1
|
Witmer NH, McLendon JM, Stein CS, Yoon JY, Berezhnaya E, Elrod JW, London BL, Boudreau RL. Upstream alternative polyadenylation in SCN5A produces a short transcript isoform encoding a mitochondria-localized NaV1.5 N-terminal fragment that influences cardiomyocyte respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607406. [PMID: 39211120 PMCID: PMC11360925 DOI: 10.1101/2024.08.09.607406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A -short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A -short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.
Collapse
|
2
|
Deciphering Transcriptional Networks during Human Cardiac Development. Cells 2022; 11:cells11233915. [PMID: 36497174 PMCID: PMC9739390 DOI: 10.3390/cells11233915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Human heart development is governed by transcription factor (TF) networks controlling dynamic and temporal gene expression alterations. Therefore, to comprehensively characterize these transcriptional regulations, day-to-day transcriptomic profiles were generated throughout the directed cardiac differentiation, starting from three distinct human- induced pluripotent stem cell lines from healthy donors (32 days). We applied an expression-based correlation score to the chronological expression profiles of the TF genes, and clustered them into 12 sequential gene expression waves. We then identified a regulatory network of more than 23,000 activation and inhibition links between 216 TFs. Within this network, we observed previously unknown inferred transcriptional activations linking IRX3 and IRX5 TFs to three master cardiac TFs: GATA4, NKX2-5 and TBX5. Luciferase and co-immunoprecipitation assays demonstrated that these five TFs could (1) activate each other's expression; (2) interact physically as multiprotein complexes; and (3) together, finely regulate the expression of SCN5A, encoding the major cardiac sodium channel. Altogether, these results unveiled thousands of interactions between TFs, generating multiple robust hypotheses governing human cardiac development.
Collapse
|
3
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
4
|
Young LJ, Antwi-Boasiako S, Ferrall J, Wold LE, Mohler PJ, El Refaey M. Genetic and non-genetic risk factors associated with atrial fibrillation. Life Sci 2022; 299:120529. [PMID: 35385795 PMCID: PMC9058231 DOI: 10.1016/j.lfs.2022.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmic disorder and its prevalence in the United States is projected to increase to more than twelve million cases in 2030. AF increases the risk of other forms of cardiovascular disease, including stroke. As the incidence of atrial fibrillation increases dramatically with age, it is paramount to elucidate risk factors underlying AF pathogenesis. Here, we review tissue and cellular pathways underlying AF, as well as critical components that impact AF susceptibility including genetic and environmental risk factors. Finally, we provide the latest information on potential links between SARS-CoV-2 and human AF. Improved understanding of mechanistic pathways holds promise in preventative care and early diagnostics, and also introduces novel targeted forms of therapy that might attenuate AF progression and maintenance.
Collapse
Affiliation(s)
- Lindsay J Young
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Joel Ferrall
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Mona El Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Abstract
Brugada syndrome is a heritable channelopathy characterized by a peculiar electrocardiogram (ECG) pattern and increased risk of cardiac arrhythmias and sudden death. The arrhythmias originate because of an imbalance between the repolarizing and depolarizing currents that modulate the cardiac action potential. Even if an overt structural cardiomyopathy is not typical of Brugada syndrome, fibrosis and structural changes in the right ventricle contribute to a conduction slowing, which ultimately facilitates ventricular arrhythmias. Currently, Mendelian autosomal dominant transmission is detected in less than 25% of all clinical confirmed cases. Although 23 genes have been associated with the condition, only SCN5A, encoding the cardiac sodium channel, is considered clinically actionable and disease causing. The limited monogenic inheritance has pointed toward new perspectives on the possible complex genetic architecture of the disease, involving polygenic inheritance and a polygenic risk score that can influence penetrance and risk stratification. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| | - Sarah Costa
- Department of Internal Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Mario Delmar
- Leon H. Charney Division of Cardiology, Grossman School of Medicine, New York University, New York, NY, USA;
| |
Collapse
|
6
|
Schroder EA, Ono M, Johnson SR, Rozmus ER, Burgess DE, Esser KA, Delisle BP. The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology. J Physiol 2022; 600:2037-2048. [PMID: 35301719 PMCID: PMC9980729 DOI: 10.1113/jp282402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Daily variations in cardiac electrophysiology and the incidence for different types of arrhythmias reflect ≈24 h changes in the environment, behaviour and internal circadian rhythms. This article focuses on studies that use animal models to separate the impact that circadian rhythms, as well as changes in the environment and behaviour, have on 24 h rhythms in heart rate and ventricular repolarization. Circadian rhythms are initiated at the cellular level by circadian clocks, transcription-translation feedback loops that cycle with a periodicity of 24 h. Several studies now show that the circadian clock in cardiomyocytes regulates the expression of cardiac ion channels by multiple mechanisms; underlies time-of-day changes in sinoatrial node excitability/intrinsic heart rate; and limits the duration of the ventricular action potential waveform. However, the 24 h rhythms in heart rate and ventricular repolarization are primarily driven by autonomic signalling. A functional role for the cardiomyocyte circadian clock appears to buffer the heart against perturbations. For example, the cardiomyocyte circadian clock limits QT-interval prolongation (especially at slower heart rates), and it may facilitate the realignment of the 24 h rhythm in heart rate to abrupt changes in the light cycle. Additional studies show that modifying rhythmic behaviours (including feeding behaviour) can dramatically impact the 24 h rhythms in heart rate and ventricular repolarization. If these mechanisms are conserved, these studies suggest that targeting endogenous circadian mechanisms in the heart, as well as modifying the timing of certain rhythmic behaviours, could emerge as therapeutic strategies to support heart function against perturbations and regulate 24 h rhythms in cardiac electrophysiology.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298,Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Sidney R. Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Ezekiel R. Rozmus
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MN508, Lexington, KY 40536-0298
| |
Collapse
|
7
|
Absolute Quantification of Nav1.5 Expression by Targeted Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084177. [PMID: 35456996 PMCID: PMC9028338 DOI: 10.3390/ijms23084177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Nav1.5 is the pore forming α-subunit of the cardiac voltage-gated sodium channel that initiates cardiac action potential and regulates the human heartbeat. A normal level of Nav1.5 is crucial to cardiac function and health. Over- or under-expression of Nav1.5 can cause various cardiac diseases ranging from short PR intervals to Brugada syndromes. An assay that can directly quantify the protein amount in biological samples would be a priori to accurately diagnose and treat Nav1.5-associated cardiac diseases. Due to its large size (>200 KD), multipass transmembrane domains (24 transmembrane passes), and heavy modifications, Nav1.5 poses special quantitation challenges. To date, only the relative quantities of this protein have been measured in biological samples. Here, we describe the first targeted and mass spectrometry (MS)-based quantitative assay that can provide the copy numbers of Nav1.5 in cells with a well-defined lower limit of quantification (LLOQ) and precision. Applying the developed assay, we successfully quantified transiently expressed Nav1.5 in as few as 1.5 million Chinese hamster ovary (CHO) cells. The obtained quantity was 3 ± 2 fmol on the column and 3 ± 2 × 104 copies/cell. To our knowledge, this is the first absolute quantity of Nav1.5 measured in a biological sample.
Collapse
|
8
|
Martínez-Campelo L, Cruz R, Blanco-Verea A, Moscoso I, Ramos-Luis E, Lage R, Álvarez-Barredo M, Sabater-Molina M, Peñafiel-Verdú P, Jiménez-Jáimez J, Rodríguez-Mañero M, Brion M. Searching for genetic modulators of the phenotypic heterogeneity in Brugada syndrome. PLoS One 2022; 17:e0263469. [PMID: 35231055 PMCID: PMC8887717 DOI: 10.1371/journal.pone.0263469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
In Brugada syndrome, even within the same family where all affected individuals share the same mutation, phenotypic variation is prominent, with variable penetrance and expressivity, presenting different degrees of involvement. It is difficult to establish a direct correlation between genotype and phenotype to predict prognosis in complications and risk of sudden death. The factors that modulate this inter- and intra-familial phenotypic variability remain to be determined. With the intention of testing whether other genetic factors, in addition to the causal mutation in SCN5A, may have a modulating effect on the Brugada phenotype and the risk of sudden death, we have studied 8 families with a causal variant in SCN5A with at least two affected individuals, one of whom has suffered cardiac arrest or sudden death. Whole exome sequencing was performed looking for additional variants that modify the phenotype and allow us to predict a better or worse prognosis for the evolution of the disease. The results did not show any clear genetic modifier; nevertheless, highlight the possible implication of the cholesterol and fibrosis pathways, as well as the circadian rhythm, as possible modulators of Brugada syndrome phenotype.
Collapse
Affiliation(s)
- Laura Martínez-Campelo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- CIBER of Rare Diseases, Carlos III Health Institute, Madrid, Spain
| | - Alejandro Blanco-Verea
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Ramos-Luis
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Álvarez-Barredo
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
| | - María Sabater-Molina
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Pablo Peñafiel-Verdú
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiogenetics Laboratory, Murcian Institute for Biosanitary Research, Cardiology Service, Virgen de la Arrixaca University Clinical Hospital, Murcia, Spain
| | - Juan Jiménez-Jáimez
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Arrhythmia Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Moisés Rodríguez-Mañero
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| | - María Brion
- Cardiovascular Genetics, Santiago de Compostela Health Research Institute, Santiago de Compostela, Spain
- Genomic Medicine Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Cardiovascular CIBER, Carlos III Health Institute, Madrid, Spain
- Family Heart Disease Unit, Cardiology Service, Santiago de Compostela University Hospital, Santiago de Compostela, Spain
| |
Collapse
|
9
|
Barc J, Tadros R, Glinge C, Chiang DY, Jouni M, Simonet F, Jurgens SJ, Baudic M, Nicastro M, Potet F, Offerhaus JA, Walsh R, Choi SH, Verkerk AO, Mizusawa Y, Anys S, Minois D, Arnaud M, Duchateau J, Wijeyeratne YD, Muir A, Papadakis M, Castelletti S, Torchio M, Ortuño CG, Lacunza J, Giachino DF, Cerrato N, Martins RP, Campuzano O, Van Dooren S, Thollet A, Kyndt F, Mazzanti A, Clémenty N, Bisson A, Corveleyn A, Stallmeyer B, Dittmann S, Saenen J, Noël A, Honarbakhsh S, Rudic B, Marzak H, Rowe MK, Federspiel C, Le Page S, Placide L, Milhem A, Barajas-Martinez H, Beckmann BM, Krapels IP, Steinfurt J, Winkel BG, Jabbari R, Shoemaker MB, Boukens BJ, Škorić-Milosavljević D, Bikker H, Manevy FC, Lichtner P, Ribasés M, Meitinger T, Müller-Nurasyid M, Veldink JH, van den Berg LH, Van Damme P, Cusi D, Lanzani C, Rigade S, Charpentier E, Baron E, Bonnaud S, Lecointe S, Donnart A, Le Marec H, Chatel S, Karakachoff M, Bézieau S, London B, Tfelt-Hansen J, Roden D, Odening KE, Cerrone M, Chinitz LA, Volders PG, van de Berg MP, Laurent G, Faivre L, Antzelevitch C, Kääb S, Arnaout AA, Dupuis JM, Pasquie JL, Billon O, Roberts JD, Jesel L, Borggrefe M, Lambiase PD, Mansourati J, Loeys B, Leenhardt A, Guicheney P, Maury P, Schulze-Bahr E, Robyns T, Breckpot J, Babuty D, Priori SG, Napolitano C, de Asmundis C, Brugada P, Brugada R, Arbelo E, Brugada J, Mabo P, Behar N, Giustetto C, Molina MS, Gimeno JR, Hasdemir C, Schwartz PJ, Crotti L, McKeown PP, Sharma S, Behr ER, Haissaguerre M, Sacher F, Rooryck C, Tan HL, Remme CA, Postema PG, Delmar M, Ellinor PT, Lubitz SA, Gourraud JB, Tanck MW, George AL, MacRae CA, Burridge PW, Dina C, Probst V, Wilde AA, Schott JJ, Redon R, Bezzina CR. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat Genet 2022; 54:232-239. [PMID: 35210625 DOI: 10.1038/s41588-021-01007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.
Collapse
Affiliation(s)
- Julien Barc
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France. .,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, .
| | - Rafik Tadros
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Glinge
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Y Chiang
- Medicine, Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Floriane Simonet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Sean J Jurgens
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manon Baudic
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Michele Nicastro
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joost A Offerhaus
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roddy Walsh
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Yuka Mizusawa
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Soraya Anys
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Damien Minois
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Marine Arnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Josselin Duchateau
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Yanushi D Wijeyeratne
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Alison Muir
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Silvia Castelletti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Margherita Torchio
- Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Cristina Gil Ortuño
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Javier Lacunza
- Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Daniela F Giachino
- Clinical and Biological Sciences, Medical Genetics, University of Torino, Orbassano, Italy.,Medical Genetics, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Natascia Cerrato
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Raphaël P Martins
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain.,Medical Science Department, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clinic, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Sonia Van Dooren
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Centre for Medical Genetics, research group Reproduction and Genetics, research cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Aurélie Thollet
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Florence Kyndt
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Andrea Mazzanti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Anniek Corveleyn
- Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | - Birgit Stallmeyer
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Sven Dittmann
- University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Johan Saenen
- Cardiology, Electrophysiology - Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Noël
- Department of Cardiology, University Hospital of Brest, Brest, France
| | | | - Boris Rudic
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Halim Marzak
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France
| | - Matthew K Rowe
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Claire Federspiel
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | | | - Leslie Placide
- Department of Cardiology, CHU Montpellier, Montpellier, France
| | - Antoine Milhem
- Department of Cardiology, CH La Rochelle, La Rochelle, France
| | | | - Britt-Maria Beckmann
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,University Hospital of the Johann Wolfgang Goethe University Frankfurt, Institute of Legal Medicine, Frankfurt, Germany
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany
| | - Bo Gregers Winkel
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Moore B Shoemaker
- Medicine, Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Genome Diagnostics Laboratory, Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Federico C Manevy
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,IBE, LMU Munich, Munich, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philip Van Damme
- Neurology Department University Hospital Leuven, Neuroscience Department KU Leuven, Center for Brain & Disease Research VIB, Leuven, Belgium
| | - Daniele Cusi
- Scientific Unit, Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy
| | - Chiara Lanzani
- Nephrology, Genomics of Renal Diseases and Hypertension Unit, Università Vita Salute San Raffaele, Milan, Italy
| | - Sidwell Rigade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Eric Charpentier
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Estelle Baron
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Bonnaud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Simon Lecointe
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Audrey Donnart
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Hervé Le Marec
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphanie Chatel
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Matilde Karakachoff
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Stéphane Bézieau
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Barry London
- Department of Internal Medicine, Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacob Tfelt-Hansen
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dan Roden
- Medicine, Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medicine, Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medicine, Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University Freiburg, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, University Hospital Bern, Bern, Switzerland
| | - Marina Cerrone
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Larry A Chinitz
- Medicine, Leon H. Charney Division of Cardiology, Heart Rhythm Center and Cardiovascular Genetics Program, New York University School of Medicine, New York, NY, USA
| | - Paul G Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maarten P van de Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriel Laurent
- Cardiology Department, ImVia lab team IFTIM, University Hospital Dijon, Dijon, France
| | | | | | - Stefan Kääb
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | | | | | - Jean-Luc Pasquie
- Department of Cardiology, CNRS UMR9214 - Inserm U1046 - PHYMEDEXP, Université de Montpellier et CHU Montpellier, Montpellier, France
| | - Olivier Billon
- Department of Cardiovascular Medicine, Vendée Hospital, Service de Cardiologie, La Roche sur Yon, France
| | - Jason D Roberts
- Medicine, Cardiology, Western University, London, Ontario, Canada
| | - Laurence Jesel
- Department of Cardiology, University Hospital of Strasbourg, Strasbourg, France.,INSERM 1260 - Regenerative Nanomedecine, University of Strasbourg, Strasbourg, France
| | - Martin Borggrefe
- Department 1st of Medicine, Cardiology, University Medical Center Mannheim, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Mannheim, Germany
| | - Pier D Lambiase
- Cardiology, Medicine, Barts Heart Centre, London, UK.,Institute of Cardiovasculr Science, UCL, Population Health, UCL, London, UK
| | | | - Bart Loeys
- Center for Medical Genetics, Cardiogenetics, University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Antoine Leenhardt
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Cardiology, Hopital Bichat, Paris, France
| | - Pascale Guicheney
- Sorbonne Université, Paris, France.,UMR_S1166, Faculté de médecine, Sorbonne Université, INSERM, Paris, France
| | - Philippe Maury
- Service de cardiologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,University Hospital Münster, Institute for Genetics of Heart Diseases (IfGH), Münster, Germany
| | - Tomas Robyns
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium.,Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Human Genetics, Catholic University Leuven, Leuven, Belgium
| | | | - Silvia G Priori
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carlo Napolitano
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Carlo de Asmundis
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing Universitair Ziekenhuis, Brussel-Vrije Universiteit Brussel, ERN Heart Guard Center, Brussels, Belgium.,IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pedro Brugada
- Heart Rhythm Management Center, UZ Brussel-VUB, Brussels, Belgium
| | - Ramon Brugada
- Hospital Trueta, CiberCV, University of Girona, IDIBGI, Girona, Spain, Barcelona, Spain
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Philippe Mabo
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Nathalie Behar
- Cardiologie et Maladies vasculaires, Université Rennes1 - CHU Rennes, Rennes, France
| | - Carla Giustetto
- Medical Sciences, Cardiology, University of Torino, Torino, Italy
| | - Maria Sabater Molina
- Cardiogenetic, Unidad de Cardiopatías Familiares, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, Murcia, Spain
| | - Juan R Gimeno
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Cardiology, Unidad de Cardiopatías Familiares, Hospital Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Can Hasdemir
- Department of Cardiology, Ege University School of Medicine, Bornova, Turkey
| | - Peter J Schwartz
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy
| | - Lia Crotti
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Pascal P McKeown
- Cardiology, Belfast Health and Social Care Trust and Queen's University Belfast, Belfast, UK
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Elijah R Behr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK.,Cardiology Clinical Academic Group, St. George's University Hospitals' NHS Foundation Trust, London, UK
| | - Michel Haissaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Frédéric Sacher
- IHU Liryc, Electrophysiology and Heart Modeling Institute, fondation Bordeaux Université, Pessac-Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,Electrophysiology and Ablation Unit, Bordeaux University Hospital (CHU), Pessac, France
| | - Caroline Rooryck
- CHU Bordeaux, Service de Génétique Médicale, Bordeaux, France.,Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carol A Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter G Postema
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mario Delmar
- Medicine, Cardiology, New York University School of Medicine, New York, NY, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital and Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jean-Baptiste Gourraud
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Michael W Tanck
- Clinical Epidemiology, Biostatistics and Bioinformatics, Clinical Methods and Public Health, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Calum A MacRae
- Medicine, Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christian Dina
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Vincent Probst
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Arthur A Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart.,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jean-Jacques Schott
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Richard Redon
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
| | - Connie R Bezzina
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart, . .,Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
11
|
Al Sayed ZR, Canac R, Cimarosti B, Bonnard C, Gourraud JB, Hamamy H, Kayserili H, Girardeau A, Jouni M, Jacob N, Gaignerie A, Chariau C, David L, Forest V, Marionneau C, Charpentier F, Loussouarn G, Lamirault G, Reversade B, Zibara K, Lemarchand P, Gaborit N. Human model of IRX5 mutations reveals key role for this transcription factor in ventricular conduction. Cardiovasc Res 2021; 117:2092-2107. [PMID: 32898233 DOI: 10.1093/cvr/cvaa259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/15/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
AIMS Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function. METHODS AND RESULTS Using human cardiac tissues, transcriptomic correlative analyses between IRX5 and genes involved in cardiac electrical activity showed that in human ventricular compartment, IRX5 expression strongly correlated to the expression of major actors of cardiac conduction, including the sodium channel, Nav1.5, and Connexin 40 (Cx40). We then generated human-induced pluripotent stem cells (hiPSCs) derived from two Hamamy syndrome-affected patients carrying distinct homozygous loss-of-function mutations in IRX5 gene. Cardiomyocytes derived from these hiPSCs showed impaired cardiac gene expression programme, including misregulation in the control of Nav1.5 and Cx40 expression. In accordance with the prolonged QRS interval observed in Hamamy syndrome patients, a slower ventricular action potential depolarization due to sodium current reduction was observed on electrophysiological analyses performed on patient-derived cardiomyocytes, confirming the functional role of IRX5 in electrical conduction. Finally, a cardiac TF complex was newly identified, composed by IRX5 and GATA4, in which IRX5 potentiated GATA4-induction of SCN5A expression. CONCLUSION Altogether, this work unveils a key role for IRX5 in the regulation of human ventricular depolarization and cardiac electrical conduction, providing therefore new insights into our understanding of cardiac diseases.
Collapse
Affiliation(s)
- Zeina R Al Sayed
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Robin Canac
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Bastien Cimarosti
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Carine Bonnard
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jean-Baptiste Gourraud
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, Geneva University, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Hulya Kayserili
- Medical Genetics Department, Koç University School of Medicine(KUSOM), Rumelifeneri Yolu 34450, Istanbul, Turkey
| | - Aurore Girardeau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Mariam Jouni
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Nicolas Jacob
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Anne Gaignerie
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
| | - Caroline Chariau
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 8 Quai Moncousu, F-44000 Nantes, France
- Université de Nantes, INSERM, CRTI, 30 Bd Jean Monnet, F-44093 Nantes, France
- ITUN, CHU Nantes, 30 Bd Jean Monnet, F-44093 Nantes, France
| | - Virginie Forest
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Céline Marionneau
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Flavien Charpentier
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Gildas Loussouarn
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Guillaume Lamirault
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
- Medical Genetics Department, Koç University School of Medicine(KUSOM), Rumelifeneri Yolu 34450, Istanbul, Turkey
- Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
- Reproductive Biology Laboratory, Amsterdam UMC, Meibergdreef 9 1105, Amsterdam-Zuidoost, Netherlands
| | - Kazem Zibara
- ER045, Laboratory of stem cells, DSST, Biology department, Faculty of Sciences, Lebanese University, Rafic Hariri Campus - Hadath, Beirut 1700, Lebanon
| | - Patricia Lemarchand
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| | - Nathalie Gaborit
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 8 quai Moncousu, F-44000 Nantes, France
| |
Collapse
|
12
|
Schroder EA, Wayland JL, Samuels KM, Shah SF, Burgess DE, Seward T, Elayi CS, Esser KA, Delisle BP. Cardiomyocyte Deletion of Bmal1 Exacerbates QT- and RR-Interval Prolongation in Scn5a +/ΔKPQ Mice. Front Physiol 2021; 12:681011. [PMID: 34248669 PMCID: PMC8265216 DOI: 10.3389/fphys.2021.681011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a +/ΔKPQ ). Electrocardiographic telemetry showed inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation increased the QT-interval at RR-intervals that were ≥130 ms. Inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation also increased the day/night rhythm-adjusted mean in the RR-interval, but it did not change the period, phase or amplitude. Compared to mice without the ΔKPQ-Scn5a mutation, mice with the ΔKPQ-Scn5a mutation had reduced heart rate variability (HRV) during the peak of the day/night rhythm in the RR-interval. Inducing the deletion of Bmal1 in cardiomyocytes did not affect HRV in mice without the ΔKPQ-Scn5a mutation, but it did increase HRV in mice with the ΔKPQ-Scn5a mutation. The data demonstrate that deleting Bmal1 in cardiomyocytes exacerbates QT- and RR-interval prolongation in mice with the ΔKPQ-Scn5a mutation.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Internal Medicine and Pulmonary, University of Kentucky, Lexington, KY, United States
| | - Jennifer L. Wayland
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Kaitlyn M. Samuels
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Syed F. Shah
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Don E. Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Tanya Seward
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Brian P. Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Carreras D, Martinez-Moreno R, Pinsach-Abuin M, Santafe MM, Gomà P, Brugada R, Scornik FS, Pérez GJ, Pagans S. Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22052755. [PMID: 33803193 PMCID: PMC7963191 DOI: 10.3390/ijms22052755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The SCN5A gene encodes the α-subunit of the voltage-gated cardiac sodium channel (NaV1.5), a key player in cardiac action potential depolarization. Genetic variants in protein-coding regions of the human SCN5A have been largely associated with inherited cardiac arrhythmias. Increasing evidence also suggests that aberrant expression of the SCN5A gene could increase susceptibility to arrhythmogenic diseases, but the mechanisms governing SCN5A expression are not yet well understood. To gain insights into the molecular basis of SCN5A gene regulation, we used rat gastrocnemius muscle four days following denervation, a process well known to stimulate Scn5a expression. Our results show that denervation of rat skeletal muscle induces the expression of the adult cardiac Scn5a isoform. RNA-seq experiments reveal that denervation leads to significant changes in the transcriptome, with Scn5a amongst the fifty top upregulated genes. Consistent with this increase in expression, ChIP-qPCR assays show enrichment of H3K27ac and H3K4me3 and binding of the transcription factor Gata4 near the Scn5a promoter region. Also, Gata4 mRNA levels are significantly induced upon denervation. Genome-wide analysis of H3K27ac by ChIP-seq suggest that a super enhancer recently described to regulate Scn5a in cardiac tissue is activated in response to denervation. Altogether, our experiments reveal that similar mechanisms regulate the expression of Scn5a in denervated muscle and cardiac tissue, suggesting a conserved pathway for SCN5A expression among striated muscles.
Collapse
Affiliation(s)
- David Carreras
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Mel·lina Pinsach-Abuin
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Manel M. Santafe
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, 43003 Reus, Spain;
| | - Pol Gomà
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Hospital Josep Trueta, 17007 Girona, Spain
| | - Fabiana S. Scornik
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Guillermo J. Pérez
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| | - Sara Pagans
- Cardiovascular Genetics Center, Biomedical Research Institute of Girona, 17190 Salt, Spain; (D.C.); (R.M.-M.); (M.P.-A.); (P.G.); (R.B.)
- Department of Medical Sciences, Universitat de Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 21005 Madrid, Spain
- Correspondence: (F.S.S.); (G.J.P.); (S.P.)
| |
Collapse
|
14
|
Dong C, Wang Y, Ma A, Wang T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na V1.5. Front Physiol 2020; 11:609733. [PMID: 33391024 PMCID: PMC7773603 DOI: 10.3389/fphys.2020.609733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac voltage-gated sodium channel NaV1.5, encoded by SCN5A, is crucial for the upstroke of action potential and excitation of cardiomyocytes. NaV1.5 undergoes complex processes before it reaches the target membrane microdomains and performs normal functions. A variety of protein partners are needed to achieve the balance between SCN5A transcription and mRNA decay, endoplasmic reticulum retention and export, Golgi apparatus retention and export, selective anchoring and degradation, activation, and inactivation of sodium currents. Subtle alterations can impair NaV1.5 in terms of expression or function, eventually leading to NaV1.5-associated diseases such as lethal arrhythmias and cardiomyopathy.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
15
|
Pérez-Agustín A, Pinsach-Abuin M, Pagans S. Role of Non-Coding Variants in Brugada Syndrome. Int J Mol Sci 2020; 21:E8556. [PMID: 33202810 PMCID: PMC7698069 DOI: 10.3390/ijms21228556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.
Collapse
Affiliation(s)
- Adrian Pérez-Agustín
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| | | | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| |
Collapse
|
16
|
Campuzano O, Sarquella-Brugada G, Cesar S, Arbelo E, Brugada J, Brugada R. Update on Genetic Basis of Brugada Syndrome: Monogenic, Polygenic or Oligogenic? Int J Mol Sci 2020; 21:ijms21197155. [PMID: 32998306 PMCID: PMC7582739 DOI: 10.3390/ijms21197155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Brugada syndrome is a rare inherited arrhythmogenic disease leading to ventricular fibrillation and high risk of sudden death. In 1998, this syndrome was linked with a genetic variant with an autosomal dominant pattern of inheritance. To date, rare variants identified in more than 40 genes have been potentially associated with this disease. Variants in regulatory regions, combinations of common variants and other genetic alterations are also proposed as potential origins of Brugada syndrome, suggesting a polygenic or oligogenic inheritance pattern. However, most of these genetic alterations remain of questionable causality; indeed, rare pathogenic variants in the SCN5A gene are the only established cause of Brugada syndrome. Comprehensive analysis of all reported genetic alterations identified the origin of disease in no more than 40% of diagnosed cases. Therefore, identifying the cause of this rare arrhythmogenic disease in the many families without a genetic diagnosis is a major current challenge in Brugada syndrome. Additional challenges are interpretation/classification of variants and translation of genetic data into clinical practice. Further studies focused on unraveling the pathophysiological mechanisms underlying the disease are needed. Here we provide an update on the genetic basis of Brugada syndrome.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Centro Investigación Biomédica en Red: Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Correspondence: (O.C.); (R.B.)
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
| | - Sergi Cesar
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
| | - Elena Arbelo
- Centro Investigación Biomédica en Red: Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
| | - Josep Brugada
- Centro Investigación Biomédica en Red: Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Arrhythmia Section, Cardiovascular Institute, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, University of Girona-IDIBGI, 17190 Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Centro Investigación Biomédica en Red: Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (J.B.)
- Familial Cardiomyopathies Unit, Hospital Josep Trueta de Girona, 17007 Girona, Spain
- Correspondence: (O.C.); (R.B.)
| |
Collapse
|
17
|
Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020; 11:413. [PMID: 32372952 PMCID: PMC7184885 DOI: 10.3389/fphar.2020.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Based on recent findings, an increased late sodium current (INa,late) plays an important pathophysiological role in cardiac diseases, including rhythm disorders. The article first describes what is INa,late and how it functions under physiological circumstances. Next, it shows the wide range of cellular mechanisms that can contribute to an increased INa,late in heart diseases, and also discusses how the upregulated INa,late can play a role in the generation of cardiac arrhythmias. The last part of the article is about INa,late inhibiting drugs as potential antiarrhythmic agents, based on experimental and preclinical data as well as in the light of clinical trials.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Sport Physiology, University of Debrecen, Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Bogdanovic E, Potet F, Marszalec W, Iyer H, Galiano R, Hong SJ, Leung KP, Wasserstrom JA, George AL, Mustoe TA. The sodium channel Na X : Possible player in excitation-contraction coupling. IUBMB Life 2020; 72:601-606. [PMID: 32027092 DOI: 10.1002/iub.2247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022]
Abstract
The sodium channel NaX (encoded by the SCN7A gene) was originally identified in the heart and skeletal muscle and is structurally similar to the other voltage-gated sodium channels but does not appear to be voltage gated. Although NaX is expressed at high levels in cardiac and skeletal muscle, little information exists on the function of NaX in these tissues. Transcriptional profiling of ion channels in the heart in a subset of patients with Brugada syndrome revealed an inverse relationship between the expression of NaX and NaV 1.5 suggesting that, in cardiac myocytes, the expression of these channels may be linked. We propose that NaX plays a role in excitation-contraction coupling based on our experimental observations. Here we show that in cardiac myocytes, NaX is expressed in a striated pattern on the sarcolemma in regions corresponding to the sarcomeric M-line. Knocking down NaX expression decreased NaV 1.5 mRNA and protein and reduced the inward sodium current (INa+ ) following cell depolarization. When the expression of NaV 1.5 was knocked down, ~85% of the INa+ was reduced consistent with the observations that NaV 1.5 is the main voltage-gated sodium channel in cardiac muscle and that NaX likely does not directly participate in mediating the INa+ following depolarization. Silencing NaV 1.5 expression led to significant upregulation of NaX mRNA. Similar to NaV 1.5, NaX protein levels were rapidly downregulated when the intracellular [Ca2+ ] was increased either by CaCl2 or caffeine. These data suggest that a relationship exists between NaX and NaV 1.5 and that NaX may play a role in excitation-contraction coupling.
Collapse
Affiliation(s)
- Elena Bogdanovic
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Franck Potet
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - William Marszalec
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hari Iyer
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert Galiano
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Seok J Hong
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kai P Leung
- Department of Dental and Maxillofacial Trauma, Institute of Surgical Research, Texas
| | | | - Alfred L George
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas A Mustoe
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Zhao L, Sun L, Lu Y, Li F, Xu H. A small-molecule LF3 abrogates β-catenin/TCF4-mediated suppression of Na V1.5 expression in HL-1 cardiomyocytes. J Mol Cell Cardiol 2019; 135:90-96. [PMID: 31419437 PMCID: PMC7088444 DOI: 10.1016/j.yjmcc.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Increased nuclear β-catenin interacting with T-cell factor 4 (TCF4) affects the expression of target genes including SCN5A in ischemic heart disease, which is characterized by frequent ventricular tachycardia/fibrillation. A complex of β-catenin and TCF4 inhibits cardiac Na+ channel activity by reducing NaV1.5 expression through suppressing SCN5A promoter activity in HL-1 cardiomyocytes. LF3, a 4-thioureido-benzenesulfonamide derivative and an inhibitor of β-catenin/TCF4 interaction, has been shown to block the self-renewal capacity of cancer stem cells. We performed studies to determine if LF3 can reverse suppressive effects of β-catenin/TCF4 signaling on the expression of NaV1.5 in HL-1 cardiomyocytes. Western blotting and real-time qRT-PCR analyses showed that 10 μM LF3 significantly increased the expression of NaV1.5 but it did not alter β-catenin and TCF4 expression. Subcellular fractionation analysis demonstrated that LF3 significantly increased the levels of NaV1.5 in both membrane and cytoplasm. Whole-cell patch-clamp recordings revealed that Na+ currents were significantly increased with no changes in the steady-state parameters, activation and inactivation time constants and recovery from inactivation of Na+ channel in HL-1 cells treated with LF3. Immunoprecipitation exhibited that LF3 blocked the interaction of β-catenin and TCF4. Luciferase reporter assays performed in HEK 293 cells and HL-1 revealed that LF3 increased the SCN5A promoter activity in HL-1 cells and prevented β-catenin suppressive effect on SCN5A promoter activity in HEK 293 cells. Taken together, we conclude that LF3, an inhibitor of β-catenin/TCF4 interaction, elevates NaV1.5 expression, leading to increase Na+ channel activity in HL-1 cardiomyocytes.
Collapse
Affiliation(s)
- Limei Zhao
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Lihua Sun
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Yan Lu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America
| | - Faqian Li
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Haodong Xu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 90105, United States of America.
| |
Collapse
|
20
|
Li MCH, O'Brien TJ, Todaro M, Powell KL. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019; 60:1753-1767. [PMID: 31353444 DOI: 10.1111/epi.16301] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that cardiac dysfunction in patients with chronic epilepsy could play a pathogenic role in sudden unexpected death in epilepsy (SUDEP). Recent animal studies have revealed that epilepsy secondarily alters the expression of cardiac ion channels alongside abnormal cardiac electrophysiology and remodeling. These molecular findings represent novel evidence for an acquired cardiac channelopathy in epilepsy, distinct from inherited ion channels mutations associated with cardiocerebral phenotypes. Specifically, seizure activity has been shown to alter the messenger RNA (mRNA) and protein expression of voltage-gated sodium channels (Nav 1.1, Nav 1.5), voltage-gated potassium channels (Kv 4.2, Kv 4.3), sodium-calcium exchangers (NCX1), and nonspecific cation-conducting channels (HCN2, HCN4). The pathophysiology may involve autonomic dysfunction and structural cardiac disease, as both are independently associated with epilepsy and ion channel dysregulation. Indeed, in vivo and in vitro studies of cardiac pathology reveal a complex network of signaling pathways and transcription factors regulating ion channel expression in the setting of sympathetic overactivity, cardiac failure, and hypertrophy. Other mechanisms such as circulating inflammatory mediators or exogenous effects of antiepileptic medications lack evidence. Moreover, an acquired cardiac channelopathy may underlie the electrophysiologic cardiac abnormalities seen in chronic epilepsy, potentially contributing to the increased risk of malignant arrhythmias and sudden death. Therefore, further investigation is necessary to establish whether cardiac ion channel dysregulation similarly occurs in patients with epilepsy, and to characterize any pathogenic relationship with SUDEP.
Collapse
Affiliation(s)
- Michael C H Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Campuzano O, Sarquella-Brugada G, Fernandez-Falgueras A, Cesar S, Coll M, Mates J, Arbelo E, Perez-Serra A, Del Olmo B, Jordá P, Fiol V, Iglesias A, Puigmulé M, Lopez L, Pico F, Brugada J, Brugada R. Genetic interpretation and clinical translation of minor genes related to Brugada syndrome. Hum Mutat 2019; 40:749-764. [PMID: 30821013 DOI: 10.1002/humu.23730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Brugada syndrome (BrS) is an inherited arrhythmogenic disease associated with sudden cardiac death. The main gene is SCN5A. Additional variants in 42 other genes have been reported as deleterious, although these variants have not yet received comprehensive pathogenic analysis. Our aim was to clarify the role of all currently reported variants in minor genes associated with BrS. We performed a comprehensive analysis according to the American College of Medical Genetics and Genomics guidelines of published clinical and basic data on all genes (other than SCN5A) related to BrS. Our results identified 133 rare variants potentially associated with BrS. After applying current recommendations, only six variants (4.51%) show a conclusive pathogenic role. All definitively pathogenic variants were located in four genes encoding sodium channels or related proteins: SLMAP, SEMA3A, SCNN1A, and SCN2B. In total, 33.83% of variants in 19 additional genes were potentially pathogenic. Beyond SCN5A, we conclude definitive pathogenic variants associated with BrS in four minor genes. The current list of genes associated with BrS, therefore, should include SCN5A, SLMAP, SEMA3A, SCNN1A, and SCN2B. Comprehensive genetic interpretation and careful clinical translation should be done for all variants currently classified as potentially deleterious for BrS.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Georgia Sarquella-Brugada
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain.,Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Anna Fernandez-Falgueras
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Monica Coll
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Jesus Mates
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Cardiology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandra Perez-Serra
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Bernat Del Olmo
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Paloma Jordá
- Cardiology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Marta Puigmulé
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Laura Lopez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Ferran Pico
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain
| | - Josep Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Cardiology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona, University of Girona, Girona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain.,Cardiology Service, Hospital Josep Trueta, University of Girona, Girona, Spain
| |
Collapse
|
22
|
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:38-44. [DOI: 10.1016/j.pbiomolbio.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
23
|
Zhao N, Mi L, Zhang X, Xu M, Yu H, Liu Z, Liu X, Guan G, Gao W, Wang J. Enhanced MiR-711 transcription by PPARγ induces endoplasmic reticulum stress-mediated apoptosis targeting calnexin in rat cardiomyocytes after myocardial infarction. J Mol Cell Cardiol 2018. [DOI: 10.1016/j.yjmcc.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Liang T, Jia Y, Zhang R, Du Q, Chang Z. Identification, molecular characterization and analysis of the expression pattern of $${\varvec{SoxF}}$$ SoxF subgroup genes the Yellow River carp, $${\varvec{Cyprinus} \varvec{carpio}}$$ Cyprinus carpio. J Genet 2018. [DOI: 10.1007/s12041-018-0898-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Onwuli DO, Yañez-Bisbe L, Pinsach-Abuin ML, Tarradas A, Brugada R, Greenman J, Pagans S, Beltran-Alvarez P. Do sodium channel proteolytic fragments regulate sodium channel expression? Channels (Austin) 2017; 11:476-481. [PMID: 28718687 DOI: 10.1080/19336950.2017.1355663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The cardiac voltage-gated sodium channel (gene: SCN5A, protein: NaV1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years. We have recently described the transcriptional regulation of SCN5A by GATA4 transcription factor. In this addendum to our study, we report our observations that 1) the linker between domains I and II (LDI-DII) of NaV1.5 contains a nuclear localization signal (residues 474-481) that is necessary to localize LDI-DII into the nucleus, and 2) nuclear LDI-DII activates the SCN5A promoter in gene reporter assays using cardiac-like H9c2 cells. Given that voltage-gated sodium channels are known targets of proteases such as calpain, we speculate that NaV1.5 degradation is signaled to the cell transcriptional machinery via nuclear localization of LDI-DII and subsequent stimulation of the SCN5A promoter.
Collapse
Affiliation(s)
- Donatus O Onwuli
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Laia Yañez-Bisbe
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain
| | - Mel Lina Pinsach-Abuin
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Anna Tarradas
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Ramon Brugada
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain.,e Cardiology Service , Hospital Josep Trueta , Girona , Spain
| | - John Greenman
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| | - Sara Pagans
- b Cardiovascular Genetics Center , Institut d'Investigació Biomèdica de Girona (IDIBGI), University of Girona , Girona , Spain.,c Medical Science Department , School of Medicine, University of Girona , Girona , Spain.,d Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Instituto de Salud Carlos III , Madrid , Spain
| | - Pedro Beltran-Alvarez
- a Biomedical Sciences , School of Life Sciences, University of Hull , Kingston upon Hull , UK
| |
Collapse
|
26
|
Moncayo-Arlandi J, Brugada R. Unmasking the molecular link between arrhythmogenic cardiomyopathy and Brugada syndrome. Nat Rev Cardiol 2017; 14:744-756. [DOI: 10.1038/nrcardio.2017.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|