei CityTaiwan
| | - Shih‐Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of MedicineTaipei Veterans General HospitalTaipeiTaiwan
- Cardiovascular Center, Taichung Veterans General HospitalTaichungTaiwan
- Department of Post‐Baccalaureate Medicine, College of MedicineNational Chung Hsing UniversityTaichungTaiwan
| | - Yi‐Jen Chen
- Taipei Heart Institute, Taipei Medical UniversityTaipeiTaiwan
- Division of Cardiovascular Medicine, Department of Internal MedicineWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Clinical Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Cardiovascular Research CenterWan Fang Hospital, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Bossuyt J, Borst JM, Verberckmoes M, Bailey LRJ, Bers DM, Hegyi B. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure. J Am Heart Assoc 2022; 11:e027573. [PMID: 36172952 DOI: 10.1161/jaha.122.027573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Structural and electrophysiological remodeling characterize heart failure (HF) enhancing arrhythmias. PKD1 (protein kinase D1) is upregulated in HF and mediates pathological hypertrophic signaling, but its role in K+ channel remodeling and arrhythmogenesis in HF is unknown. Methods and Results We performed echocardiography, electrophysiology, and expression analysis in wild-type and PKD1 cardiomyocyte-specific knockout (cKO) mice following transverse aortic constriction (TAC). PKD1-cKO mice exhibited significantly less cardiac hypertrophy post-TAC and were protected from early decline in cardiac contractile function (3 weeks post-TAC) but not the progression to HF at 7 weeks post-TAC. Wild-type mice exhibited ventricular action potential duration prolongation at 8 weeks post-TAC, which was attenuated in PKD1-cKO, consistent with larger K+ currents via the transient outward current, sustained current, inward rectifier K+ current, and rapid delayed rectifier K+ current and increased expression of corresponding K+ channels. Conversely, reduction of slowly inactivating K+ current was independent of PKD1 in HF. Acute PKD inhibition slightly increased transient outward current in TAC and sham wild-type myocytes but did not alter other K+ currents. Sham PKD1-cKO versus wild-type also exhibited larger transient outward current and faster early action potential repolarization. Tachypacing-induced action potential duration alternans in TAC animals was increased and independent of PKD1, but diastolic arrhythmogenic activities were reduced in PKD1-cKO. Conclusions Our data indicate an important role for PKD1 in the HF-related hypertrophic response and K+ channel downregulation. Therefore, PKD1 inhibition may represent a therapeutic strategy to reduce hypertrophy and arrhythmias; however, PKD1 inhibition may not prevent disease progression and reduced contractility in HF.
Collapse
Affiliation(s)
- Julie Bossuyt
- Department of Pharmacology University of California Davis CA
| | - Johanna M Borst
- Department of Pharmacology University of California Davis CA
| | | | | | - Donald M Bers
- Department of Pharmacology University of California Davis CA
| | - Bence Hegyi
- Department of Pharmacology University of California Davis CA
| |
Collapse
|
6
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
7
|
Joseph LC, Shi J, Nguyen QN, Pensiero V, Goulbourne C, Bauer RC, Zhang H, Morrow JP. Combined metabolomic and transcriptomic profiling approaches reveal the cardiac response to high-fat diet. iScience 2022; 25:104184. [PMID: 35494220 PMCID: PMC9038541 DOI: 10.1016/j.isci.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
The response of vital organs to different types of nutrition or diet is a fundamental question in physiology. We examined the cardiac response to 4 weeks of high-fat diet in mice, measuring cardiac metabolites and mRNA. Metabolomics showed dramatic differences after a high-fat diet, including increases in several acyl-carnitine species. The RNA-seq data showed changes consistent with adaptations to use more fatty acid as substrate and an increase in the antioxidant protein catalase. Changes in mRNA were correlated with changes in protein level for several highly responsive genes. We also found significant sex differences in both metabolomics and RNA-seq datasets, both at baseline and after high fat diet. This work reveals the response of a vital organ to dietary intervention at both metabolomic and transcriptomic levels, which is a fundamental question in physiology. This work also reveals significant sex differences in cardiac metabolites and gene expression.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Jianting Shi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Quynh N. Nguyen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Victoria Pensiero
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Chris Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Robert C. Bauer
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Hanrui Zhang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
- Cardiometabolic Genomics Program, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| |
Collapse
|
8
|
Podzolkov VI, Pokrovskaya AE, Bazhanova US, Vanina DD, Vargina TS. Impact Of Obesity On Cardiac Structural And Functional Changes. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The urgency of obesity issue is undeniable. Obesity is now considered the most important risk factor of cardiovascular diseases. Numerous studies have demonstrated the negative effect of excessive adipose tissue on structural and functional changes in the heart that lead to development of left ventricular hypertrophy, arrhythmias and conduction abnormalities, as well as progression of diastolic and systolic heart failure. High prevalence of obesity – so high that it can be called a pandemic – greatly contributes to the increased incidence of cardiovascular diseases. Studying the problem of obesity is a priority area of focus for modern medicine. This article describes hormonal, metabolic and hemodynamic features of obesity impact on cardiovascular system and describes pathogenetic mechanisms of cardiovascular pathology development.
Collapse
Affiliation(s)
- Valery I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna E. Pokrovskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ulyana S. Bazhanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daria D. Vanina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana S. Vargina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Remme CA. Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 2022; 38:418-426. [PMID: 35017043 DOI: 10.1016/j.cjca.2022.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias and sudden cardiac death (SCD) occur most frequently in the setting of coronary artery disease, cardiomyopathy and heart failure, but are also increasingly observed in individuals suffering from diabetes mellitus and obesity. The incidence of these metabolic disorders is rising in Western countries, but adequate prevention and treatment of arrhythmias and SCD in affected patients is limited due to our incomplete knowledge of the underlying disease mechanisms. Here, an overview is presented of the prevalence of electrophysiological disturbances, ventricular arrhythmias and SCD in the clinical setting of diabetes and obesity. Experimental studies are reviewed, which have identified disease pathways and associated modulatory factors, in addition to pro-arrhythmic mechanisms. Key processes are discussed, including mitochondrial dysfunction, oxidative stress, cardiac structural derangements, abnormal cardiac conduction, ion channel dysfunction, prolonged repolarization and dysregulation of intracellular sodium and calcium homeostasis. In addition, the recently identified pro-arrhythmic effects of dysregulated branched chain amino acid metabolism, a common feature in patients with metabolic disorders, are addressed. Finally, current management options are discussed, in addition to the potential development of novel preventive and therapeutic strategies based on recent insight gained from translational studies.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Bağcı A, Aksoy F, Baş HA, Işık İB, Akkaya F, Orhan H. Relationship between morning blood pressure surge and the frontal plane QRS-T angle in newly diagnosed hypertensive patients. Clin Exp Hypertens 2021; 43:707-714. [PMID: 34176382 DOI: 10.1080/10641963.2021.1945076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Morning blood pressure surge (MBPS) plays an important role in target organ damage and major adverse cardiac events. The frontal QRS-T [f(QRS-T)] angle is the electrocardiographic marker and index of ventricular arrhythmogenic events. We aimed to investigate the relationship between MBPS and the f(QRS-T) angle, which is an indicator of ventricular repolarization disorder, in patients with newly diagnosed HT. METHODS Between June 2020 and March 2021, 263 patients with newly diagnosed HT who were admitted to our outpatient clinic were prospectively included in the study. According to ambulatory blood pressure monitoring (ABPM), the patients were categorized into two groups: Group-I: low-value MBPS (<37 mm Hg), and group-II: high-value MBPS (≥37 mm Hg). The f(QRS-T) angle calculated from the 12-lead electrocardiogram and all other data were compared between the groups. RESULTS A total of 186 newly diagnosed HT patients who met the inclusion criteria were included in the study. The average f(QRS-T) angle in Groups I and 2 was 21° ± 16° and 51° ± 30°, respectively (P < .001). According to multivariate regression analysis, T peak-end and MBPS were found to be independent predictors of the f(QRS-T) angle. CONCLUSIONS As a result of our study, we found that the f(QRS-T) angle was widened in patients with exaggerated MBPS. The cause of increased cardiovascular outcomes in patients with exaggerated MBPS may be explained by widened in the f(QRS-T) angle that is a ventricular repolarization parameter.
Collapse
Affiliation(s)
- Ali Bağcı
- Assistant Professor Professor from the Department of Cardiology, Suleyman Demirel University, Medical School, Isparta, Turkey
| | - Fatih Aksoy
- Associate Professor from the Department of Cardiology, Suleyman Demirel University, Medical School, Isparta, Turkey
| | - Hasan Aydin Baş
- Resident from Department of Cardiology, Isparta City Hospital, Isparta, Turkey
| | - İsmail Barkin Işık
- Resident from Department of Cardiology, Rize State Hospital, Rize, Turkey
| | - Fatih Akkaya
- Assistant Professor Professor from the Department of Cardiology, Ordu University, Medical School, Ordu, Turkey
| | - Hikmet Orhan
- Professor from Department of Biostatistics, Suleyman Demirel University, Medical School, Isparta, Turkey
| |
Collapse
|
11
|
Ventricular arrhythmias in mouse models of diabetic kidney disease. Sci Rep 2021; 11:20570. [PMID: 34663875 PMCID: PMC8523538 DOI: 10.1038/s41598-021-99891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS−/− (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.
Collapse
|
12
|
Joseph LC, Reyes MV, Homan EA, Gowen B, Avula UMR, Goulbourne CN, Wan EY, Elrod JW, Morrow JP. The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet. Sci Rep 2021; 11:17808. [PMID: 34497331 PMCID: PMC8426388 DOI: 10.1038/s41598-021-97449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.
Collapse
Affiliation(s)
- Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Michael V Reyes
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Edwin A Homan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Blake Gowen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Uma Mahesh R Avula
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Elaine Y Wan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - John W Elrod
- Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA.
- College of Physicians and Surgeons of Columbia University, PH10-203, 650 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Hall EJ, Pal S, Glennon MS, Shridhar P, Satterfield SL, Weber B, Zhang Q, Salama G, Lal H, Becker JR. Cardiac natriuretic peptide deficiency sensitizes the heart to stress induced ventricular arrhythmias via impaired CREB signaling. Cardiovasc Res 2021; 118:2124-2138. [PMID: 34329394 DOI: 10.1093/cvr/cvab257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The cardiac natriuretic peptides (atrial natriuretic peptide [ANP] and B-type natriuretic peptide [BNP]) are important regulators of cardiovascular physiology, with reduced natriuretic peptide (NP) activity linked to multiple human cardiovascular diseases. We hypothesized that deficiency of either ANP or BNP would lead to similar changes in left ventricular structure and function given their shared receptor affinities. METHODS AND RESULTS We directly compared murine models deficient of ANP or BNP in the same genetic backgrounds (C57BL6/J) and environments. We evaluated control, ANP deficient (Nppa-/-) or BNP deficient (Nppb-/-) mice under unstressed conditions and multiple forms of pathological myocardial stress. Survival, myocardial structure, function and electrophysiology, tissue histology, and biochemical analyses were evaluated in the groups. In vitro validation of our findings was performed using human derived induced pluripotent stem cell cardiomyocytes (iPS-CM). In the unstressed state, both ANP and BNP deficient mice displayed mild ventricular hypertrophy which did not increase up to 1 year of life. NP-deficient mice exposed to acute myocardial stress secondary to thoracic aortic constriction (TAC) had similar pathological myocardial remodeling but a significant increase in sudden death. We discovered that the NP-deficient mice are more susceptible to stress induced ventricular arrhythmias using both in vivo and ex vivo models. Mechanistically, deficiency of either ANP or BNP led to reduced myocardial cGMP levels and reduced phosphorylation of the cAMP response element-binding protein (CREBS133) transcriptional regulator. Selective CREB inhibition sensitized wild type hearts to stress induced ventricular arrhythmias. ANP and BNP regulate cardiomyocyte CREBS133 phosphorylation through a cGMP-dependent protein kinase 1 (PKG1) and p38 mitogen activated protein kinase (p38 MAPK) signaling cascade. CONCLUSIONS Our data show that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels to regulate cardiomyocyte p38 MAPK and CREB activity. Cardiac natriuretic peptide deficiency leads to a reduction in CREB signaling which sensitizes the heart to stress induced ventricular arrhythmias. TRANSLATIONAL PERSPECTIVE Our study found that ANP or BNP deficiency leads to increased sudden death and ventricular arrhythmias after acute myocardial stress in murine models. We discovered that ANP and BNP act in a non-redundant fashion to maintain myocardial cGMP levels and uncovered a unique role for these peptides in regulating cardiomyocyte p38 MAPK and CREB signaling through a cGMP-PKG1 pathway. Importantly, this signaling pathway was conserved in human cardiomyocytes. This study provides mechanistic insight into how modulating natriuretic peptide levels in human heart failure patients reduces sudden death and mortality.
Collapse
Affiliation(s)
- Eric J Hall
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Soumojit Pal
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael S Glennon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Puneeth Shridhar
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sidney L Satterfield
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Beth Weber
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qinkun Zhang
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Guy Salama
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Jason R Becker
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Bağcı A, Aksoy F, Baş HA, Işık İB, Orhan H. The effect of Systolic and diastolic blood pressure on Tp-e interval in patients divided according to World Health Organization classification for body mass index. Clin Exp Hypertens 2021; 43:642-646. [PMID: 34018865 DOI: 10.1080/10641963.2021.1925684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio are electrocardiographic markers and indices of ventricular arrhythmogenic events. We aimed to investigate ventricular repolarization in normal weight, overweight, obese and morbidly obese individuals by using ECG parameters including the above markers.Methods: A total of 310 obese patients with various cardiac complaints, who were admitted to our outpatient clinic between May 2020 and January 2021, were prospectively included in the study. Using the World Health Organization (WHO) body mass index (BMI) classification, patients were divided into four groups: normal weight (18.5-24.9 kg/m2, n = 48), overweight (25-29.9 kg/m2, n = 98), obese (30-39.9 kg/m2, n = 119), and morbidly obese (>40 kg/m2, n = 45).Results: The morbidly obese and normal groups were younger in age than the other two groups. The Tp-e interval values for Groups I-IV were 72.1 ± 6.9, 73.1 ± 6.2, 75.7 ± 7.3 and 81.1 ± 6.9, respectively, and significantly different (P < .001). We found that age, BMI, systolic blood pressure (BP) and diastolic BP were independent predictors of a prolonged Tp-e interval.Conclusions: The principal finding of our study was the gradual increase in Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio starting from the overweight stage and these parameters gradually increase in obese and morbidly obese patients. Additionally, systolic and diastolic blood pressure predicted Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio.
Collapse
Affiliation(s)
- Ali Bağcı
- Department of Cardiology, Suleyman Demirel University, Medical School, Isparta, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Suleyman Demirel University, Medical School, Isparta, Turkey
| | - Hasan Aydin Baş
- Department of Cardiology, Isparta City Hospital, Isparta, Turkey
| | | | - Hikmet Orhan
- Department of Biostatistics, Suleyman Demirel University, Medical School, Isparta, Turkey
| |
Collapse
|
15
|
Affiliation(s)
- Lisa Stoll
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - James C. Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
16
|
Gowen BH, Reyes MV, Joseph LC, Morrow JP. Mechanisms of Chronic Metabolic Stress in Arrhythmias. Antioxidants (Basel) 2020; 9:antiox9101012. [PMID: 33086602 PMCID: PMC7603089 DOI: 10.3390/antiox9101012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac arrhythmias are responsible for many cardiovascular disease-related deaths worldwide. While arrhythmia pathogenesis is complex, there is increasing evidence for metabolic causes. Obesity, diabetes, and chronically consuming high-fat foods significantly increase the likelihood of developing arrhythmias. Although these correlations are well established, mechanistic explanations connecting a high-fat diet (HFD) to arrhythmogenesis are incomplete, although oxidative stress appears to be critical. This review investigates the metabolic changes that occur in obesity and after HFD. Potential therapies to prevent or treat arrhythmias are discussed, including antioxidants.
Collapse
Affiliation(s)
| | | | | | - John P. Morrow
- Correspondence: ; Tel.: +1-212-305-5553; Fax: +1-212-305-4648
| |
Collapse
|
17
|
Bianchi VE. Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 2020; 38:50-60. [PMID: 32690177 DOI: 10.1016/j.clnesp.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Nutrition exerts a determinant role in maintaining cardiac function, regulating insulin and mitochondrial efficiency, that are essential to support energy production for contractility. In patients with heart failure (HF), myocardial tissue efficiency is reduced because of decreased mitochondrial oxidative capacity. In HF conditions, cardiomyocytes shift toward glucose and a reduction in fatty acid utilization. Calorie restriction induces weight loss in obese patients and can be beneficial in some HF patients, although this has generated some controversy. This study aims to evaluate the impact of the CR diet on myocardial efficiency in HF patients. METHODS On Pubmed and Embase, articles related to the keywords: "chronic heart failure" with "diet," "nutrition," "insulin resistance," and "caloric restriction" have been searched, Studies, including exercise or food supplementation, were excluded. RESULTS The retrieved articles showed that weight loss, through the activation of insulin and various kinase pathways, regulates the efficiency of myocardial tissue. In contrast, insulin resistance represents a strong cardiovascular risk factor that reduces myocardial function. CONCLUSION CR diet represents the first therapy in overweight HF patients, both with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrHF) because reducing body fat, the myocardial function increased. Insulin activity is the critical hormone that regulates mitochondrial function and cardiac efficiency. However, a severely restricted diet may represent a severe risk factor correlated with all-cause mortality, particularly in underweight HF patients. Long-term studies conducted on large populations are necessary to evaluate the effects of CR on myocardial function in HF patients.
Collapse
|
18
|
L'Abbate S, Nicolini G, Forini F, Marchetti S, Di Lascio N, Faita F, Kusmic C. Myo-inositol and d-chiro-inositol oral supplementation ameliorate cardiac dysfunction and remodeling in a mouse model of diet-induced obesity. Pharmacol Res 2020; 159:105047. [PMID: 32590101 DOI: 10.1016/j.phrs.2020.105047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Obesity is an independent risk factor to develop cardiac functional and structural impairments. Here, we investigated the effects of supplementation of inositols on the electrical, structural, and functional cardiac alterations in the mouse model of high fat diet (HFD) induced obesity. Three groups of C57BL6 mice (n = 16 each) were studied: j) HFD feeding; jj) HFD feeding + inositols from week 9 to 13; jjj) standard diet feeding. Study observation period was 13 weeks. Inositols were administered as mixture of myo-inositol and d-chiro-inositol in the drinking water. Effects of inositols were evaluated based on electrical, structural, and functional cardiac features, autonomic sympatho-vagal balance and arrhythmogenic susceptibility to adrenergic challenge. Heart samples were collected for histological evaluations and transcriptional analyses of genes involved in defining the shape and propagation of the action potential, fatty acid metabolism and oxidative stress. Inositol supplementation significantly restored control values of heart rate and QTc interval on ECG and of sympatho-vagal balance. Moreover, it blunted the increase in left ventricular mass and cardiomyocyte hypertrophy, reversed diastolic dysfunction, reduced the susceptibility to arrhythmic events and restored the expression level of cardiac genes altered by HFD. The present study shows, for the first time, how a short period of supplementation with inositols is able to ameliorate the HFD-induced electrical, structural and functional heart alterations including ventricular remodeling. Results provide a new insight into the cardioprotective effect of inositols, which could pave the way for a novel therapeutic approach to the treatment of HFD obesity-induced heart dysfunction.
Collapse
Affiliation(s)
- Serena L'Abbate
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Giuseppina Nicolini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesca Forini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Sabrina Marchetti
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Nicole Di Lascio
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesco Faita
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Claudia Kusmic
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy.
| |
Collapse
|
19
|
Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020; 17:7. [PMID: 31996220 PMCID: PMC6990551 DOI: 10.1186/s12989-019-0335-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Using engineered nanomaterial-based toners, laser printers generate aerosols with alarming levels of nanoparticles that bear high bioactivity and potential health risks. Yet, the cardiac impacts of printer-emitted particles (PEPs) are unknown. Inhalation of particulate matter (PM) promotes cardiovascular morbidity and mortality, and ultra-fine particulates (< 0.1 μm aerodynamic diameter) may bear toxicity unique from larger particles. Toxicological studies suggest that PM impairs left ventricular (LV) performance; however, such investigations have heretofore required animal restraint, anesthesia, or ex vivo preparations that can confound physiologic endpoints and/or prohibit LV mechanical assessments during exposure. To assess the acute and chronic effects of PEPs on cardiac physiology, male Sprague Dawley rats were exposed to PEPs (21 days, 5 h/day) while monitoring LV pressure (LVP) and electrocardiogram (ECG) via conscious telemetry, analyzing LVP and heart rate variability (HRV) in four-day increments from exposure days 1 to 21, as well as ECG and baroreflex sensitivity. At 2, 35, and 70 days after PEPs exposure ceased, rats received stress tests. RESULTS On day 21 of exposure, PEPs significantly (P < 0.05 vs. Air) increased LV end systolic pressure (LVESP, + 18 mmHg) and rate-pressure-product (+ 19%), and decreased HRV indicating sympathetic dominance (root means squared of successive differences [RMSSD], - 21%). Overall, PEPs decreased LV ejection time (- 9%), relaxation time (- 3%), tau (- 5%), RMSSD (- 21%), and P-wave duration (- 9%). PEPs increased QTc interval (+ 5%) and low:high frequency HRV (+ 24%; all P < 0.05 vs. Air), while tending to decrease baroreflex sensitivity and contractility index (- 15% and - 3%, P < 0.10 vs. Air). Relative to Air, at both 2 and 35 days after PEPs, ventricular arrhythmias increased, and at 70 days post-exposure LVESP increased. PEPs impaired ventricular repolarization at 2 and 35 days post-exposure, but only during stress tests. At 72 days post-exposure, PEPs increased urinary dopamine 5-fold and protein expression of ventricular repolarizing channels, Kv1.5, Kv4.2, and Kv7.1, by 50%. CONCLUSIONS Our findings suggest exposure to PEPs increases cardiovascular risk by augmenting sympathetic influence, impairing ventricular performance and repolarization, and inducing hypertension and arrhythmia. PEPs may present significant health risks through adverse cardiovascular effects, especially in occupational settings, among susceptible individuals, and with long-term exposure.
Collapse
Affiliation(s)
- Alex P. Carll
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Renata Salatini
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY USA
- Department of Surgery, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Yun Wang
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
- Department of Occupational and Environmental Health Sciences,School of Public Health, Peking University, Beijing, People’s Republic of China
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Nazratan Naeem
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences/Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV USA
| | - John J. Godleski
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology. Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115 USA
| |
Collapse
|
20
|
Shuai W, Kong B, Fu H, Jiang X, Huang H. The effect of MD1 on potassium and L-type calcium current of cardiomyocytes from high-fat diet mice. Channels (Austin) 2020; 14:181-189. [PMID: 32491968 PMCID: PMC7515570 DOI: 10.1080/19336950.2020.1772628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Myeloid differentiation protein 1 (MD1) is exerted an anti-arrhythmic effect in obese mice. Therefore, we sought to clarify whether MD1 can alter the electrophysiological remodeling of cardiac myocytes from obese mice by regulating voltage-gated potassium current and calcium current. MD1 knock-out (KO) and wild type (WT) mice were given a high-fat diet (HFD) for 20 weeks, starting at the age of 6 weeks. The potential electrophysiological mechanisms were estimated by whole-cell patch-clamp and molecular analysis. After 20-week HFD feeding, action potential duration (APD) from left ventricular myocytes of MD1-KO mice revealed APD20, APD50, and APD90 were profoundly enlarged. Furthermore, HFD mice showed a decrease in the fast transient outward potassium currents (Ito,f), slowly inactivating potassium current (IK, slow), and inward rectifier potassium current (IK1). Besides, HFD-fed mice showed that the current density of ICaL was significantly lower, and the haft inactivation voltage was markedly shifted right. These HFD induced above adverse effects were further exacerbated in KO mice. The mRNA expression of potassium ion channels (Kv4.2, Kv4.3, Kv2.1, Kv1.5, and Kir2.1) and calcium ion channel (Cav1.2) was markedly decreased in MD1-KO HFD-fed mice. MD1 deletion led to down-regulated potassium currents and slowed inactivation of L-type calcium channel in an obese mice model.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - Xiaobo Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University , Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology , Wuhan, Hubei, China
| |
Collapse
|
21
|
Murine model of left ventricular diastolic dysfunction and electro-mechanical uncoupling following high-fat diet. Int J Obes (Lond) 2019; 44:1428-1439. [PMID: 31792335 DOI: 10.1038/s41366-019-0500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES It is well established that obesity is an independent risk factor for cardiac death. In particular various cardiac alterations have been described in obese patients such as long QT on ECG, impaired diastolic filling of the left ventricle (LV), and all-type arrhythmias. In the present study, the above alterations were all reproduced in a mouse model of fat diet-induced obesity. ANIMALS/METHODS In C57BL6 mice fed on a high fat (n = 20, HF-group) or standard diet (n = 20, C-group) for 13 weeks, balanced by sex and age, we examined heart morphology and function by high-frequency ultrasounds and electric activity by surface ECG. Besides, the autonomic sympathovagal balance (heart-rate variability) and the arrhythmogenic susceptibility to adrenergic challenge (i.p. isoproterenol) were compared in the two groups, as well as glucose tolerance (i.p. glucose test) and liver steatosis (ultrasounds). RESULTS Body weight in HF-group exceeded C-group at the end of the experiment (+28% p < 0.01). An abnormal ventricular repolarization (long QTc on ECG) together with impaired LV filling rate and increased LV mass was found in HF-group as compared to C. Moreover, HF-group showed higher heart rate, unbalanced autonomic control with adrenergic prevalence and a greater susceptibility to develop rhythm disturbances under adrenergic challenge (i.p. isoprenaline). Impaired glucose tolerance and higher liver fat accumulation were also found in HF mice compared to C. CONCLUSIONS The described murine model of 13 weeks on HF diet, well reproduced the cardiovascular and metabolic disorders reported in clinical obesity, suggesting its potential utility as translational mean suitable for testing new pharmaco-therapeutic approaches to the treatment of obesity and its comorbidity.
Collapse
|
22
|
Joseph LC, Avula UMR, Wan EY, Reyes MV, Lakkadi KR, Subramanyam P, Nakanishi K, Homma S, Muchir A, Pajvani UB, Thorp EB, Reiken SR, Marks AR, Colecraft HM, Morrow JP. Dietary Saturated Fat Promotes Arrhythmia by Activating NOX2 (NADPH Oxidase 2). Circ Arrhythm Electrophysiol 2019; 12:e007573. [PMID: 31665913 PMCID: PMC7004280 DOI: 10.1161/circep.119.007573] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obesity and diets high in saturated fat increase the risk of arrhythmias and sudden cardiac death. However, the molecular mechanisms are not well understood. We hypothesized that an increase in dietary saturated fat could lead to abnormalities of calcium homeostasis and heart rhythm by a NOX2 (NADPH oxidase 2)-dependent mechanism. METHODS We investigated this hypothesis by feeding mice high-fat diets. In vivo heart rhythm telemetry, optical mapping, and isolated cardiac myocyte imaging were used to quantify arrhythmias, repolarization, calcium transients, and intracellular calcium sparks. RESULTS We found that saturated fat activates NOX (NADPH oxidase), whereas polyunsaturated fat does not. The high saturated fat diet increased repolarization heterogeneity and ventricular tachycardia inducibility in perfused hearts. Pharmacological inhibition or genetic deletion of NOX2 prevented arrhythmogenic abnormalities in vivo during high statured fat diet and resulted in less inducible ventricular tachycardia. High saturated fat diet activates CaMK (Ca2+/calmodulin-dependent protein kinase) in the heart, which contributes to abnormal calcium handling, promoting arrhythmia. CONCLUSIONS We conclude that NOX2 deletion or pharmacological inhibition prevents the arrhythmogenic effects of a high saturated fat diet, in part mediated by activation of CaMK. This work reveals a molecular mechanism linking cardiac metabolism to arrhythmia and suggests that NOX2 inhibitors could be a novel therapy for heart rhythm abnormalities caused by cardiac lipid overload.
Collapse
Affiliation(s)
- Leroy C. Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Uma Mahesh R. Avula
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Elaine Y. Wan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Michael V. Reyes
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Kundanika R. Lakkadi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Koki Nakanishi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Shunichi Homma
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Antoine Muchir
- Center of Research in Myology, UPMC-Inserm UMR974, CNRS FRE3617, Institut de Myologie, G.H. Pitie Salpetriere, Paris, France
| | - Utpal B. Pajvani
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Edward B. Thorp
- Departments of Pathology and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Steven R. Reiken
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, NY
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY
| |
Collapse
|
23
|
Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. J Mol Cell Cardiol 2019; 137:93-106. [PMID: 31639389 DOI: 10.1016/j.yjmcc.2019.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022]
Abstract
Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvβ subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvβ subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvβ2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvβ2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvβ2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvβ2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvβ2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvβ2-/-, hearts. Taken together, these results suggest that Kvβ2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.
Collapse
|
24
|
Martinez-Mateu L, Saiz J, Aromolaran AS. Differential Modulation of IK and ICa,L Channels in High-Fat Diet-Induced Obese Guinea Pig Atria. Front Physiol 2019; 10:1212. [PMID: 31607952 PMCID: PMC6773813 DOI: 10.3389/fphys.2019.01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK, IKur, and IK1) and L-type calcium currents (ICa,L) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.
Collapse
Affiliation(s)
- Laura Martinez-Mateu
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Shuai W, Kong B, Fu H, Shen C, Huang H. Loss of MD1 increases vulnerability to ventricular arrhythmia in diet-induced obesity mice via enhanced activation of the TLR4/MyD88/CaMKII signaling pathway. Nutr Metab Cardiovasc Dis 2019; 29:991-998. [PMID: 31353205 DOI: 10.1016/j.numecd.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Obesity is an important risk factor for ventricular arrhythmia (VA), and myeloid differentiation protein 1 (MD1) has been reported to decrease in obese hearts. Nevertheless, underlying mechanisms linking MD1 and VA have not been fully studied. This study aims to investigate the regulatory role of MD1 in VA caused by diet-induced obesity. METHODS AND RESULTS MD1 knock-out (KO) and wild type (WT) mice from experimental groups were fed with a high-fat diet (HFD) since the age of six weeks for 20 weeks. The body weight gain, fast glucose and serum lipid levels were measured and recorded. In addition, pathological analysis, echocardiography, electrocardiography, langendorff-perfused heart and molecular analysis were performed to detect HFD-induced vulnerability to VA and its underlying mechanisms. After a 20-week HFD feeding, the mice showed an increase in body weight, glycemic, lipid levels, QTc interval, LVEDd, LVEDs and LVFS. HFD feeding also increased vulnerability to VA, as shown by the prolonged action potential duration (APD), enhanced APD alternans threshold and greater incidence of VA. Moreover, HFD feeding caused LV hypertrophy and fibrosis, and decreased the protein expressions of Kv4.2, Kv4.3, Kv1.5, Kv2.1 and Cav1.2 channels. At last, the above-mentioned HFD-induced adverse effects were further exacerbated in KO mice compared with WT mice. Mechanistically, MD1 deletion markedly enhanced the activation of TLR4/MyD88/CaMKII signaling pathway in HFD-fed mice. CONCLUSION MD1 deficiency increased HFD-induced vulnerability to VA. This is mainly caused by the aggravated maladaptive LV hypertrophy, fibrosis and decreased protein expressions of ion channels, which are induced by the enhanced activation of the TLR4/MyD88/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Caijie Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Wang Y, Shin JY, Nakanishi K, Homma S, Kim GJ, Tanji K, Joseph LC, Morrow JP, Stewart CL, Dauer WT, Worman HJ. Postnatal development of mice with combined genetic depletions of lamin A/C, emerin and lamina-associated polypeptide 1. Hum Mol Genet 2019; 28:2486-2500. [PMID: 31009944 DOI: 10.1093/hmg/ddz082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 01/18/2023] Open
Abstract
Mutations in LMNA encoding lamin A/C and EMD encoding emerin cause cardiomyopathy and muscular dystrophy. Lmna null mice develop these disorders and have a lifespan of 7-8 weeks. Emd null mice show no overt pathology and have normal skeletal muscle but with regeneration defects. We generated mice with germline deletions of both Lmna and Emd to determine the effects of combined loss of the encoded proteins. Mice without lamin A/C and emerin are born at the expected Mendelian ratio, are grossly normal at birth but have shorter lifespans than those lacking only lamin A/C. However, there are no major differences between these mice with regards to left ventricular function, heart ultrastructure or electrocardiographic parameters except for slower heart rates in the mice lacking both lamin A/C and emerin. Skeletal muscle is similarly affected in both of these mice. Lmna+/- mice also lacking emerin live to at least 1 year and have no significant differences in growth, heart or skeletal muscle compared to Lmna+/- mice. Deletion of the mouse gene encoding lamina-associated protein 1 leads to prenatal death; however, mice with heterozygous deletion of this gene lacking both lamin A/C and emerin are born at the expected Mendelian ratio but had a shorter lifespan than those only lacking lamin A/C and emerin. These results show that mice with combined deficiencies of three interacting nuclear envelope proteins have normal embryonic development and that early postnatal defects are primarily driven by loss of lamin A/C or lamina-associated polypeptide 1 rather than emerin.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of Medicine and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ji-Yeon Shin
- Department of Medicine and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | - Kurenai Tanji
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | - Colin L Stewart
- Development and Regenerative Biology Group, Institute of Medical Biology, Immunos, Singapore
| | - Willian T Dauer
- Department of Neurology.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Howard J Worman
- Department of Medicine and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Chen H, Deng Y, Li S. Relation of Body Mass Index Categories with Risk of Sudden Cardiac Death. Int Heart J 2019; 60:624-630. [DOI: 10.1536/ihj.18-155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Nanchang University
| | - Yuqing Deng
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Nanchang University
| | - Shunhui Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Nanchang University
| |
Collapse
|
28
|
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, Wang X, Meng D, Qin D, Zhu H, Wang YF. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci 2019; 13:454. [PMID: 31178679 PMCID: PMC6537480 DOI: 10.3389/fnins.2019.00454] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is a major cardiovascular disease responsible for high morbidity and mortality worldwide. The major pathophysiological basis of CAD is atherosclerosis in association with varieties of immunometabolic disorders that can suppress oxytocin (OT) receptor (OTR) signaling in the cardiovascular system (CVS). By contrast, OT not only maintains cardiovascular integrity but also has the potential to suppress and even reverse atherosclerotic alterations and CAD. These protective effects of OT are associated with its protection of the heart and blood vessels from immunometabolic injuries and the resultant inflammation and apoptosis through both peripheral and central approaches. As a result, OT can decelerate the progression of atherosclerosis and facilitate the recovery of CVS from these injuries. At the cellular level, the protective effect of OT on CVS involves a broad array of OTR signaling events. These signals mainly belong to the reperfusion injury salvage kinase pathway that is composed of phosphatidylinositol 3-kinase-Akt-endothelial nitric oxide synthase cascades and extracellular signal-regulated protein kinase 1/2. Additionally, AMP-activated protein kinase, Ca2+/calmodulin-dependent protein kinase signaling and many others are also implicated in OTR signaling in the CVS protection. These signaling events interact coordinately at many levels to suppress the production of inflammatory cytokines and the activation of apoptotic pathways. A particular target of these signaling events is endoplasmic reticulum (ER) stress and mitochondrial oxidative stress that interact through mitochondria-associated ER membrane. In contrast to these protective effects and machineries, rare but serious cardiovascular disturbances were also reported in labor induction and animal studies including hypotension, reflexive tachycardia, coronary spasm or thrombosis and allergy. Here, we review our current understanding of the protective effect of OT against varieties of atherosclerotic etiologies as well as the approaches and underlying mechanisms of these effects. Moreover, potential cardiovascular disturbances following OT application are also discussed to avoid unwanted effects in clinical trials of OT usages.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Medicine, Albany Medical Center, Albany, NY, United States
| | - Haipeng Yang
- Department of Pediatrics, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dexin Meng
- Department of Physiology, Jiamusi University, Jiamusi, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
30
|
Homan EA, Reyes MV, Hickey KT, Morrow JP. Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death. Front Physiol 2019; 9:1847. [PMID: 30666210 PMCID: PMC6330323 DOI: 10.3389/fphys.2018.01847] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
The epidemics of obesity and diabetes mellitus are associated with an increased incidence of both atrial fibrillation (AF), the most common sustained arrhythmia in adults, and sudden cardiac death (SCD). Obesity and DM are known to have adverse effects on cardiac structure and function. The pathologic mechanisms are thought to involve cardiac tissue remodeling, metabolic dysregulation, inflammation, and oxidative stress. Clinical data suggest that left atrial size, epicardial fat pad thickness, and other modifiable risk factors such as hypertension, glycemic control, and obstructive sleep apnea may mediate the association with AF. Data from human atrial tissue biopsies demonstrate alterations in atrial lipid content and evidence of mitochondrial dysfunction. With respect to ventricular arrhythmias, abnormalities such as long QT syndrome, frequent premature ventricular contractions, and left ventricular hypertrophy with diastolic dysfunction are commonly observed in obese and diabetic humans. The increased risk of SCD in this population may also be related to excessive cardiac lipid deposition and insulin resistance. While nutritional interventions have had limited success, perhaps due to poor long-term compliance, weight loss and improved cardiorespiratory fitness may reduce the frequency and severity of AF.
Collapse
Affiliation(s)
- Edwin A Homan
- Columbia University Medical Center, New York, NY, United States
| | - Michael V Reyes
- Columbia University Medical Center, New York, NY, United States
| | | | - John P Morrow
- Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Grisanti LA. Diabetes and Arrhythmias: Pathophysiology, Mechanisms and Therapeutic Outcomes. Front Physiol 2018; 9:1669. [PMID: 30534081 PMCID: PMC6275303 DOI: 10.3389/fphys.2018.01669] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
The prevalence of diabetes is rapidly increasing and closely associated with cardiovascular morbidity and mortality. While the major cardiovascular complication associated with diabetes is coronary artery disease, it is becoming increasingly apparent that diabetes impacts the electrical conduction system in the heart, resulting in atrial fibrillation, and ventricular arrhythmias. The relationship between diabetes and arrhythmias is complex and multifactorial including autonomic dysfunction, atrial and ventricular remodeling and molecular alterations. This review will provide a comprehensive overview of the link between diabetes and arrhythmias with insight into the common molecular mechanisms, structural alterations and therapeutic outcomes.
Collapse
Affiliation(s)
- Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
32
|
Verkerk AO, Amin AS, Remme CA. Disease Modifiers of Inherited SCN5A Channelopathy. Front Cardiovasc Med 2018; 5:137. [PMID: 30327767 PMCID: PMC6174200 DOI: 10.3389/fcvm.2018.00137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations in SCN5A, the gene encoding the pore-forming α-subunit of the primary cardiac Na+ channel (NaV1.5), have been found in patients presenting with a wide range of ECG abnormalities and cardiac syndromes. Although these mutations all affect the same NaV1.5 channel, the associated cardiac syndromes each display distinct phenotypical and biophysical characteristics. Variable disease expressivity has also been reported, where one particular mutation in SCN5A may lead to either one particular symptom, a range of various clinical signs, or no symptoms at all, even within one single family. Additionally, disease severity may vary considerably between patients carrying the same mutation. The exact reasons are unknown, but evidence is increasing that various cardiac and non-cardiac conditions can influence the expressivity and severity of inherited SCN5A channelopathies. In this review, we provide a summary of identified disease entities caused by SCN5A mutations, and give an overview of co-morbidities and other (non)-genetic factors which may modify SCN5A channelopathies. A comprehensive knowledge of these modulatory factors is not only essential for a complete understanding of the diverse clinical phenotypes associated with SCN5A mutations, but also for successful development of effective risk stratification and (alternative) treatment paradigms.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, Amsterdam, Netherlands
| | - Ahmad S Amin
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
33
|
Shiga T, Kohro T, Yamasaki H, Aonuma K, Suzuki A, Ogawa H, Hagiwara N, Yamazaki T, Nagai R, Kasanuki H. Body Mass Index and Sudden Cardiac Death in Japanese Patients After Acute Myocardial Infarction: Data From the JCAD Study and HIJAMI-II Registry. J Am Heart Assoc 2018; 7:JAHA.118.008633. [PMID: 29982233 PMCID: PMC6064840 DOI: 10.1161/jaha.118.008633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Although an “obesity paradox” exists in patients after myocardial infarction, the association between obesity and the risk of sudden cardiac death (SCD) is limited. The aim of this study was to determine whether obesity is associated with an increased risk of SCD in Japanese survivors of acute myocardial infarction. Methods and Results Pooled data from 2 cohort studies in Japan, JCAD (Japanese Coronary Artery Disease) study and the Heart Institute of Japan Acute Myocardial Infarction‐II (HIJAMI‐II) registry, comprising of 6216 patients (mean age 65±11 years, 75.2% male) with acute myocardial infarction who were discharged alive, were studied. The patients were categorized into the following body mass index (BMI) groups at baseline according to the World Health Organization classification for Asian populations: BMI <18.5 kg/m2 (n=335), 18.5 to 23 kg/m2 (n=2371), 23 to 27.5 kg/m2 (n=2823), and ≥27.5 kg/m2 (n=687). The main outcomes were all‐cause mortality and SCD. During an average follow‐up period of 3.6±1.4 years, all‐cause mortality was 10.1%, and SCD was 1.2%. Patients with BMI <18.5 kg/m2 had the highest rate of all‐cause mortality (adjusted hazard ratio, 1.61; 95% confidence interval, 1.20–2.16), but high BMI (≥27.5 kg/m2) was not associated with mortality compared with patients in the group with BMI ≥18.5 and <23 kg/m2. However, the long‐term risk of SCD was increased in the group with BMI ≥27.5 kg/m2 (adjusted hazard ratio, 2.97; 95% confidence interval, 1.24–7.15). Multivariate analysis revealed that BMI ≥27.5 kg/m2 was associated with an increased risk of SCD (hazard ratio, 2.78; 95% confidence interval, 1.35–5.74). Conclusions Obesity (BMI ≥27.5 kg/m2) was associated with the risk of SCD in Japanese patients after myocardial infarction, although an obesity paradox was found for all‐cause mortality.
Collapse
Affiliation(s)
- Tsuyoshi Shiga
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Japan
| | - Hiro Yamasaki
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan
| | - Kazutaka Aonuma
- Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Ogawa
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsutomu Yamazaki
- Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | | | | |
Collapse
|
34
|
Shiou YL, Huang IC, Lin HT, Lee HC. High fat diet aggravates atrial and ventricular remodeling of hypertensive heart disease in aging rats. J Formos Med Assoc 2018; 117:621-631. [DOI: 10.1016/j.jfma.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/26/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023] Open
|
35
|
Csige I, Ujvárosy D, Szabó Z, Lőrincz I, Paragh G, Harangi M, Somodi S. The Impact of Obesity on the Cardiovascular System. J Diabetes Res 2018; 2018:3407306. [PMID: 30525052 PMCID: PMC6247580 DOI: 10.1155/2018/3407306] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is a growing health problem worldwide. It is associated with an increased cardiovascular risk on the one hand of obesity itself and on the other hand of associated medical conditions (hypertension, diabetes, insulin resistance, and sleep apnoea syndrome). Obesity has an important role in atherosclerosis and coronary artery disease. Obesity leads to structural and functional changes of the heart, which causes heart failure. The altered myocardial structure increases the risk of atrial fibrillation and sudden cardiac death. However, obesity also has a protective effect on the clinical outcome of underlying cardiovascular disease, the phenomenon called obesity paradox. The improved cardiac imaging techniques allow the early detection of altered structure and function of the heart in obese patients. In this review, we attempt to summarize the relationship between obesity and cardiovascular diseases and outline the underlying mechanisms. The demonstrated new techniques of cardiac diagnostic procedures allow for the early detection and treatment of subclinical medical conditions and, therefore, the prevention of cardiovascular events.
Collapse
Affiliation(s)
- Imre Csige
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Dóra Ujvárosy
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - István Lőrincz
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Sándor Somodi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary
- Division of Clinical Pharmacology, Faculty of Pharmacy, University of Debrecen, Hungary
| |
Collapse
|
36
|
Proinflammatory Cytokines Are Soluble Mediators Linked with Ventricular Arrhythmias and Contractile Dysfunction in a Rat Model of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7682569. [PMID: 29201273 PMCID: PMC5671748 DOI: 10.1155/2017/7682569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/27/2017] [Indexed: 12/15/2022]
Abstract
Metabolic syndrome (MS) increases cardiovascular risk and is associated with cardiac dysfunction and arrhythmias, although the precise mechanisms are still under study. Chronic inflammation in MS has emerged as a possible cause of adverse cardiac events. Male Wistar rats fed with 30% sucrose in drinking water and standard chow for 25–27 weeks were compared to a control group. The MS group showed increased weight, visceral fat, blood pressure, and serum triglycerides. The most important increases in serum cytokines included IL-1β (7-fold), TNF-α (84%), IL-6 (41%), and leptin (2-fold), the latter also showing increased gene expression in heart tissue (35-fold). Heart function ex vivo in MS group showed a decreased mechanical performance response to isoproterenol challenge (ISO). Importantly, MS hearts under ISO showed nearly twofold the incidence of ventricular fibrillation. Healthy rat cardiomyocytes exposed to MS group serum displayed impaired contractile function and Ca2+ handling during ISO treatment, showing slightly decreased cell shortening and Ca2+ transient amplitude (23%), slower cytosolic calcium removal (17%), and more frequent spontaneous Ca2+ release events (7.5-fold). As spontaneous Ca2+ releases provide a substrate for ventricular arrhythmias, our study highlights the possible role of serum proinflammatory mediators in the development of arrhythmic events during MS.
Collapse
|
37
|
Zhong P, Quan D, Huang Y, Huang H. CaMKII Activation Promotes Cardiac Electrical Remodeling and Increases the Susceptibility to Arrhythmia Induction in High-fat Diet-Fed Mice With Hyperlipidemia Conditions. J Cardiovasc Pharmacol 2017; 70:245-254. [PMID: 28662005 PMCID: PMC5642343 DOI: 10.1097/fjc.0000000000000512] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/08/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Obesity/hyperlipidemia is closely related to both atrial and ventricular arrhythmias. CaMKII, a multifunctional serine/threonine kinase, has been involved in cardiac arrhythmias of different etiologies. However, its role in obesity/hyperlipidemia-related cardiac arrhythmia is unexplored. The aim of this was to determine the involvement of CaMKII in the process. METHODS Adult male APOE mice were fed a high-fat diet (HFD), administrated with KN93 (10 mg·kg·2d), a specific inhibitor of CaMKII. Serum lipid and glucose profile, cardiac function, and surface electrocardiogram were determined. Electrophysiological study and epicardial activation mapping were performed in Langendorff-perfused heart. Expression of cardiac ion channels, gap junction proteins, Ca handling proteins, and CaMKII were evaluated, coupled with histological analysis. RESULTS A hyperlipidemia condition was induced by HFD in the APOE mice, which was associated with increased expression and activity of CaMKII in the hearts. In Langendorff-perfused hearts, HFD-induced heart showed increased arrhythmia inducibility, prolonged action potential duration, and decreased action potential duration alternans thresholds, coupled with slow ventricular conduction, connexin-43 upregulation, and interstitial fibrosis. Downregulation of ion channels including Cav1.2 and Kv4.2/Kv4.3 and disturbed Ca handling proteins were also observed in HFD-induced heart. Interestingly, all these alterations were significantly inhibited by KN93 treatment. CONCLUSION Our results demonstrated an adverse effect of metabolic components on cardiac electrophysiology and implicated an important role of CaMKII underlying this process.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renming Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; and
- Huei Key Laboratory of Cardiology, Wuhan, PR China
| | - Dajun Quan
- Department of Cardiology, Renming Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; and
- Huei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yan Huang
- Department of Cardiology, Renming Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; and
- Huei Key Laboratory of Cardiology, Wuhan, PR China
| | - He Huang
- Department of Cardiology, Renming Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China; and
- Huei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
38
|
Abstract
Obesity is a major global epidemic that sets the stage for diverse multiple pathologies, including cardiovascular disease. The obesity-related low-grade chronic inflamed milieu is more pronounced in aging and responsive to cardiac dysfunction in heart failure pathology. Metabolic dysregulation of obesity integrates with immune reservoir in spleen and kidney network. Therefore, an integrative systems biology approach is necessary to delay progressive cardiac alternations. The purpose of this comprehensive review is to largely discuss the impact of obesity on the cardiovascular pathobiology in the context of problems and challenges, with major emphasis on the diversified models, and to study cardiac remodeling in obesity. The information in this article is immensely helpful in teaching advanced undergraduate, graduate, and medical students about the advancement and impact of obesity on cardiovascular health. © 2017 American Physiological Society. Compr Physiol 7:1463-1477, 2017.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
39
|
Aromolaran AS, Boutjdir M. Cardiac Ion Channel Regulation in Obesity and the Metabolic Syndrome: Relevance to Long QT Syndrome and Atrial Fibrillation. Front Physiol 2017; 8:431. [PMID: 28680407 PMCID: PMC5479057 DOI: 10.3389/fphys.2017.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity and its associated metabolic dysregulation leading to metabolic syndrome is an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese leading to enhanced risk of cardiovascular disease (CVD) incidence and mortality. Obesity predisposes to atrial fibrillation, ventricular, and supraventricular arrhythmias; conditions that are underlain by dysfunction in electrical activity of the heart. To date, current therapeutic options for cardiomyopathy of obesity are limited, suggesting that there is considerable room for development of therapeutic interventions with novel mechanisms of action that will help normalize rhythm in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels/Ca handling proteins remain incompletely understood. Obesity is marked by accumulation of adipose tissue associated with a variety of adverse adaptations including dyslipidemia (or abnormal levels of serum free fatty acids), increased secretion of pro-inflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, that will cause electrical remodeling and thus predispose to arrhythmias. Further, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which are marked by distinct signaling mechanisms. Thus, there may also be functional differences in the outcome of regional distribution of fat deposits on ion channel/Ca handling proteins expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge about the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. The objective of this article is to review cardiac ion channel/Ca handling proteins remodeling that predispose to arrhythmias. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare SystemBrooklyn, NY, United States.,Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, United States.,Department of Medicine, New York University School of MedicineNew York, NY, United States
| |
Collapse
|
40
|
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222:581-589. [PMID: 27513655 DOI: 10.1016/j.ijcard.2016.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
Obesity is a risk factor of cardiovascular diseases. However, in the case of heart failure, obese and overweight patients have a more favourable prognosis compared to patients who have a normal body weight. This phenomenon is referred to as the "obesity paradox," and it is explained by, among others, a positive effect of adipokines produced by adipose tissue, particularly by the tissue located in the direct vicinity of the heart and blood vessels. The favourable effect on the cardiovascular system is mostly associated with adiponectin and omentin, but the levels of these substances are reduced in obese patients. Among the adipokines which levels are positively correlated with the adipose tissue content, favourable activity is demonstrated by apelin, progranulin, chemerin, TNF-α (tumour necrosis factor-)α, CTRP-3 (C1q/tumour necrosis factor (TNF) related protein), leptin, visfatin and vaspin. This activity is associated with the promotion of regeneration processes in the damaged myocardium, formation of new blood vessels, reduction of the afterload, improvement of metabolic processes in cardiomyocytes and myocardial contractile function, inhibition of apoptosis and fibrosis of the myocardium, as well as anti-inflammatory and anti-atheromatous effects. The potential use of these properties in the treatment of heart failure and ischaemic heart disease, as well as in pulmonary hypertension, arterial hypertension and the limitation of the loss of cardiomyocytes during cardioplegia-requiring cardiosurgical procedures, is studied. The most advanced studies focus on analogues of apelin and progranulin.
Collapse
Affiliation(s)
- Magdalena Sawicka
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, 9 Maria Skłodowska- Curie Street, 41-800 Zabrze, Poland; Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland.
| | - Joanna Janowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| | - Jerzy Chudek
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| |
Collapse
|
41
|
Ren B. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis. Front Cell Dev Biol 2016; 4:37. [PMID: 27200349 PMCID: PMC4854877 DOI: 10.3389/fcell.2016.00037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 12/25/2022] Open
Abstract
Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.
Collapse
Affiliation(s)
- Bin Ren
- Department of Medicine, Medical College of WisconsinMilwaukee, WI, USA; Blood Research Institute, Blood Center of WisconsinMilwaukee, WI, USA
| |
Collapse
|
42
|
Abstract
The QT interval reflects the time between the depolarization of ventricles until their repolarization and is usually used as a predictive marker for the occurrence of arrhythmias. This parameter varies with the heart rate, expressed as the RR interval (time between two successive ventricular depolarizations). To calculate the QT independently of the RR, correction formulae are currently used. In mice, the QT-RR relationship as such has never been studied in conscious animals, and correction formulas are mainly empirical. In the present paper we studied how QT varies when the RR changes physiologically (comparison of nocturnal and diurnal periods) or after dosing mice with tachycardic agents (norepinephrine or nitroprusside). Our results show that there is significant variability of QT and RR in a given condition, resulting in the need to average at least 200 consecutive complexes to accurately compare the QT. Even following this method, no obvious shortening of the QT was observed with increased heart rate, regardless of whether or not this change occurs abruptly. In conclusion, the relationship between QT and RR in mice is weak, which renders the use of correction formulae inappropriate and misleading in this species.
Collapse
|
43
|
Aromolaran AS, Colecraft HM, Boutjdir M. High-fat diet-dependent modulation of the delayed rectifier K(+) current in adult guinea pig atrial myocytes. Biochem Biophys Res Commun 2016; 474:554-559. [PMID: 27130822 DOI: 10.1016/j.bbrc.2016.04.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022]
Abstract
Obesity is associated with hyperlipidemia, electrical remodeling of the heart, and increased risk of supraventricular arrhythmias in both male and female patients. The delayed rectifier K(+) current (IK), is an important regulator of atrial repolarization. There is a paucity of studies on the functional role of IK in response to obesity. Here, we assessed the obesity-mediated functional modulation of IK in low-fat diet (LFD), and high-fat diet (HFD) fed adult guinea pigs. Guinea pigs were randomly divided into control and obese groups fed, ad libitum, with a LFD (10 kcal% fat) or a HFD (45 kcal% fat) respectively. Action potential duration (APD), and IK were studied in atrial myocytes and IKr and IKs in HEK293 cells using whole-cell patch clamp electrophysiology. HFD guinea pigs displayed a significant increase in body weight, total cholesterol and total triglycerides within 50 days. Atrial APD at 30% (APD30) and 90% (APD90) repolarization were shorter, while atrial IK density was significantly increased in HFD guinea pigs. Exposure to palmitic acid (PA) increased heterologously expressed IKr and IKs densities, while oleic acid (OA), severely reduced IKr and had no effect on IKs. The data are first to show that in obese guinea pigs abbreviated APD is due to increased IK density likely through elevations of PA. Our findings may have crucial implications for targeted treatment options for obesity-related arrhythmias.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| | - Henry M Colecraft
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, United States; Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, NY, United States; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, NY, United States; Department of Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York, NY, United States; Department of Medicine, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
44
|
Zhang F, Hartnett S, Sample A, Schnack S, Li Y. High fat diet induced alterations of atrial electrical activities in mice. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2016; 6:1-9. [PMID: 27073731 PMCID: PMC4788723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Obesity is a well-known risk factor for various cardiovascular diseases. Recent clinical data showed that overweight and obese patients have higher incidence of atrial fibrillation (AF) compared with individuals with normal body weights, but the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of a high fat diet on atrial activities in mice. ICR male mice were fed a regular diet (RD) or a high fat diet (HFD) for 8 weeks. Mice fed HFD showed significantly greater body weight gains and visceral fat accumulation compared with RD mice. Under anesthetic condition, baseline arterial blood pressure and heart rate were not significantly different between RD and HFD groups. Although no spontaneous or atrial stimulation-induced atrial fibrillation was observed, this study revealed several alterations in the activities and protein levels in the atria in HFD mice. Surface electrocardiogram (ECG) revealed significantly shortened PR interval in HFD mice. In the atrial stimulation experiments, the sinoatrial (SA) node recovery time was significantly prolonged whereas the atrial effective refractory period was significantly reduced in HFD mice as compared with RD mice. Western blot showed protein levels of two major potassium channels, Kv1.5 and Kv4.2/3, were significantly increased in atria of HFD mice. These data indicate that HFD induces atrial electrophysiological remodeling in mice, which may be a potential mechanism underlying the increased risk for atrial arrhythmias in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD 57069, USA
| | - Sigurd Hartnett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD 57069, USA
| | - Alex Sample
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD 57069, USA
| | - Sabrina Schnack
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD 57069, USA
| | - Yifan Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota Vermillion, SD 57069, USA
| |
Collapse
|
45
|
Chiuve SE, Sun Q, Sandhu RK, Tedrow U, Cook NR, Manson JE, Albert CM. Adiposity throughout adulthood and risk of sudden cardiac death in women. JACC Clin Electrophysiol 2015; 1:520-528. [PMID: 26824079 DOI: 10.1016/j.jacep.2015.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sudden cardiac death (SCD) is often the first manifestation of coronary heart disease (CHD) among women. Data regarding BMI and risk of SCD are limited and conflicting. OBJECTIVES We examined the association of BMI repeatedly measured over 32 years and BMI during early and mid-adulthood with risk of SCD in the Nurses' Health Study. METHODS We prospectively followed 72,484 women free of chronic disease from 1980-2012. We ascertained adult height, current weight, and weight at age 18 at baseline and updated weight biennially. The primary endpoint was SCD (n=445). RESULTS When updated biennially, higher BMI was associated with greater SCD risk after adjusting for confounders (p, linear trend: <0.001). Compared to a BMI of 21.0-22.9, the multivariate RR (95%CI) of SCD was 1.46 (1.05, 2.04) for BMI 25.0-29.9, 1.46 (1.00, 2.13) for BMI 30.0-34.9 and 2.18 (1.44, 3.28) for BMI ≥35.0. Among women with a BMI ≥35.0, SCD remained elevated even after adjustment for interim development of CHD and other mediators (RR: 1.72; 95%CI: 1.13, 2.60). In contrast, the association between BMI and fatal CHD risk was completely attenuated after adjustment for mediators. The magnitude of the association between BMI and SCD was greater when BMI was assessed at baseline or at age 18, at which time SCD risk remained significantly elevated at BMI≥30 after adjustment for mediators. CONCLUSIONS Higher BMI was associated with greater risk of SCD, particularly when assessed earlier in adulthood. Strategies to maintain a healthy weight throughout adulthood may minimize SCD incidence.
Collapse
Affiliation(s)
- Stephanie E Chiuve
- Center for Arrhythmia Prevention, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; The Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- The Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Roopinder K Sandhu
- The Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
| | - Usha Tedrow
- Center for Arrhythmia Prevention, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; The Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Nancy R Cook
- The Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - JoAnn E Manson
- The Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Christine M Albert
- Center for Arrhythmia Prevention, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; The Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; The Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
Rueda-Clausen CF, Ogunleye AA, Sharma AM. Health Benefits of Long-Term Weight-Loss Maintenance. Annu Rev Nutr 2015; 35:475-516. [DOI: 10.1146/annurev-nutr-071714-034434] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian F. Rueda-Clausen
- Obesity Research & Management, Clinical Research Unit, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada; , ,
| | - Ayodele A. Ogunleye
- Obesity Research & Management, Clinical Research Unit, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada; , ,
| | - Arya M. Sharma
- Obesity Research & Management, Clinical Research Unit, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada; , ,
| |
Collapse
|
47
|
Axelsen LN, Calloe K, Braunstein TH, Riemann M, Hofgaard JP, Liang B, Jensen CF, Olsen KB, Bartels ED, Baandrup U, Jespersen T, Nielsen LB, Holstein-Rathlou NH, Nielsen MS. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis. Cardiovasc Diabetol 2015; 14:87. [PMID: 26169175 PMCID: PMC4504126 DOI: 10.1186/s12933-015-0246-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/11/2015] [Indexed: 12/17/2022] Open
Abstract
Background Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. Methods Sprague–Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and re-perfussion. Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson’s Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43) expression and distribution was examined by western blotting and immunofluorescence respectively. Results Following 6 weeks of feeding, fructose-fat fed rats (FFFRs) showed QRS prolongation compared to controls (16.1 ± 0.51 (n = 6) vs. 14.7 ± 0.32 ms (n = 4), p < 0.05). Conduction velocity was slowed in FFFRs vs. controls (0.62 ± 0.02 (n = 13) vs. 0.79 ± 0.06 m/s (n = 11), p < 0.05) and Langendorff perfused FFFR hearts were more prone to ventricular fibrillation during reperfusion following ischemia (p < 0.05). The patch-clamp studies revealed no changes in Na+ or K+ currents, cell capacitance or gap junctional coupling. Cx43 expression was also unaltered in FFFRs, but immunofluorescence demonstrated an increased fraction of Cx43 localized at the intercalated discs in FFFRs compared to controls (78 ± 3.3 (n = 5) vs. 60 ± 4.2 % (n = 6), p < 0.01). No fibrosis was detected but FFFRs showed a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p < 0.0001). Conclusion Six weeks on a high fructose-fat diet cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during reperfusion. These alterations are not explained by altered gap junctional coupling, Na+, or K+ currents, differences in cell size or fibrosis.
Collapse
Affiliation(s)
- Lene Nygaard Axelsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark.
| | - Kirstine Calloe
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hartig Braunstein
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, Copenhagen, Denmark
| | - Mads Riemann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Johannes Pauli Hofgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Bo Liang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Christa Funch Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Kristine Boisen Olsen
- Department of Forensic Medicine, Section of Forensic Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Emil D Bartels
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Baandrup
- Centre for Clinical Research, Vendsyssel Hospital/Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Lars Bo Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Niels-Henrik Holstein-Rathlou
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| | - Morten Schak Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Blegdamsvej 3B, Copenhagen, N DK-2200, Denmark
| |
Collapse
|
48
|
Abstract
For individuals and the society as a whole, the increased risk of sudden cardiac death in obese patients is becoming a major challenge, especially since obesity prevalence has been increasing steadily around the globe. Traditional risk factors and obesity often coexist. Hypertension, diabetes, obstructive sleep apnea and metabolic syndrome are well-known risk factors for CV disease and are often present in the obese patient. Although the bulk of evidence is circumstantial, sudden cardiac death and obesity share common traditional CV risk factors. Structural, functional and metabolic factors modulate and influence the risk of sudden cardiac death in the obese population. Other risk factors such as left ventricular hypertrophy, increased number of premature ventricular complexes, altered QT interval and reduced heart rate variability are all documented in both obese and sudden cardiac death populations. The present review focuses on out-of-hospital sudden cardiac death and potential mechanisms leading to sudden cardiac death in this population.
Collapse
Affiliation(s)
- Benoit Plourde
- Department of Medicine, Faculty of Medicine, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
49
|
Venardos K, De Jong KA, Elkamie M, Connor T, McGee SL. The PKD inhibitor CID755673 enhances cardiac function in diabetic db/db mice. PLoS One 2015; 10:e0120934. [PMID: 25798941 PMCID: PMC4370864 DOI: 10.1371/journal.pone.0120934] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D). Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD), which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Kylie Venardos
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Kirstie A. De Jong
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mansour Elkamie
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Timothy Connor
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sean L. McGee
- Metabolic Remodelling Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- Program for Metabolism and Inflammation, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
50
|
The Implications of Obesity for Cardiac Arrhythmia Mechanisms and Management. Can J Cardiol 2015; 31:203-10. [DOI: 10.1016/j.cjca.2014.10.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/02/2023] Open
|