1
|
Salameh S, Guerrelli D, Miller JA, Desai M, Moise N, Yerebakan C, Bruce A, Sinha P, d'Udekem Y, Weinberg SH, Posnack NG. Connecting transcriptomics with computational modeling to reveal developmental adaptations in pediatric human atrial tissue. Am J Physiol Heart Circ Physiol 2024; 327:H1413-H1430. [PMID: 39453433 DOI: 10.1152/ajpheart.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Nearly 1% of babies are born with congenital heart disease-many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we collected right atrial tissue samples from pediatric patients (n = 117) undergoing heart surgery. Patients were stratified into five age groups. We measured age-dependent adaptations in cardiac gene expression and used computational modeling to simulate action potential and calcium transients. Enrichment of differentially expressed genes revealed age-dependent changes in several key biological processes (e.g., cell cycle, structural organization), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited age-dependent trends, with changes in calcium handling (INCX) and repolarization (IK1) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We observed a shift in repolarization reserve, with lower IKr expression in younger patients, a finding potentially tied to an increased amplitude of IKs that could be triggered by elevated sympathetic activation in pediatric patients. Collectively, this study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology, shedding light on molecular mechanisms underlying cardiac maturation and function throughout development.NEW & NOTEWORTHY To date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we demonstrate age-dependent adaptations in the gene expression profile of >100 atrial tissue samples collected from congenital heart disease patients. We coupled transcriptomics datasets with computational modeling to simulate action potentials and calcium transients for different pediatric age groups.
Collapse
Affiliation(s)
- Shatha Salameh
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
| | - Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, United States
| | - Jacob A Miller
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Can Yerebakan
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Alisa Bruce
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Pranava Sinha
- Division of Pediatric Cardiac Surgery, The University of Minnesota, Minneapolis, Minnesota, United States
| | - Yves d'Udekem
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
- Department of Pediatrics, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
2
|
Kakizuka T, Natsume T, Nagai T. Compact lens-free imager using a thin-film transistor for long-term quantitative monitoring of stem cell culture and cardiomyocyte production. LAB ON A CHIP 2024. [PMID: 39436381 DOI: 10.1039/d4lc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With advancements in human induced pluripotent stem cell (hiPSC) technology, there is an increasing demand for quality control techniques to manage the long-term process of target cell production effectively. While monitoring systems designed for use within incubators are promising for assessing culture quality, existing systems still face challenges in terms of compactness, throughput, and available metrics. To address these limitations, we have developed a compact and high-throughput lens-free imaging device named INSPCTOR. The device is as small as a standard culture plate, which allows for the installation of multiple units within an incubator. INSPCTOR utilises a large thin-film transistor image sensor, enabling simultaneous observation of six independent culture environments, each approximately 1 cm2. With this device, we successfully monitored the confluency of hiPSC cultures and identified the onset timing of epithelial-to-mesenchymal transition during mesodermal induction. Additionally, we quantified the beating frequency and conduction of hiPSC-derived cardiomyocytes by using high-speed imaging modes. This enabled us to identify the onset of spontaneous beating during differentiation and assess chronotropic responses in drug evaluations. Moreover, by tracking beating frequency over 10 days of cardiomyocyte maturation, we identified week-scale and daily-scale fluctuations, the latter of which correlated with cellular metabolic activity. The metrics derived from this device would enhance the reproducibility and quality of target cell production.
Collapse
Affiliation(s)
- Taishi Kakizuka
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Zhang X, Burattini M, Duru J, Chala N, Wyssen N, Cofiño-Fabres C, Rivera-Arbeláez JM, Passier R, Poulikakos D, Ferrari A, Tringides C, Vörös J, Luciani GB, Miragoli M, Zambelli T. Multimodal Mapping of Electrical and Mechanical Latency of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Layers. ACS NANO 2024; 18:24060-24075. [PMID: 39172696 DOI: 10.1021/acsnano.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a β-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Margherita Burattini
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Department of Maternity, Surgery and Dentistry, University of Verona, 37134 Verona, Italy
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Nino Wyssen
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - José Manuel Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, 8600 Dübendorf, Switzerland
| | - Christina Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | | | - Michele Miragoli
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital ─ IRCCS, 20089 Rozzano, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| |
Collapse
|
4
|
Inouye K, Yeganyan S, Kay K, Thankam FG. Programmed spontaneously beating cardiomyocytes in regenerative cardiology. Cytotherapy 2024; 26:790-796. [PMID: 38520412 DOI: 10.1016/j.jcyt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Stem cells have gained attention as a promising therapeutic approach for damaged myocardium, and there have been efforts to develop a protocol for regenerating cardiomyocytes (CMs). Certain cells have showed a greater aptitude for yielding beating CMs, such as induced pluripotent stem cells, embryonic stem cells, adipose-derived stromal vascular fraction cells and extended pluripotent stem cells. The approach for generating CMs from stem cells differs across studies, although there is evidence that Wnt signaling, chemical additives, electrical stimulation, co-culture, biomaterials and transcription factors triggers CM differentiation. Upregulation of Gata4, Mef2c and Tbx5 transcription factors has been correlated with successfully induced CMs, although Mef2c may potentially play a more prominent role in the generation of the beating phenotype, specifically. Regenerative research provides a possible candidate for cardiac repair; however, it is important to identify factors that influence their differentiation. Altogether, the spontaneously beating CMs would be monumental for regenerative research for cardiac repair.
Collapse
Affiliation(s)
- Keiko Inouye
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Stephanie Yeganyan
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Kaelen Kay
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA.
| |
Collapse
|
5
|
Salameh S, Guerrelli D, Miller JA, Desai M, Moise N, Yerebakan C, Bruce A, Sinha P, d'Udekem Y, Weinberg SH, Posnack NG. Connecting Transcriptomics with Computational Modeling to Reveal Developmental Adaptations in the Human Pediatric Myocardium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589826. [PMID: 38712262 PMCID: PMC11071413 DOI: 10.1101/2024.04.19.589826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Nearly 1% or 1.3 million babies are born with congenital heart disease (CHD) globally each year - many of whom will require palliative or corrective heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate cardiovascular drug therapies, and inform clinical care decisions related to surgical repair, myocardial preservation, or postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is largely limited to animal models. Methods Right atrial tissue samples were collected from n=117 neonatal, infant, and pediatric patients undergoing correct surgery due to (acyanotic) CHD. Patients were stratified into five age groups: neonate (0-30 days), infant (31-364 days), toddler to preschool (1-5 years), school age (6-11 years), and adolescent to young adults (12-32 years). We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Results Enrichment of differentially expressed genes (DEG) was explored, revealing age-dependent changes in several key biological processes (cell cycle, cell division, mitosis), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited both linear trends and sudden shifts across developmental stages, with changes in calcium handling ( I NCX ) and repolarization ( I K1 ) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We also note a shift in repolarization reserve, with lower I Kr expression in younger patients, a finding likely tied to the increased amplitude of I Ks triggered by elevated sympathetic activation in pediatric patients. Conclusion This study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology among patients with CHD, shedding light on molecular mechanisms underlying cardiac development and function across different developmental stages.
Collapse
|
6
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
8
|
Abrasheva VO, Kovalenko SG, Slotvitsky M, Romanova SА, Aitova AA, Frolova S, Tsvelaya V, Syunyaev RA. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. J Physiol 2024; 602:633-661. [PMID: 38345560 DOI: 10.1113/jp285162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Voltage-gated Na+ channels are crucial to action potential propagation in excitable tissues. Because of the high amplitude and rapid activation of the Na+ current, voltage-clamp measurements are very challenging and are usually performed at room temperature. In this study, we measured Na+ current voltage-dependence in stem cell-derived cardiomyocytes at physiological temperature. While the apparent activation and inactivation curves, measured as the dependence of current amplitude on voltage, fall within the range reported in previous studies, we identified a systematic error in our measurements. This error is caused by the deviation of the membrane potential from the command potential of the amplifier. We demonstrate that it is possible to account for this artifact using computer simulation of the patch-clamp experiment. We obtained surprising results through patch-clamp model optimization: a half-activation of -11.5 mV and a half-inactivation of -87 mV. Although the half-activation deviates from previous research, we demonstrate that this estimate reproduces the conduction velocity dependence on extracellular potassium concentration. KEY POINTS: Voltage-gated Na+ currents play a crucial role in excitable tissues including neurons, cardiac and skeletal muscle. Measurement of Na+ current is challenging because of its high amplitude and rapid kinetics, especially at physiological temperature. We have used the patch-clamp technique to measure human Na+ current voltage-dependence in human induced pluripotent stem cell-derived cardiomyocytes. The patch-clamp data were processed by optimization of the model accounting for voltage-clamp experiment artifacts, revealing a large difference between apparent parameters of Na+ current and the results of the optimization. We conclude that actual Na+ current activation is extremely depolarized in comparison to previous studies. The new Na+ current model provides a better understanding of action potential propagation; we demonstrate that it explains propagation in hyperkalaemic conditions.
Collapse
Affiliation(s)
| | - Sandaara G Kovalenko
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Mihail Slotvitsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Serafima А Romanova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Aleria A Aitova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Sheida Frolova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Valeria Tsvelaya
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | | |
Collapse
|
9
|
Al-attar R, Jargstorf J, Romagnuolo R, Jouni M, Alibhai FJ, Lampe PD, Solan JL, Laflamme MA. Casein Kinase 1 Phosphomimetic Mutations Negatively Impact Connexin-43 Gap Junctions in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Biomolecules 2024; 14:61. [PMID: 38254663 PMCID: PMC10813327 DOI: 10.3390/biom14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Collapse
Affiliation(s)
- Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Joseph Jargstorf
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Mariam Jouni
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Joell L. Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
10
|
Ronchi C, Galli C, Tullii G, Marzuoli C, Mazzola M, Malferrari M, Crasto S, Rapino S, Di Pasquale E, Antognazza MR. Nongenetic Optical Modulation of Pluripotent Stem Cells Derived Cardiomyocytes Function in the Red Spectral Range. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304303. [PMID: 37948328 PMCID: PMC10797444 DOI: 10.1002/advs.202304303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Optical stimulation in the red/near infrared range recently gained increasing interest, as a not-invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR-sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red-responsive conjugated polymer, namely poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC-CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC-CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+ /Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red-light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC-CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.
Collapse
Affiliation(s)
- Carlotta Ronchi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaMilano20133Italy
| | - Camilla Galli
- Humanitas Cardio CenterIRCCS Humanitas Research HospitalVia Manzoni 56RozzanoMilan20089Italy
| | - Gabriele Tullii
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaMilano20133Italy
| | - Camilla Marzuoli
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaMilano20133Italy
- Politecnico di MilanoPhysics Dept.P.zza L. Da Vinci 32Milano20133Italy
| | - Marta Mazzola
- Humanitas Cardio CenterIRCCS Humanitas Research HospitalVia Manzoni 56RozzanoMilan20089Italy
| | - Marco Malferrari
- Department of Chemistry, University of Bologna‘‘Giacomo Ciamician,’’via Francesco Selmi 2Bologna40126Italy
| | - Silvia Crasto
- Humanitas Cardio CenterIRCCS Humanitas Research HospitalVia Manzoni 56RozzanoMilan20089Italy
| | - Stefania Rapino
- Department of Chemistry, University of Bologna‘‘Giacomo Ciamician,’’via Francesco Selmi 2Bologna40126Italy
| | - Elisa Di Pasquale
- Humanitas Cardio CenterIRCCS Humanitas Research HospitalVia Manzoni 56RozzanoMilan20089Italy
- Institute of Genetic and Biomedical Research (IRGB)UOS of Milan—National Research Council of Italy (CNR)Milan20138Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaMilano20133Italy
| |
Collapse
|
11
|
Verkerk AO, Wilders R. Injection of I K1 through dynamic clamp can make all the difference in patch-clamp studies on hiPSC-derived cardiomyocytes. Front Physiol 2023; 14:1326160. [PMID: 38152247 PMCID: PMC10751953 DOI: 10.3389/fphys.2023.1326160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Human-induced stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable tool for studying development, pharmacology, and (inherited) arrhythmias. Unfortunately, hiPSC-CMs are depolarized and spontaneously active, even the working cardiomyocyte subtypes such as atrial- and ventricular-like hiPSC-CMs, in contrast to the situation in the atria and ventricles of adult human hearts. Great efforts have been made, using many different strategies, to generate more mature, quiescent hiPSC-CMs with more close-to-physiological resting membrane potentials, but despite promising results, it is still difficult to obtain hiPSC-CMs with such properties. The dynamic clamp technique allows to inject a current with characteristics of the inward rectifier potassium current (IK1), computed in real time according to the actual membrane potential, into patch-clamped hiPSC-CMs during action potential measurements. This results in quiescent hiPSC-CMs with a close-to-physiological resting membrane potential. As a result, action potential measurements can be performed with normal ion channel availability, which is particularly important for the physiological functioning of the cardiac SCN5A-encoded fast sodium current (INa). We performed in vitro and in silico experiments to assess the beneficial effects of the dynamic clamp technique in dissecting the functional consequences of the SCN5A-1795insD+/- mutation. In two separate sets of patch-clamp experiments on control hiPSC-CMs and on hiPSC-CMs with mutations in ACADVL and GNB5, we assessed the value of dynamic clamp in detecting delayed afterdepolarizations and in investigating factors that modulate the resting membrane potential. We conclude that the dynamic clamp technique has highly beneficial effects in all of the aforementioned settings and should be widely used in patch-clamp studies on hiPSC-CMs while waiting for the ultimate fully mature hiPSC-CMs.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Han JL, Heinson YW, Chua CJ, Liu W, Entcheva E. CRISPRi gene modulation and all-optical electrophysiology in post-differentiated human iPSC-cardiomyocytes. Commun Biol 2023; 6:1236. [PMID: 38062109 PMCID: PMC10703822 DOI: 10.1038/s42003-023-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Uncovering gene-phenotype relationships can be enabled by precise gene modulation in human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and follow up phenotyping using scalable all-optical electrophysiology platforms. Such efforts towards human functional genomics can be aided by recent CRISPR-derived technologies for reversible gene inhibition or activation (CRISPRi/a). We set out to characterize the performance of CRISPRi in post-differentiated iPSC-CMs, targeting key cardiac ion channel genes, KCNH2, KCNJ2, and GJA1, and providing a multiparametric quantification of the effects on cardiac repolarization, stability of the resting membrane potential and conduction properties using all-optical tools. More potent CRISPRi effectors, e.g., Zim3, and optimized viral delivery led to improved performance on par with the use of CRISPRi iPSC lines. Confirmed mild yet specific phenotype changes when CRISPRi is deployed in non-dividing differentiated heart cells is an important step towards more holistic pre-clinical cardiotoxicity testing and for future therapeutic use in vivo.
Collapse
Affiliation(s)
- Julie L Han
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Yuli W Heinson
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Christianne J Chua
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Wei Liu
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
13
|
Vuorenpää H, Björninen M, Välimäki H, Ahola A, Kroon M, Honkamäki L, Koivumäki JT, Pekkanen-Mattila M. Building blocks of microphysiological system to model physiology and pathophysiology of human heart. Front Physiol 2023; 14:1213959. [PMID: 37485060 PMCID: PMC10358860 DOI: 10.3389/fphys.2023.1213959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Microphysiological systems (MPS) are drawing increasing interest from academia and from biomedical industry due to their improved capability to capture human physiology. MPS offer an advanced in vitro platform that can be used to study human organ and tissue level functions in health and in diseased states more accurately than traditional single cell cultures or even animal models. Key features in MPS include microenvironmental control and monitoring as well as high biological complexity of the target tissue. To reach these qualities, cross-disciplinary collaboration from multiple fields of science is required to build MPS. Here, we review different areas of expertise and describe essential building blocks of heart MPS including relevant cardiac cell types, supporting matrix, mechanical stimulation, functional measurements, and computational modelling. The review presents current methods in cardiac MPS and provides insights for future MPS development with improved recapitulation of human physiology.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Miina Björninen
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Hannu Välimäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mart Kroon
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Honkamäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T. Koivumäki
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Centre of Excellence in Body-on-Chip Research (CoEBoC), BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
15
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
16
|
Gibbs CE, Marchianó S, Zhang K, Yang X, Murry CE, Boyle PM. Graft-host coupling changes can lead to engraftment arrhythmia: a computational study. J Physiol 2023; 601:2733-2749. [PMID: 37014103 PMCID: PMC10901678 DOI: 10.1113/jp284244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
After myocardial infarction (MI), a significant portion of heart muscle is replaced with scar tissue, progressively leading to heart failure. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) offer a promising option for improving cardiac function after MI. However, hPSC-CM transplantation can lead to engraftment arrhythmia (EA). EA is a transient phenomenon arising shortly after transplantation then spontaneously resolving after a few weeks. The underlying mechanism of EA is unknown. We hypothesize that EA may be explained partially by time-varying, spatially heterogeneous, graft-host electrical coupling. Here, we created computational slice models derived from histological images that reflect different configuration of grafts in the infarcted ventricle. We ran simulations with varying degrees of connection imposed upon the graft-host perimeter to assess how heterogeneous electrical coupling affected EA with non-conductive scar, slow-conducting scar and scar replaced by host myocardium. We also quantified the effect of variation in intrinsic graft conductivity. Susceptibility to EA initially increased and subsequently decreased with increasing graft-host coupling, suggesting the waxing and waning of EA is regulated by progressive increases in graft-host coupling. Different spatial distributions of graft, host and scar yielded markedly different susceptibility curves. Computationally replacing non-conductive scar with host myocardium or slow-conducting scar, and increasing intrinsic graft conductivity both demonstrated potential means to blunt EA vulnerability. These data show how graft location, especially relative to scar, along with its dynamic electrical coupling to host, can influence EA burden; moreover, they offer a rational base for further studies aimed to define the optimal delivery of hPSC-CM injection. KEY POINTS: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CM) hold great cardiac regenerative potential but can also cause engraftment arrhythmias (EA). Spatiotemporal evolution in the pattern of electrical coupling between injected hPSC-CMs and surrounding host myocardium may explain the dynamics of EA observed in large animal models. We conducted simulations in histology-derived 2D slice computational models to assess the effects of heterogeneous graft-host electrical coupling on EA propensity, with or without scar tissue. Our findings suggest spatiotemporally heterogeneous graft-host coupling can create an electrophysiological milieu that favours graft-initiated host excitation, a surrogate metric of EA susceptibility. Removing scar from our models reduced but did not abolish the propensity for this phenomenon. Conversely, reduced intra-graft electrical connectedness increased the incidence of graft-initiated host excitation. The computational framework created for this study can be used to generate new hypotheses, targeted delivery of hPSC-CMs.
Collapse
Affiliation(s)
- Chelsea E Gibbs
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Silvia Marchianó
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Kelly Zhang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Jaferzadeh K, Rappaz B, Kim Y, Kim BK, Moon I, Marquet P, Turcatti G. Automated Dual-Mode Cell Monitoring To Simultaneously Explore Calcium Dynamics and Contraction-Relaxation Kinetics within Drug-Treated Stem Cell-Derived Cardiomyocytes. ACS Sens 2023. [PMID: 37335579 DOI: 10.1021/acssensors.3c00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
This manuscript proposes a new dual-mode cell imaging system for studying the relationships between calcium dynamics and the contractility process of cardiomyocytes derived from human-induced pluripotent stem cells. Practically, this dual-mode cell imaging system provides simultaneously both live cell calcium imaging and quantitative phase imaging based on digital holographic microscopy. Specifically, thanks to the development of a robust automated image analysis, simultaneous measurements of both intracellular calcium, a key player of excitation-contraction coupling, and the quantitative phase image-derived dry mass redistribution, reflecting the effective contractility, namely, the contraction and relaxation processes, were achieved. Practically, the relationships between calcium dynamics and the contraction-relaxation kinetics were investigated in particular through the application of two drugs─namely, isoprenaline and E-4031─known to act precisely on calcium dynamics. Specifically, this new dual-mode cell imaging system enabled us to establish that calcium regulation can be divided into two phases, an early phase influencing the occurrence of the relaxation process followed by a late phase, which although not having a significant influence on the relaxation process affects significantly the beat frequency. In combination with cutting-edge technologies allowing the generation of human stem cell-derived cardiomyocytes, this dual-mode cell monitoring approach therefore represents a very promising technique, particularly in the fields of drug discovery and personalized medicine, to identify compounds likely to act more selectively on specific steps that compose the cardiomyocyte contractility.
Collapse
Affiliation(s)
- Keyvan Jaferzadeh
- Department of Robotics & Mechatronics Engineering, DGIST, Daegu 42988, South Korea
| | - Benjamin Rappaz
- Biomolecular Screening Facility, Ecole Polytechnique Fedérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Youhyun Kim
- Department of Robotics & Mechatronics Engineering, DGIST, Daegu 42988, South Korea
| | - Bo-Kyoung Kim
- Biomolecular Screening Facility, Ecole Polytechnique Fedérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Inkyu Moon
- Department of Robotics & Mechatronics Engineering, DGIST, Daegu 42988, South Korea
| | - Pierre Marquet
- International Joint Research Unit in Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne 1008, Switzerland
- University of Lausanne, Lausanne 1015, Switzerland
- Université Laval, Québec, Québec G1V 0A6, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec, Quebec G1V 0A6, Canada
- CERVO Brain Research Center, CIUSSS de la Capitale-Nationale, Quebec, Québec G1J 2G3, Canada
- Center for Optics, Photonics and Lasers (COPL), Laval University, Quebec, Québec G1V 0A6, Canada
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fedérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
18
|
Han JL, Heinson YW, Chua CJ, Liu W, Entcheva E. CRISPRi Gene Modulation and All-Optical Electrophysiology in Post-Differentiated Human iPSC-Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539756. [PMID: 37214814 PMCID: PMC10197536 DOI: 10.1101/2023.05.07.539756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uncovering gene-phenotype relationships can be enabled by precise gene modulation in human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and follow up phenotyping using scalable all-optical electrophysiology platforms. Such efforts towards human functional genomics can be aided by recent CRISPR-derived technologies for reversible gene inhibition or activation (CRISPRi/a). We set out to characterize the performance of CRISPRi in post-differentiated iPSC-CMs, targeting key cardiac ion channel genes, KCNH2, KCNJ2, and GJA1, and providing a multiparametric quantification of the effects on cardiac repolarization, stability of the resting membrane potential and conduction properties using all-optical tools. More potent CRISPRi effectors, e.g. Zim3, and optimized viral delivery led to improved performance on par with the use of CRISPRi iPSC lines. Confirmed mild yet specific phenotype changes when CRISPRi is deployed in non-dividing differentiated heart cells is an important step towards more holistic pre-clinical cardiotoxicity testing and for future therapeutic use in vivo.
Collapse
Affiliation(s)
- Julie L. Han
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Yuli W. Heinson
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Christianne J. Chua
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Wei Liu
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
19
|
Adasheva DA, Lebedeva OS, Goliusova DV, Postnikov AB, Teriakova MV, Kopylova IV, Lagarkova MA, Katrukha AG, Serebryanaya DV. PAPP-A-Specific IGFBP-4 Proteolysis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2023; 24:ijms24098420. [PMID: 37176126 PMCID: PMC10179360 DOI: 10.3390/ijms24098420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The insulin-like growth factors IGF-I and IGF-II-as well as their binding proteins (IGFBPs), which regulate their bioavailability-are involved in many pathological and physiological processes in cardiac tissue. Pregnancy-associated plasma protein A (PAPP-A) is a metalloprotease that preferentially cleaves IGFBP-4, releasing IGF and activating its biological activity. Previous studies have shown that PAPP-A-specific IGFBP-4 proteolysis is involved in the pathogenesis of cardiovascular diseases, such as ischemia, heart failure, and acute coronary syndrome. However, it remains unclear whether PAPP-A-specific IGFBP-4 proteolysis participates in human normal cardiomyocytes. Here, we report PAPP-A-specific IGFBP-4 proteolysis occurring in human cardiomyocytes derived from two independent induced pluripotent cell lines (hiPSC-CMs), detected both on the cell surface and in the cell secretome. PAPP-A was measured by fluoroimmune analysis (FIA) in a conditioned medium of hiPSC-CMs and was detected in concentrations of up to 4.3 ± 1.33 ng/mL and 3.8 ± 1.1 ng/mL. The level of PAPP-A-specific IGFBP-4 proteolysis was determined as the concentration of NT-IGFBP-4 proteolytic fragments using FIA for a proteolytic neo-epitope-specific assay. We showed that PAPP-A-specific IGFBP-4 proteolysis is IGF-dependent and inhibited by EDTA and 1,10-phenanthroline. Therefore, it may be concluded that PAPP-A-specific IGFBP-4 proteolysis functions in human normal cardiomyocytes, and hiPSC-CMs contain membrane-bound and secreted forms of proteolytically active PAPP-A.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | | | - Maria V Teriakova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Irina V Kopylova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Hytest Ltd., 20520 Turku, Finland
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Marchiano S, Nakamura K, Reinecke H, Neidig L, Lai M, Kadota S, Perbellini F, Yang X, Klaiman JM, Blakely LP, Karbassi E, Fields PA, Fenix AM, Beussman KM, Jayabalu A, Kalucki FA, Potter JC, Futakuchi-Tsuchida A, Weber GJ, Dupras S, Tsuchida H, Pabon L, Wang L, Knollmann BC, Kattman S, Thies RS, Sniadecki N, MacLellan WR, Bertero A, Murry CE. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023; 30:396-414.e9. [PMID: 37028405 PMCID: PMC10283080 DOI: 10.1016/j.stem.2023.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.
Collapse
Affiliation(s)
- Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Shin Kadota
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | | | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Leslie P Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul A Fields
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Jennifer C Potter
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Nathan Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
21
|
Seibertz F, Sutanto H, Dülk R, Pronto JRD, Springer R, Rapedius M, Liutkute A, Ritter M, Jung P, Stelzer L, Hüsgen LM, Klopp M, Rubio T, Fakuade FE, Mason FE, Hartmann N, Pabel S, Streckfuss-Bömeke K, Cyganek L, Sossalla S, Heijman J, Voigt N. Electrophysiological and calcium-handling development during long-term culture of human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:14. [PMID: 37020075 PMCID: PMC10076390 DOI: 10.1007/s00395-022-00973-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 04/07/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.
Collapse
Affiliation(s)
- Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henry Sutanto
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Rebekka Dülk
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Robin Springer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | | | - Aiste Liutkute
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Melanie Ritter
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Philipp Jung
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lea Stelzer
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Luisa M Hüsgen
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Marie Klopp
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Nico Hartmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katrin Streckfuss-Bömeke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lukas Cyganek
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
22
|
Dvinskikh L, Sparks H, Brito L, MacLeod KT, Harding SE, Dunsby C. Remote-refocusing light-sheet fluorescence microscopy enables 3D imaging of electromechanical coupling of hiPSC-derived and adult cardiomyocytes in co-culture. Sci Rep 2023; 13:3342. [PMID: 36849727 PMCID: PMC9970973 DOI: 10.1038/s41598-023-29419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Improving cardiac function through stem-cell regenerative therapy requires functional and structural integration of the transplanted cells with the host tissue. Visualizing the electromechanical interaction between native and graft cells necessitates 3D imaging with high spatio-temporal resolution and low photo-toxicity. A custom light-sheet fluorescence microscope was used for volumetric imaging of calcium dynamics in co-cultures of adult rat left ventricle cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. Aberration-free remote refocus of the detection plane synchronously to the scanning of the light sheet along the detection axis enabled fast dual-channel 3D imaging at subcellular resolution without mechanical sample disturbance at up to 8 Hz over a ∼300 µm × 40 µm × 50 µm volume. The two cell types were found to undergo electrically stimulated and spontaneous synchronized calcium transients and contraction. Electromechanical coupling improved with co-culture duration, with 50% of adult-CM coupled after 24 h of co-culture, compared to 19% after 4 h (p = 0.0305). Immobilization with para-nitroblebbistatin did not prevent calcium transient synchronization, with 35% and 36% adult-CM coupled in control and treated samples respectively (p = 0.91), indicating that electrical coupling can be maintained independently of mechanotransduction.
Collapse
Affiliation(s)
- L Dvinskikh
- Department of Physics, Imperial College London, London, UK. .,National Heart and Lung Institute, Imperial College London, London, UK. .,Department of Chemistry, Imperial College London, London, UK.
| | - H Sparks
- Department of Physics, Imperial College London, London, UK
| | - L Brito
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K T MacLeod
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S E Harding
- National Heart and Lung Institute, Imperial College London, London, UK
| | - C Dunsby
- Department of Physics, Imperial College London, London, UK
| |
Collapse
|
23
|
Martyniak A, Jeż M, Dulak J, Stępniewski J. Adaptation of cardiomyogenesis to the generation and maturation of cardiomyocytes from human pluripotent stem cells. IUBMB Life 2023; 75:8-29. [PMID: 36263833 DOI: 10.1002/iub.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 12/29/2022]
Abstract
The advent of methods for efficient generation and cardiac differentiation of pluripotent stem cells opened new avenues for disease modelling, drug testing, and cell therapies of the heart. However, cardiomyocytes (CM) obtained from such cells demonstrate an immature, foetal-like phenotype that involves spontaneous contractions, irregular morphology, expression of embryonic isoforms of sarcomere components, and low level of ion channels. These and other features may affect cellular response to putative therapeutic compounds and the efficient integration into the host myocardium after in vivo delivery. Therefore, novel strategies to increase the maturity of pluripotent stem cell-derived CM are of utmost importance. Several approaches have already been developed relying on molecular changes that occur during foetal and postnatal maturation of the heart, its electromechanical activity, and the cellular composition. As a better understanding of these determinants may facilitate the generation of efficient protocols for in vitro acquisition of an adult-like phenotype by immature CM, this review summarizes the most important molecular factors that govern CM during embryonic development, postnatal changes that trigger heart maturation, as well as protocols that are currently used to generate mature pluripotent stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Martyniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Jeż
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
24
|
Mazgaoker S, Weiser-Bitoun I, Brosh I, Binah O, Yaniv Y. cAMP-PKA signaling modulates the automaticity of human iPSC-derived cardiomyocytes. J Gen Physiol 2022; 155:213690. [PMID: 36383232 PMCID: PMC9674091 DOI: 10.1085/jgp.202213153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been used to screen and characterize drugs and to reveal mechanisms underlying cardiac diseases. However, before hiPSC-CMs can be used as a reliable experimental model, the physiological mechanisms underlying their normal function should be further explored. Accordingly, a major feature of hiPSC-CMs is automaticity, which is regulated by both Ca2+ and membrane clocks. To investigate the mechanisms coupling these clocks, we tested three hypotheses: (1) normal automaticity of spontaneously beating hiPSC-CMs is regulated by local Ca2+ releases (LCRs) and cAMP/PKA-dependent coupling of Ca2+ clock to M clock; (2) the LCR period indicates the level of crosstalk within the coupled-clock system; and (3) perturbing the activity of even one clock can lead to hiPSC-CM-altered automaticity due to diminished crosstalk within the coupled-clock system. By measuring the local and global Ca2+ transients, we found that the LCRs properties are correlated with the spontaneous beat interval. Changes in cAMP-dependent coupling of the Ca2+ and M clocks, caused by a pharmacological intervention that either activates the β-adrenergic or cholinergic receptor or upregulates/downregulates PKA signaling, affected LCR properties, which in turn altered hiPSC-CMs automaticity. Clocks' uncoupling by attenuating the pacemaker current If or the sarcoplasmic reticulum Ca2+ kinetics, decreased hiPSC-CMs beating rate, and prolonged the LCR period. Finally, LCR characteristics of spontaneously beating (at comparable rates) hiPSC-CMs and rabbit SAN are similar. In conclusion, hiPSC-CM automaticity is controlled by the coupled-clock system whose function is mediated by Ca2+-cAMP-PKA signaling.
Collapse
Affiliation(s)
- Savyon Mazgaoker
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ido Weiser-Bitoun
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbar Brosh
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, TechnionIsrael Institute of Technology, Haifa, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel,Correspondence to Yael Yaniv:
| |
Collapse
|
25
|
King O, Cruz-Moreira D, Sayed A, Kermani F, Kit-Anan W, Sunyovszki I, Wang BX, Downing B, Fourre J, Hachim D, Randi AM, Stevens MM, Rasponi M, Terracciano CM. Functional microvascularization of human myocardium in vitro. CELL REPORTS METHODS 2022; 2:100280. [PMID: 36160044 PMCID: PMC9499876 DOI: 10.1016/j.crmeth.2022.100280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.
Collapse
Affiliation(s)
- Oisín King
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniela Cruz-Moreira
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | - Alaa Sayed
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Fatemeh Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ilona Sunyovszki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian X. Wang
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | - Barrett Downing
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jerome Fourre
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Hachim
- Department of Materials, Imperial College London, London, UK
| | - Anna M. Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Marco Rasponi
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | | |
Collapse
|
26
|
Dadson K, Thavendiranathan P, Hauck L, Grothe D, Azam MA, Stanley-Hasnain S, Mahiny-Shahmohammady D, Si D, Bokhari M, Lai PF, Massé S, Nanthakumar K, Billia F. Statins Protect Against Early Stages of Doxorubicin-induced Cardiotoxicity Through the Regulation of Akt Signaling and SERCA2. CJC Open 2022; 4:1043-1052. [PMID: 36562012 PMCID: PMC9764135 DOI: 10.1016/j.cjco.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Doxorubicin-induced cardiomyopathy (DICM) is one of the complications that can limit treatment for a significant number of cancer patients. In animal models, the administration of statins can prevent the development of DICM. Therefore, the use of statins with anthracyclines potentially could enable cancer patients to complete their chemotherapy without added cardiotoxicity. The precise mechanism mediating the cardioprotection is not well understood. The purpose of this study is to determine the molecular mechanism by which rosuvastatin confers cardioprotection in a mouse model of DICM. Methods Rosuvastatin was intraperitoneally administered into adult male mice at 100 μg/kg daily for 7 days, followed by a single intraperitoneal doxorubicin injection at 10 mg/kg. Animals continued to receive rosuvastatin daily for an additional 14 days. Cardiac function was assessed by echocardiography. Optical calcium mapping was performed on retrograde Langendorff perfused isolated hearts. Ventricular tissue samples were analyzed by immunofluorescence microscopy, Western blotting, and quantitative polymerase chain reaction. Results Exposure to doxorubicin resulted in significantly reduced fractional shortening (27.4% ± 1.11% vs 40% ± 5.8% in controls; P < 0.001) and re-expression of the fetal gene program. However, we found no evidence of maladaptive cardiac hypertrophy or adverse ventricular remodeling in mice exposed to this dose of doxorubicin. In contrast, rosuvastatin-doxorubicin-treated mice maintained their cardiac function (39% ± 1.26%; P < 0.001). Mechanistically, the effect of rosuvastatin was associated with activation of Akt and phosphorylation of phospholamban with preserved sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (SERCA2)-mediated Ca2+ reuptake. These effects occurred independently of perturbations in ryanodine receptor 2 function. Conclusions Rosuvastatin counteracts the cardiotoxic effects of doxorubicin by directly targeting sarcoplasmic calcium cycling.
Collapse
Affiliation(s)
- Keith Dadson
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ludger Hauck
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammed Ali Azam
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Shanna Stanley-Hasnain
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Daoyuan Si
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Mahmoud Bokhari
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Patrick F.H. Lai
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stéphane Massé
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University of Toronto, Toronto, Ontario, Canada,Corresponding author: Dr Filio Billia, Toronto General Hospital Research Institute, University Health Network, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7 Canada. Tel.: +1-416-340-4800 x6805; fax: +1-416-340-4012.
| |
Collapse
|
27
|
Darche FF, Ullrich ND, Huang Z, Koenen M, Rivinius R, Frey N, Schweizer PA. Improved Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pacemaker Cells Using Novel Differentiation Protocols. Int J Mol Sci 2022; 23:ijms23137318. [PMID: 35806319 PMCID: PMC9266442 DOI: 10.3390/ijms23137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Current protocols for the differentiation of human-induced pluripotent stem cells (hiPSC) into cardiomyocytes only generate a small amount of cardiac pacemaker cells. In previous work, we reported the generation of high amounts of cardiac pacemaker cells by co-culturing hiPSC with mouse visceral endoderm-like (END2) cells. However, potential medical applications of cardiac pacemaker cells generated according to this protocol, comprise an incalculable xenogeneic risk. We thus aimed to establish novel protocols maintaining the differentiation efficiency of the END2 cell-based protocol, yet eliminating the use of END2 cells. Three protocols were based on the activation and inhibition of the Wingless/Integrated (Wnt) signaling pathway, supplemented either with retinoic acid and the Wnt activator CHIR99021 (protocol B) or with the NODAL inhibitor SB431542 (protocol C) or with a combination of all three components (protocol D). An additional fourth protocol (protocol E) was used, which was originally developed by the manufacturer STEMCELL Technologies for the differentiation of hiPSC or hESC into atrial cardiomyocytes. All protocols (B, C, D, E) were compared to the END2 cell-based protocol A, serving as reference, in terms of their ability to differentiate hiPSC into cardiac pacemaker cells. Our analysis revealed that protocol E induced upregulation of 12 out of 15 cardiac pacemaker-specific genes. For comparison, reference protocol A upregulated 11, while protocols B, C and D upregulated 9, 10 and 8 cardiac pacemaker-specific genes, respectively. Cells differentiated according to protocol E displayed intense fluorescence signals of cardiac pacemaker-specific markers and showed excellent rate responsiveness to adrenergic and cholinergic stimulation. In conclusion, we characterized four novel and END2 cell-independent protocols for the differentiation of hiPSC into cardiac pacemaker cells, of which protocol E was the most efficient.
Collapse
Affiliation(s)
- Fabrice F. Darche
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-6221-56-8676; Fax: +49-6221-56-5515
| | - Nina D. Ullrich
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ziqiang Huang
- EMBL Imaging Centre, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Michael Koenen
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| | - Patrick A. Schweizer
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (M.K.); (R.R.); (N.F.); (P.A.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany;
| |
Collapse
|
28
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
29
|
Majid QA, Orsolits B, Pohjolainen L, Kovács Z, Földes G, Talman V. Application of Human Induced Pluripotent Stem Cell Technology for Cardiovascular Regenerative Pharmacology. Methods Mol Biol 2022; 2454:163-196. [PMID: 33755910 DOI: 10.1007/7651_2021_369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects. The adult human heart is however unable to instigate an effective repair mechanism and regenerate the myocardium in response to such damage. This is in large part due to the withdrawal of cardiomyocytes (CMs) from the cell cycle. Thus, identifying, screening, and developing agents that could enhance the proliferative capacity of CMs holds great potential in cardiac regeneration. Human induced pluripotent stem cells (hiPSCs) and their cardiovascular derivatives are excellent tools in the search for such agents. This chapter outlines state-of-the art techniques for the two-dimensional differentiation and attainment of hiPSC-derived CMs and endothelial cells (ECs). Bioreactor systems and three-dimensional spheroids derived from hiPSC-cardiovascular derivatives are explored as platforms for drug discovery before focusing on relevant assays that can be employed to assess cell proliferation and viability.
Collapse
Affiliation(s)
- Qasim A Majid
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Barbara Orsolits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Zsófia Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Földes
- National Heart and Lung Institute, Imperial College London, London, UK.
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Computational modeling of aberrant electrical activity following remuscularization with intramyocardially injected pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2022; 162:97-109. [PMID: 34487753 PMCID: PMC8766907 DOI: 10.1016/j.yjmcc.2021.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Acute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear. In a series of in silico experiments, we probed the origin of EAs-exploring aspects of altered impulse formation and altered impulse propagation within nascent PSC-CM grafts and at the host-graft interface. To account for poor gap junctional coupling during early PSC-CM engraftment, the voltage dependence of gap junctions and the possibility of ephaptic coupling were incorporated. Inspired by cardiac development, we also studied the contributions of another feature of immature PSC-CMs, circumferential sodium channel (NaCh) distribution in PSC-CMs. Ectopic propagations emerged from nascent grafts of immature PSC-CMs at a rate of <96 bpm. Source-sink effects dictated this rate and contributed to intermittent capture between host and graft. Moreover, ectopic beats emerged from dynamically changing sites along the host-graft interface. The latter arose in part because circumferential NaCh distribution in PSC-CMs contributed to preferential conduction slowing and block of electrical impulses from host to graft myocardium. We conclude that additional mechanisms, in addition to focal ones, contribute to EAs and recognize that their relative contributions are dynamic across the engraftment process.
Collapse
|
31
|
Soepriatna AH, Kim TY, Daley MC, Song E, Choi BR, Coulombe KLK. Human Atrial Cardiac Microtissues for Chamber-Specific Arrhythmic Risk Assessment. Cell Mol Bioeng 2021; 14:441-457. [PMID: 34777603 DOI: 10.1007/s12195-021-00703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction Although atrial fibrillation is the most prevalent disorder of electrical conduction, the mechanisms behind atrial arrhythmias remain elusive. To address this challenge, we developed a robust in vitro model of 3D atrial microtissue from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and evaluated chamber-specific chemical responses experimentally and computationally. Methods We differentiated atrial and ventricular cardiomyocytes (aCMs/vCMs) from GCaMP6f-expressing hiPSCs and assessed spontaneous AP activity using fluorescence imaging. Self-assembling 3D microtissues were formed with lactate purified CMs and 5% human cardiac fibroblasts and electrically stimulated for one week before high resolution action potential (AP) optical mapping. AP responses to the atrial-specific potassium repolarizing current I Kur-blocker 4-Aminopyridine (4-AP) and funny current I f-blocker Ivabradine were characterized within their therapeutic window. Finally, we expanded upon a published hiPSC-CM computational model by incorporating the atrial-specific I Kur current, modifying ion channel conductances to match the AP waveforms of our microtissues, and employing the updated model to reinforce our experimental findings. Results High purity CMs (> 75% cTnT+) demonstrated subtype specification by MLC2v expression. Spontaneous beating rates significantly decreased following 3D microtissue formation, with atrial microtissues characterized by their faster spontaneous beating rate, slower AP rise time, and shorter AP duration (APD) compared to ventricular microtissues. We measured atrial-specific responses, including dose-dependent APD prolongation with 4-AP treatment and dose-dependent reduction in spontaneous activity post-Ivabradine treatment. Conclusion The presented in vitro platform for screening atrial-specific responses is both robust and sensitive, with high throughput, enabling studies focused at elucidating the mechanisms underlying atrial arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00703-x.
Collapse
Affiliation(s)
- Arvin H Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Mark C Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Elena Song
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
32
|
Chang JH, Cheng CC, Lu YY, Chung CC, Yeh YH, Chen YC, Higa S, Chen SA, Chen YJ. Vascular endothelial growth factor modulates pulmonary vein arrhythmogenesis via vascular endothelial growth factor receptor 1/NOS pathway. Eur J Pharmacol 2021; 911:174547. [PMID: 34624234 DOI: 10.1016/j.ejphar.2021.174547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Atrial fibrillation (AF) is a common form of arrhythmia with serious public health impacts, but its underlying mechanisms are not yet fully understood. Vascular endothelial growth factor (VEGF) is highly expressed in the atrium of patients with AF, but whether VEGF affects AF pathogenesis remains unclear. Pulmonary veins (PVs) are important sources for the genesis of atrial tachycardia or AF. Therefore, this study assessed the effects of VEGF on PV electrophysiological properties and evaluated its underlying mechanisms. Conventional microelectrodes and whole-cell patch clamps were performed using isolated rabbit PV preparations or single isolated PV cardiomyocytes before and after VEGF or VEGF receptor (VEGFR), Akt, NOS inhibitor administration. We found that VEGF (0.1, 1, and 10 ng/mL) reduced the PV beating rate in a dose-dependent manner. Furthermore, VEGF (10 ng/mL) reduced late diastolic depolarization and diastolic tension. Isoproterenol increased PV beating and burst firing, which was attenuated by VEGF (1 ng/mL). In the presence of VEGFR-1 inhibition (ZM306416 at 10 μM) and L-NAME (100 μM), VEGF (1 ng/mL) did not alter PV spontaneous activity. In isolated PV cardiomyocytes, VEGF (1 ng/mL) decreased L-type calcium, sodium/calcium exchanger, and late sodium currents. In conclusion, we found that VEGF reduces PV arrhythmogenesis by modulating sodium/calcium homeostasis through VEGFR-1/NOS signaling pathway.
Collapse
Affiliation(s)
- Jun-Hei Chang
- Department of Medicine, Country Hospital, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Chuan Cheng
- Department of Cardiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
33
|
Murphy SA, Chen EZ, Tung L, Boheler KR, Kwon C. Maturing heart muscle cells: Mechanisms and transcriptomic insights. Semin Cell Dev Biol 2021; 119:49-60. [PMID: 33952430 PMCID: PMC8653577 DOI: 10.1016/j.semcdb.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elaine Zhelan Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Dimai S, Semmler L, Prabhu A, Stachelscheid H, Huettemeister J, Klaucke SC, Lacour P, Blaschke F, Kruse J, Parwani A, Boldt LH, Bullinger L, Pieske BM, Heinzel FR, Hohendanner F. COVID19-associated cardiomyocyte dysfunction, arrhythmias and the effect of Canakinumab. PLoS One 2021; 16:e0255976. [PMID: 34411149 PMCID: PMC8376065 DOI: 10.1371/journal.pone.0255976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cardiac injury associated with cytokine release frequently occurs in SARS-CoV-2 mediated coronavirus disease (COVID19) and mortality is particularly high in these patients. The mechanistic role of the COVID19 associated cytokine-storm for the concomitant cardiac dysfunction and associated arrhythmias is unclear. Moreover, the role of anti-inflammatory therapy to mitigate cardiac dysfunction remains elusive. Aims and methods We investigated the effects of COVID19-associated inflammatory response on cardiac cellular function as well as its cardiac arrhythmogenic potential in rat and induced pluripotent stem cell derived cardiomyocytes (iPS-CM). In addition, we evaluated the therapeutic potential of the IL-1β antagonist Canakinumab using state of the art in-vitro confocal and ratiometric high-throughput microscopy. Results Isolated rat ventricular cardiomyocytes were exposed to control or COVID19 serum from intensive care unit (ICU) patients with severe ARDS and impaired cardiac function (LVEF 41±5%; 1/3 of patients on veno-venous extracorporeal membrane oxygenation; CK 154±43 U/l). Rat cardiomyocytes showed an early increase of myofilament sensitivity, a decrease of Ca2+ transient amplitudes and altered baseline [Ca2+] upon exposure to patient serum. In addition, we used iPS-CM to explore the long-term effect of patient serum on cardiac electrical and mechanical function. In iPS-CM, spontaneous Ca2+ release events were more likely to occur upon incubation with COVID19 serum and nuclear as well as cytosolic Ca2+ release were altered. Co-incubation with Canakinumab had no effect on pro-arrhythmogenic Ca2+ release or Ca2+ signaling during excitation-contraction coupling, nor significantly influenced cellular automaticity. Conclusion Serum derived from COVID19 patients exerts acute cardio-depressant and chronic pro-arrhythmogenic effects in rat and iPS-derived cardiomyocytes. Canakinumab had no beneficial effect on cellular Ca2+ signaling during excitation-contraction coupling. The presented method utilizing iPS-CM and in-vitro Ca2+ imaging might serve as a novel tool for precision medicine. It allows to investigate cytokine related cardiac dysfunction and pharmacological approaches useful therein.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- COVID-19/complications
- COVID-19/metabolism
- COVID-19/pathology
- Calcium/metabolism
- Calcium Signaling/drug effects
- Drug Evaluation, Preclinical
- Female
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Male
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Rats, Sprague-Dawley
- SARS-CoV-2/metabolism
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Sanzio Dimai
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- Institut für Physiologie und Pathophysiologie, Paracelsus Medizinische Privatuniversität, Nürnberg, Germany
| | - Lukas Semmler
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ashok Prabhu
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Harald Stachelscheid
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
| | - Judith Huettemeister
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
| | - Sandra C. Klaucke
- Imperial College London, Hammersmith Hospital, London, England, United Kingdom
| | - Philipp Lacour
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Florian Blaschke
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Jan Kruse
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Abdul Parwani
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | - Burkert M. Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité University Medicine, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, Stem Cell Core, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Zhang M, Qian L, Liu C, Huang GN, Tao G. Editorial: Cardiomyocyte Maturation: Novel Insights for Regenerative Medicine. Front Cell Dev Biol 2021; 9:730622. [PMID: 34409043 PMCID: PMC8365607 DOI: 10.3389/fcell.2021.730622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States.,Department of Medicine (Division of Cardiology), Stanford University School of Medicine, Stanford, CA, United States
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, United States.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
36
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
37
|
Arslanova A, Shafaattalab S, Lin E, Barszczewski T, Hove-Madsen L, Tibbits GF. Investigating inherited arrhythmias using hiPSC-derived cardiomyocytes. Methods 2021; 203:542-557. [PMID: 34197925 DOI: 10.1016/j.ymeth.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.
Collapse
Affiliation(s)
- Alia Arslanova
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada
| | - Tiffany Barszczewski
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
38
|
Electrophysiology of hiPSC-Cardiomyocytes Co-Cultured with HEK Cells Expressing the Inward Rectifier Channel. Int J Mol Sci 2021; 22:ijms22126621. [PMID: 34205607 PMCID: PMC8235371 DOI: 10.3390/ijms22126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK–WT:hiCM) or hiCM alone on days 3–8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK–WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.
Collapse
|
39
|
Liu D, Song AT, Qi X, van Vliet PP, Xiao J, Xiong F, Andelfinger G, Nattel S. Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Commun 2021; 12:2551. [PMID: 33953173 PMCID: PMC8100125 DOI: 10.1038/s41467-021-22737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Endogenous cardiac pacemaker function regulates the rate and rhythm of cardiac contraction. The mutation p.Lys23Glu in the cohesin protein Shugoshin-1 causes severe heart arrhythmias due to sinoatrial node dysfunction and a debilitating gastrointestinal motility disorder, collectively termed the Chronic Atrial and Intestinal Dysrhythmia Syndrome, linking Shugoshin-1 and pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation channel 4 (HCN4) is the predominant pacemaker ion-channel in the adult heart and carries the majority of the "funny" current, which strongly contributes to diastolic depolarization in pacemaker cells. Here, we study the mechanism by which Shugoshin-1 affects cardiac pacing activity with two cell models: neonatal rat ventricular myocytes and Chronic Atrial and Intestinal Dysrhythmia Syndrome patient-specific human induced pluripotent stem cell derived cardiomyocytes. We find that Shugoshin-1 interacts directly with HCN4 to promote and stabilize cardiac pacing. This interaction enhances funny-current by optimizing HCN4 cell-surface expression and function. The clinical p.Lys23Glu mutation leads to an impairment in the interaction between Shugoshin-1 and HCN4, along with depressed funny-current and dysrhythmic activity in induced pluripotent stem cell derived cardiomyocytes derived from Chronic Atrial and Intestinal Dysrhythmia Syndrome patients. Our work reveals a critical non-canonical, cohesin-independent role for Shugoshin-1 in maintaining cardiac automaticity and identifies potential therapeutic avenues for cardiac pacemaking disorders, in particular Chronic Atrial and Intestinal Dysrhythmia Syndrome.
Collapse
Affiliation(s)
- Donghai Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Andrew Taehun Song
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
| | - Xiaoyan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- LIA (International Associated Laboratory) INSERM, Marseille, France
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montréal, QC, Canada
- Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
- IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
40
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
41
|
de Lange WJ, Farrell ET, Kreitzer CR, Jacobs DR, Lang D, Glukhov AV, Ralphe JC. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am J Physiol Heart Circ Physiol 2021; 320:H1670-H1686. [PMID: 33606581 DOI: 10.1152/ajpheart.00941.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CM) may provide an important bridge between animal models and the intact human myocardium. Fulfilling this potential is hampered by their relative immaturity, leading to poor physiological responsiveness. hiPSC-CMs grown in traditional two-dimensional (2D) culture lack a t-tubular system, have only rudimentary intracellular calcium-handling systems, express predominantly embryonic sarcomeric protein isoforms, and preferentially use glucose as an energy substrate. Culturing hiPSC-CM in a variety of three-dimensional (3D) environments and the addition of nutritional, pharmacological, and electromechanical stimuli have proven, to various degrees, to be beneficial for maturation. We present a detailed assessment of a novel model in which hiPSC-CMs and hiPSC-derived cardiac fibroblasts are cocultured in a 3D fibrin matrix to form engineered cardiac tissue constructs (hiPSC-ECTs). The hiPSC-ECTs are responsive to physiological stimuli, including stretch, frequency, and β-adrenergic stimulation, develop a t-tubular system, and demonstrate calcium-handling and contractile kinetics that compare favorably with ventricular human myocardium. Furthermore, transcript levels of various genes involved in calcium-handling and contraction are increased. These markers of maturation become more robust over a relatively short period of time in culture (6 wk vs. 2 wk in hiPSC-ECTs). A comparison of the hiPSC-ECT molecular and performance variables with those of human cardiac tissue and other available engineered tissue platforms is provided to aid selection of the most appropriate platform for the research question at hand. Important and noteworthy aspects of this human cardiac model system are its reliance on "off-the-shelf" equipment, ability to provide detailed physiological performance data, and the ability to achieve a relatively mature cardiac physiology without additional nutritional, pharmacological, and electromechanical stimuli that may elicit unintended effects on function.NEW & NOTEWORTHY This study seeks to provide an in-depth assessment of contractile performance of human iPSC-derived cardiomyocytes cultured together with fibroblasts in a 3-dimensional-engineered tissue and compares performance both over time as cells mature, and with corresponding measures found in the literature using alternative 3D culture configurations. The suitability of 3D-engineered human cardiac tissues to model cardiac function is emphasized, and data provided to assist in the selection of the most appropriate configuration based on the target application.
Collapse
Affiliation(s)
- Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Caroline R Kreitzer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Derek R Jacobs
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Di Lang
- Department of Medicine Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
42
|
Monitoring Contractile Cardiomyocytes via Impedance Using Multipurpose Thin Film Ruthenium Oxide Electrodes. SENSORS 2021; 21:s21041433. [PMID: 33670743 PMCID: PMC7923073 DOI: 10.3390/s21041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022]
Abstract
A ruthenium oxide (RuOx) electrode was used to monitor contractile events of human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) through electrical impedance spectroscopy (EIS). Using RuOx electrodes presents an advantage over standard thin film Pt electrodes because the RuOx electrodes can also be used as electrochemical sensor for pH, O2, and nitric oxide, providing multisensory functionality with the same electrode. First, the EIS signal was validated in an optically transparent well-plate setup using Pt wire electrodes. This way, visual data could be recorded simultaneously. Frequency analyses of both EIS and the visual data revealed almost identical frequency components. This suggests both the EIS and visual data captured the similar events of the beating of (an area of) hPSC-CMs. Similar EIS measurement was then performed using the RuOx electrode, which yielded comparable signal and periodicity. This mode of operation adds to the versatility of the RuOx electrode's use in in vitro studies.
Collapse
|
43
|
Amuzescu B, Airini R, Epureanu FB, Mann SA, Knott T, Radu BM. Evolution of mathematical models of cardiomyocyte electrophysiology. Math Biosci 2021; 334:108567. [PMID: 33607174 DOI: 10.1016/j.mbs.2021.108567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Advanced computational techniques and mathematical modeling have become more and more important to the study of cardiac electrophysiology. In this review, we provide a brief history of the evolution of cardiomyocyte electrophysiology models and highlight some of the most important ones that had a major impact on our understanding of the electrical activity of the myocardium and associated transmembrane ion fluxes in normal and pathological states. We also present the use of these models in the study of various arrhythmogenesis mechanisms, particularly the integration of experimental pharmacology data into advanced humanized models for in silico proarrhythmogenic risk prediction as an essential component of the Comprehensive in vitro Proarrhythmia Assay (CiPA) drug safety paradigm.
Collapse
Affiliation(s)
- Bogdan Amuzescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Razvan Airini
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Florin Bogdan Epureanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| | - Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania; Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), 91-95 Splaiul Independentei, Bucharest 050095, Romania
| |
Collapse
|
44
|
Arrhythmia Mechanisms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2020; 77:300-316. [PMID: 33323698 DOI: 10.1097/fjc.0000000000000972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
ABSTRACT Despite major efforts by clinicians and researchers, cardiac arrhythmia remains a leading cause of morbidity and mortality in the world. Experimental work has relied on combining high-throughput strategies with standard molecular and electrophysiological studies, which are, to a great extent, based on the use of animal models. Because this poses major challenges for translation, the progress in the development of novel antiarrhythmic agents and clinical care has been mostly disappointing. Recently, the advent of human induced pluripotent stem cell-derived cardiomyocytes has opened new avenues for both basic cardiac research and drug discovery; now, there is an unlimited source of cardiomyocytes of human origin, both from healthy individuals and patients with cardiac diseases. Understanding arrhythmic mechanisms is one of the main use cases of human induced pluripotent stem cell-derived cardiomyocytes, in addition to pharmacological cardiotoxicity and efficacy testing, in vitro disease modeling, developing patient-specific models and personalized drugs, and regenerative medicine. Here, we review the advances that the human induced pluripotent stem cell-derived-based modeling systems have brought so far regarding the understanding of both arrhythmogenic triggers and substrates, while also briefly speculating about the possibilities in the future.
Collapse
|
45
|
Ashok P, Parikh A, Du C, Tzanakakis ES. Xenogeneic-Free System for Biomanufacturing of Cardiomyocyte Progeny From Human Pluripotent Stem Cells. Front Bioeng Biotechnol 2020; 8:571425. [PMID: 33195131 PMCID: PMC7644809 DOI: 10.3389/fbioe.2020.571425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Functional heart cells and tissues sourced from human pluripotent stem cells (hPSCs) have great potential for substantially advancing treatments of cardiovascular maladies. Realization of this potential will require the development of cost-effective and tunable bioprocesses for manufacturing hPSC-based cell therapeutics. Here, we report the development of a xeno-free platform for guiding the cardiogenic commitment of hPSCs. The system is based on a fully defined, open-source formulation without complex supplements, which have varied and often undetermined effects on stem cell physiology. The formulation was used to systematically investigate factors inducing the efficient commitment to cardiac mesoderm of three hPSC lines. Contractile clusters of cells appeared within a week of differentiation in planar cultures and by day 13 over 80% of the cells expressed cardiac progeny markers such as TNNT2. In conjunction with expansion, this differentiation strategy was employed in stirred-suspension cultures of hPSCs. Scalable differentiation resulted in 0.4-2 million CMs/ml or ∼5-20 TNNT2-positive cells per seeded hPSC without further enrichment. Our findings will contribute to the engineering of bioprocesses advancing the manufacturing of stem cell-based therapeutics for heart diseases.
Collapse
Affiliation(s)
- Preeti Ashok
- Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | | | - Chuang Du
- Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Emmanuel S. Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
- Developmental Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
46
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
47
|
Ravindran D, Kok C, Farraha M, Selvakumar D, Clayton ZE, Kumar S, Chong J, Kizana E. Gene and Cell Therapy for Cardiac Arrhythmias. Clin Ther 2020; 42:1911-1922. [PMID: 32988632 DOI: 10.1016/j.clinthera.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE In the last decade, interest in gene therapy as a therapeutic technology has increased, largely driven by an exciting yet modest number of successful applications for monogenic diseases. Setbacks in the use of gene therapy for cardiac disease have motivated efforts to develop vectors with enhanced tropism for the heart and more efficient delivery methods. Although monogenic diseases are the logical target, cardiac arrhythmias represent a group of conditions amenable to gene therapy because of focal targets (biological pacemakers, nodal conduction, or stem cell-related arrhythmias) or bystander effects on cells not directly transduced because of electrical coupling. METHODS This review provides a contemporary narrative of the field of gene therapy for experimental cardiac arrhythmias, including those associated with stem cell transplant. Recent articles published in the English language and available through the PubMed database and other prominent literature are discussed. FINDINGS The promise of gene therapy has been realized for a handful of monogenic diseases and is actively being pursued for cardiac applications in preclinical models. With improved vectors, it is likely that cardiac disease will also benefit from this technology. Cardiac arrhythmias, whether inherited or acquired, are a group of conditions with a potentially lower threshold for phenotypic correction and as such hold unique potential as targets for cardiac gene therapy. IMPLICATIONS There has been a proliferation of research on the potential of gene therapy for cardiac arrhythmias. This body of investigation forms a strong basis on which further developments, particularly with viral vectors, are likely to help this technology progress along its translational trajectory.
Collapse
Affiliation(s)
- Dhanya Ravindran
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Cindy Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - James Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
48
|
Selvakumar D, Clayton ZE, Chong JJH. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin Ther 2020; 42:1857-1879. [PMID: 32943195 DOI: 10.1016/j.clinthera.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE We review the history of cardiac cell therapy, highlighting lessons learned from initial adult stem cell (ASC) clinical trials. We present pluripotent stem cell-derived cardiomyocytes (PSC-CMs) as a leading candidate for robust regeneration of infarcted myocardium but identify several issues that must be addressed before successful clinical translation. METHODS We conducted an unstructured literature review of PubMed-listed articles, selecting the most comprehensive and relevant research articles, review articles, clinical trials, and basic or translation articles in the field of cardiac cell therapy. Articles were identified using the search terms adult stem cells, pluripotent stem cells, cardiac stem cell, and cardiac regeneration or from references of relevant articles, Articles were prioritized and selected based on their impact, originality, or potential clinical applicability. FINDINGS Since its inception, the ASC therapy field has been troubled by conflicting preclinical data, academic controversies, and inconsistent trial designs. These issues have damaged perceptions of cardiac cell therapy among investors, the academic community, health care professionals, and, importantly, patients. In hindsight, the key issue underpinning these problems was the inability of these cell types to differentiate directly into genuine cardiomyocytes, rendering them unable to replace damaged myocardium. Despite this, beneficial effects through indirect paracrine or immunomodulatory effects remain possible and continue to be investigated. However, in preclinical models, PSC-CMs have robustly remuscularized infarcted myocardium with functional, force-generating cardiomyocytes. Hence, PSC-CMs have now emerged as a leading candidate for cardiac regeneration, and unpublished reports of first-in-human delivery of these cells have recently surfaced. However, the cardiac cell therapy field's history should serve as a cautionary tale, and we identify several translational hurdles that still remain. Preclinical solutions to issues such as arrhythmogenicity, immunogenicity, and poor engraftment rates are needed, and next-generation clinical trials must draw on robust knowledge of mechanistic principles of the therapy. IMPLICATIONS The clinical transplantation of functional stem cell-derived heart tissue with seamless integration into native myocardium is a lofty goal. However, considerable advances have been made during the past 2 decades. Currently, PSC-CMs appear to be the best prospect to reach this goal, but several hurdles remain. The history of adult stem cell trials has taught us that shortcuts cannot be taken without dire consequences, and it is essential that progress not be hurried and that a worldwide, cross-disciplinary approach be used to ensure safe and effective clinical translation.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - James J H Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
49
|
Zhang XH, Morad M. Ca 2+ signaling of human pluripotent stem cells-derived cardiomyocytes as compared to adult mammalian cardiomyocytes. Cell Calcium 2020; 90:102244. [PMID: 32585508 PMCID: PMC7483365 DOI: 10.1016/j.ceca.2020.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) have been extensively used for in vitro modeling of human cardiovascular disease, drug screening and pharmacotherapy, but little rigorous studies have been reported on their biophysical or Ca2+ signaling properties. There is also considerable concern as to the level of their maturity and whether they can serve as reliable models for adult human cardiac myocytes. Ultrastructural difference such as lack of t-tubular network, their polygonal shapes, disorganized sarcomeric myofilament, and their rhythmic automaticity, among others, have been cited as evidence for immaturity of hiPSC-CMs. In this review, we will deal with Ca2+ signaling, its regulation, and its stage of maturity as compared to the mammalian adult cardiomyocytes. We shall summarize the data on functional aspects of Ca2+signaling and its parameters that include: L-type calcium channel (Cav1.2), ICa-induced Ca2+release, CICR, and its parameters, cardiac Na/Ca exchanger (NCX1), the ryanodine receptors (RyR2), sarco-reticular Ca2+pump, SERCA2a/PLB, and the contribution of mitochondrial Ca2+ to hiPSC-CMs excitation-contraction (EC)-coupling as compared with adult mammalian cardiomyocytes. The comparative studies suggest that qualitatively hiPSC-CMs have similar Ca2+signaling properties as those of adult cardiomyocytes, but quantitative differences do exist. This review, we hope, will allow the readers to judge for themselves to what extent Ca2+signaling of hiPSC-CMs represents the adult form of this signaling pathway, and whether these cells can be used as good models of human cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States
| | - Martin Morad
- Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston SC, United States.
| |
Collapse
|
50
|
Paci M, Passini E, Klimas A, Severi S, Hyttinen J, Rodriguez B, Entcheva E. All-Optical Electrophysiology Refines Populations of In Silico Human iPSC-CMs for Drug Evaluation. Biophys J 2020; 118:2596-2611. [PMID: 32298635 PMCID: PMC7231889 DOI: 10.1016/j.bpj.2020.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, D.C
| |
Collapse
|