1
|
Al Saihati HA, Dessouky AA, Salim RF, Elgohary I, El-Sherbiny M, Ali FEM, Moustafa MMA, Shaheen D, Forsyth NR, Badr OA, Ebrahim N. MSC-extracellular vesicle microRNAs target host cell-entry receptors in COVID-19: in silico modeling for in vivo validation. Stem Cell Res Ther 2024; 15:316. [PMID: 39304926 PMCID: PMC11416018 DOI: 10.1186/s13287-024-03889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has created a global pandemic with significant morbidity and mortality. SARS-CoV-2 primarily infects the lungs and is associated with various organ complications. Therapeutic approaches to combat COVID-19, including convalescent plasma and vaccination, have been developed. However, the high mutation rate of SARS-CoV-2 and its ability to inhibit host T-cell activity pose challenges for effective treatment. Mesenchymal stem cells (MSCs) and their extracellular vesicles (MSCs-EVs) have shown promise in COVID-19 therapy because of their immunomodulatory and regenerative properties. MicroRNAs (miRNAs) play crucial regulatory roles in various biological processes and can be manipulated for therapeutic purposes. OBJECTIVE We aimed to investigate the role of lyophilized MSC-EVs and their microRNAs in targeting the receptors involved in SARS-CoV-2 entry into host cells as a strategy to limit infection. In silico microRNA prediction, structural predictions of the microRNA-mRNA duplex, and molecular docking with the Argonaut protein were performed. METHODS Male Syrian hamsters infected with SARS-CoV-2 were treated with human Wharton's jelly-derived Mesenchymal Stem cell-derived lyophilized exosomes (Bioluga Company)via intraperitoneal injection, and viral shedding was assessed. The potential therapeutic effects of MSCs-EVs were measured via histopathology of lung tissues and PCR for microRNAs. RESULTS The results revealed strong binding potential between miRNA‒mRNA duplexes and the AGO protein via molecular docking. MSCs-EVs reduced inflammation markers and normalized blood indices via the suppression of viral entry by regulating ACE2 and TMPRSS2 expression. MSCs-EVs alleviated histopathological aberrations. They improved lung histology and reduced collagen fiber deposition in infected lungs. CONCLUSION We demonstrated that MSCs-EVs are a potential therapeutic option for treating COVID-19 by preventing viral entry into host cells.
Collapse
Affiliation(s)
- Hajer A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Hafar Al-Batin, Saudi Arabia.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Islam Elgohary
- Researcher of Pathology, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nicholas Robert Forsyth
- PhD Molecular Genetics, Vice Principals' Office, Kings College, University of Aberdeen, Aberdeen, AB24 3FX, UK
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt.
| | - Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt.
- Faculty of Medicine, Benha National University, Al Obour City, Egypt.
- Cell and Tissue Engineering, School of pharmacy and bioengineering, Keele University, Keele, UK.
| |
Collapse
|
2
|
Wang C, Huang L, Li J, Liu D, Wu B. MicroRNA miR-145-5p Inhibits Cutaneous Wound Healing by Targeting PDGFD in Diabetic Foot Ulcer. Biochem Genet 2024; 62:2437-2454. [PMID: 37950842 DOI: 10.1007/s10528-023-10551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Abstract
Diabetic foot ulcer (DFU) is one major, common and serious chronic complication of diabetes mellitus, which is characterized by high incidence, high risk, high burden, and high treatment difficulty and is a leading cause of disability and death in patients with diabetes. Long-term hyperglycemia can result in cellular dysfunction of fibroblasts, which play pivotal roles in wound healing. MicroRNAs (miRNAs) were reported to mediate the pathological processes of multiple diseases, including diabetic wound healing. This research aimed to investigate the functional role of miR-145-5p in high-glucose (HG)-exposed fibroblasts and in DFU mouse models. Human foreskin fibroblast cells (HFF-1) were stimulated by HG to induce cell injury. MiR-145-5p level in HG-stimulated HFF-1 cells was detected via RT-qPCR. The binding between miR-145-5p and PDGFD was validated by Luciferase reporter assay. The effects of the miR-145-5p/PDGFD axis on the viability, migration, and apoptosis of HG-exposed HFF-1 cells were determined by CCK-8, wound healing, and flow cytometry assays. DFU mouse models were subcutaneously injected at the wound edges with miR-145-5p inhibitor/mimics. Images of the wounds were captured on day 0 and 8 post-injection, and wound samples were collected after mice were sacrificed for histological analysis by H&E staining. HG decreased cell viability and increased miR-145-5p expression in HFF-1 cells in a dose- and time-dependent manner. MiR-145-5p downregulation promoted cell viability and migration and inhibited cell apoptosis of HG-stimulated HFF-1 cells, while miR-145-5p overexpression exerted an opposite effect on cell viability, migration, and apoptosis. PDGFD was a direct target gene of miR-145-5p, whose silencing reversed the influence of miR-145-5p downregulation on HG-induced cellular dysfunction of HFF-1 cells. Additionally, downregulating miR-145-5p facilitated while overexpressing miR-145-5p inhibited wound healing in DFU mouse models. MiR-145-5p level was negatively associated with PDGFD level in wound tissue samples of DFU mouse models. MiR-145-5p inhibition improves wound healing in DFU through upregulating PDGFD expression.
Collapse
Affiliation(s)
- Chun Wang
- Jinan University, Guangzhou, 510632, China
- Department of General Medicine, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, 233030, China
| | - Juan Li
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Dan Liu
- Department of Endocrinology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233040, China
| | - Biaoliang Wu
- Jinan University, Guangzhou, 510632, China.
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Second Road, Youjiang District, Baise City, 533000, Guangxi, China.
| |
Collapse
|
3
|
Xing X, Rodeo SA. Emerging roles of non-coding RNAs in fibroblast to myofibroblast transition and fibrotic diseases. Front Pharmacol 2024; 15:1423045. [PMID: 39114349 PMCID: PMC11303237 DOI: 10.3389/fphar.2024.1423045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The transition of fibroblasts to myofibroblasts (FMT) represents a pivotal process in wound healing, tissue repair, and fibrotic diseases. This intricate transformation involves dynamic changes in cellular morphology, gene expression, and extracellular matrix remodeling. While extensively studied at the molecular level, recent research has illuminated the regulatory roles of non-coding RNAs (ncRNAs) in orchestrating FMT. This review explores the emerging roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating this intricate process. NcRNAs interface with key signaling pathways, transcription factors, and epigenetic mechanisms to fine-tune gene expression during FMT. Their functions are critical in maintaining tissue homeostasis, and disruptions in these regulatory networks have been linked to pathological fibrosis across various tissues. Understanding the dynamic roles of ncRNAs in FMT bears therapeutic promise. Targeting specific ncRNAs holds potential to mitigate exaggerated myofibroblast activation and tissue fibrosis. However, challenges in delivery and specificity of ncRNA-based therapies remain. In summary, ncRNAs emerge as integral regulators in the symphony of FMT, orchestrating the balance between quiescent fibroblasts and activated myofibroblasts. As research advances, these ncRNAs appear to be prospects for innovative therapeutic strategies, offering hope in taming the complexities of fibrosis and restoring tissue equilibrium.
Collapse
Affiliation(s)
- Xuewu Xing
- Department of Orthopaedics, Tianjin First Central Hospital, Tianjin, China
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| | - Scott A. Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, United States
| |
Collapse
|
4
|
Yang VK, Moyer N, Zhou R, Carnevale SZ, Meola DM, Robinson SR, Li G, Das S. Defining the Role of the miR-145-KLF4-αSMA Axis in Mitral Valvular Interstitial Cell Activation in Myxomatous Mitral Valve Prolapse Using the Canine Model. Int J Mol Sci 2024; 25:1468. [PMID: 38338749 PMCID: PMC10855421 DOI: 10.3390/ijms25031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular disease, affecting 2-3% of the adult human population and is a degenerative condition. A total of 5-10% of the afflicted will develop severe mitral regurgitation, cardiac dysfunction, congestive heart failure, and sudden cardiac death. Naturally occurring myxomatous MVP in dogs closely resembles MVP in humans structurally, and functional consequences are similar. In both species, valvular interstitial cells (VICs) in affected valves exhibit phenotype consistent with activated myofibroblasts with increased alpha-smooth muscle actin (αSMA) expression. Using VICs collected from normal and MVP-affected valves of dogs, we analyzed the miRNA expression profile of the cells and their associated small extracellular vesicles (sEV) using RNA sequencing to understand the role of non-coding RNAs and sEV in MVP pathogenesis. miR-145 was shown to be upregulated in both the affected VICs and sEV, and overexpression of miR-145 by mimic transfection in quiescent VIC recapitulates the activated myofibroblastic phenotype. Concurrently, KLF4 expression was noted to be suppressed by miR-145, confirming the miR-145-KLF4-αSMA axis. Targeting this axis may serve as a potential therapy in controlling pathologic abnormalities found in MVP valves.
Collapse
Affiliation(s)
- Vicky K. Yang
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Nicole Moyer
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Runzi Zhou
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally Z. Carnevale
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Dawn M. Meola
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally R. Robinson
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Xu S, Zhang Y, Zhou G, Liu A. Bidirectional negative feedback actions of DNMT3A and miR-145 in regulating autophagy in cardiac fibroblasts and affecting myocardial fibrosis. J Bioenerg Biomembr 2023; 55:341-352. [PMID: 37610521 DOI: 10.1007/s10863-023-09980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Epigenetic regulation has crucial implications for myocardial fibrosis. It has been reported that autophagy, regulated by miR-145, is implicated in the proliferation and fibrosis of cardiac fibroblasts (CFs). However, how it works during the process remains unclear. This study explored the exact effects of epigenetic regulation of miR-145 expression on autophagy, proliferation, and fibrosis of CFs. To examine the expression levels of myocardial fibrosis markers (α-SMA and collagen I), autophagy-related proteins (LC3I, LC3II, p62), DNMT3A, and miR-145, qRT-PCR and western blot were employed. And the proliferation of CFs was detected by CCK-8 and ErdU. As for the determination of the binding relationship between DNMT3A and miR-145, dual-luciferase assay was conducted. Next, the detection of the methylation level of the pre-miR-145 promoter region was completed by MSP. And the verification of the effect of the DNMT3A/miR-145 axis on myocardial fibrosis was accomplished by constructing mouse myocardial infarction (MI) models based on the ligation of the left anterior descending method. In TGF-β1-activated CFs, remarkable up-regulation of DNMT3 and considerable down-regulation of miR-145 were observed. And further experiments indicated that DNMT3A was able to down-regulate miR-145 expression by maintaining the hypermethylation level of the pre-miR-145 promoter region. In addition, DNMT3A expression could be directly targeted and negatively modulated by miR-145. Moreover, in vitro cell experiments and mouse MI models demonstrated that DNMT3A overexpression could inhibit autophagy, and promote cell proliferation and fibrosis of CFs. However, this kind of effect could be reversed by miR-145 overexpression. In summary, myocardial fibroblast autophagy can be regulated by bidirectional negative feedback actions of DNMT3A and miR-145, thus affecting myocardial fibrosis. This finding will provide a potential target for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Shucan Xu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China
| | - Aijun Liu
- Department of Cardiology, Binhai People's Hospital, No. 248 Fudong-Middle Road, Dongkan Town, Jiangsu, Yancheng, 224500, China.
| |
Collapse
|
7
|
Spinetti G, Mutoli M, Greco S, Riccio F, Ben-Aicha S, Kenneweg F, Jusic A, de Gonzalo-Calvo D, Nossent AY, Novella S, Kararigas G, Thum T, Emanueli C, Devaux Y, Martelli F. Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc Diabetol 2023; 22:122. [PMID: 37226245 PMCID: PMC10206598 DOI: 10.1186/s12933-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Martina Mutoli
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Riccio
- Laboratory of Cardiovascular Pathophysiology and Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Soumaya Ben-Aicha
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Anne Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy.
| |
Collapse
|
8
|
The Role of ncRNAs in Cardiac Infarction and Regeneration. J Cardiovasc Dev Dis 2023; 10:jcdd10030123. [PMID: 36975887 PMCID: PMC10052289 DOI: 10.3390/jcdd10030123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most prevalent cardiovascular disease worldwide, and it is defined as cardiomyocyte cell death due to a lack of oxygen supply. Such a temporary absence of oxygen supply, or ischemia, leads to extensive cardiomyocyte cell death in the affected myocardium. Notably, reactive oxygen species are generated during the reperfusion process, driving a novel wave of cell death. Consequently, the inflammatory process starts, followed by fibrotic scar formation. Limiting inflammation and resolving the fibrotic scar are essential biological processes with respect to providing a favorable environment for cardiac regeneration that is only achieved in a limited number of species. Distinct inductive signals and transcriptional regulatory factors are key components that modulate cardiac injury and regeneration. Over the last decade, the impact of non-coding RNAs has begun to be addressed in many cellular and pathological processes including myocardial infarction and regeneration. Herein, we provide a state-of-the-art review of the current functional role of diverse non-coding RNAs, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in different biological processes involved in cardiac injury as well as in distinct experimental models of cardiac regeneration.
Collapse
|
9
|
Zhang H, Zhou Y, Wen D, Wang J. Noncoding RNAs: Master Regulator of Fibroblast to Myofibroblast Transition in Fibrosis. Int J Mol Sci 2023; 24:1801. [PMID: 36675315 PMCID: PMC9861037 DOI: 10.3390/ijms24021801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Myofibroblasts escape apoptosis and proliferate abnormally under pathological conditions, especially fibrosis; they synthesize and secrete a large amount of extracellular matrix (ECM), such as α-SMA and collagen, which leads to the distortion of organ parenchyma structure, an imbalance in collagen deposition and degradation, and the replacement of parenchymal cells by fibrous connective tissues. Fibroblast to myofibroblast transition (FMT) is considered to be the main source of myofibroblasts. Therefore, it is crucial to explore the influencing factors regulating the process of FMT for the prevention, treatment, and diagnosis of FMT-related diseases. In recent years, non-coding RNAs, including microRNA, long non-coding RNAs, and circular RNAs, have attracted extensive attention from scientists due to their powerful regulatory functions, and they have been found to play a vital role in regulating FMT. In this review, we summarized ncRNAs which regulate FMT during fibrosis and found that they mainly regulated signaling pathways, including TGF-β/Smad, MAPK/P38/ERK/JNK, PI3K/AKT, and WNT/β-catenin. Furthermore, the expression of downstream transcription factors can be promoted or inhibited, indicating that ncRNAs have the potential to be a new therapeutic target for FMT-related diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Xiangya Road, Changsha 410000, China
| |
Collapse
|
10
|
Qin C, Wen M. miR-145 from Bone Marrow Mesenchymal Stem Cells (BMSC) Improves Cardiac Function After Myocardial Infarction in Rat with Diabetes. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the role of miR-145 from BMSC in the cardiac function after MI in rat with diabetes. Rat with T1DM model was established and then were treated with PBS, DM-BMSC with overexpression of miR-145, BMSC with the knockdown of miR-145 respectively after twenty-four hours
followed by analysis of the remodeling of vessels and protein, mRNA expressions. miR-145 in DM-BMSC was significantly reduced compared with control group and DM-BMSC prolonged the survival rate of rats. The formation of blood capillary and axon growth in DM-BMSC was increased and decreased
in BMSC with knockdown of miR-145. The therapeutic action of DM-BMSC could be improved notably and remodeling of vessels and protein was increased. Smad1 was a target gene of miR-145. In conclusion, cardiac function and neurological recovery in MI is improved by miR-145 through targeting Smad1
expression, indicating that miR-145 might be a novel target for the treatment of MI.
Collapse
Affiliation(s)
- Chuanyu Qin
- Department of Cardiology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, 161099, Heilongjiang Province, China
| | - Mingli Wen
- Department of Respiratory Medicine, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar City, 161041, Heilongjiang Province, China
| |
Collapse
|
11
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
12
|
Zhang H, Wen H, Huang Y. MicroRNA‑146a attenuates isoproterenol‑induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med 2022; 24:506. [PMID: 35837047 PMCID: PMC9257964 DOI: 10.3892/etm.2022.11433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/22/2021] [Indexed: 12/05/2022] Open
Abstract
Cardiac fibrosis is a key factor of heart failure. Increasing evidence suggests that microRNAs (miRNAs/miRs) serve vital roles in the pathogenesis of cardiac fibrosis. The present study aimed to investigate the role of miR-146a-5p in isoproterenol (ISO)-induced cardiac fibrosis. Reverse transcription-quantitative PCR analysis demonstrated that miR-146a-5p expression was downregulated in ISO-treated rat heart tissue and ISO-induced cardiac fibroblasts (CFs). Conversely, the expression levels of basic fibroblast growth factor 2 (FGF2), collagen I and smooth muscle α-actin (α-SMA) were upregulated in ISO-treated rat cardiac tissue and CFs. Furthermore, viability and differentiation were inhibited in ISO-induced CFs transfected with miR-146a-5p mimics. Dual-luciferase reporter assay confirmed that miR-146a-5p targeted FGF2. Notably, FGF2 expression was suppressed following overexpression of miR-146a-5p, while FGF2 expression increased following miR-146a-5p knockdown. In addition, FGF2 knockdown suppressed the expression levels of FGF2, collagen I and α-SMA levels in CFs. Taken together, the results of the present study suggested that the miR-146a-5p/FGF2 pathway may be a novel therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Emergency, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Huijuan Wen
- Department of Gerontology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yang Huang
- Department of Gerontology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
13
|
A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022; 23:ijms23084302. [PMID: 35457114 PMCID: PMC9027193 DOI: 10.3390/ijms23084302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
The accumulation of fibrosis in cardiac tissues is one of the leading causes of heart failure. The principal cellular effectors in cardiac fibrosis are activated fibroblasts and myofibroblasts, which serve as the primary source of matrix proteins. TGF-β signaling pathways play a prominent role in cardiac fibrosis. The control of TGF-β by KLF5 in cardiac fibrosis has been demonstrated for modulating cardiovascular remodeling. Since the expression of KLF5 is reduced, the accumulation of fibrosis diminishes. Because the molecular mechanism of fibrosis is still being explored, there are currently few options for effectively reducing or reversing it. Studying metabolic alterations is considered an essential process that supports the explanation of fibrosis in a variety of organs and especially the glycolysis alteration in the heart. However, the interplay among the main factors involved in fibrosis pathogenesis, namely TGF-β, KLF5, and the metabolic process in glycolysis, is still indistinct. In this review, we explain what we know about cardiac fibroblasts and how they could help with heart repair. Moreover, we hypothesize and summarize the knowledge trend on the molecular mechanism of TGF-β, KLF5, the role of the glycolysis pathway in fibrosis, and present the future therapy of cardiac fibrosis. These studies may target therapies that could become important strategies for fibrosis reduction in the future.
Collapse
|
14
|
Palioura D, Lazou A, Drosatos K. Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. J Mol Cell Cardiol 2022; 163:56-66. [PMID: 34653523 PMCID: PMC8816822 DOI: 10.1016/j.yjmcc.2021.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.
Collapse
Affiliation(s)
- Dimitra Palioura
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA;,School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Farani PSG, Ferreira BIS, Gibaldi D, Lannes-Vieira J, Moreira OC. Modulation of miR-145-5p and miR-146b-5p levels is linked to reduced parasite load in H9C2 Trypanosoma cruzi infected cardiomyoblasts. Sci Rep 2022; 12:1436. [PMID: 35082354 PMCID: PMC8791985 DOI: 10.1038/s41598-022-05493-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/06/2022] [Indexed: 11/15/2022] Open
Abstract
In the heart tissue of acutely Trypanosoma cruzi-infected mice miR-145-5p and miR-146b-5p are, respectively, downregulated and upregulated. Here, we used the H9C2 rat cardiomyoblast cell line infected with the Colombian T. cruzi strain to investigate the parasite-host cell interplay, focusing on the regulation of miR-145-5p and miR-146b-5p expression. Next, we explored the effects of interventions with the trypanosomicidal drug Benznidazole (Bz) alone or combined with Pentoxifylline (PTX), a methylxanthine derivative shown to modulate immunological and cardiac abnormalities in a model of chronic chagasic cardiomyopathy, on parasite load and expression of miR-145-5p and miR-146b-5p. The infection of H9C2 cells with trypomastigote forms allowed parasite cycle with intracellular forms multiplication and trypomastigote release. After 48 and 144 h of infection, upregulation of miR-145-5p (24 h: 2.38 ± 0.26; 48 h: 3.15 ± 0.9-fold change) and miR-146b-5b (24 h: 2.60 ± 0.46; 48 h: 2.97 ± 0.23-fold change) was detected. The peak of both miRNA levels paralleled with release of trypomastigote forms. Addition of 3 µM and 10 µM of Bz 48 h after infection reduced parasite load but did not interfere with miR-145-5p and miR-146b-5p levels. Addition of PTX did not interfere with Bz-induced parasite control efficacy. Conversely, combined Bz + PTX treatment decreased the levels of both microRNAs, resembling the expression levels detected in non-infected H9C2 cells. Moreover, the use of miR-145-5p and miR-146b-5p mimic/inhibitor systems before infection of H9C2 cells decreased parasite load, 72 h postinfection. When H9C2 cells were treated with miR-145-5p and miR-146b-5p mimic/inhibitor 48 h after infection, all the used systems, except the miR-146b-5p inhibitor, reduced parasite load. Altogether, our data indicate that these microRNAs putatively control signaling pathways crucial for parasite–host cell interaction. Thus, miR-145-5p and miR-146b-5p deserve to be further investigated as biomarkers of parasite control and tools to identify therapeutic adjuvants to etiological treatment in Chagas disease.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Beatriz Iandra Silva Ferreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Wang S, Tan Y, Yang T, Liu C, Li R. Pulmonary AngII promotes LPS-induced lung inflammation by regulating microRNA-143. Cytotechnology 2021; 73:745-754. [PMID: 34493899 PMCID: PMC8414951 DOI: 10.1007/s10616-021-00493-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a terminal carboxypeptidase, which cleaves single terminal residues from several bioactive peptides such as Angiotensin II (AngII). Many investigations indicated that ACE2 functions in angiotensin system and plays a crucial role in inflammatory lung diseases. However, the mechanism behind the involvement of ACE2 in inflammatory lung disease has not been fully elucidated. In this study, BEAS-2B cells were treated with gradient concentration of AngII and lipopolysaccharide (LPS) to induce inflammatory condition. Quantitative RT-PCR was performed to detect the level of ACE2 and miR-143-3p. Western blotting and immunofluorescence assays were performed to measure the expression of related proteins. The levels of inflammatory cytokines and cell viability were respectively measured by ELISA and CCK-8 kits. And ACE2 activity was detected by corresponding commercial kits. Bioinformatics methods were employed to predict the potential microRNA targeting ACE2, which was then confirmed by dual luciferase reporter assay. The results showed that ACE2 expression and activity were time-dependently decreased in LPS group for the first 12 h, after which this tendency was reversed. AngII addition enhanced these effects, compared with LPS group. Additionally, the lowest ACE2 activity level was found in both LPS and AngII + LPS groups at 6 h. The number of nuclei and the ACE2 expression were decreased in LPS groups at 6 h and further reduced by addition of AngII, detected by immunofluorescence. Moreover, ACE2 was validated to be a direct target of miR-143-3p. Pretreatment of AngII and LPS regulated the activity of ACE2, increased the expression of proinflammatory cytokines and cell apoptosis and regulated the expression of Bax, Bcl-2 and cleaved caspase-3 in BEAS-2B cells, which could be reversed by transfecting miR-143-3p inhibitor. The results collectively suggest that AngII promotes LPS-induced inflammation by regulating miR-143-3p in BEAS-2B cells. Therefore, miR-143-3p is considered a potential molecular target for the treatment of lung inflammation.
Collapse
Affiliation(s)
- Shenglan Wang
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Yan Tan
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Tingting Yang
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Chen Liu
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| | - Rufang Li
- Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China.,The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Xishan District, Kunming, 650032 Yunnan China
| |
Collapse
|
17
|
Thomas S, Manivannan S, Sawant D, Kodigepalli KM, Garg V, Conway SJ, Lilly B. miR-145 transgenic mice develop cardiopulmonary complications leading to postnatal death. Physiol Rep 2021; 9:e15013. [PMID: 34523259 PMCID: PMC8440944 DOI: 10.14814/phy2.15013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Both downregulation and elevation of microRNA miR-145 has been linked to an array of cardiopulmonary phenotypes, and a host of studies suggest that it is an important contributor in governing the differentiation of cardiac and vascular smooth muscle cell types. METHODS AND RESULTS To better understand the role of elevated miR-145 in utero within the cardiopulmonary system, we utilized a transgene to overexpress miR-145 embryonically in mice and examined the consequences of this lineage-restricted enhanced expression. Overexpression of miR-145 has detrimental effects that manifest after birth as overexpressor mice are unable to survive beyond postnatal day 18. The miR-145 expressing mice exhibit respiratory distress and fail to thrive. Gross analysis revealed an enlarged right ventricle, and pulmonary dysplasia with vascular hypertrophy. Single cell sequencing of RNA derived from lungs of control and miR-145 transgenic mice demonstrated that miR-145 overexpression had global effects on the lung with an increase in immune cells and evidence of leukocyte extravasation associated with vascular inflammation. CONCLUSIONS These data provide novel findings that demonstrate a pathological role for miR-145 in the cardiopulmonary system that extends beyond its normal function in governing smooth muscle differentiation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Female
- Heart Arrest/genetics
- Heart Arrest/metabolism
- Heart Arrest/mortality
- Humans
- Male
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Mortality, Premature
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Shelby Thomas
- Center for Cardiovascular Research and The Heart CenterNationwide Children’s HospitalColumbusOhioUSA
| | | | - Dwitiya Sawant
- Center for Cardiovascular Research and The Heart CenterNationwide Children’s HospitalColumbusOhioUSA
| | - Karthik M. Kodigepalli
- Center for Cardiovascular Research and The Heart CenterNationwide Children’s HospitalColumbusOhioUSA
- Department of PediatricsMedical College of WisconsinMilwaukeeWIUSA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart CenterNationwide Children’s HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Simon J. Conway
- HB Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisIndianaUSA
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart CenterNationwide Children’s HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
18
|
Chavkin NW, Sano S, Wang Y, Oshima K, Ogawa H, Horitani K, Sano M, MacLauchlan S, Nelson A, Setia K, Vippa T, Watanabe Y, Saucerman JJ, Hirschi KK, Gokce N, Walsh K. The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. J Am Heart Assoc 2021; 10:e019904. [PMID: 34155901 PMCID: PMC8403294 DOI: 10.1161/jaha.120.019904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Background A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early proinflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase-like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after transverse aortic constriction surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2 knockout mice displayed a proinflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, transverse aortic constriction surgery led to the death of all mice by day 6 that was associated with myocardial hyperinflammation and vascular leakage. Conclusions Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.
Collapse
Affiliation(s)
- Nicholas W. Chavkin
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Soichi Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Ying Wang
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Kosei Oshima
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Hayato Ogawa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Keita Horitani
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Miho Sano
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologyGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Susan MacLauchlan
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Anders Nelson
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVA
| | - Karishma Setia
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Tanvi Vippa
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
| | - Yosuke Watanabe
- Vascular Biology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Jeffrey J. Saucerman
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVA
| | - Karen K. Hirschi
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Department of Cell BiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Cardiovascular Research CenterSchool of MedicineYale UniversityNew HavenCT
| | - Noyan Gokce
- Boston University School of MedicineBostonMA
| | - Kenneth Walsh
- Cardiovascular Research CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Hematovascular Biology CenterSchool of MedicineUniversity of VirginiaCharlottesvilleVA
- Molecular Cardiology/Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
- Department of CardiologySchool of MedicineUniversity of VirginiaCharlottesvilleVA
| |
Collapse
|
19
|
Lee Y, Im E. Regulation of miRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and eNOS. Antioxidants (Basel) 2021; 10:antiox10030377. [PMID: 33802566 PMCID: PMC8000568 DOI: 10.3390/antiox10030377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.
Collapse
Affiliation(s)
| | - Eunok Im
- Correspondence: ; Tel.: +82-51-510-2812; Fax: +82-51-513-6754
| |
Collapse
|
20
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Xie Z, Chen J, Wang C, Zhang J, Wu Y, Yan X. Current knowledge of Krüppel-like factor 5 and vascular remodeling: providing insights for therapeutic strategies. J Mol Cell Biol 2021; 13:79-90. [PMID: 33493334 PMCID: PMC8104942 DOI: 10.1093/jmcb/mjaa080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.
Collapse
Affiliation(s)
- Ziyan Xie
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenyu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
22
|
Sawant D, Lilly B. MicroRNA-145 targets in cancer and the cardiovascular system: evidence for common signaling pathways. VASCULAR BIOLOGY 2020; 2:R115-R128. [PMID: 33283158 PMCID: PMC7709916 DOI: 10.1530/vb-20-0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022]
Abstract
miRNAs are small regulatory RNAs which govern gene expression post-transcriptionally by primarily binding to the 3'-UTR of mRNA target genes. miR-145 is a well-studied miRNA that has been implicated in controlling a range of biological processes. miR-145 is expressed in a variety of tissues and cell types and acts as a tumor-suppressor by regulating target gene signaling pathways involved in different aspects of tumor growth and progression. There is also strong evidence that highlights the important functions of miR-145 in the cardiovascular system. Here, we review the mechanisms of miR-145 in tumorigenesis and cancer progression and compare and contrast with the roles of miR-145 in cardiovascular development and disease. We discuss the important targets of miR-145 in cancer and their possible link to the cardiovascular system.
Collapse
Affiliation(s)
- Dwitiya Sawant
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Cui S, Liu Z, Tao B, Fan S, Pu Y, Meng X, Li D, Xia H, Xu L. miR-145 attenuates cardiac fibrosis through the AKT/GSK-3β/β-catenin signaling pathway by directly targeting SOX9 in fibroblasts. J Cell Biochem 2020; 122:209-221. [PMID: 32890431 DOI: 10.1002/jcb.29843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) will inevitably result in cardiac fibrosis. In this study, we investigated the effect of microRNA-145 (miR-145) and transcription factor sex-determining region Y box 9 (SOX9) in the production of cardiac fibrosis induced by MI. MI rat models were established by left anterior descending coronary artery (LAD) occlusion. Four weeks after LAD, the cardiac fibrosis level was assessed by Masson's trichrome staining. Cardiac fibroblasts (CFs) exposed to hypoxia were used to simulate MI-induced fibrosis. Flow cytometry, cell counting kit-8, and transwell assays were used to examine changes in CF apoptosis, proliferation, and migration, respectively. miR-145 expression was measured by quantitative real-time polymerase chain reaction. Immunofluorescence and Western blot analysis were performed to determine the relative expression of proteins. In comparison to the sham-operated group, the expression of miR-145 was significantly downregulated in the infarction peripheral area, whereas, SOX9 was upregulated. In the infarcted heart, the overexpression of miR-145 significantly ameliorated cardiac fibrosis and cardiac function, and there was a negative correlation between miR-145 and SOX9 expressions in hypoxic CFs in vitro. In addition, SOX9 was verified to be a functional target of miR-145. Overexpression of miR-145 or inhibition of SOX9 decreased CF proliferation, migration, and fibrosis, but augmented their apoptotic rate. Moreover, the upregulation of miR-145 or suppression of SOX9 inhibited AKT and β-catenin signaling in hypoxic CFs. Taken together, this study highlights a potential treatment for cardiac fibrosis through the targeted regulation of SOX9 by miR-145, and our findings indicate that miR-145 exerts anti-fibrotic effects in MI via the negative regulation of SOX9 and its downstream AKT/GSK-3β/β-catenin pathways.
Collapse
Affiliation(s)
- Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bo Tao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Suzhen Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yong Pu
- Renmin Hospital of Hannan District, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Dongqing Li
- Department of Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
24
|
Liu W, Wang Y, Qiu Z, Zhao R, Liu Z, Chen W, Ge J, Shi B. CircHIPK3 regulates cardiac fibroblast proliferation, migration and phenotypic switching through the miR-152-3p/TGF-β2 axis under hypoxia. PeerJ 2020; 8:e9796. [PMID: 32904464 PMCID: PMC7453924 DOI: 10.7717/peerj.9796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background The occurrence of pathological cardiac fibrosis is attributed to tissue hypoxia. Circular RNAs play significant regulatory roles in multiple cardiovascular diseases and are involved in the regulation of physiological and pathophysiological processes. CircHIPK3 has been identified as the one of the most crucial regulators in cardiac fibrosis. However, the mechanisms by which circHIPK3 regulates cardiac fibrosis under hypoxia remain unclear. Our study aimed to determine circHIPK3 expression in cardiac fibroblasts (CFs) and investigate the functions of circHIPK3 in hypoxia environment. Methods The expression level of circHIPK3 in CFs under hypoxia (1% O2) was analyzed by qRT-PCR. The role of circHIPK3 on the proliferation and migration of CFs were determined by EdU, cell wound scratch assay and cell cycle. The expression of proteins associated with phenotypic transformation in CFs in vitro was examined by immunofluorescence assay and western blot. Bioinformatics analysis, dual luciferase activity assay and RNA fluorescent in situ hybridization assay revealed that miR-152-3p was identified as a target of circHIPK3 and that TGF-β2 was targeted by miR-152-3p. Results CircHIPK3 expression was significantly upregulated in CFs in a hypoxic environment. In vitro, overexpressing circHIPK3 obviously promoted CF proliferation, migration and phenotypic changes under hypoxia, but those processes were suppressed by circHIPK3 silencing. CircHIPK3 acted as an endogenous miR-152-3p sponge and miR-152-3p aggravated circHIPK3 silencing induced inhibition of CF proliferation, migration, phenotypic transformation and TGF-β2 expression in vitro. In summary, circHIPK3 plays a pivotal role in the development of cardiac fibrosis by targeting the miR-152-3p/TGF-β2 axis. Conclusions These findings demonstrated that circHIPK3 acted as a miR-152-3p sponge to regulate CF proliferation, migration and phenotypic transformation through TGF-β2, revealing that modulation of circHIPK3 expression may represent a potential target to promote the transition of hypoxia-induced CFs to myofibroblasts.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhijiang Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
25
|
Song H, He S, Li S, Wu J, Yin W, Shao Z, Du G, Wu J, Li J, Weisel RD, Verma S, Xie J, Li R. Knock-out of MicroRNA 145 impairs cardiac fibroblast function and wound healing post-myocardial infarction. J Cell Mol Med 2020; 24:9409-9419. [PMID: 32628810 PMCID: PMC7417705 DOI: 10.1111/jcmm.15597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prevention of infarct scar thinning and dilatation and stimulation of scar contracture can prevent progressive heart failure. Since microRNA 145 (miR-145) plays an important role in cardiac fibroblast response to wound healing and cardiac repair after an myocardial infarction (MI), using a miR-145 knock-out (KO) mouse model, we evaluated contribution of down-regulation of miR-145 to cardiac fibroblast and myofibroblast function during adverse cardiac remodelling. Cardiac function decreased more and the infarct size was larger in miR-145 KO than that in WT mice after MI and this phenomenon was accompanied by a decrease in cardiac fibroblast-to-myofibroblast differentiation. Quantification of collagen I and α-SMA protein levels as well as wound contraction revealed that transdifferentiation of cardiac fibroblasts into myofibroblasts was lower in KO than WT mice. In vitro restoration of miR-145 induced more differentiation of fibroblasts to myofibroblasts and this effect involved the target genes Klf4 and myocardin. MiR-145 contributes to infarct scar contraction in the heart and the absence of miR-145 contributes to dysfunction of cardiac fibroblast, resulting in greater infarct thinning and dilatation. Augmentation of miR-145 could be an attractive target to prevent adverse cardiac remodelling after MI by enhancing the phenotypic switch of cardiac fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Hui‐Fang Song
- Department of AnatomyShanxi Medical UniversityTaiyuanChina
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuanChina
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Sheng He
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuanChina
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Shu‐Hong Li
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Jun Wu
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Wenjuan Yin
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuanChina
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhengbo Shao
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Guo‐qing Du
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Jie Wu
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Jiao Li
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
| | - Richard D. Weisel
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Division of Cardiac SurgeryDepartment of SurgeryUniversity of TorontoTorontoONCanada
| | - Subodh Verma
- Division of Cardiac SurgeryLi Ka Shing Knowledge Institute of St Michael's HospitalDepartment of SurgeryUniversity of TorontoTorontoONCanada
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationShanxi Medical UniversityTaiyuanChina
| | - Ren‐Ke Li
- Toronto General Research InstituteUniversity Health NetworkTorontoONCanada
- Division of Cardiac SurgeryDepartment of SurgeryUniversity of TorontoTorontoONCanada
| |
Collapse
|
26
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Seed M, Selvanayagam JB, Morrison JL. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front Physiol 2020; 11:614. [PMID: 32587529 PMCID: PMC7298149 DOI: 10.3389/fphys.2020.00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph B Selvanayagam
- Cardiac Imaging Research, Department of Heart Health, South Australian Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
27
|
Asulin N, Volinsky N, Grosman-Rimon L, Kachel E, Sternik L, Raanani E, Altshuler R, Magen I, Ben-Zvi I, Margalit N, Carasso S, Meir K, Haviv I, Amir O. Differential microRNAs expression in calcified versus rheumatic aortic valve disease. J Card Surg 2020; 35:1508-1513. [PMID: 32485041 DOI: 10.1111/jocs.14636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The aortic valve (AV) is the most commonly affected valve in valvular heart diseases (VHDs). The objective of the study is to identify microRNA (miRNA) molecules expressed in VHDs and the differential expression patterns of miRNA in AVs with either calcification or rheumatism etiologies. METHODS Human AVs were collected during valve replacement surgery. RNA was extracted and miRNA containing libraries were prepared and sequenced using the next generation sequencing (NGS) approach. miRNAs identified as differentially expressed between the two etiologies were validated by quantitative real-time polymerase chain reaction (qPCR). The receiver operating characteristic (ROC) curve analysis was performed to examine the ability of relevant miRNA to differentiate between calcification and rheumatism etiologies. RESULTS Rheumatic and calcified AV samples were prepared for the NGS and were successfully sequenced. The expression was validated by the qPCR approach in 46 AVs, 13 rheumatic, and 33 calcified AVs, confirming that miR-145-5p, miR-199a-5p, and miR-5701 were significantly higher in rheumatic AVs as compared with calcified AVs. ROC curve analysis revealed that miR-145-5p had a sensitivity of 76.92% and a specificity of 94.12%, area under the curve (AUC) = 0.88 (P = .0001), and miR-5701 had a sensitivity of 84.62% and a specificity of 76.47%, AUC = 0.78 (P = .0001), whereas miR-199a-5p had a sensitivity of 84.62%, and a specificity of 57.58%, AUC = 0.73 (P = .0083). CONCLUSION We documented differential miRNA expression between AV disease etiologies. The miRNAs identified in this study advance our understanding of the mechanisms underlining AV disease.
Collapse
Affiliation(s)
- Nofar Asulin
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Natalia Volinsky
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel
| | - Liza Grosman-Rimon
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel
| | - Erez Kachel
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,Department of Cardiac Surgery, Sheba Hospital, Tel Hashomer, Ramat Gan, Israel
| | - Leonid Sternik
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,Department of Cardiac Surgery, Sheba Hospital, Tel Hashomer, Ramat Gan, Israel
| | - Ehud Raanani
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,Department of Cardiac Surgery, Sheba Hospital, Tel Hashomer, Ramat Gan, Israel
| | - Roman Altshuler
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,Department of Cardiac Surgery, Sheba Hospital, Tel Hashomer, Ramat Gan, Israel
| | - Iddo Magen
- Department of Molecular Genetics, Weizman Institute of Science, Rehovot, Israel
| | - Inbar Ben-Zvi
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nufar Margalit
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel
| | - Shemy Carasso
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel
| | - Karen Meir
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Izhak Haviv
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Offer Amir
- Cardiovascular Department and Research Center, Poriya Medical Center, Tiberias, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
28
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
29
|
Abstract
Cardiovascular diseases are one of the most common causes of death in both developing and developed countries worldwide. Even though there have been improvements in primary prevention, the prevalence of cardiovascular diseases continues to increase in recent years. Hence, it is crucial to both investigate the molecular pathophysiology of cardiovascular diseases in-depth and find novel biomarkers regarding the early and proper prevention and diagnosis of these diseases. MicroRNAs, or miRNAs, are endogenous, conserved, single-stranded non-coding RNAs of 21-25 nucleotides in length. miRNAs have important roles in various cellular events such as embryogenesis, proliferation, vasculogenesis, apoptosis, cell growth, differentiation, and tumorigenesis. They also have potential roles in the cardiovascular system, including angiogenesis, cardiac cell contractility, control of lipid metabolism, plaque formation, the arrangement of cardiac rhythm, and cardiac cell growth. Circulating miRNAs are promising novel biomarkers for purposes of the diagnosis and prognosis of cardiovascular diseases. Cell or tissue specificity, stability in serum or plasma, resistance to degradative factors such as freeze-thaw cycles or enzymes in the blood, and fast-release kinetics, provide the potential for miRNAs to be surrogate markers for the early and accurate diagnosis of disease and for predicting middle- or long-term prognosis. Moreover, it may be a logical approach to combine miRNAs with traditional biomarkers to improve risk stratification and long-term prognosis. In addition to their efficacy in both diagnosis and prognosis, miRNA-based therapeutics may be beneficial for treating cardiovascular diseases using novel platforms and computational tools and in combination with traditional methods of analysis. microRNAs are promising, novel therapeutic agents, which can affect multiple genes using different signaling pathways. miRNAs therapeutic modulation techniques have been used in the settings of atherosclerosis, acute myocardial infarction, restenosis, vascular remodeling, arrhythmias, hypertrophy and fibrosis, angiogenesis and cardiogenesis, aortic aneurysm, pulmonary hypertension, and ischemic injury. This review presents detailed information about miRNAs regarding structure and biogenesis, stages of synthesis and functions, expression profiles in serum/plasma of living organisms, diagnostic and prognostic potential as novel biomarkers, and therapeutic applications in various diseases.
Collapse
Affiliation(s)
| | - Mehmet Demir
- Department of Cardiology, University of Health Sciences, Bursa Yüksek İhtisas Research and Training Hospital, Bursa, Turkey
| |
Collapse
|
30
|
Reitz CJ, Alibhai FJ, Khatua TN, Rasouli M, Bridle BW, Burris TP, Martino TA. SR9009 administered for one day after myocardial ischemia-reperfusion prevents heart failure in mice by targeting the cardiac inflammasome. Commun Biol 2019; 2:353. [PMID: 31602405 PMCID: PMC6776554 DOI: 10.1038/s42003-019-0595-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Reperfusion of patients after myocardial infarction (heart attack) triggers cardiac inflammation that leads to infarct expansion and heart failure (HF). We previously showed that the circadian mechanism is a critical regulator of reperfusion injury. However, whether pharmacological targeting using circadian medicine limits reperfusion injury and protects against HF is unknown. Here, we show that short-term targeting of the circadian driver REV-ERB with SR9009 benefits long-term cardiac repair post-myocardial ischemia reperfusion in mice. Gain and loss of function studies demonstrate specificity of targeting REV-ERB in mice. Treatment for just one day abates the cardiac NLRP3 inflammasome, decreasing immunocyte recruitment, and thereby allowing the vulnerable infarct to heal. Therapy is given in vivo, after reperfusion, and promotes efficient repair. This study presents downregulation of the cardiac inflammasome in fibroblasts as a cellular target of SR9009, inviting more targeted therapeutic investigations in the future.
Collapse
Affiliation(s)
- Cristine J. Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Faisal J. Alibhai
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Tarak N. Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Mina Rasouli
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G2W1 Canada
| | - Thomas P. Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63104 USA
| | - Tami A. Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada
| |
Collapse
|
31
|
Özkan G, Ulusoy Ş, Geyik E, Erdem Y. Down-regulation of miRNA 145 and up-regulation of miRNA 4516 may be associated with primary hypertension. J Clin Hypertens (Greenwich) 2019; 21:1724-1731. [PMID: 31556476 DOI: 10.1111/jch.13704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022]
Abstract
Complex mechanisms including genetic factors have been proposed in the pathogenesis of primary hypertension (HT). Micro RNAs (miRNAs) are single-stranded RNA molecules that are not converted into protein products. However, it has been established that genes regulate conversion into protein products. The primary aim of this study was to investigate the roles of miRNA 4516, miRNA 145, miRNA 24, and miRNA 181a in the pathogenesis of HT. The secondary aim was to investigate the relation between these miRNAs and renin, aldosterone, norepinephrine, renalase, and NOS. Fifty-two hypertensive and 51 control normotensive individuals under observation in the Cappadocia cohort were included in the study. miRNA 4516, miRNA 181a, miRNA 24, and miRNA 145 levels were measured using the ddPCR method. miRNA 4516 and norepinephrine levels were significantly higher in the HT group (P < .005 for both), while miRNA 145 levels were significantly lower (<.05). miRNA 4516 up-regulation (P < .05) and miRNA 145 down-regulation (P < .05) were identified as independent predictors of HT. Renalase exhibited negative correlation with miRNA 4516 and positive correlation with miRNA 145 in the patient and control group. In addition, negative correlation was present between miRNA 24 and NE and NOS and between miRNA 181a and NOS in the patient group. Our study identified, for the first time in the literature, miRNA 4516 up-regulation and miRNA 145 down-regulation as independent determinants of HT. Further studies performed in the light of our findings may lead to a better understanding of the pathogenesis and new therapeutic possibilities.
Collapse
Affiliation(s)
- Gülsüm Özkan
- Department of Nephrology, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Şükrü Ulusoy
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Geyik
- Department of Biology and Genetics, Genometri Biotech, İzmir, Turkey
| | - Yunus Erdem
- Department of Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Park KS, Bandeira E, Shelke GV, Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2019; 10:288. [PMID: 31547882 PMCID: PMC6757418 DOI: 10.1186/s13287-019-1398-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
After the initial investigations into applications of mesenchymal stem cells (MSCs) for cell therapy, there was increased interest in their secreted soluble factors. Following studies of MSCs and their secreted factors, extracellular vesicles (EVs) released from MSCs have emerged as a new mode of intercellular crosstalk. MSC-derived EVs have been identified as essential signaling mediators under both physiological and pathological conditions, and they appear to be responsible for many of the therapeutic effects of MSCs. In several in vitro and in vivo models, EVs have been observed to have supportive functions in modulating the immune system, mainly mediated by EV-associated proteins and nucleic acids. Moreover, stimulation of MSCs with biophysical or biochemical cues, including EVs from other cells, has been shown to influence the contents and biological activities of subsequent MSC-derived EVs. This review provides on overview of the contents of MSC-derived EVs in terms of their supportive effects, and it provides different perspectives on the manipulation of MSCs to improve the secretion of EVs and subsequent EV-mediated activities. In this review, we discuss the possibilities for manipulating MSCs for EV-based cell therapy and for using EVs to affect the expression of elements of interest in MSCs. In this way, we provide a clear perspective on the state of the art of EVs in cell therapy focusing on MSCs, and we raise pertinent questions and suggestions for knowledge gaps to be filled.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Gasiūnienė M, Zubova A, Utkus A, Navakauskienė R. Epigenetic and metabolic alterations in human amniotic fluid stem cells induced to cardiomyogenic differentiation by DNA methyltransferases and p53 inhibitors. J Cell Biochem 2019; 120:8129-8143. [PMID: 30485506 DOI: 10.1002/jcb.28092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cell therapy and regenerative medicine. In this study, the potential of DNA methyltransferases (DNMT) inhibitors Decitabine, Zebularine, RG108 alone or combined with Zebularine and p53 inhibitor Pifithrin-α to induce cardiomyogenic differentiation of AF-MSCs was investigated. Differentiation into cardiomyocyte-like cells initiation was indicated with all agents by changes in the cell phenotype, upregulation of the relative expression of the main cardiac genes (NKX2-5, TNNT2, MYH6, and DES) as well as of cardiac ion channels genes (sodium, calcium, and potassium) as determined by reverse-transcription quantitative polymerase chain reaction and the increase in Connexin43 levels as detected from Western blot and immunofluorescence data. Cellular energetics and mitochondrial function in induced cells were assessed using Seahorse analyzer and revealed the initiation of AF-MSCs metabolic transformation into cardiomyocyte-like cells. All used inducers were nontoxic to AF-MSCs, arrested cell cycle at the G0/G1 phase, and upregulated p53 and p21 expression. The relative expression of miR-34a and miR-145 that are related to cell cycle regulation was also observed. Furthermore, the evaluated levels of chromatin remodeling proteins enhancer of zeste homolog 2, suppressor of zeste 12 protein homolog, DNMT1, histone deacetylase 1 (HDAC1), HDAC2, and heterochromatin protein 1α, as well as the rate of activating histone modifications, exhibited rearrangements of chromatin after the induction of cardiomyogenic differentiation. In conclusion, we demonstrated that all explored DNMT and p53 inhibitors initiated cardiomyogenesis-related alterations in AF-MSCs through rather similar mechanisms but to a different extent providing useful insights for the future research and potential applications of AF-MSCs.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Anastasija Zubova
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
34
|
Yin W, Guo J, Zhang C, Alibhai FJ, Li SH, Billia P, Wu J, Yau TM, Weisel RD, Li RK. Knockout of Canopy 2 activates p16 INK4a pathway to impair cardiac repair. J Mol Cell Cardiol 2019; 132:36-48. [PMID: 31047986 DOI: 10.1016/j.yjmcc.2019.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/14/2019] [Accepted: 04/18/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cardiac repair depends on angiogenesis and cell proliferation. Previously we identified Canopy 2 (CNPY2) as a secreted angiogenic growth factor which promotes neovascularization. We investigated the role of CNPY2 in cardiac repair following myocardial infarction (MI) and the possible mediators involved using Cnpy2 knockout (KO) mice and human cardiac tissue. METHODS AND RESULTS Cardiac tissue from patients with end-stage heart failure had significantly lower endogenous CNPY2 expression compared to samples from control patients. CNPY2 expression in mouse hearts significantly decreased following MI. Significantly less leukocyte and endothelial cell proliferation was found in Cnpy2 KO than wild-type (WT) mice post MI which contributed to impaired angiogenesis, tissue repair, and decreased cardiac function (fractional shortening: WT: 21.1 ± 2.1% vs. KO: 16.4 ± 1.6%, p < .01 at day 28 post MI). RT-qPCR revealed significantly increased p16INK4a expression in Cnpy2 KO mouse hearts (WT: 1.0 ± 0.04 vs. KO: 2.33 ± 0.11 [relative expression of p16 INK4a], p < .01) which was confirmed by immunostaining (WT: 8.47 ± 1.22 vs. KO: 12.9 ± 1.22 [% total cells], p < .05) for the p16INK4a protein. Expression of cell cycle-related proteins, cyclin D1, cyclin-dependent kinases 4 and 6, and phosphorylated retinoblastoma protein (pRb) was significantly decreased in Cnpy2 KO mouse hearts. The up-regulation of the p16INK4a/cyclin D1/Rb pathway by knockout of Cnpy2 was accompanied by attenuation of PDK1/Akt phosphorylation. MI exacerbated the detrimental effects of p16INK4a on tissue repair in Cnpy2 KO mice. Overexpression of CNPY2 in the cardiac tissue of transgenic mice reversed the inhibition of cell proliferation through suppression of the p16INK4a pathway. CONCLUSIONS Cardiac injury and progressive heart failure were associated with decreased CNPY2 levels in both humans and mice. Knockout of Cnpy2 resulted in up-regulation of p16INK4a which impaired cardiac function and tissue repair. These data suggest that CNPY2 is an important regulator of p16INK4a and promotes cell proliferation and tissue repair through inhibition of the p16INK4a pathway. CNPY2 treatment may offer a new approach to restore cardiac function after an MI.
Collapse
Affiliation(s)
- Wenjuan Yin
- Department of Pathology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China; Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Jian Guo
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Chongyu Zhang
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Shu-Hong Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Phyllis Billia
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiology, University Health Network, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jun Wu
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| | - Terrence M Yau
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Richard D Weisel
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada; Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
35
|
Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, Shen G, Wang F. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol 2019; 292:188-196. [PMID: 30967276 DOI: 10.1016/j.ijcard.2019.04.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as powerful regulators of cardiac development and disease. Nevertheless, detailed studies describing circRNA-mediated regulation of cardiac fibroblasts (CFs) biology and their role in cardiac fibrosis remain limited. METHODS PCR and Sanger sequencing were performed to identify the expression of circHIPK3 in CFs. Edu corporation assays, Transwell migration assays, and immunofluorescence staining assays were conducted to detect the function of circHIPK3 in CFs in vitro. Bioinformatics analysis, dual luciferase activity assays, RNA immunoprecipitation, and fluorescent in situ hybridization experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac fibrosis. Echocardiographic analysis, Sirius Red staining and immunofluorescence staining were performed to investigate the function of circHIPK3 in angiotensin II (Ang II) induced cardiac fibrosis in vivo. RESULTS circHIPK3 expression markedly increased in CFs and heart tissues after the treatment of Ang II. circHIPK3 silencing attenuates CFs proliferation, migration and the upregulation of a-SMA expression levels induced by Ang II in vitro. circHIPK3 acted as a miR-29b-3p sponge and overexpression of circHIPK3 effectively reverses miR-29b-3p-induced inhibition of CFs proliferation and migration and alters the expression levels of miR-29b-3p targeting genes (a-SMA, COL1A1, COL3A1) in vitro. Combination of circHIPK3 silencing and miR-29b-3p overexpression had a stronger effect on cardiac fibrosis suppression in vivo than did circHIPK3 silencing or miR-29b-3p overexpression alone. CONCLUSIONS Our data suggest that circHIPK3 serves as a miR-29b-3p sponge to regulate CF proliferation, migration and development of cardiac fibrosis, revealing a potential new target for the prevention of Ang II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Shuang Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Yang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China.
| |
Collapse
|
36
|
Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, Li P. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p Are Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. Front Physiol 2019; 10:123. [PMID: 30833907 PMCID: PMC6387945 DOI: 10.3389/fphys.2019.00123] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart disease including myocardial infarction (MI) is a major cause of mortality and morbidity worldwide. In order to manage the acute myocardial infarction (AMI) outbreaks, novel biomarkers for risk prediction are needed. Recent studies have shown that circulating microRNAs (miRNAs) are promising biomarkers for cardiovascular diseases prediction. This study aimed to determine the possibility of circulating miRNAs used as biomarkers for AMI. The dynamic expression levels of miRNAs were examined before and after percutaneous coronary intervention (PCI) in patients. Circulating miR-17-5p, miR-126-5p, and miR-145-3p were selected and validated in 29 patients with AMI and 21 matched controls by quantitative real-time PCR. The expression levels of plasma miR-17-5p, miR-126-5p, and miR-145-3p were significantly increased in AMI patients. Receiver Operating Characteristic (ROC) analysis indicated that miR-17-5p, miR-126-5p, and miR-145-3p showed considerable diagnostic efficiency for AMI. Furthermore, we demonstrated that the combination of these three miRNAs managed to provide more accurate diagnosing of AMI.
Collapse
Affiliation(s)
- Sheng Xue
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Dacheng Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhe Su
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Liwei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Changyong Zhou
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, Hunt S, Catto JWF, Coletta RD, Mellone M, Thomas GJ, Parkinson EK, Prime SS, Paterson IC, Buttle DJ, Lambert DW. A miRNA-145/TGF-β1 negative feedback loop regulates the cancer-associated fibroblast phenotype. Carcinogenesis 2019; 39:798-807. [PMID: 29506142 DOI: 10.1093/carcin/bgy032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
Collapse
Affiliation(s)
| | - Sarah E Flannery
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Siti A Abidin
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Hannah Clemmens
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | | | - Emma E Hinsley
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - Stuart Hunt
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| | - James W F Catto
- Unit of Academic Urology, University of Sheffield, Sheffield, UK
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Massimiliano Mellone
- Faculty of Medicine Cancer Sciences Unit, Southampton University, Somers Building, Southampton, UK
| | - Gareth J Thomas
- Faculty of Medicine Cancer Sciences Unit, Southampton University, Somers Building, Southampton, UK
| | - E Ken Parkinson
- Centre for Clinical & Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stephen S Prime
- Centre for Clinical & Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - David J Buttle
- Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Daniel W Lambert
- Integrated Biosciences, School of Clinical Dentistry, Sheffield, UK
| |
Collapse
|
38
|
miR-145-5p is associated with smoke-related chronic obstructive pulmonary disease via targeting KLF5. Chem Biol Interact 2019; 300:82-90. [PMID: 30639269 DOI: 10.1016/j.cbi.2019.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023]
Abstract
Increasing evidence illustrate that dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), which is mainly resulted from cigarette smoke (CS) exposure. However, the role of miR-145-5p in CS-mediated COPD remains largely unknown. Thus, the aim of this study was to investigate the expression level of miR-145-5p in 31 human lung tissues samples, and to explore its regulatory role in the apoptosis and inflammation of human bronchial epithelial cells (HBECs) following CS extract (CSE) exposure. We found that miR-145-5p was significantly down-regulated in lung tissues from smokers without or with COPD compared to non-smokers. Functional assays showed that miR-145-5p overexpression remarkably alleviated CSE-induced apoptosis and inflammation response by regulating p53-mediated apoptotic signaling and pre-inflammatory factors such as necrosis factor-α (TNF-α), interleukins (IL)-6, IL-8 in HBECs, whereas, down-regulation of miR-145-5p showed opposite effects. Furthermore, luciferase reporter assays verified that Kruppel-like 5 (KLF5) was a direct target of miR-145-5p. Western blot assay also confirmed that KLF5 was up-regulated in COPD tissues and was negatively associated with miR-145-5p expression. Restoration of miR-145-5p expression significantly abrogated the suppressive effect of miR-145-5p on CSE-stimulated apoptosis and inflammation. In addition, the CSE-induced NF-κB signaling activation was suppressed by miR-145-5p overexpression. Therefore, our data suggested that miR-145-5p conferred protection against CSE-induced airway epithelial cell apoptosis and inflammation partially via targeting KLF5, which might be a potential therapeutic biomarker in COPD treatment.
Collapse
|
39
|
Zhou T, Chen S, Mao X. miR-145-5p affects the differentiation of gastric cancer by targeting KLF5 directly. J Cell Physiol 2018; 234:7634-7644. [PMID: 30367481 DOI: 10.1002/jcp.27525] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Krüppel-like factor 5 (KLF5) takes part in the pathologic processes of many types of cancer; however, its expression and roles in the biological behavior of gastric cancer remain unknown. TargetScan suggested that miR-145-5p is the predicted effective and conserved microRNA (miRNA) that binds to KLF5 through its 3'-untranslated region (UTR). We investigated the expression of KLF5 and miR-145-5p messenger RNA (mRNA) in gastric cancer and then analyzed its role in the biological behavior of gastric cancer cells. Our results indicated that KLF5 expression was detected by immunohistochemistry in 39.7% of the gastric cancer cases and was increased compared with that of the corresponding noncancerous normal mucosa (0.01 < p < 0.05). The poorly differentiated subtype showed positive KLF5 expression, whereas the differentiated subtype showed negative KLF5 expression (p < 0.05). Dual-luciferase reporter assay suggested KLF5 3'-UTR was the direct target of miR-145-5p. Compared with the differentiated gastric cancer, miR-145-5p was downregulated in undifferentiated gastric cancer (p < 0.05). The downregulation of KLF5 expression and differentiation of MGC-803 and BGC-823 caused by siKLF5 or miR-145-5p mimic transfection. Our results indicated that miR-145-5p/KLF5 3'-UTR affected the differentiation of gastric cancer. miR-145-5p was able to promote gastric cancer differentiation by targeting KLF5 3'-UTR directly. Our data suggest a novel mechanism for cancer differentiation and a new facet to the role of miR-145-5p/KLF5 in gastric cancer.
Collapse
Affiliation(s)
- Taicheng Zhou
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Chen
- Departments of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyun Mao
- Department of Breast Surgery, Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
40
|
Li R, Wang Y, Song X, Sun W, Zhang J, Liu Y, Li H, Meng C, Zhang J, Zheng Q, Lv C. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018; 42:3256-3268. [PMID: 30272257 PMCID: PMC6202105 DOI: 10.3892/ijmm.2018.3892] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive type of interstitial pneumonia with unknown causes, poor prognosis and no effective therapy available. Circular RNAs (circRNAs), which serve as potential therapeutic targets and diagnostic biomarkers for certain diseases, represent a recent hotspot in the field of RNA research. In the present study, a total of 67 significantly dysregulated circRNAs were identified in the plasma of IPF patients by using a circRNA microarray. Among these circRNAs, 38 were upregulated, whereas 29 were downregulated. Further validation of the results by polymerase chain reaction analysis indicated that Homo sapiens (hsa)_circRNA_100906, hsa_circRNA_102100 and hsa_circRNA_102348 were significantly upregulated, whereas hsa_circRNA_101225, hsa_circRNA_104780 and hsa_circRNA_101242 were downregulated in plasma samples of IPF patients compared with those in samples from healthy controls. The majority of differentially expressed circRNAs were generated from exonic regions. The host genes of the differentially expressed circRNAs were involved in the regulation of the cell cycle, adherens junctions and RNA transport. The competing endogenous RNA (ceRNA) network of the circRNAs/micro(mi)RNAs/mRNAs indicated that circRNA-protected mRNA participated in transforming growth factor-β1, hypoxia-inducible factor-1, Wnt, Janus kinase, Rho-associated protein kinase, vascular endothelial growth factor, mitogen-activated protein kinase, Hedgehog and nuclear factor κB signalling pathways or functioned as biomarkers for pulmonary fibrosis. Furthermore, luciferase reporter assays confirmed that hsa_circRNA_100906 and hsa_circRNA_102348 directly interact with miR-324-5p and miR-630, respectively, which were downregulated in IPF patients. The present study provided a novel avenue for exploring the underlying molecular mechanisms of IPF disease.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Youlei Wang
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaodong Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjing Sun
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, P.R. China
| | - Jinjin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuxia Liu
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Chao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jie Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qingyin Zheng
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| |
Collapse
|
41
|
Abstract
SIGNIFICANCE To maintain homeostasis, gene expression has to be tightly regulated by complex and multiple mechanisms occurring at the epigenetic, transcriptional, and post-transcriptional levels. One crucial regulatory component is represented by long noncoding RNAs (lncRNAs), nonprotein-coding RNA species implicated in all of these levels. Thus, lncRNAs have been associated with any given process or pathway of interest in a variety of systems, including the heart. Recent Advances: Mounting evidence implicates lncRNAs in cardiovascular diseases (CVD) and progression and their presence in the blood of heart disease patients indicates that they are attractive potential biomarkers. CRITICAL ISSUES Our understanding of the regulation and molecular mechanisms of action of most lncRNAs remains rudimentary. A challenge is represented by their often low evolutionary sequence conservation that limits the use of animal models for preclinical studies. Nevertheless, a growing number of lncRNAs with an impact on heart function is rapidly accumulating. In this study, we will discuss (i) lncRNAs that control heart homeostasis and disease; (ii) concepts, approaches, and methodologies necessary to study lncRNAs in the heart; and (iii) challenges posed and opportunities presented by lncRNAs as potential therapeutic targets and biomarkers. FUTURE DIRECTIONS A deeper knowledge of the molecular mechanisms underpinning CVDs is necessary to develop more effective treatments. Further studies are needed to clarify the regulation and function of lncRNAs in the heart before they can be considered as therapeutic targets and disease biomarkers. Antioxid. Redox Signal. 29, 880-901.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| | - Antonio Salgado Somoza
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Yvan Devaux
- 2 Cardiovascular Research Unit, Luxembourg Institute of Health (LIH) , Luxembourg, Luxembourg
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS Policlinico San Donato , Milan, Italy
| |
Collapse
|
42
|
de Leeuw CA, Stringer S, Dekkers IA, Heskes T, Posthuma D. Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure. Nat Commun 2018; 9:3768. [PMID: 30218068 PMCID: PMC6138636 DOI: 10.1038/s41467-018-06022-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Gene-set analysis provides insight into which functional and biological properties of genes are aetiologically relevant for a particular phenotype. But genes have multiple properties, and these properties are often correlated across genes. This can cause confounding in a gene-set analysis, because one property may be statistically associated even if biologically irrelevant to the phenotype, by being correlated with gene properties that are relevant. To address this issue we present a novel conditional and interaction gene-set analysis approach, which attains considerable functional refinement of its conclusions compared to traditional gene-set analysis. We applied our approach to blood pressure phenotypes in the UK Biobank data (N = 360,243), the results of which we report here. We confirm and further refine several associations with multiple processes involved in heart and blood vessel formation but also identify novel interactions, among others with cardiovascular tissues involved in regulatory pathways of blood pressure homoeostasis. Gene-set analysis (GSA) is widely used to infer functional and biological properties of a gene set. Here, the authors develop a conditional and interaction gene-set analysis approach that can considerably refine results from traditional GSA.
Collapse
Affiliation(s)
- Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands.
| | - Sven Stringer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Tom Heskes
- Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, 6525 EC, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, 1081 HV, The Netherlands. .,Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, 1007 MB, The Netherlands.
| |
Collapse
|
43
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
44
|
Lutful Kabir F, Ambalavanan N, Liu G, Li P, Solomon GM, Lal CV, Mazur M, Halloran B, Szul T, Gerthoffer WT, Rowe SM, Harris WT. MicroRNA-145 Antagonism Reverses TGF-β Inhibition of F508del CFTR Correction in Airway Epithelia. Am J Respir Crit Care Med 2018; 197:632-643. [PMID: 29232160 PMCID: PMC6005236 DOI: 10.1164/rccm.201704-0732oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
RATIONALE MicroRNAs (miRNAs) destabilize mRNA transcripts and inhibit protein translation. miR-145 is of particular interest in cystic fibrosis (CF) as it has a direct binding site in the 3'-untranslated region of CFTR (cystic fibrosis transmembrane conductance regulator) and is upregulated by the CF genetic modifier TGF (transforming growth factor)-β. OBJECTIVES To demonstrate that miR-145 mediates TGF-β inhibition of CFTR synthesis and function in airway epithelia. METHODS Primary human CF (F508del homozygous) and non-CF airway epithelial cells were grown to terminal differentiation at the air-liquid interface on permeable supports. TGF-β (5 ng/ml), a miR-145 mimic (20 nM), and a miR-145 antagonist (20 nM) were used to manipulate CFTR function. In CF cells, lumacaftor (3 μM) and ivacaftor (10 μM) corrected mutant F508del CFTR. Quantification of CFTR mRNA, protein, and function was done by standard techniques. MEASUREMENTS AND MAIN RESULTS miR-145 is increased fourfold in CF BAL fluid compared with non-CF (P < 0.01) and increased 10-fold in CF primary airway epithelial cells (P < 0.01). Exogenous TGF-β doubles miR-145 expression (P < 0.05), halves wild-type CFTR mRNA and protein levels (P < 0.01), and nullifies lumacaftor/ivacaftor F508del CFTR correction. miR-145 overexpression similarly decreases wild-type CFTR protein synthesis (P < 0.01) and function (P < 0.05), and eliminates F508del corrector benefit. miR-145 antagonism blocks TGF-β suppression of CFTR and enhances lumacaftor correction of F508del CFTR. CONCLUSIONS miR-145 mediates TGF-β inhibition of CFTR synthesis and function in airway epithelia. Specific antagonists to miR-145 interrupt TGF-β signaling to restore F508del CFTR modulation. miR-145 antagonism may offer a novel therapeutic opportunity to enhance therapeutic benefit of F508del CFTR correction in CF epithelia.
Collapse
Affiliation(s)
| | | | | | - Peng Li
- Department of Biostatistics, and
| | - George M. Solomon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Tomasz Szul
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - William T. Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Steven M. Rowe
- Department of Medicine
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - William T. Harris
- Department of Pediatrics
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
45
|
Wang Y, Jin L. miRNA-145 is associated with spontaneous hypertension by targeting SLC7A1. Exp Ther Med 2017; 15:548-552. [PMID: 29434681 DOI: 10.3892/etm.2017.5371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have indicated that microRNAs (miRNAs/miRs) may participate in the pathogenesis of hypertension. miR-145 has been demonstrated to serve important roles in the development of numerous cardiovascular diseases. However, the specific role of miR-145 in hypertension remains unclear. The present study aimed to investigate the role of miR-145 in spontaneously hypertensive rats (SHR) and rat vascular endothelial cells (RVECs). The results of the present study demonstrated that in the SHR group miR-145 expression was significantly upregulated in the thoracic aorta compared with the control group. Furthermore, a significant decrease in nitric oxide (NO) content was observed in the SHR group compared with the control rats. In RVECs, silencing miR-145 induced a significant increase in the expression of solute carrier family 7 member 1 (SLC7A1) and phosphorylated endothelial nitric oxide synthase, and a dual-luciferase reporter assay confirmed that SLC7A1 is a direct target of miR-145. The results of the present study indicate that miR-145 functions as a key mediator in the pathogenesis of hypertension via targeting SLC7A1, which suggests that miR-145 is a potential target for the treatment of hypertension.
Collapse
Affiliation(s)
- Yong Wang
- Department of General Practice, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Liyan Jin
- Department of Cardiology, The Second Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
46
|
Hida K, Kawamoto T, Maishi N, Morimoto M, Akiyama K, Ohga N, Shindoh M, Shinohara N, Hida Y. miR-145 promoted anoikis resistance in tumor endothelial cells. J Biochem 2017; 162:81-84. [PMID: 28510655 DOI: 10.1093/jb/mvx033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Tumor progression is dependent on tumor angiogenesis. We previously reported that the phenotype of tumor endothelial cells (TECs) is distinct from normal endothelial cells (NECs). Herein, we conducted a pathway analysis using a public TEC microarray database and identified several putative TEC-specific miRNAs. We found that miR-145 expression was upregulated in TECs and that miR-145 enhanced cell adhesion and anoikis resistance and upregulated Bcl-2 and Bcl-xl via ERK1/2 in human microvascular endothelial cells. These findings suggested that miR-145 is involved in the acquisition of the TEC phenotype, partially. Therefore, miR-145 and its target genes may be molecular targets for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Taisuke Kawamoto
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Masahiro Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Kosuke Akiyama
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-0815, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan
| | | | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
47
|
Kurahara LH, Hiraishi K, Sumiyoshi M, Doi M, Hu Y, Aoyagi K, Jian Y, Inoue R. Significant contribution of TRPC6 channel-mediated Ca 2+ influx to the pathogenesis of Crohn's disease fibrotic stenosis. J Smooth Muscle Res 2017; 52:78-92. [PMID: 27818466 PMCID: PMC5321852 DOI: 10.1540/jsmr.52.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is an intractable complication of Crohn's disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang HB, Wang ZQ, Chen FZ, Ding W, Liu WB, Chen ZR, He SH, Wei AY. Maintenance of the contractile phenotype in corpus cavernosum smooth muscle cells by Myocardin gene therapy ameliorates erectile dysfunction in bilateral cavernous nerve injury rats. Andrology 2017; 5:798-806. [PMID: 28544569 DOI: 10.1111/andr.12375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiology of erectile dysfunction post radical prostatectomy is not clearly clarified, and the low efficacy of traditional PDE5i treatment remains a major complaint in contemporary practice. This study aimed to demonstrate phenotypic modulation in bilateral cavernous nerve injury (BCNI) rats within 7 days, and subsequently validate gene therapy with Myocardin (Mycod) by maintaining a contractile phenotype in corpus cavernosum smooth muscle cells. Initially, 36 male rats were randomly divided into BCNI and negative control (NC) groups for histological and phenotypic molecular measurements at 3, 5, and 7 days. Afterwards, an additional 30 rats received a single intra-cavernous injection of 50 μL PBS, Ad-Myocd (1 × 1011 pfu/ml) or Ad-vector for 10 animals each, namely the NC+PBS, BCNI+Ad-Myocd, and BCNI+Ad-vector groups. Finally, the validity and mechanism of Myocd transfection was explored at 21 days in vivo and 48 h in vitro. Western blotting showed canonical declines in Myocd, α-SMA, and Calponin expression, as well as elevated Osteopontin (OPN) expression, before corporeal morphological and SM-to-collagen ratio changes at day 5 after injury. Overexpression of Myocd maintained the contractile phenotype of corpus cavernosum smooth muscle cells, ameliorated bilateral cavernous nerve injury rat erectile dysfunction, as well as promoted cell contractility and suppressed proliferative capacity. Simultaneously, confocal imaging revealed up-regulation and co-localization of serum response factor in gene-transferred cells. In conclusion, our study is the first to investigate corpus cavernosum smooth muscle cells phenotypes in the early stages of cavernous injury model rats, and Myocd reversed phenotypic modulation by activating serum response factor. The experimental results demonstrated the validity of gene therapy for erectile dysfunction.
Collapse
Affiliation(s)
- H-B Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z-Q Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - F-Z Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - W Ding
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Urology, The First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - W-B Liu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z-R Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - S-H He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - A-Y Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Liu PP, Liu HH, Sun SH, Shi XX, Yang WC, Su GH, Zhao J. Aspirin alleviates cardiac fibrosis in mice by inhibiting autophagy. Acta Pharmacol Sin 2017; 38:488-497. [PMID: 28216620 DOI: 10.1038/aps.2016.143] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
Aspirin (ASA) is a cardioprotective drug with anti-cardiac fibrosis action in vivo. This study was aimed to clarify the anti-cardiac fibrosis action of ASA and the underlying mechanisms. Two heart injury models (injection of isoproterenol and ligation of the left anterior descending branch) were used in mice to induce cardiac fibrosis. The animals were treated with ASA (10 mg·kg-1·d-1, ig) for 21 and 14 d, respectively. ASA administration significantly improved cardiac function, and ameliorated heart damage and fibrosis in the mice. The mechanisms underlying ASA's anti-fibrotic effect were further analyzed in neonatal cardiac fibroblasts (CFs) exposed to hypoxia in vitro. ASA (0.5-5 mmol/L) dose-dependently inhibited the proliferation and Akt phosphorylation in the CFs. In addition, ASA significantly inhibited CF apoptosis, and decreased the levels of apoptosis markers (cleaved caspase 3 and Parp1), which might serve as a side effect of anti-fibrotic effect of ASA. Furthermore, ASA dose-dependently inhibited the autophagy in the CFs, as evidenced by the reduced levels of autophagy marker LC3-II. The autophagy inhibitor Pepstatin A (PepA) promoted the inhibitory effect of ASA on CF proliferation, whereas the autophagy inducer rapamycin rescued ASA-caused inhibition of CF proliferation, suggesting an autophagy-dependent anti-proliferative effect of ASA. Both p38 inhibitor SB203580 and ROS scavenger N-acetyl-cysteine (NAC) significantly decreased Akt phosphorylation in CFs in the basal and hypoxic situations, but they both significantly increased LC3-II levels in the CFs. Our results suggest that an autophagy- and p38/ROS-dependent pathway mediates the anti-cardiac fibrosis effect of ASA in CFs. As PepA and SB203580 did not affect ASA-caused inhibition of CF apoptosis, the drug combination will enhance ASA's therapeutic effects.
Collapse
|
50
|
Kim YY, Min H, Kim H, Choi YM, Liu HC, Ku SY. Differential MicroRNA Expression Profile of Human Embryonic Stem Cell-Derived Cardiac Lineage Cells. Tissue Eng Regen Med 2017; 14:163-169. [PMID: 30603473 PMCID: PMC6171578 DOI: 10.1007/s13770-017-0051-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/31/2017] [Accepted: 02/12/2017] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in transcriptional and post-transcriptional regulation of gene expression. miRNAs have numerous roles in cellular function including embryonic development. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into most of cell types including cardiomyocytes (CMs). These characteristics of hESCs make them considered as an important model for studying human embryonic development and tissue specific differentiation. In this study, we tried to demonstrate the profile of miRNA expression in cardiac differentiation from hESCs. To induce differentiation, we differentiated hESCs into CMs by direct differentiation method and characterized differentiated cells. To analyze the expression of miRNAs, we distinguished (days 4, 8, 12, 16, 20, 24, 28) and isolated RNAs from each differentiation stage. miRNA specific RT-qPCR was performed and the expression profile of miR-1, -30d, -133a, -143, -145, -378a, -499a was evaluated. The expression of all miRs was up-regulated at day 8. miR-143 and -145 expression was also up-regulated at the later stage of differentiation. Only miR-378a expression returned to undifferentiated hESC levels at the other stages of differentiation. In conclusion, we elucidated the expression profile of miRNAs during differentiation into cardiomyocytes from hESCs. Our findings demonstrate the expression of miRNAs was stage-dependent during differentiation and suggest that the differentiation into CMs can be regulated by miRNAs through direct or indirect pathway.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Harry Min
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Young Min Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hung Ching Liu
- Center for Reproductive Medicine and Infertility, Cornell Weill Medical College, New York, NY 10021 USA
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|