1
|
Edelmann MP, Couperus S, Rodríguez-Robles E, Rivollier J, Roberts TM, Panke S, Marlière P. Evolving Escherichia coli to use a tRNA with a non-canonical fold as an adaptor of the genetic code. Nucleic Acids Res 2024:gkae806. [PMID: 39315692 DOI: 10.1093/nar/gkae806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
All known bacterial tRNAs adopt the canonical cloverleaf 2D and L-shaped 3D structures. We aimed to explore whether alternative tRNA structures could be introduced in bacterial translation. To this end, we crafted a vitamin-based genetic system to evolve Escherichia coli toward activity of structurally non-canonical tRNAs. The system reliably couples (escape frequency <10-12) growth with the activities of a novel orthogonal histidine suppressor tRNA (HisTUAC) and of the cognate ARS (HisS) via suppression of a GTA valine codon in the mRNA of an enzyme in thiamine biosynthesis (ThiN). Suppression results in the introduction of an essential histidine and thereby confers thiamine prototrophy. We then replaced HisTUAC in the system with non-canonical suppressor tRNAs and selected for growth. A strain evolved to utilize mini HisT, a tRNA lacking the D-arm, and we identified the responsible mutation in an RNase gene (pnp) involved in tRNA degradation. This indicated that HisS, the ribosome, and EF-Tu accept mini HisT ab initio, which we confirmed genetically and through in vitro translation experiments. Our results reveal a previously unknown flexibility of the bacterial translation machinery for the accepted fold of the adaptor of the genetic code and demonstrate the power of the vitamin-based suppression system.
Collapse
Affiliation(s)
- Martin P Edelmann
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sietse Couperus
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Emilio Rodríguez-Robles
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Julie Rivollier
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| | - Tania M Roberts
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zurich, 4056 Basel, Switzerland
| | - Philippe Marlière
- TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 75002 Paris, France
| |
Collapse
|
2
|
Soria S, Carreón-Rodríguez OE, de Anda R, Flores N, Escalante A, Bolívar F. Transcriptional and Metabolic Response of a Strain of Escherichia coli PTS - to a Perturbation of the Energetic Level by Modification of [ATP]/[ADP] Ratio. BIOTECH 2024; 13:10. [PMID: 38651490 PMCID: PMC11036233 DOI: 10.3390/biotech13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
The intracellular [ATP]/[ADP] ratio is crucial for Escherichia coli's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F1-ATPase genes in E. coli increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS- mutant of E. coli by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F1 subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of E. coli PB12 (PTS-) was achieved by the expression of the atpAGD operon encoding the soluble portion of ATP synthase F1-ATPase (strain PB12AGD+). The analysis of the physiological and metabolic response of the PTS- strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The apt mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the atp mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.
Collapse
Affiliation(s)
- Sandra Soria
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
- Laboratorio de Soluciones Biotecnológicas (LasoBiotc), Montevideo 11800, Uruguay
| | - Ofelia E. Carreón-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| |
Collapse
|
3
|
Nam SH, Ye DY, Hwang HG, Jung GY. Convergent Synthesis of Two Heterogeneous Fluxes from Glucose and Acetate for High-Yield Citramalate Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5797-5804. [PMID: 38465388 DOI: 10.1021/acs.jafc.3c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biological production of citramalate has garnered attention due to its wide application for food additives and pharmaceuticals, although improvement of yield is known to be challenging. When glucose is used as the sole carbon source, carbon loss through decarboxylation steps for providing acetyl-CoA from pyruvate is inevitable. To avoid this, we engineered a strain to co-utilize glucose and cost-effective acetate while preventing carbon loss for enhancing citramalate production. The production pathway diverged to independently supply the precursors required for the synthesis of citramalate from glucose and acetate, respectively. Moreover, the phosphotransferase system was inactivated and the acetate assimilation pathway and the substrate ratio were optimized to enable the simultaneous and efficient utilization of both carbon sources. This yielded results (5.0 g/L, 0.87 mol/mol) surpassing the yield and titer of the control strain utilizing glucose as the sole carbon source in flask cultures, demonstrating an economically efficient strain redesign strategy for synthesizing various products.
Collapse
Affiliation(s)
- Sung Hyun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
4
|
González‐Valdez A, Escalante A, Soberón‐Chávez G. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones. Microb Biotechnol 2024; 17:e14377. [PMID: 38041625 PMCID: PMC10832566 DOI: 10.1111/1751-7915.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Rhamnolipids (RL) are biosurfactants naturally produced by the opportunistic pathogen Pseudomonas aeruginosa. Currently, RL are commercialized for various applications and produced by Pseudomonas putida due to the health risks associated with their large-scale production by P. aeruginosa. In this work, we show that RL containing one or two rhamnose moieties (mono-RL or di-RL, respectively) can be produced by the innocuous soil-bacterium Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 at titres up to 66 mg/L (about 86% of the production of P. aeruginosa PAO1 in the same culture conditions). The production of RL depends on the expression of P. aeruginosa PAO1 genes encoding the enzymes RhlA, RhlB and RhlC. These genes were introduced in a plasmid, together with a transcriptional regulator (rhlR) forming part of the same operon, with and without RhlC. We show that the activation of rhlAB by RhlR depends on its interaction with P. chlororaphis endogenous acyl-homoserine lactones, which are synthetized by either PhzI or CsaI autoinducer synthases (producing 3-hydroxy-hexanoyl homoserine lactone, 3OH-C6-HSL, or 3-oxo-hexanoyl homoserine lactone, 3O-C6-HSL, respectively). P. chlororaphis transcriptional regulator couple with 3OH-C6-HSL is the primary activator of gene expression for phenazine-1-carboxylic acid (PCA) and phenazine-1-carboxamide (PCN) production in this soil bacterium. We show that RhlR coupled with 3OH-C6-HSL or 3O-C6-HSL promotes RL production and increases the production of PCA in P. chlororaphis. However, PhzR/3OH-C6-HSL or CsaR/3O-C6-HSL cannot activate the expression of the rhlAB operon to produce mono-RL. These results reveal a complex regulatory interaction between RhlR and P. chlororaphis quorum-sensing signals and highlight the biotechnology potential of P. chlororaphis ATCC 9446 expressing P. aeruginosa rhlAB-R or rhlAB-R-C for the industrial production of RL.
Collapse
Affiliation(s)
- Abigail González‐Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Gloria Soberón‐Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoCoyoacanMexico
| |
Collapse
|
5
|
Wang H, Wang L, Chen J, Hu M, Fang F, Zhou J. Promoting FADH 2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16681-16690. [PMID: 37877749 DOI: 10.1021/acs.jafc.3c05477] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydroxytyrosol is a natural polyphenolic compound widely used in the food and drug industries. The current commercial production of hydroxytyrosol relies mainly on plant extracts, which involve long extraction cycles and various raw materials. Microbial fermentation has potential value as an environmentally friendly and low-cost method. Here, a de novo biosynthetic pathway of hydroxytyrosol has been designed and constructed in an Escherichia coli strain with released tyrosine feedback inhibition. By introduction of hpaBC from E. coli and ARO10 and ADH6 from Saccharomyces cerevisiae, the de novo biosynthesis of hydroxytyrosol was achieved. An important finding in cofactor engineering is that the introduction of L-amino acid deaminase (LAAD) promotes not only cofactor regeneration but also metabolic flow redistribution. To further enhance the hydroxylation process, different 4-hydroxyphenylacetate 3-monooxygenase (hpaB) mutants and HpaBC proteins from different sources were screened. Finally, after optimization of the carbon source, pH, and seed medium, the optimum engineered strain produced 9.87 g/L hydroxytyrosol in a 5 L bioreactor. This represents the highest titer reported to date for de novo biosynthesis of hydroxytyrosol in microorganisms.
Collapse
Affiliation(s)
- Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Minglong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
An N, Zhou S, Chen X, Wang J, Sun X, Shen X, Yuan Q. High-yield production of β-arbutin by identifying and eliminating byproducts formation. Appl Microbiol Biotechnol 2023; 107:6193-6204. [PMID: 37597019 DOI: 10.1007/s00253-023-12706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/21/2023]
Abstract
β-Arbutin is a plant-derived glycoside and widely used in cosmetic and pharmaceutical industries because of its safe and effective skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. In recent years, microbial fermentation has become a highly promising method for the production of β-arbutin. However, this method suffers from low titer and low yield, which has become the bottleneck for its widely industrial application. In this study, we used β-arbutin to demonstrate methods for improving yields for industrial-scale production in Escherichia coli. First, the supply of precursors phosphoenolpyruvate and uridine diphosphate glucose was improved, leading to a 4.6-fold increase in β-arbutin production in shaking flasks. The engineered strain produced 36.12 g/L β-arbutin with a yield of 0.11 g/g glucose in a 3-L bioreactor. Next, based on the substrate and product's structural similarity, an endogenous O-acetyltransferase was identified as responsible for 6-O-acetylarbutin formation for the first time. Eliminating the formation of byproducts, including 6-O-acetylarbutin, tyrosine, and acetate, resulted in an engineered strain producing 43.79 g/L β-arbutin with a yield of 0.22 g/g glucose in fed-batch fermentation. Thus, the yield increased twofold by eliminating byproducts formation. To the best of our knowledge, this is the highest titer and yield of β-arbutin ever reported, paving the way for the industrial production of β-arbutin. This study demonstrated a systematic strategy to alleviate undesirable byproduct accumulation and improve the titer and yield of target products. KEY POINTS: • A systematic strategy to improve titer and yield was showed • Genes responsible for 6-O-acetylarbutin formation were firstly identified • 43.79 g/L β-arbutin was produced in bioreactor, which is the highest titer so far.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Shubin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
7
|
Carreón-Rodríguez OE, Gosset G, Escalante A, Bolívar F. Glucose Transport in Escherichia coli: From Basics to Transport Engineering. Microorganisms 2023; 11:1588. [PMID: 37375089 PMCID: PMC10305011 DOI: 10.3390/microorganisms11061588] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of E. coli for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways. The genome of E. coli MG1655 is 4,641,642 bp, corresponding to 4702 genes encoding 4328 proteins. The EcoCyc database describes 532 transport reactions, 480 transporters, and 97 proteins involved in sugar transport. Nevertheless, due to the high number of sugar transporters, E. coli uses preferentially few systems to grow in glucose as the sole carbon source. E. coli nonspecifically transports glucose from the extracellular medium into the periplasmic space through the outer membrane porins. Once in periplasmic space, glucose is transported into the cytoplasm by several systems, including the phosphoenolpyruvate-dependent phosphotransferase system (PTS), the ATP-dependent cassette (ABC) transporters, and the major facilitator (MFS) superfamily proton symporters. In this contribution, we review the structures and mechanisms of the E. coli central glucose transport systems, including the regulatory circuits recruiting the specific use of these transport systems under specific growing conditions. Finally, we describe several successful examples of transport engineering, including introducing heterologous and non-sugar transport systems for producing several valuable metabolites.
Collapse
Affiliation(s)
| | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico; (O.E.C.-R.); (G.G.)
| |
Collapse
|
8
|
Yeast Mannan-Rich Fraction Modulates Endogenous Reactive Oxygen Species Generation and Antibiotic Sensitivity in Resistant E. coli. Int J Mol Sci 2022; 24:ijms24010218. [PMID: 36613662 PMCID: PMC9820725 DOI: 10.3390/ijms24010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mannan-rich fraction (MRF) isolated from Saccharomyces cerevisiae has been studied for its beneficial impact on animal intestinal health. Herein, we examined how MRF affected the formation of reactive oxygen species (ROS), impacting antibiotic susceptibility in resistant Escherichia coli through the modulation of bacterial metabolism. The role of MRF in effecting proteomic change was examined using a proteomics-based approach. The results showed that MRF, when combined with bactericidal antibiotic treatment, increased ROS production in resistant E. coli by 59.29 ± 4.03% compared to the control (p ≤ 0.05). We further examined the effect of MRF alone and in combination with antibiotic treatment on E. coli growth and explored how MRF potentiates bacterial susceptibility to antibiotics via proteomic changes in key metabolic pathways. Herein we demonstrated that MRF supplementation in the growth media of ampicillin-resistant E. coli had a significant impact on the normal translational control of the central metabolic pathways, including those involved in the glycolysis-TCA cycle (p ≤ 0.05).
Collapse
|
9
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
10
|
Kim HJ, Jeong H, Lee SJ. Glucose Transport through N-Acetylgalactosamine Phosphotransferase System in Escherichia coli C Strain. J Microbiol Biotechnol 2022; 32:1047-1053. [PMID: 35791075 PMCID: PMC9628945 DOI: 10.4014/jmb.2205.05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
When ptsG, a glucose-specific phosphotransferase system (PTS) component, is deleted in Escherichia coli, growth can be severely poor because of the lack of efficient glucose transport. We discovered a new PTS transport system that could transport glucose through the growth-coupled experimental evolution of ptsG-deficient E. coli C strain under anaerobic conditions. Genome sequencing revealed mutations in agaR, which encodes a repressor of N-acetylgalactosamine (Aga) PTS expression in evolved progeny strains. RT-qPCR analysis showed that the expression of Aga PTS gene increased because of the loss-of-function of agaR. We confirmed the efficient Aga PTS-mediated glucose uptake by genetic complementation and anaerobic fermentation. We discussed the discovery of new glucose transporter in terms of different genetic backgrounds of E. coli strains, and the relationship between the pattern of mixed-acids fermentation and glucose transport rate.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3356 E-mail:
| |
Collapse
|
11
|
Kim K, Hou CY, Choe D, Kang M, Cho S, Sung BH, Lee DH, Lee SG, Kang TJ, Cho BK. Adaptive laboratory evolution of Escherichia coli W enhances gamma-aminobutyric acid production using glycerol as the carbon source. Metab Eng 2021; 69:59-72. [PMID: 34775076 DOI: 10.1016/j.ymben.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
The microbial conversion of glycerol into value-added commodity products has emerged as an attractive means to meet the demands of biosustainability. However, glycerol is a non-preferential carbon source for productive fermentation because of its low energy density. We employed evolutionary and metabolic engineering in tandem to construct an Escherichia coli strain with improved GABA production using glycerol as the feedstock carbon. Adaptive evolution of E. coli W under glycerol-limited conditions for 1300 generations harnessed an adapted strain with a metabolic system optimized for glycerol utilization. Mutation profiling, enzyme kinetic assays, and transcriptome analysis of the adapted strain allowed us to decipher the basis of glycerol adaptation at the molecular level. Importantly, increased substrate influx mediated by the mutant glpK and modulation of intracellular cAMP levels were the key drivers of improved fitness in the glycerol-limited condition. Leveraging the enhanced capability of glycerol utilization in the strain, we constructed a GABA-producing E. coli W-derivative with superior GABA production compared to the wild-type. Furthermore, rationally designed inactivation of the non-essential metabolic genes, including ackA, mgsA, and gabT, in the glycerol-adapted strain improved the final GABA titer and specific productivity by 3.9- and 4.3-fold, respectively, compared with the wild-type.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Nguyen TM, Telek S, Zicler A, Martinez JA, Zacchetti B, Kopp J, Slouka C, Herwig C, Grünberger A, Delvigne F. Reducing phenotypic instabilities of a microbial population during continuous cultivation based on cell switching dynamics. Biotechnol Bioeng 2021; 118:3847-3859. [PMID: 34129251 DOI: 10.1002/bit.27860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/19/2022]
Abstract
Predicting the fate of individual cells among a microbial population (i.e., growth and gene expression) remains a challenge, especially when this population is exposed to very dynamic environmental conditions, such as those encountered during continuous cultivation. Indeed, the dynamic nature of a continuous cultivation process implies the potential diversification of the microbial population resulting in genotypic and phenotypic heterogeneity. The present work focused on the induction of the arabinose operon in Escherichia coli as a model system to study this diversification process in continuous cultivations. As a preliminary step, the green fluorescent protein (GFP) level triggered by an arabinose-inducible ParaBAD promoter was tracked by flow cytometry in chemostat cultivations with glucose-arabinose co-feeding. For a wide range of glucose-arabinose co-feeding concentrations in the chemostats, the simultaneous occurrence of GFP positive and negative subpopulation was observed. In the second set of experiments, continuous cultivation was performed by adding glucose continuously and arabinose based on the capability of individual cells to switch from low GFP to high GFP expression states, performed with a technology setup called segregostat. In the segregostat cultivation mode, on-line flow cytometry analysis was used for adjusting the arabinose/glucose transitions based on the phenotypic switching profiles of the microbial population. This strategy allowed finding an appropriate arabinose pulsing frequency, leading to prolonged maintenance of the induction level with a limited increase in the phenotypic diversity for more than 60 generations. The results suggest that the steady forcing of individual cells into a given phenotypic trajectory may not be the best strategy for controlling cell populations. Instead, allowing individual cells to switch periodically around a predefined threshold seems to be a more robust strategy leading to oscillations, but within a predictable cell population behavior range.
Collapse
Affiliation(s)
- Thai M Nguyen
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Samuel Telek
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Andrew Zicler
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Juan A Martinez
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Boris Zacchetti
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria.,Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld Germany & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
13
|
Evolution of an Escherichia coli PTS - strain: a study of reproducibility and dynamics of an adaptive evolutive process. Appl Microbiol Biotechnol 2020; 104:9309-9325. [PMID: 32954454 DOI: 10.1007/s00253-020-10885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adaptive laboratory evolution (ALE) has been used to study and solve pressing questions about evolution, especially for the study of the development of mutations that confer increased fitness during evolutionary processes. In this contribution, we investigated how the evolutionary process conducted with the PTS- mutant of Escherichia coli PB11 in three parallel batch cultures allowed the restoration of rapid growth with glucose as the carbon source. The significant findings showed that genomic sequence analysis of a set of newly evolved mutants isolated from ALE experiments 2-3 developed some essential mutations, which efficiently improved the fast-growing phenotypes throughout different fitness landscapes. Regulator galR was the target of several mutations such as SNPs, partial and total deletions, and insertion of an IS1 element and thus indicated the relevance of a null mutation of this gene in the adaptation of the evolving population of PB11 during the parallel ALE experiments. These mutations resulted in the selection of MglB and GalP as the primary glucose transporters by the evolving population, but further selection of at least a second adaptive mutation was also necessary. We found that mutations in the yfeO, rppH, and rng genes improved the fitness advantage of evolving PTS- mutants and resulted in amplification of leaky activity in Glk for glucose phosphorylation and upregulation of glycolytic and other growth-related genes. Notably, we determined that these mutations appeared and were fixed in the evolving populations between 48 and 72 h of cultivation, which resulted in the selection of fast-growing mutants during one ALE experiments in batch cultures of 80 h duration.Key points• ALE experiments selected evolved mutants through different fitness landscapes in which galR was the target of different mutations: SNPs, deletions, and insertion of IS.• Key mutations in evolving mutants appeared and fixed at 48-72 h of cultivation.• ALE experiments led to increased understanding of the genetics of cellular adaptation to carbon source limitation.
Collapse
|
14
|
Sato N, Kishida M, Nakano M, Hirata Y, Tanaka T. Metabolic Engineering of Shikimic Acid-Producing Corynebacterium glutamicum From Glucose and Cellobiose Retaining Its Phosphotransferase System Function and Pyruvate Kinase Activities. Front Bioeng Biotechnol 2020; 8:569406. [PMID: 33015020 PMCID: PMC7511668 DOI: 10.3389/fbioe.2020.569406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The production of aromatic compounds by microbial production is a promising and sustainable approach for producing biomolecules for various applications. We describe the metabolic engineering of Corynebacterium glutamicum to increase its production of shikimic acid. Shikimic acid and its precursor-consuming pathways were blocked by the deletion of the shikimate kinase, 3-dehydroshikimate dehydratase, shikimate dehydratase, and dihydroxyacetone phosphate phosphatase genes. Plasmid-based expression of shikimate pathway genes revealed that 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase, encoded by aroG, and DHQ synthase, encoded by aroB, are key enzymes for shikimic acid production in C. glutamicum. We constructed a C. glutamicum strain with aroG, aroB and aroE3 integrated. This strain produced 13.1 g/L of shikimic acid from 50 g/L of glucose, a yield of 0.26 g-shikimic acid/g-glucose, and retained both its phosphotransferase system and its pyruvate kinase activity. We also endowed β-glucosidase secreting ability to this strain. When cellobiose was used as a carbon source, the strain produced shikimic acid at 13.8 g/L with the yield of 0.25 g-shikimic acid/g-glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing shikimic acid and its derivatives using an engineered C. glutamicum strain from cellobiose as well as glucose.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
15
|
Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing Escherichia coli Strains That Can Be Applied in the Generation of Aromatic-Compound-Producing Bacteria. Appl Environ Microbiol 2020; 86:AEM.00525-20. [PMID: 32414798 DOI: 10.1128/aem.00525-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Many phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk. Therefore, we engineered here the Escherichia coli chromosome to create superior phenylalanine- and tyrosine-overproducing strains that did not depend on plasmid-based expression. Integration into the E. coli chromosome of two central metabolic pathway genes (ppsA and tktA) and eight shikimate pathway genes (aroA, aroB, aroC, aroD, aroE, aroGfbr , aroL, and pheAfbr ), controlled by the T7lac promoter, resulted in excellent titers and yields of phenylalanine; the superscript "fbr" indicates that the enzyme encoded by the gene was feedback resistant. The generated strain could be changed to be a superior tyrosine-producing strain by replacing pheAfbr with tyrAfbr A rational approach revealed that integration of seven genes (ppsA, tktA, aroA, aroB, aroC, aroGfbr , and pheAfbr ) was necessary as the minimum gene set for high-yield phenylalanine production in E. coli MG1655 (tyrR, adhE, ldhA, pykF, pflDC, and ascF deletant). The phenylalanine- and tyrosine-producing strains were further applied to generate phenyllactic acid-, 4-hydroxyphenyllactic acid-, tyramine-, and tyrosol-producing strains; yield of these aromatic compounds increased proportionally to the increase in phenylalanine and tyrosine yields.IMPORTANCE Plasmid-free strains for aromatic compound production are desired in the aspect of industrial application. However, the yields of phenylalanine and tyrosine have been considerably lower in plasmid-free strains than in plasmid-based strains. The significance of this research is that we succeeded in generating superior plasmid-free phenylalanine- and tyrosine-producing strains by engineering the E. coli chromosome, which was comparable to that in plasmid-based strains. The generated strains have a potential to generate superior strains for the production of aromatic compounds. Actually, we demonstrated that four kinds of aromatic compounds could be produced from glucose with high yields (e.g., 0.28 g tyrosol/g glucose).
Collapse
|
16
|
Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Front Bioeng Biotechnol 2020; 8:585. [PMID: 32582683 PMCID: PMC7296177 DOI: 10.3389/fbioe.2020.00585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Beta (β)-carotene (C40H56; a provitamin) is a particularly important carotenoid for human health. Many studies have focused on engineering Escherichia coli as an efficient heterologous producer of β-carotene. Moreover, several strains with potential for use in the industrial production of this provitamin have already been constructed via different metabolic engineering strategies. In this study, we aimed to improve the β-carotene-producing capacity of our previously engineered E. coli strain ZF43ΔgdhA through further gene deletion and metabolic pathway manipulations. Deletion of the zwf gene increased the resultant strain's β-carotene production and content by 5.1 and 32.5%, respectively, relative to the values of strain ZF43ΔgdhA, but decreased the biomass by 26.2%. Deletion of the ptsHIcrr operon further increased the β-carotene production titer from 122.0 to 197.4 mg/L, but the provitamin content was decreased. Subsequently, comparative transcriptomic analysis was used to explore the dynamic transcriptional responses of the strains to the blockade of the pentose phosphate pathway and inactivation of the phosphotransferase system. Lastly, based on the analyses of comparative transcriptome and reduction cofactor, several strategies to increase the NADPH supply were evaluated for enhancement of the β-carotene content. The combination of yjgB gene deletion and nadK overexpression led to increased β-carotene production and content. The best strain, ECW4/p5C-nadK, produced 266.4 mg/L of β-carotene in flask culture and 2,579.1 mg/L in a 5-L bioreactor. The latter value is the highest reported from production via the methylerythritol phosphate pathway in E. coli. Although the strategies applied is routine in this study, the combinations reported were first implemented, are simple but efficient and will be helpful for the production of many other natural products, especially isoprenoids. Importantly, we demonstrated that the use of the methylerythritol phosphate pathway alone for efficient β-carotene biosynthesis could be achieved via appropriate modifications of the cell metabolic functions.
Collapse
Affiliation(s)
- Yuanqing Wu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Panpan Yan
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yang Li
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Shihezi University, Shihezi, China
| | - Xuewei Liu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueming Zhao
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Alva A, Sabido-Ramos A, Escalante A, Bolívar F. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl Microbiol Biotechnol 2020; 104:1463-1479. [PMID: 31900563 DOI: 10.1007/s00253-019-10335-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022]
Abstract
The fast-growing capability of Escherichia coli strains used to produce industrially relevant metabolites relies on their capability to transport efficiently glucose or potential industrial feedstocks such as sucrose or xylose as carbon sources. E. coli imports extracellular glucose into the periplasmic space across the outer membrane porins: OmpC, OmpF, and LamB. As the internal membrane is an impermeable barrier for sugars, the cell employs several primary and secondary active transport systems, and the phosphoenolpyruvate (PEP)-sugar phosphotransferase (PTS) system for glucose transport. PTS:glucose is the preferred system by E. coli to transport and phosphorylate the periplasmic glucose; nevertheless, PTS imposes a strict metabolic control mechanism on the preferential consumption of glucose over other carbon sources in sugar mixtures such as glucose and xylose resulting from the hydrolysis of lignocellulosic biomass, by the carbon catabolite repression. In this contribution, we summarize the major sugar transport systems for glucose and disaccharide transport, the exhibited substrate plasticity, and their impact on the growth of E. coli, highlighting the relevance of PTS in the control of the expression of genes for the transport and catabolism of other sugars as xylose. We discuss the strategies developed by evolved mutants of E. coli during adaptive laboratory evolution experiments to overcome the nutritional stress condition imposed by inactivation of PTS as a strategy for the selection of fast-growing derivatives in glucose, xylose, or mixtures of glucose:xylose. This approach results in the recruitment of other primary and secondary active transporters, demonstrating relevant sugar plasticity in derivative-evolved mutants. Elucidation of the molecular and biochemical basis of sugar-transport substrate plasticity represents a consistent approach for sugar-transport system engineering for the design of efficient E. coli derivative strains with improved substrate assimilation for biotechnological purposes.
Collapse
Affiliation(s)
- Alma Alva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Andrea Sabido-Ramos
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
18
|
Zhu L, Fang Y, Ding Z, Zhang S, Wang X. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnol Appl Biochem 2019; 66:962-976. [PMID: 31486127 DOI: 10.1002/bab.1813] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Wild-type Escherichia coli MG1655 usually does not accumulate l-threonine. In this study, the effects of 13 genes related to the glucose uptake, glycolysis, TCA cycle, l-threonine biosynthesis, or their regulation on l-threonine accumulation in E. coli MG1655 were investigated. Sixteen E. coli mutant strains were constructed by chromosomal deletion or overexpression of one or more genes of rsd, ptsG, ptsH, ptsI, crr, galP, glk, iclR, and gltA; the plasmid pFW01-thrA*BC-rhtC harboring the key genes for l-threonine biosynthesis and secretion was introduced into these mutants. The analyses on cell growth, glucose consumption, and l-threonine production of these recombinant strains showed that most of these strains could accumulate l-threonine, and the highest yield was obtained in WMZ016/pFW01-thrA*BC-rhtC. WMZ016 was derived from MG1655 by deleting crr and iclR and enhancing the expression of gltA. WMZ016/pFW01-thrA*BC-rhtC could produce 17.98 g/L l-threonine with a yield of 0.346 g/g glucose, whereas the control strain MG1655/pFW01-thrA*BC-rhtC could only produce 0.68 g/L l-threonine. In addition, WMZ016/pFW01-thrA*BC-rhtC could tolerate the high concentration of glucose and produced no detectable by-products; therefore, it should be an ideal platform strain for further development. The results indicate that manipulating the glucose uptake and TCA cycle could efficiently increase l-threonine production in E. coli.
Collapse
Affiliation(s)
- Lifei Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhixiang Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuyan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Kim J, Tremaine M, Grass JA, Purdy HM, Landick R, Kiley PJ, Reed JL. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. Biotechnol J 2019; 14:e1800441. [PMID: 31297978 DOI: 10.1002/biot.201800441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/08/2019] [Indexed: 11/10/2022]
Abstract
Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome-scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole-genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations' involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next-generation biofuels.
Collapse
Affiliation(s)
- Joonhoon Kim
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Mary Tremaine
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jeffrey A Grass
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Hugh M Purdy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| | - Robert Landick
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Patricia J Kiley
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53711, USA
| | - Jennifer L Reed
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53711, USA.,Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53711, USA
| |
Collapse
|
20
|
Sigala JC, Quiroz L, Arteaga E, Olivares R, Lara AR, Martinez A. Physiological and transcriptional comparison of acetate catabolism between Acinetobacter schindleri ACE and Escherichia coli JM101. FEMS Microbiol Lett 2019; 366:5529389. [DOI: 10.1093/femsle/fnz151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023] Open
Abstract
ABSTRACTAcinetobacter bacteria preferentially use gluconeogenic substrates instead of hexoses or pentoses. Accordingly, Acinetobacter schindleri ACE reaches a high growth rate on acetate but is unable to grow on glucose, xylose or arabinose. In this work, we compared the physiology of A. schindleri ACE and Escherichia coli JM101 growing on acetate as the carbon source. In contrast to JM101, ACE grew on acetate threefold faster, had a twofold higher biomass yield, and a 45% higher specific acetate consumption rate. Transcriptional analysis revealed that genes like ackA, pta, aceA, glcB, fumA, tktA and talA were overexpressed while acsA, sfcA, ppc and rpiA were underexpressed in ACE relative to JM101. This transcriptional profile together with carbon flux balance analysis indicated that ACE forms acetyl-CoA preferentially by the AckA-Pta (acetate kinase-phosphotransacetylase) pathway instead of Acs (acetyl-CoA synthetase) and that the glyoxylate shunt and tricarboxylic acid cycle are more active in ACE than in JM101. Moreover, in ACE, ribose 5-phosphate and erythrose 4-phosphate are formed from trioses, and NADPH is mainly produced by isocitrate dehydrogenase. This knowledge will contribute to an understanding of the carbon metabolism of Acinetobacter species of medical, biotechnological and microbiological relevance.
Collapse
Affiliation(s)
- Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de México 05348, México
| | - Lucy Quiroz
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México 05348, México
| | - Eduardo Arteaga
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México 05348, México
| | - Roberto Olivares
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de México 05348, México
| | - Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Delegación Cuajimalpa, Ciudad de México 05348, México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Mor. 62210, México
| |
Collapse
|
21
|
Martínez I, Zelada P, Guevara F, Andler R, Urtuvia V, Pacheco-Leyva I, Díaz-Barrera A. Coenzyme Q production by metabolic engineered Escherichia coli strains in defined medium. Bioprocess Biosyst Eng 2019; 42:1143-1149. [DOI: 10.1007/s00449-019-02111-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/30/2022]
|
22
|
Fragoso-Jiménez JC, Baert J, Nguyen TM, Liu W, Sassi H, Goormaghtigh F, Van Melderen L, Gaytán P, Hernández-Chávez G, Martinez A, Delvigne F, Gosset G. Growth-dependent recombinant product formation kinetics can be reproduced through engineering of glucose transport and is prone to phenotypic heterogeneity. Microb Cell Fact 2019; 18:26. [PMID: 30710996 PMCID: PMC6359759 DOI: 10.1186/s12934-019-1073-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Escherichia coli W3110 and a group of six isogenic derivatives, each displaying distinct specific rates of glucose consumption were characterized to determine levels of GFP production and population heterogeneity. These strains have single or combinatory deletions in genes encoding phosphoenolpyruvate:sugar phosphotransferase system (PTS) permeases as PtsG and ManX, as well as common components EI, Hpr protein and EIIA, also the non-PTS Mgl galactose/glucose ABC transporter. They have been transformed for expressing GFP based on a lac-based expression vector, which is subject to bistability. Results These strains displayed specific glucose consumption and growth rates ranging from 1.75 to 0.45 g/g h and 0.54 to 0.16 h−1, respectively. The rate of acetate production was strongly reduced in all mutant strains when compared with W3110/pV21. In bioreactor cultures, wild type W3110/pV21 produced 50.51 mg/L GFP, whereas strains WG/pV21 with inactive PTS IICBGlc and WGM/pV21 with the additional inactivation of PTS IIABMan showed the highest titers of GFP, corresponding to 342 and 438 mg/L, respectively. Moreover, we showed experimentally that bistable expression systems, as lac-based ones, induce strong phenotypic segregation among microbial populations. Conclusions We have demonstrated that reduction on glucose consumption rate in E. coli leads to an improvement of GFP production. Furthermore, from the perspective of phenotypic heterogeneity, we observed in this case that heterogeneous systems are also the ones leading to the highest performance. This observation suggests reconsidering the generally accepted proposition stating that phenotypic heterogeneity is generally unwanted in bioprocess applications.![]() Electronic supplementary material The online version of this article (10.1186/s12934-019-1073-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Carlos Fragoso-Jiménez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jonathan Baert
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Thai Minh Nguyen
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Wenzheng Liu
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hosni Sassi
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Frédéric Goormaghtigh
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Paul Gaytán
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
23
|
Zhu DQ, Wu JR, Zhan XB, Zhu L, Jiang Y. Enhanced N-acetyl-D-neuraminic production from glycerol and N-acetyl-D-glucosamine by metabolically engineered Escherichia coli with a two-stage pH-shift control strategy. J Ind Microbiol Biotechnol 2019; 46:125-132. [PMID: 30623269 DOI: 10.1007/s10295-018-02132-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
Typical N-acetyl-D-neuraminic acid (Neu5Ac) production uses N-acetyl-D-glucosamine (GlcNAc) and excess pyruvate as substrates in the enzymatic or whole-cell biocatalysis process. In a previous study, a Neu5Ac-producing biocatalytic process via engineered Escherichia coli SA-05/pDTrc-AB/pCDF-pck-ppsA was constructed without exogenous pyruvate. In this study, glycerol was found to be a good energy source compared with glucose for the catalytic system with resting cells, and Neu5Ac production increased to 13.97 ± 0.27 g L-1. In addition, a two-stage pH shift strategy was carried out, and the Neu5Ac yield was improved to 14.61 ± 0.31 g L-1. The GlcNAc concentration for Neu5Ac production was optimized. Finally, an integrated strategy was developed for Neu5Ac production, and the Neu5Ac yield reached as high as 18.17 ± 0.27 g L-1. These results provide a new biocatalysis technology for Neu5Ac production without exogenous pyruvate.
Collapse
Affiliation(s)
- De-Qiang Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jian-Rong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Li Zhu
- Jiangsu Rayguang Biotech Co. Ltd., Wuxi, 214122, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Díaz-Quiroz DC, Cardona-Félix CS, Viveros-Ceballos JL, Reyes-González MA, Bolívar F, Ordoñez M, Escalante A. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J Enzyme Inhib Med Chem 2018; 33:397-404. [PMID: 29363372 PMCID: PMC6009893 DOI: 10.1080/14756366.2017.1422125] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/25/2022] Open
Abstract
Shikimic acid (SA) pathway is the common route used by bacteria, plants, fungi, algae, and certain Apicomplexa parasites for the biosynthesis of aromatic amino acids and other secondary metabolites. As this essential pathway is absent in mammals designing inhibitors against implied enzymes may lead to the development of antimicrobial and herbicidal agents harmless to humans. Shikimate dehydrogenase (SDH) is the fourth enzyme of the SA pathway. In this contribution, a series of SA amide derivatives were synthesised and evaluated for in vitro SDH inhibition and antibacterial activity against Escherichia coli. All tested compounds showed to be mixed type inhibitors; diamide derivatives displayed more inhibitory activity than synthesised monoamides. Among the evaluated compounds, molecules called 4a and 4b were the most active derivatives with IC50 588 and 589 µM, respectively. Molecular modelling studies suggested two different binding modes of monoamide and diamide derivatives to the SDH enzyme of E. coli.
Collapse
Affiliation(s)
- Dulce Catalina Díaz-Quiroz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - César Salvador Cardona-Félix
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- CONACyT – Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, México
| | | | | | - Franciso Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Mario Ordoñez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
25
|
Martínez JA, Rodriguez A, Moreno F, Flores N, Lara AR, Ramírez OT, Gosset G, Bolivar F. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production. BMC SYSTEMS BIOLOGY 2018; 12:102. [PMID: 30419897 PMCID: PMC6233605 DOI: 10.1186/s12918-018-0632-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/12/2018] [Indexed: 11/24/2022]
Abstract
Background Classic metabolic engineering strategies often induce significant flux imbalances to microbial metabolism, causing undesirable outcomes such as suboptimal conversion of substrates to products. Several mathematical frameworks have been developed to understand the physiological and metabolic state of production strains and to identify genetic modification targets for improved bioproduct formation. In this work, a modeling approach was applied to describe the physiological behavior and the metabolic fluxes of a shikimic acid overproducing Escherichia coli strain lacking the major glucose transport system, grown on complex media. Results The obtained flux distributions indicate the presence of high fluxes through the pentose phosphate and Entner-Doudoroff pathways, which could limit the availability of erythrose-4-phosphate for shikimic acid production even with high flux redirection through the pentose phosphate pathway. In addition, highly active glyoxylate shunt fluxes and a pyruvate/acetate cycle are indicators of overflow glycolytic metabolism in the tested conditions. The analysis of the combined physiological and flux response surfaces, enabled zone allocation for different physiological outputs within variant substrate conditions. This information was then used for an improved fed-batch process designed to preserve the metabolic conditions that were found to enhance shikimic acid productivity. This resulted in a 40% increase in the shikimic acid titer (60 g/L) and 70% increase in volumetric productivity (2.45 gSA/L*h), while preserving yields, compared to the batch process. Conclusions The combination of dynamic metabolic modeling and experimental parameter response surfaces was a successful approach to understand and predict the behavior of a shikimic acid producing strain under variable substrate concentrations. Response surfaces were useful for allocating different physiological behavior zones with different preferential product outcomes. Both model sets provided information that could be applied to enhance shikimic acid production on an engineered shikimic acid overproducing Escherichia coli strain. Electronic supplementary material The online version of this article (10.1186/s12918-018-0632-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan A Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Alberto Rodriguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Fabian Moreno
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Alvaro R Lara
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Delegación Cuajimalpa de Morelos, México D.F., 05348, Mexico
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México
| | - Francisco Bolivar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210, Morelos, México.
| |
Collapse
|
26
|
Aguilar C, Martínez-Batallar G, Flores N, Moreno-Avitia F, Encarnación S, Escalante A, Bolívar F. Analysis of differentially upregulated proteins in ptsHIcrr - and rppH - mutants in Escherichia coli during an adaptive laboratory evolution experiment. Appl Microbiol Biotechnol 2018; 102:10193-10208. [PMID: 30284012 DOI: 10.1007/s00253-018-9397-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022]
Abstract
The previous deletion of the cytoplasmic components of the phosphotransferase system (PTS) in Escherichia coli JM101 resulted in the PTS- derivative strain PB11 with severely impaired growth capability in glucose as the sole carbon source. Previous adaptive laboratory evolution (ALE) experiment led to select a fast-growing strain named PB12 from PB11. Comparative genome analysis of PB12 showed a chromosomal deletion, which result in the loss of several genes including rppH which codes for the RNA pyrophosphohydrolase RppH, involved in the preparation of hundreds of mRNAs for further degradation by RNase E. Previous inactivation of rppH in PB11 (PB11rppH-) improved significantly its growing capabilities and increased several mRNAs respect its parental strain PB11. These previous results led to propose to the PB11rppH- mutant as an intermediate between PB11 and PB12 strains merged during the early ALE experiment. In this contribution, we report the metabolic response to the PTS- and rppH- mutations in the deep of a proteomic approach to understanding the relevance of rppH- phenotype during an ALE experiment. Differentially upregulated proteins between the wild-type JM101/PB11, PB11/PB11rppH-, and PB11/PB12 comparisons led to identifying 45 proteins between strain comparisons. Downregulated or upregulated proteins in PB11rppH- were found expressed at an intermediate level with respect to PB11 and PB12. Many of these proteins were found involved in non-previously metabolic traits reported in the study of the PTS- strains, including glucose, amino acids, ribose transport; amino acid biosynthesis; NAD biosynthesis/salvage pathway, biosynthesis of Ac-CoA precursors; detoxification and degradation pathways; stress response; protein synthesis; and possible mutator activities between comparisons. No changes were found in the expression of galactose permease GalP, previously proposed as the primary glucose transporter in the absence of PTS selected by the PTS- derivatives during the ALE experiment. This result suggests that the evolving PTS- population selected other transporters such as LamB, MglB, and ManX instead of GalP for glucose uptake during the early ALE experiment. Analysis of the biological relevance of the metabolic traits developed by the studied strains provided valuable information to understand the relevance of the rppH- mutation in the PTS- background during an ALE experiment as a strategy for the selection of valuable phenotypes for metabolic engineering purposes.
Collapse
Affiliation(s)
- César Aguilar
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Gabriel Martínez-Batallar
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - Fabián Moreno-Avitia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnación
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos, Mexico.,Member of El Colegio Nacional, Ciudad de México, México
| |
Collapse
|
27
|
Abernathy MH, Zhang Y, Hollinshead WD, Wang G, Baidoo EEK, Liu T, Tang YJ. Comparative studies of glycolytic pathways and channeling under
in vitro
and
in vivo
modes. AIChE J 2018. [DOI: 10.1002/aic.16367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mary H. Abernathy
- Dept. of Energy, Environmental and Chemical Engineering Washington University St. Louis MO 63130
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education and Wuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Whitney D. Hollinshead
- Dept. of Energy, Environmental and Chemical Engineering Washington University St. Louis MO 63130
| | - George Wang
- Lawrence Berkeley National Laboratory Emeryville CA 64608
| | | | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education and Wuhan University School of Pharmaceutical Sciences Wuhan 430071 China
| | - Yinjie J. Tang
- Dept. of Energy, Environmental and Chemical Engineering Washington University St. Louis MO 63130
| |
Collapse
|
28
|
Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metab Eng 2018; 48:233-242. [DOI: 10.1016/j.ymben.2018.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022]
|
29
|
Liu Y, Xu Y, Ding D, Wen J, Zhu B, Zhang D. Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnol 2018; 18:5. [PMID: 29382315 PMCID: PMC5791370 DOI: 10.1186/s12896-018-0418-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/18/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli. RESULTS We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp01 strain. In addition, the HTH domain of the transcription factor TyrR was engineered to decrease the repression on the transcriptional levels of L-Phe pathway enzymes. Finally, proteomics analysis demonstrated the third step of the SHIK pathway (catalyzed via AroD) as the rate-limiting step for L-Phe production. After optimization of the aroD promoter strength, the titer of L-Phe increased by 13.3%. Analysis of the transcriptional level of genes involved in the central metabolic pathways and L-Phe biosynthesis via RT-PCR showed that the recombinant L-Phe producer exhibited a great capability in the glucose utilization and precursor (PEP and E4P) generation. Via systems level engineering, the L-Phe titer of Xllp21 strain reached 72.9 g/L in a 5 L fermenter under the non-optimized fermentation conditions, which was 1.62-times that of the original strain Xllp01. CONCLUSION The metabolic engineering strategy reported here can be broadly employed for developing genetically defined organisms for the efficient production of other aromatic amino acids and derived compounds.
Collapse
Affiliation(s)
- Yongfei Liu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Yiran Xu
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dongqin Ding
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Jianping Wen
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Dawei Zhang
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China. .,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, People's Republic of China.
| |
Collapse
|
30
|
Enjalbert B, Millard P, Dinclaux M, Portais JC, Létisse F. Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway. Sci Rep 2017; 7:42135. [PMID: 28186174 PMCID: PMC5301487 DOI: 10.1038/srep42135] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli excretes acetate upon growth on fermentable sugars, but the regulation of this production remains elusive. Acetate excretion on excess glucose is thought to be an irreversible process. However, dynamic 13C-metabolic flux analysis revealed a strong bidirectional exchange of acetate between E. coli and its environment. The Pta-AckA pathway was found to be central for both flux directions, while alternative routes (Acs or PoxB) play virtually no role in glucose consumption. Kinetic modelling of the Pta-AckA pathway predicted that its flux is thermodynamically controlled by the extracellular acetate concentration in vivo. Experimental validations confirmed that acetate production can be reduced and even reversed depending solely on its extracellular concentration. Consistently, the Pta-AckA pathway can rapidly switch from acetate production to consumption. Contrary to current knowledge, E. coli is thus able to co-consume glucose and acetate under glucose excess. These metabolic capabilities were confirmed on other glycolytic substrates which support the growth of E. coli in the gut. These findings highlight the dual role of the Pta-AckA pathway in acetate production and consumption during growth on glycolytic substrates, uncover a novel regulatory mechanism that controls its flux in vivo, and significantly expand the metabolic capabilities of E. coli.
Collapse
Affiliation(s)
- Brice Enjalbert
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Mickael Dinclaux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| |
Collapse
|
31
|
Long CP, Au J, Sandoval NR, Gebreselassie NA, Antoniewicz MR. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli. Nat Commun 2017; 8:14316. [PMID: 28128209 PMCID: PMC5290146 DOI: 10.1038/ncomms14316] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/16/2016] [Indexed: 01/29/2023] Open
Abstract
The bacterial phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) consists of cascading phosphotransferases that couple the simultaneous import and phosphorylation of a variety of sugars to the glycolytic conversion of phosphoenolpyruvate (PEP) to pyruvate. As the primary route of glucose uptake in E. coli, the PTS plays a key role in regulating central carbon metabolism and carbon catabolite repression, and is a frequent target of metabolic engineering interventions. Here we show that Enzyme I, the terminal phosphotransferase responsible for the conversion of PEP to pyruvate, is responsible for a significant in vivo flux in the reverse direction (pyruvate to PEP) during both gluconeogenic and glycolytic growth. We use 13C alanine tracers to quantify this back-flux in single and double knockouts of genes relating to PEP synthetase and PTS components. Our findings are relevant to metabolic engineering design and add to our understanding of gene-reaction connectivity in E. coli.
Collapse
Affiliation(s)
- Christopher P. Long
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark Delaware 19716, USA
| | - Jennifer Au
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark Delaware 19716, USA
| | - Nicholas R. Sandoval
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark Delaware 19716, USA
| | - Nikodimos A. Gebreselassie
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark Delaware 19716, USA
| | - Maciek R. Antoniewicz
- Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark Delaware 19716, USA
| |
Collapse
|
32
|
García S, Flores N, De Anda R, Hernández G, Gosset G, Bolívar F, Escalante A. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS - Strain of Escherichia coli. J Mol Microbiol Biotechnol 2016; 27:11-21. [DOI: 10.1159/000450611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
The culture of engineered <i>Escherichia coli</i> for shikimic acid (SA) production results in the synthesis of quinic acid (QA) and dehydroshikimic acid (DHS), reducing SA yield and impairing downstream processes. The synthesis of QA by quinate/shikimate dehydrogenase (YdiB, <i>ydiB</i>) has been previously proposed; however, the precise role for this enzyme in the production of QA in engineered strains of <i>E. coli</i> for SA production remains unclear. We report the effect of the inactivation or the overexpression of <i>ydiB</i> in <i>E. coli</i> strain PB12.SA22 on SA, QA, and DHS production in batch fermentor cultures. The results showed that the inactivation of <i>ydiB </i>resulted in a 75% decrease in the molar yield of QA and a 6.17% reduction in the yield of QA (mol/mol) relative to SA with respect to the parental strain. The overexpression of <i>ydiB</i> caused a 500% increase in the molar yield of QA and resulted in a 152% increase in QA (mol/mol) relative to SA, with a sharp decrease in SA production. Production of SA, QA, and DHS in parental and derivative <i>ydiB </i>strains suggests that the synthesis of QA results from the reduction of 3-dehydroquinate by YdiB before its conversion to DHS.
Collapse
|
33
|
Liu X, Lin J, Hu H, Zhou B, Zhu B. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Enzyme Microb Technol 2016; 82:96-104. [DOI: 10.1016/j.enzmictec.2015.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023]
|
34
|
Yao R, Xiong D, Hu H, Wakayama M, Yu W, Zhang X, Shimizu K. Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and (13)C metabolic flux analysis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:175. [PMID: 27555881 PMCID: PMC4994220 DOI: 10.1186/s13068-016-0591-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol, a byproduct of biodiesel, has become a readily available and inexpensive carbon source for the production of high-value products. However, the main drawback of glycerol utilization is the low consumption rate and shortage of NADPH formation, which may limit the production of NADPH-requiring products. To overcome these problems, we constructed a carbon catabolite repression-negative ΔptsGglpK* mutant by both blocking a key glucose PTS transporter and enhancing the glycerol conversion. The mutant can recover normal growth by co-utilization of glycerol and glucose after loss of glucose PTS transporter. To reveal the metabolic potential of the ΔptsGglpK* mutant, this study examined the flux distributions and regulation of the co-metabolism of glycerol and glucose in the mutant. RESULTS By labeling experiments using [1,3-(13)C]glycerol and [1-(13)C]glucose, (13)C metabolic flux analysis was employed to decipher the metabolisms of both the wild-type strain and the ΔptsGglpK* mutant in chemostat cultures. When cells were maintained at a low dilution rate (0.1 h(-1)), the two strains showed similar fluxome profiles. When the dilution rate was increased, both strains upgraded their pentose phosphate pathway, glycolysis and anaplerotic reactions, while the ΔptsGglpK* mutant was able to catabolize much more glycerol than glucose (more than tenfold higher). Compared with the wild-type strain, the mutant repressed its flux through the TCA cycle, resulting in higher acetate overflow. The regulation of fluxomes was consistent with transcriptional profiling of several key genes relevant to the TCA cycle and transhydrogenase, namely gltA, icdA, sdhA and pntA. In addition, cofactor fluxes and their pool sizes were determined. The ΔptsGglpK* mutant affected the redox NADPH/NADH state and reduced the ATP level. Redox signaling activated the ArcA regulatory system, which was responsible for TCA cycle repression. CONCLUSIONS This work employs both (13)C-MFA and transcription/metabolite analysis for quantitative investigation of the co-metabolism of glycerol and glucose in the ΔptsGglpK* mutant. The ArcA regulatory system dominates the control of flux redistribution. The ΔptsGglpK* mutant can be used as a platform for microbial cell factories for the production of biofuels and biochemicals, since most of fuel molecule (e.g., alcohols) synthesis requires excess reducing equivalents.
Collapse
Affiliation(s)
- Ruilian Yao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Dewang Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Masataka Wakayama
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| | - Wenjuan Yu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Kazuyuki Shimizu
- Institute for Advanced Biosciences, Keio University, 246-2, Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052 Japan
| |
Collapse
|
35
|
Aguilar C, Flores N, Riveros-McKay F, Sahonero-Canavesi D, Carmona SB, Geiger O, Escalante A, Bolívar F. Deletion of the 2-acyl-glycerophosphoethanolamine cycle improve glucose metabolism in Escherichia coli strains employed for overproduction of aromatic compounds. Microb Cell Fact 2015; 14:194. [PMID: 26627477 PMCID: PMC4666226 DOI: 10.1186/s12934-015-0382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND As a metabolic engineering tool, an adaptive laboratory evolution (ALE) experiment was performed to increase the specific growth rate (µ) in an Escherichia coli strain lacking PTS, originally engineered to increase the availability of intracellular phosphoenolpyruvate and redirect to the aromatic biosynthesis pathway. As result, several evolved strains increased their growth fitness on glucose as the only carbon source. Two of these clones isolated at 120 and 200 h during the experiment, increased their μ by 338 and 373 %, respectively, compared to the predecessor PB11 strain. The genome sequence and analysis of the genetic changes of these two strains (PB12 and PB13) allowed for the identification of a novel strategy to enhance carbon utilization to overcome the absence of the major glucose transport system. RESULTS Genome sequencing data of evolved strains revealed the deletion of chromosomal region of 10,328 pb and two punctual non-synonymous mutations in the dhaM and glpT genes, which occurred prior to their divergence during the early stages of the evolutionary process. Deleted genes related to increased fitness in the evolved strains are rppH, aas, lplT and galR. Furthermore, the loss of mutH, which was also lost during the deletion event, caused a 200-fold increase in the mutation rate. CONCLUSIONS During the ALE experiment, both PB12 and PB13 strains lost the galR and rppH genes, allowing the utilization of an alternative glucose transport system and allowed enhanced mRNA half-life of many genes involved in the glycolytic pathway resulting in an increment in the μ of these derivatives. Finally, we demonstrated the deletion of the aas-lplT operon, which codes for the main components of the phosphatidylethanolamine turnover metabolism increased the further fitness and glucose uptake in these evolved strains by stimulating the phospholipid degradation pathway. This is an alternative mechanism to its regeneration from 2-acyl-glycerophosphoethanolamine, whose utilization improved carbon metabolism likely by the elimination of a futile cycle under certain metabolic conditions. The origin and widespread occurrence of a mutated population during the ALE indicates a strong stress condition present in strains lacking PTS and the plasticity of this bacterium that allows it to overcome hostile conditions.
Collapse
Affiliation(s)
- César Aguilar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Fernando Riveros-McKay
- Winter Genomics, Manizales 906, Colonia Lindavista, Delegación Gustavo A. Madero, 07300, México D.F., México.
| | | | - Susy Beatriz Carmona
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Otto Geiger
- Centro de Ciencias Genómicas, UNAM, Apdo. Postal 565-A, 62210, Cuernavaca, Morelos, Mexico.
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
36
|
Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, Qi Q. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. Sci Rep 2015; 5:13200. [PMID: 26285685 PMCID: PMC4541071 DOI: 10.1038/srep13200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/14/2015] [Indexed: 01/28/2023] Open
Abstract
The phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc) is the main glucose uptake pathway in Escherichia coli that affects both substrate assimilation and metabolism leading to the product formation. In this study, the effect of single PTSGlc mutation on cell growth and substrate consumption was investigated by knocking out the genes involved in the phosphotransfer cascade of the PTSGlc. In addition, the distribution of the metabolites of mutants was analyzed. Each mutant was confirmed to have different adaptability in the presence of both glucose and xylose with different ratios, and a substrate mixture with high xylose content can be completely consumed in short time when the ptsI mutant is employed. Finally, ptsH deletion was for the first time applied for succinate production due to its well performance under anaerobic condition. Strain YL104H, in which ptsH was deleted, exhibited considerably increased succinate yield under both aerobic and anaerobic conditions. The succinate titer and overall productivity reached 511.11 mM and 1.01 g/L/h after 60 h during the whole-phase fermentation in a mineral salt medium. The present results demonstrated the glucose and xylose co-utilization efficiency and the product yield and productivity can be significantly improved if a suitable PTSGlc deletion mutant was selected.
Collapse
Affiliation(s)
- Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Yikui Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Xu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Jiaojiao Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Peng Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Sohm B, Immel F, Bauda P, Pagnout C. Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 2014; 15:98-113. [PMID: 25346333 DOI: 10.1002/pmic.201400101] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/22/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Abstract
Large-scale production and incorporation of titanium dioxide nanoparticles (NP-TiO2 ) in consumer products leads to their potential release into the environment and raises the question of their toxicity. The bactericidal mechanism of NP-TiO2 under UV light is known to involve oxidative stress due to the generation of reactive oxygen species. In the dark, several studies revealed that NP-TiO2 can exert toxicological effects. However, the mode of action of these nanoparticles is still controversial. In the present study, we used a combination of fluorescent probes to show that NP-TiO2 causes Escherichia coli membrane depolarization and loss of integrity, leading to higher cell permeability. Using both transcriptomic and proteomic global approaches we showed that this phenomenon translates into a cellular response to osmotic stress, metabolism of cell envelope components and uptake/metabolism of endogenous and exogenous compounds. This primary mechanism of bacterial NP-TiO2 toxicity is supported by the observed massive cell leakage of K(+) /Mg(2+) concomitant with the entrance of extracellular Na(+), and by the depletion of intracellular ATP level.
Collapse
Affiliation(s)
- Bénédicte Sohm
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Université de Lorraine, Metz, France; CNRS, LIEC, UMR 7360, Metz, France
| | | | | | | |
Collapse
|
38
|
The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 2014; 32:905-19. [DOI: 10.1016/j.biotechadv.2014.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/23/2014] [Accepted: 04/18/2014] [Indexed: 11/17/2022]
|
39
|
Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC SYSTEMS BIOLOGY 2014; 8:79. [PMID: 24974895 PMCID: PMC4086706 DOI: 10.1186/1752-0509-8-79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. RESULTS We present EcoCyc-18.0-GEM, a genome-scale model of the E. coli K-12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc-18.0-GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc-18.0-GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model's derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc-18.0-GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. CONCLUSION Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.
Collapse
Affiliation(s)
- Daniel S Weaver
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Ingrid M Keseler
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| |
Collapse
|
40
|
Transcriptional Control of the Isoeugenol Monooxygenase ofPseudomonas nitroreducensJin1 inEscherichia coli. Biosci Biotechnol Biochem 2014; 76:1891-6. [DOI: 10.1271/bbb.120375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Effect of growth rate on plasmid DNA production and metabolic performance of engineered Escherichia coli strains. J Biosci Bioeng 2014; 117:336-42. [DOI: 10.1016/j.jbiosc.2013.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 12/15/2022]
|
42
|
Cortés-Tolalpa L, Gutiérrez-Ríos RM, Martínez LM, de Anda R, Gosset G, Bolívar F, Escalante A. Global transcriptomic analysis of an engineered Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium. Microb Cell Fact 2014; 13:28. [PMID: 24559297 PMCID: PMC4015609 DOI: 10.1186/1475-2859-13-28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Efficient production of SA in Escherichia coli has been achieved by modifying key genes of the central carbon metabolism and SA pathway, resulting in overproducing strains grown in batch- or fed-batch-fermentor cultures using a complex broth including glucose and YE. In this study, we performed a GTA to identify those genes significantly upregulated in an engineered E. coli strain, PB12.SA22, in mid EXP (5 h), early STA (STA1, 9 h), and late STA (STA2, 44 h) phases, grown in complex fermentation broth in batch-fermentor cultures. RESULTS Growth of E. coli PB12.SA22 in complex fermentation broth for SA production resulted in an EXP growth during the first 9 h of cultivation depending of supernatant available aromatic amino acids provided by YE because, when tryptophan was totally consumed, cells entered into a second, low-growth phase (even in the presence of glucose) until 26 h of cultivation. At this point, glucose was completely consumed but SA production continued until the end of the fermentation (50 h) achieving the highest accumulation (7.63 g/L of SA). GTA between EXP/STA1, EXP/STA2 and STA1/STA2 comparisons showed no significant differences in the regulation of genes encoding enzymes of central carbon metabolism as in SA pathway, but those genes encoding enzymes involved in sugar, amino acid, nucleotide/nucleoside, iron and sulfur transport; amino acid catabolism and biosynthesis; nucleotide/nucleoside salvage; acid stress response and modification of IM and OM were upregulated between comparisons. CONCLUSIONS GTA during SA production in batch-fermentor cultures of strain PB12.SA22 grown in complex fermentation broth during the EXP, STA1 and STA2 phases was studied. Significantly, upregulated genes during the EXP and STA1 phases were associated with transport, amino acid catabolism, biosynthesis, and nucleotide/nucleoside salvage. In STA2, upregulation of genes encoding transporters and enzymes involved in the synthesis and catabolism of Arg suggests that this amino acid could have a key role in the fuelling of carbon toward SA synthesis, whereas upregulation of genes involved in pH stress response, such as membrane modifications, suggests a possible response to environmental conditions imposed on the cell at the end of the fermentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av, Universidad 2001, Col, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
43
|
Sabido A, Sigala JC, Hernández-Chávez G, Flores N, Gosset G, Bolívar F. Physiological and transcriptional characterization of Escherichia coli strains lacking interconversion of phosphoenolpyruvate and pyruvate when glucose and acetate are coutilized. Biotechnol Bioeng 2014; 111:1150-60. [PMID: 24375081 PMCID: PMC4278548 DOI: 10.1002/bit.25177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 01/01/2023]
Abstract
Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr− strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF−ppsA− strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF−ppsA− strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF−ppsA− growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF−ppsA− did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr−pykAF−ppsA− strains and the engineered PB12 pykAF−ppsA−tyrR−pheAev2+/pJLBaroGfbrtktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR−pheAev2+/pJLBaroGfbrtktA. Biotechnol. Bioeng. 2014;111: 1150–1160. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Sabido
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | | | | | | | | | | |
Collapse
|
44
|
Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact 2013; 12:86. [PMID: 24079972 PMCID: PMC3852013 DOI: 10.1186/1475-2859-12-86] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the last two decades many efforts have been directed towards obtaining efficient microbial processes for the production of shikimic acid (SA); however, feeding high amounts of substrate to increase the titer of this compound has invariably rendered low conversion yields, leaving room for improvement of the producing strains. In this work we report an alternative platform to overproduce SA in a laboratory-evolved Escherichia coli strain, based on plasmid-driven constitutive expression of six genes selected from the pentose phosphate and aromatic amino acid pathways, artificially arranged as an operon. Production strains also carried inactivated genes coding for phosphotransferase system components (ptsHIcrr), shikimate kinases I and II (aroK and aroL), pyruvate kinase I (pykF) and the lactose operon repressor (lacI). RESULTS The strong and constitutive expression of the constructed operon permitted SA production from the beginning of the cultures, as evidenced in 1 L batch-mode fermentors starting with high concentrations of glucose and yeast extract. Inactivation of the pykF gene improved SA production under the evaluated conditions by increasing the titer, yield and productivity of this metabolite compared to the isogenic pykF+ strain. The best producing strain accumulated up to 43 g/L of SA in 30 h and relatively low concentrations of acetate and aromatic byproducts were detected, with SA accounting for 80% of the produced aromatic compounds. These results were consistent with high expression levels of the glycolytic pathway and synthetic operon genes from the beginning of fermentations, as revealed by transcriptomic analysis. Despite the consumption of 100 g/L of glucose, the yields on glucose of SA and of total aromatic compounds were about 50% and 60% of the theoretical maximum, respectively. The obtained yields and specific production and consumption rates proved to be constant with three different substrate concentrations. CONCLUSIONS The developed production system allowed continuous SA accumulation until glucose exhaustion and eliminated the requirement for culture inducers. The obtained SA titers and yields represent the highest reported values for a high-substrate batch process, postulating the strategy described in this report as an interesting alternative to the traditionally employed fed-batch processes for SA production.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo, Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Centeno-Leija S, Utrilla J, Flores N, Rodriguez A, Gosset G, Martinez A. Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Antonie van Leeuwenhoek 2013; 104:913-24. [PMID: 23989925 DOI: 10.1007/s10482-013-0010-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/17/2013] [Indexed: 11/26/2022]
Abstract
The NAD(+)-dependent glyceraldehyde-3-phosphate-dehydrogenase (NAD(+)-GAPDH) is a key enzyme to sustain the glycolytic function in Escherichia coli and to generate NADH. In the absence of NAD(+)-GAPDH activity, the glycolytic function can be restored through NADP(+)-dependent GAPDH heterologous expression. Here, some metabolic and transcriptional effects are described when the NAD(+)-GAPDH gene from E. coli (gapA) is replaced with the NADP(+)-GAPDH gene from Streptococcus mutans (gapN). Expression of gapN was controlled by the native gapA promoter (E. coliΔgapA::gapN) or by the constitutive trc promoter in a multicopy plasmid (E. coliΔgapA::gapN/pTrcgapN). The specific NADP(+)-GAPDH activity was 4.7 times higher in E. coliΔgapA::gapN/pTrcgapN than E. coliΔgapA::gapN. Growth, glucose consumption and acetic acid production rates increased in agreement with the NADP(+)-GAPDH activity level. Analysis of E. coliΔgapA::gapN/pTrcgapN showed that although gapN expression complemented NAD(+)-GAPDH activity, the resulting low NADH levels decreased the expression of the respiratory chain and oxidative phosphorylation genes (ndh, cydA, cyoB and atpA). In comparison with the wild type strain, E. coliΔgapA::gapN/pTrcgapN decreased the percentage of mole of oxygen consumed per mole of glucose metabolized by 40 % with a concomitant reduction of 54 % in the ATP/ADP ratio. The cellular response to avoid NADPH excess led to the overexpression of the transhydrogenase coded by udhA and the down-regulation of the pentose-phosphate and Krebs cycle genes, which reduced the CO2 production and increased the acetic acid synthesis. The E. coli strains obtained in this work can be useful for future metabolic engineering efforts aiming for the production of metabolites which biosynthesis depends on NADPH.
Collapse
Affiliation(s)
- Sara Centeno-Leija
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado postal 510-3, 62210, Cuernavaca, MOR, Mexico
| | | | | | | | | | | |
Collapse
|
46
|
Fuentes LG, Lara AR, Martínez LM, Ramírez OT, Martínez A, Bolívar F, Gosset G. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production. Microb Cell Fact 2013; 12:42. [PMID: 23638701 PMCID: PMC3655049 DOI: 10.1186/1475-2859-12-42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/26/2013] [Indexed: 01/21/2023] Open
Abstract
Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants generated in this study displayed a reduction or elimination of overflow metabolism and a linear correlation between qs and the maximum specific growth rate as well as the acetate production rate. By comparing DNA vaccine production parameters among some of these mutants, it was possible to identify a near-optimal glucose import rate value for this particular application. The strains employed in this study should be a useful resource for studying the effects of different predefined qs values on production capacity for various biotechnological products.
Collapse
Affiliation(s)
- Laura G Fuentes
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
47
|
Liu SP, Xiao MR, Zhang L, Xu J, Ding ZY, Gu ZH, Shi GY. Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Morzhakova AA, Skorokhodova AY, Gulevich AY, Debabov VG. Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced crabtree effect. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813020105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
50
|
Yao R, Kurata H, Shimizu K. Effect of cra gene mutation on the metabolism of <i>Escherichia coli</i> for a mixture of multiple carbon sources. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.43a063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|