1
|
Tironi LS, Carletto LB, Silva EO, Schripsema J, Luiz JHH. Endophytic Fungi Co-Culture: An Alternative Source of Antimicrobial Substances. Microorganisms 2024; 12:2413. [PMID: 39770616 PMCID: PMC11677400 DOI: 10.3390/microorganisms12122413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is becoming a critical issue due to the widespread and indiscriminate use of antibiotics and antifungals to treat common infections, leading to a growing shortage of effective drugs. Moreover, the increase in antimicrobial resistance is enhancing the pathogenicity and virulence of various pathogens. Microorganisms are key sources of chemically diverse specialized metabolites, which are produced in the final stages of their growth cycle. These metabolites hold significant value in chemical, pharmaceutical, and agrochemical industries. One of the major challenges researchers face in this field is the frequent isolation of already-known substances when classical protocols are used. To address this, several innovative strategies have been developed. The co-culture approach is a powerful tool for activating silent biosynthetic gene clusters, as it simulates natural microbial environments by creating artificial microbial communities. This method has shown promising results, with new compounds being isolated and the yields of target substances being improved. In this context, this review provides examples of antimicrobial compounds obtained from co-cultures of endophytic fungi, conducted in both liquid and solid media. Additionally, the review discusses the advantages and challenges of the co-culture technique. Significance and Impact of the Study: Microbial co-culture is a valuable strategy for discovering new natural products with antimicrobial activity, as well as for scaling up the production of target substances. This review aims to summarize important examples of endophyte co-cultures and highlights the potential of endophytic fungi co-culture for pharmacological applications.
Collapse
Affiliation(s)
- Lucas Silva Tironi
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Lucilene Bento Carletto
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil;
| | - Jan Schripsema
- Metabolomics Group, Laboratory of Chemical Sciences, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil
| | | |
Collapse
|
2
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Liu A, Ellis D, Mhatre A, Brahmankar S, Seto J, Nielsen DR, Varman AM. Biomanufacturing of value-added chemicals from lignin. Curr Opin Biotechnol 2024; 89:103178. [PMID: 39098292 DOI: 10.1016/j.copbio.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Lignin valorization faces persistent biomanufacturing challenges due to the heterogeneous and toxic carbon substrates derived from lignin depolymerization. To address the heterogeneous nature of aromatic feedstocks, plant cell wall engineering and 'lignin first' pretreatment methods have recently emerged. Next, to convert the resulting aromatic substrates into value-added chemicals, diverse microbial host systems also continue to be developed. This includes microbes that (1) lack aromatic metabolism, (2) metabolize aromatics but not sugars, and (3) co-metabolize both aromatics and sugars, each system presenting unique pros and cons. Considering the intrinsic complexity of lignin-derived substrate mixtures, emerging and non-model microbes with native metabolism for aromatics appear poised to provide the greatest impacts on lignin valorization via biomanufacturing.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Dylan Ellis
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Sumant Brahmankar
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jong Seto
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA; Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
5
|
Gomes D, Rodrigues JL, Rodrigues LR. Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:435. [PMID: 39126431 DOI: 10.1007/s00253-024-13271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. KEY POINTS: • Best enzyme and strain combination were selected for de novo naringenin production. • After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. • This de novo production is the highest reported so far in E. coli.
Collapse
Affiliation(s)
- Daniela Gomes
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana L Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Boruta T, Englart G, Foryś M, Pawlikowska W. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus. Biotechnol Lett 2024; 46:601-614. [PMID: 38844646 PMCID: PMC11217084 DOI: 10.1007/s10529-024-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE The aim of this study was to determine the influence of the inoculation volume ratio on the production of secondary metabolites in submerged cocultures of Aspergillus terreus and Streptomyces rimosus. RESULTS The shake flask cocultures were initiated by using 23 inoculum variants that included different volumes of A. terreus and S. rimosus precultures. In addition, the axenic controls were propagated in parallel with the cocultures. UPLC‒MS analysis revealed the presence of 15 secondary metabolites, 12 of which were found both in the "A. terreus vs. S. rimosus" cocultures and axenic cultures of either A. terreus or S. rimosus. The production of the remaining 3 molecules was recorded solely in the cocultures. The repertoire and quantity of secondary metabolites were evidently dependent on the inoculation ratio. It was also noted that detecting filamentous structures resembling typical morphological forms of a given species was insufficient to predict the presence of a given metabolite. CONCLUSIONS The modification of the inoculation ratio is an effective strategy for awakening and enhancing the production of secondary metabolites that are not biosynthesized under axenic conditions.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland.
| | - Grzegorz Englart
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Martyna Foryś
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Weronika Pawlikowska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| |
Collapse
|
7
|
Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-culture systems. BIORESOURCE TECHNOLOGY 2024; 406:131049. [PMID: 38942211 DOI: 10.1016/j.biortech.2024.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.
Collapse
Affiliation(s)
- Lichun Guo
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bingwen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Zhou W, Ding W, Wu X, Sun J, Bai W. Microbial synthesis of anthocyanins and pyranoanthocyanins: current bottlenecks and potential solutions. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38935054 DOI: 10.1080/10408398.2024.2369703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Weiqiu Ding
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, Guangdong, China
| | - Xingyuan Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| | - Jianxia Sun
- Department of Food Science and Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangdong, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangdong, China
| |
Collapse
|
9
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
10
|
Wei SY, Gao GR, Ding MZ, Cao CY, Hou ZJ, Cheng JS, Yuan YJ. An Engineered Microbial Consortium Provides Precursors for Fengycin Production by Bacillus subtilis. JOURNAL OF NATURAL PRODUCTS 2024; 87:28-37. [PMID: 38204395 DOI: 10.1021/acs.jnatprod.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Fengycin has great potential for applications in biological control because of its biosafety and degradability. In this study, the addition of exogenous precursors increased fengycin production by Bacillus subtilis. Corynebacterium glutamicum was engineered to produce high levels of precursors (Thr, Pro, Val, and Ile) to promote the biosynthesis of fengycin. Furthermore, recombinant C. glutamicum and Yarrowia lipolytica providing amino acid and fatty acid precursors were co-cultured to improve fengycin production by B. subtilis in a three-strain artificial consortium, in which fengycin production was 2100 mg·L-1. In addition, fengycin production by the consortium in a 5 L bioreactor reached 3290 mg·L-1. Fengycin had a significant antifungal effect on Rhizoctonia solani, which illustrates its potential as a food preservative. Taken together, this work provides a new strategy for improving fengycin production by a microbial consortium and metabolic engineering.
Collapse
Affiliation(s)
- Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin 300350, People's Republic of China
| |
Collapse
|
11
|
Yan Z, Pan Y, Huang M, Liu JZ. De Novo Pterostilbene Production from Glucose Using Modular Coculture Engineering in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:516-528. [PMID: 38130104 DOI: 10.1021/acs.jafc.3c06629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pterostilbene, a derivative of resveratrol, is of increasing interest due to its increased bioavailability and potential health benefits. Sustainable production of pterostilbene is important, especially given the challenges of traditional plant extraction and chemical synthesis methods. While engineered microbial cell factories provide a potential alternative for pterostilbene production, most approaches necessitate feeding intermediate compounds. To address these limitations, we adopted a modular coculture engineering strategy, dividing the pterostilbene biosynthetic pathway between two engineered E. coli strains. Using a combination of gene knockout, atmospheric and room-temperature plasma mutagenesis, and error-prone PCR-based whole genome shuffling to engineer strains for the coculture system, we achieved a pterostilbene production titer of 134.84 ± 9.28 mg/L from glucose using a 1:3 inoculation ratio and 0.1% dimethyl sulfoxide supplementation. This represents the highest reported de novo production titer. Our results underscore the potential of coculture systems and metabolic balance in microbial biosynthesis.
Collapse
Affiliation(s)
- Zhibo Yan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
12
|
Kim DH, Hwang HG, Ye DY, Jung GY. Transcriptional and translational flux optimization at the key regulatory node for enhanced production of naringenin using acetate in engineered Escherichia coli. J Ind Microbiol Biotechnol 2024; 51:kuae006. [PMID: 38285614 PMCID: PMC10853766 DOI: 10.1093/jimb/kuae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 01/31/2024]
Abstract
As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate. ONE-SENTENCE SUMMARY In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.
Collapse
Affiliation(s)
- Dong H Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun G Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Y Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
13
|
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nat Commun 2023; 14:7797. [PMID: 38016984 PMCID: PMC10684500 DOI: 10.1038/s41467-023-43049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Qianhe Su
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Payton Van Beek
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA.
- Bioeconomy Institute, Iowa State University, Ames, IA, USA.
- The Ames Laboratory, Ames, IA, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Zhao W, Liu M, Liu K, Liu H, Liu X, Liu J. An Enzymatic Strategy for the Selective Methylation of High-Value-Added Tetrahydroprotoberberine Alkaloids. Int J Mol Sci 2023; 24:15214. [PMID: 37894895 PMCID: PMC10607743 DOI: 10.3390/ijms242015214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Tetrahydroprotoberberines (THPBs) are plant-specific alkaloids with significant medicinal value. They are present in trace amounts in plants and are difficult to chemically synthesize due to stereoselectivity and an unfavorable environment. In this study, a selective methylation strategy was developed for the biocatalysis of seven high-value-added THPB compounds using 4'-O-methyltransferase (Cj4'OMT), norcoclaurine 6-O-methyltransferase (Cj6OMT), and (S)-scoulerine 9-O-methyltransferase (SiSOMT and PsSOMT) in engineered E. coli. The methyltransferases Cj4'OMT, Cj6OMT, PsSOMT, and SiSOMT were expressed heterologously in E. coli. Compound 1 (10-methoxy-2,3,9-tetrahydroxyberbine) was synthesized using the recombinant E. coli strain Cj4'OMT and the substrate 2,3,9,10-tetrahydroxyberbine. Compound 2 (9-methoxy-2,3,10-tetrahydroxyberbine) was produced in the recombinant Escherichia coli (E. coli) strain PsSOMT, and compounds 2 and 3 (discretamine) were produced in the recombinant E. coli strain SiSOMT. Compounds 4 (9,10-methoxy-2,3-tetrahydroxyberbine) and 5 (corypalmine) were obtained by co-culturing the recombinant strains Cj4'OMT and SiSOMT with substrate. Compounds 6 (scoulerine) and 7 (isoscoulerine) were produced by co-culturing the substrate with the recombinant strains Cj4'OMT and Cj6OMT. To increase the yield of novel compound 2, the flask culture conditions of the engineered SiSOMT strain were optimized, resulting in the production of 165.74 mg/L of this compound. This study thus presents an enzymatic approach to the synthesis of high-value-added THPBs with minimum environmental wastage.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Manyu Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kemeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hanqing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (W.Z.)
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Pan R, Yang X, Qiu M, Jiang W, Zhang W, Jiang Y, Xin F, Jiang M. Construction of Coculture System Containing Escherichia coli with Different Microbial Species for Biochemical Production. ACS Synth Biol 2023; 12:2208-2216. [PMID: 37506399 DOI: 10.1021/acssynbio.3c00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Microbial synthesis of target chemicals usually involves multienzymatic reactions in vivo, especially for compounds with a long metabolic pathway. However, when various genes are introduced into one single strain, it leads to a heavy metabolic burden. In contrast, the microbial coculture system can allocate metabolic pathways into different hosts, which will relieve the metabolic burdens. Escherichia coli is the most used chassis to synthesize biofuels and chemicals owing to its well-known genetics, high transformation efficiency, and easy cultivation. Accordingly, cocultures containing the cooperative E. coli with other microbial species have received great attention. In this review, the individual applications and boundedness of different combinations will be summarized. Additionally, the strategies for the self-regulation of population composition, which can help enhance the stability of a coculture system, will also be discussed. Finally, perspectives for the cocultures will be proposed.
Collapse
Affiliation(s)
- Runze Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Min Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
- Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P. R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
- Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P. R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
- Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, P. R. China
| |
Collapse
|
16
|
Boruta T. Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An introductory overview. Comput Struct Biotechnol J 2023; 21:4021-4029. [PMID: 37649711 PMCID: PMC10462793 DOI: 10.1016/j.csbj.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Co-cultivation is an effective method of inducing the production of specialized metabolites (SMs) in microbial strains. By mimicking the ecological interactions that take place in natural environment, this approach enables to trigger the biosynthesis of molecules which are not formed under monoculture conditions. Importantly, microbial co-cultivation may lead to the discovery of novel chemical entities of pharmaceutical interest. The experimental efforts aimed at the induction of SMs are greatly facilitated by computational techniques. The aim of this overview is to highlight the relevance of computational methods for the investigation of SM induction via microbial co-cultivation. The concepts related to the induction of SMs in microbial co-cultures are briefly introduced by addressing four areas associated with the SM induction workflows, namely the detection of SMs formed exclusively under co-culture conditions, the annotation of induced SMs, the identification of SM producer strains, and the optimization of fermentation conditions. The computational infrastructure associated with these areas, including the tools of multivariate data analysis, molecular networking, genome mining and mathematical optimization, is discussed in relation to the experimental results described in recent literature. The perspective on the future developments in the field, mainly in relation to the microbiome-related research, is also provided.
Collapse
Affiliation(s)
- Tomasz Boruta
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wólczańska 213, 93-005 Łódź, Poland
| |
Collapse
|
17
|
Aulakh SK, Sellés Vidal L, South EJ, Peng H, Varma SJ, Herrera-Dominguez L, Ralser M, Ledesma-Amaro R. Spontaneously established syntrophic yeast communities improve bioproduction. Nat Chem Biol 2023:10.1038/s41589-023-01341-2. [PMID: 37248413 PMCID: PMC10374442 DOI: 10.1038/s41589-023-01341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Nutritional codependence (syntrophy) has underexplored potential to improve biotechnological processes by using cooperating cell types. So far, design of yeast syntrophic communities has required extensive genetic manipulation, as the co-inoculation of most eukaryotic microbial auxotrophs does not result in cooperative growth. Here we employ high-throughput phenotypic screening to systematically test pairwise combinations of auxotrophic Saccharomyces cerevisiae deletion mutants. Although most coculture pairs do not enter syntrophic growth, we identify 49 pairs that spontaneously form syntrophic, synergistic communities. We characterized the stability and growth dynamics of nine cocultures and demonstrated that a pair of tryptophan auxotrophs grow by exchanging a pathway intermediate rather than end products. We then introduced a malonic semialdehyde biosynthesis pathway split between different pairs of auxotrophs, which resulted in increased production. Our results report the spontaneous formation of stable syntrophy in S. cerevisiae auxotrophs and illustrate the biotechnological potential of dividing labor in a cooperating intraspecies community.
Collapse
Affiliation(s)
- Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lara Sellés Vidal
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Eric J South
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Huadong Peng
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Sreejith Jayasree Varma
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucia Herrera-Dominguez
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
18
|
Tramontina R, Ciancaglini I, Roman EKB, Chacón MG, Corrêa TLR, Dixon N, Bugg TDH, Squina FM. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12571-8. [PMID: 37212882 DOI: 10.1007/s00253-023-12571-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.
Collapse
Affiliation(s)
- Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ellen K B Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Micaela G Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thamy L R Corrêa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
19
|
Perez Rojo F, Pillow JJ, Kaur P. Bioprospecting microbes and enzymes for the production of pterocarpans and coumestans. Front Bioeng Biotechnol 2023; 11:1154779. [PMID: 37187887 PMCID: PMC10175578 DOI: 10.3389/fbioe.2023.1154779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The isoflavonoid derivatives, pterocarpans and coumestans, are explored for multiple clinical applications as osteo-regenerative, neuroprotective and anti-cancer agents. The use of plant-based systems to produce isoflavonoid derivatives is limited due to cost, scalability, and sustainability constraints. Microbial cell factories overcome these limitations in which model organisms such as Saccharomyces cerevisiae offer an efficient platform to produce isoflavonoids. Bioprospecting microbes and enzymes can provide an array of tools to enhance the production of these molecules. Other microbes that naturally produce isoflavonoids present a novel alternative as production chassis and as a source of novel enzymes. Enzyme bioprospecting allows the complete identification of the pterocarpans and coumestans biosynthetic pathway, and the selection of the best enzymes based on activity and docking parameters. These enzymes consolidate an improved biosynthetic pathway for microbial-based production systems. In this review, we report the state-of-the-art for the production of key pterocarpans and coumestans, describing the enzymes already identified and the current gaps. We report available databases and tools for microbial bioprospecting to select the best production chassis. We propose the use of a holistic and multidisciplinary bioprospecting approach as the first step to identify the biosynthetic gaps, select the best microbial chassis, and increase productivity. We propose the use of microalgal species as microbial cell factories to produce pterocarpans and coumestans. The application of bioprospecting tools provides an exciting field to produce plant compounds such as isoflavonoid derivatives, efficiently and sustainably.
Collapse
Affiliation(s)
- Fernando Perez Rojo
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - J. Jane Pillow
- UWA School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Gwon DA, Seo E, Lee JW. Construction of Synthetic Microbial Consortium for Violacein Production. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
21
|
Zhang R, Yao M, Ma H, Xiao W, Wang Y, Yuan Y. Modular Coculture to Reduce Substrate Competition and Off-Target Intermediates in Androstenedione Biosynthesis. ACS Synth Biol 2023; 12:788-799. [PMID: 36857753 DOI: 10.1021/acssynbio.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Substrate competition within a metabolic network constitutes a common challenge in microbial biosynthesis system engineering, especially if indispensable enzymes can produce multiple intermediates from a single substrate. Androstenedione (4AD) is a central intermediate in the production of a series of steroidal pharmaceuticals; however, its yield via the coexpression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17α-hydroxylase/17,20-lyase (CYP17A1) in a microbial chassis affords a nonlinear pathway in which these enzymes compete for substrates and produce structurally similar unwanted intermediates, thereby reducing 4AD yields. To avoid substrate competition, we split the competing 3β-HSD and CYP17A1 pathway components into two separate Yarrowia lipolytica strains to linearize the pathway. This spatial segregation increased substrate availability for 3β-HSD in the upstream strain, consequently decreasing the accumulation of the unwanted intermediate 17-hydroxypregnenolone (17OHP5) from 94.8 ± 4.4% in single-chassis monocultures to 24.8 ± 12.6% in cocultures of strains expressing 3β-HSD and CYP17A1 separately. Orthologue screening to increase CYP17A1 catalytic efficiency and the preferential production of desired intermediates increased the biotransformation capacity in the downstream pathway, further decreasing 17OHP5 accumulation to 3.9%. Furthermore, nitrogen limitation induced early 4AD accumulation (final titer, 7.71 mg/L). This study provides a framework for reducing intrapathway competition between essential enzymes during natural product biosynthesis as well as a proof-of-concept platform for linear steroid production.
Collapse
Affiliation(s)
- Ruosi Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haidi Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
Thuan NH, Tatipamula VB, Trung NT, Van Giang N. Metabolic engineering and optimization of Escherichia coli co-culture for the de novo synthesis of genkwanin. J Ind Microbiol Biotechnol 2023; 50:kuad030. [PMID: 37738435 PMCID: PMC10565888 DOI: 10.1093/jimb/kuad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Genkwanin has various significant roles in nutrition, biomedicine, and pharmaceutical biology. Previously, this compound was chiefly produced by plant-originated extraction or chemical synthesis. However, due to increasing concern and demand for safe food and environmental issues, the biotechnological production of genkwanin and other bioactive compounds based on safe, cheap, and renewable substrates has gained much interest. This paper described recombinant Escherichia coli-based co-culture engineering that was reconstructed for the de novo production of genkwanin from d-glucose. The artificial genkwanin biosynthetic chain was divided into 2 modules in which the upstream strain contained the genes for synthesizing p-coumaric acid from d-glucose, and the downstream module contained a gene cluster that produced the precursor apigenin and the final product, genkwanin. The Box-Behnken design, a response surface methodology, was used to empirically model the production of genkwanin and optimize its productivity. As a result, the application of the designed co-culture improved the genkwanin production by 48.8 ± 1.3 mg/L or 1.7-fold compared to the monoculture. In addition, the scale-up of genkwanin bioproduction by a bioreactor resulted in 68.5 ± 1.9 mg/L at a 48 hr time point. The combination of metabolic engineering and fermentation technology was therefore a very efficient and applicable approach to enhance the production of other bioactive compounds.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Nguyen Thanh Trung
- Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Trau Quy, Hanoi 100000, Vietnam
| |
Collapse
|
23
|
Ulmer A, Veit S, Erdemann F, Freund A, Loesch M, Teleki A, Zeidan AA, Takors R. A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010103. [PMID: 36671675 PMCID: PMC9854596 DOI: 10.3390/bioengineering10010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus' growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Veit
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
24
|
Mittermeier F, Bäumler M, Arulrajah P, García Lima JDJ, Hauke S, Stock A, Weuster‐Botz D. Artificial microbial consortia for bioproduction processes. Eng Life Sci 2023; 23:e2100152. [PMID: 36619879 PMCID: PMC9815086 DOI: 10.1002/elsc.202100152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
The application of artificial microbial consortia for biotechnological production processes is an emerging field in research as it offers great potential for the improvement of established as well as the development of novel processes. In this review, we summarize recent highlights in the usage of various microbial consortia for the production of, for example, platform chemicals, biofuels, or pharmaceutical compounds. It aims to demonstrate the great potential of co-cultures by employing different organisms and interaction mechanisms and exploiting their respective advantages. Bacteria and yeasts often offer a broad spectrum of possible products, fungi enable the utilization of complex lignocellulosic substrates via enzyme secretion and hydrolysis, and microalgae can feature their abilities to fixate CO2 through photosynthesis for other organisms as well as to form lipids as potential fuelstocks. However, the complexity of interactions between microbes require methods for observing population dynamics within the process and modern approaches such as modeling or automation for process development. After shortly discussing these interaction mechanisms, we aim to present a broad variety of successfully established co-culture processes to display the potential of artificial microbial consortia for the production of biotechnological products.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Miriam Bäumler
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| | - Prasika Arulrajah
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | | | - Sebastian Hauke
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna Stock
- TUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dirk Weuster‐Botz
- Department of Energy and Process EngineeringTUM School of Engineering and DesignChair of Biochemical EngineeringTechnical University of MunichGarchingGermany
| |
Collapse
|
25
|
Hwang HG, Milito A, Yang JS, Jang S, Jung GY. Riboswitch-guided chalcone synthase engineering and metabolic flux optimization for enhanced production of flavonoids. Metab Eng 2023; 75:143-152. [PMID: 36549411 DOI: 10.1016/j.ymben.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Flavonoids are a group of secondary metabolites from plants that have received attention as high value-added pharmacological substances. Recently, a robust and efficient bioprocess using recombinant microbes has emerged as a promising approach to supply flavonoids. In the flavonoid biosynthetic pathway, the rate of chalcone synthesis, the first committed step, is a major bottleneck. However, chalcone synthase (CHS) engineering was difficult because of high-level conservation and the absence of effective screening tools, which are limited to overexpression or homolog-based combinatorial strategies. Furthermore, it is necessary to precisely regulate the metabolic flux for the optimum availability of malonyl-CoA, a substrate of chalcone synthesis. In this study, we engineered CHS and optimized malonyl-CoA availability to establish a platform strain for naringenin production, a key molecular scaffold for various flavonoids. First, we engineered CHS through synthetic riboswitch-based high-throughput screening of rationally designed mutant libraries. Consequently, the catalytic efficiency (kcat/Km) of the optimized CHS enzyme was 62% higher than that of the wild-type enzyme. In addition to CHS engineering, we designed genetic circuits using transcriptional repressors to fine-tune the malonyl-CoA availability. The best mutant with synergistic effects of the engineered CHS and the optimized genetic circuit produced 98.71 mg/L naringenin (12.57 mg naringenin/g glycerol), which is the highest naringenin concentration and yield from glycerol in similar culture conditions reported to date, a 2.5-fold increase compared to the parental strain. Overall, this study provides an effective strategy for efficient production of flavonoids.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Sungho Jang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea; Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea.
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
26
|
Müller T, Schick S, Beck J, Sprenger G, Takors R. Synthetic mutualism in engineered E. coli mutant strains as functional basis for microbial production consortia. Eng Life Sci 2023; 23:e2100158. [PMID: 36619882 PMCID: PMC9815082 DOI: 10.1002/elsc.202100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
In nature, microorganisms often reside in symbiotic co-existence providing nutrition, stability, and protection for each partner by applying "division of labor." This principle may also be used for the overproduction of targeted compounds in bioprocesses. It requires the engineering of a synthetic co-culture with distributed tasks for each partner. Thereby, the competition on precursors, redox cofactors, and energy-which occurs in a single host-is prevented. Current applications often focus on unidirectional interactions, that is, the product of partner A is used for the completion of biosynthesis by partner B. Here, we present a synthetically engineered Escherichia coli co-culture of two engineered mutant strains marked by the essential interaction of the partners which is achieved by implemented auxotrophies. The tryptophan auxotrophic strain E. coli ANT-3, only requiring small amounts of the aromatic amino acid, provides the auxotrophic anthranilate for the tryptophan producer E. coli TRP-3. The latter produces a surplus of tryptophan which is used to showcase the suitability of the co-culture to access related products in future applications. Co-culture characterization revealed that the microbial consortium is remarkably functionally stable for a broad range of inoculation ratios. The range of robust and functional interaction may even be extended by proper glucose feeding which was shown in a two-compartment bioreactor setting with filtrate exchange. This system even enables the use of the co-culture in a parallel two-level temperature setting which opens the door to access temperature sensitive products via heterologous production in E. coli in a continuous manner.
Collapse
Affiliation(s)
- Tobias Müller
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Simon Schick
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Jonathan Beck
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Georg Sprenger
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
27
|
Identification of Hydroxylation Enzymes and the Metabolic Analysis of Dihydromyricetin Synthesis in Ampelopsis grossedentata. Genes (Basel) 2022; 13:genes13122318. [PMID: 36553585 PMCID: PMC9778615 DOI: 10.3390/genes13122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Ampelopsis grossedentata leaves are highly rich in dihydromyricetin. They have been used to make tea in China for centuries. Dihydromyricetin has many potential applications in foods and medicine. This are because it has five phenolic hydroxyl groups. However, the hydroxylases involving the biosynthesis of dihydromyricetin have not been identified and characterized. In this study, a series of hydroxylases genes, including flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), and cytochrome P450 reductase (CPR), were identified after RNA sequencing. The full-length CDSs of AgF3H, AgF3'H, AgF3'5'H, and AgCPR genes were amplified from the cDNA library of leaves. The aforementioned enzymes were expressed and verified in Saccharomyces cerevisiae. Through the substrate specificity assay, the functional AgF3'H, AgF3'5'H, and AgCPR in A. grossedentata were identified. The dihydromyricetin hydroxylation process in A. grossedentata was successfully identified. We found that substantial carbon flux occurred through the Naringenin (NAR)-Eriodictyol (ERI)-Dihydroquercetin (DHQ)-Dihydromyricetin (DHM) and NAR-Dihydrokaempferol (DHK)-DHQ-DHM pathways. This study provides some reference for the development and utilization of the germplasm resources and molecular breeding of A. grossedentata.
Collapse
|
28
|
Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol 2022; 71:102207. [PMID: 36103753 DOI: 10.1016/j.cbpa.2022.102207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
Collapse
Affiliation(s)
| | | | - José L Avalos
- Department of Molecular Biology, USA; Department of Chemical and Biological Engineering, USA; The Andlinger Center for Energy and the Environment, USA; High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
29
|
Nejabati HR, Roshangar L. Kaempferol as a potential neuroprotector in Alzheimer's disease. J Food Biochem 2022; 46:e14375. [PMID: 35929364 DOI: 10.1111/jfbc.14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is largely associated with cognitive disability, amnesia, and abnormal behavior, which accounts for about two third of people with dementia worldwide. A growing body of research demonstrates that AD is connected to several factors, such as aberrant accumulation of amyloid-beta (Aβ), increase in the hyperphosphorylation of Tau protein, and the formation of neurofibrillary tangles, mitochondrial dysfunction, and inordinate production of reactive oxygen species (ROS). Despite remarkable efforts to realize the etiology and pathophysiology of AD, until now, scientists have not developed and introduced medications that can permanently cease the progression of AD. Thus, nowadays, research on the role of natural products in the treatment and prevention of AD has attracted great attention. Kaempferol (KMP), one of the prominent members of flavonols, exerts its ameliorative actions via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. Therefore, in this review article, we outlined the possible effects of KMP in the prevention and treatment of AD. PRACTICAL APPLICATIONS: Kaempferol (KMP) exerts its ameliorative actions against AD via attenuating oxidative stress and inflammation, reducing Aβ-induced neurotoxicity, and regulating the cholinergic system. The beneficial effects of KMP were addressed in both in vitro and in vivo studies; however, conducting further research can warrant its long-term effects as a safe agent. Therefore, after confirming its favorable functions in the prevention and treatment of AD, it could be used as a safe and effective agent.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Parallel screening and cheminformatics modeling of flavonoid activated aptasensors. Synth Syst Biotechnol 2022; 7:1148-1158. [PMID: 36101898 PMCID: PMC9445297 DOI: 10.1016/j.synbio.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
|
31
|
Kydd L, Shiveshwarkar P, Jaworski J. Engineering Escherichia coli for Conversion of Dietary Isoflavones in the Gut. ACS Synth Biol 2022; 11:3575-3582. [PMID: 36282591 DOI: 10.1021/acssynbio.2c00277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Introducing metabolic pathways to the gut is important to tailor the biochemical components ultimately absorbed by the host. Given identical diets, hosts possessing different consortia of gut bacteria can exhibit distinct health outcomes regulated by metabolic capabilities of the gut microbiota. The disparate competency of the population to metabolize isoflavones, such as dietary daidzein, has shown health benefits for those individuals possessing gut bacteria capable of producing equol from daidzein-rich diets. To begin addressing health inequalities due to gut metabolic pathway deficiencies, we developed a probiotic that allows metabolism of isoflavones to provide a gut phenotype paralleling that of natural equol producers. Toward this goal, we engineered Escherichia coli to produce the enzymes necessary for conversion of daidzein to equol, and as demonstrated in a murine model, these bacteria enabled elevated serum equol levels to dietary daidzein, thus serving as a starting point for more sophisticated systems.
Collapse
Affiliation(s)
- LeNaiya Kydd
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Priyanka Shiveshwarkar
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| |
Collapse
|
32
|
Zhao S, Li F, Yang F, Ma Q, Liu L, Huang Z, Fan X, Li Q, Liu X, Gu P. Microbial production of valuable chemicals by modular co-culture strategy. World J Microbiol Biotechnol 2022; 39:6. [PMID: 36346491 DOI: 10.1007/s11274-022-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
Nowadays, microbial synthesis has become a common way for producing valuable chemicals. Traditionally, microbial production of valuable chemicals is accomplished by a single strain. For the purpose of increasing the production titer and yield of a recombinant strain, complicated pathways and regulation layers should be fine-tuned, which also brings a heavy metabolic burden to the host. In addition, utilization of various complex and mixed substrates further interferes with the normal growth of the host strain and increases the complexity of strain engineering. As a result, modular co-culture technology, which aims to divide a target complex pathway into separate modules located at different single strains, poses an alternative solution for microbial production. Recently, modular co-culture strategy has been employed for the synthesis of different natural products. Therefore, in this review, various chemicals produced with application of co-cultivation technology are summarized, including co-culture with same species or different species, and regulation of population composition between the co-culture members. In addition, development prospects and challenges of this promising field are also addressed, and possible solution for these issues were also provided.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Fangfang Li
- Yantai Food and Drug Control and Test Center, Yantai, 264003, People's Republic of China
| | - Fan Yang
- Tsingtao Brewery Co., Ltd., Qingdao, 266071, People's Republic of China
| | - Qianqian Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Liwen Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiaoli Liu
- Key Laboratory of Marine Biotechnology in Universities of Shandong, School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
33
|
Kang CW, Lim HG, Won J, Cha S, Shin G, Yang JS, Sung J, Jung GY. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat Commun 2022; 13:6506. [PMID: 36344561 PMCID: PMC9640620 DOI: 10.1038/s41467-022-34190-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.
Collapse
Affiliation(s)
- Chae Won Kang
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Hyun Gyu Lim
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jaehyuk Won
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Sanghak Cha
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Giyoung Shin
- grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jae-Seong Yang
- grid.423637.70000 0004 1763 5862Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193 Spain
| | - Jaeyoung Sung
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Gyoo Yeol Jung
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea ,grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| |
Collapse
|
34
|
Recent advances of integrated microfluidic systems for fungal and bacterial analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liu D, Sica MS, Mao J, Chao LFI, Siewers V. A p-Coumaroyl-CoA Biosensor for Dynamic Regulation of Naringenin Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3228-3238. [PMID: 36137537 PMCID: PMC9594313 DOI: 10.1021/acssynbio.2c00111] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In vivo biosensors that can convert metabolite concentrations into measurable output signals are valuable tools for high-throughput screening and dynamic pathway control in the field of metabolic engineering. Here, we present a novel biosensor in Saccharomyces cerevisiae that is responsive to p-coumaroyl-CoA, a central precursor of many flavonoids. The sensor is based on the transcriptional repressor CouR from Rhodopseudomonas palustris and was applied in combination with a previously developed malonyl-CoA biosensor for dual regulation of p-coumaroyl-CoA synthesis within the naringenin production pathway. Using this approach, we obtained a naringenin titer of 47.3 mg/L upon external precursor feeding, representing a 15-fold increase over the nonregulated system.
Collapse
|
36
|
Metabolomics and modelling approaches for systems metabolic engineering. Metab Eng Commun 2022; 15:e00209. [PMID: 36281261 PMCID: PMC9587336 DOI: 10.1016/j.mec.2022.e00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic engineering involves the manipulation of microbes to produce desirable compounds through genetic engineering or synthetic biology approaches. Metabolomics involves the quantitation of intracellular and extracellular metabolites, where mass spectrometry and nuclear magnetic resonance based analytical instrumentation are often used. Here, the experimental designs, sample preparations, metabolite quenching and extraction are essential to the quantitative metabolomics workflow. The resultant metabolomics data can then be used with computational modelling approaches, such as kinetic and constraint-based modelling, to better understand underlying mechanisms and bottlenecks in the synthesis of desired compounds, thereby accelerating research through systems metabolic engineering. Constraint-based models, such as genome scale models, have been used successfully to enhance the yield of desired compounds from engineered microbes, however, unlike kinetic or dynamic models, constraint-based models do not incorporate regulatory effects. Nevertheless, the lack of time-series metabolomic data generation has hindered the usefulness of dynamic models till today. In this review, we show that improvements in automation, dynamic real-time analysis and high throughput workflows can drive the generation of more quality data for dynamic models through time-series metabolomics data generation. Spatial metabolomics also has the potential to be used as a complementary approach to conventional metabolomics, as it provides information on the localization of metabolites. However, more effort must be undertaken to identify metabolites from spatial metabolomics data derived through imaging mass spectrometry, where machine learning approaches could prove useful. On the other hand, single-cell metabolomics has also seen rapid growth, where understanding cell-cell heterogeneity can provide more insights into efficient metabolic engineering of microbes. Moving forward, with potential improvements in automation, dynamic real-time analysis, high throughput workflows, and spatial metabolomics, more data can be produced and studied using machine learning algorithms, in conjunction with dynamic models, to generate qualitative and quantitative predictions to advance metabolic engineering efforts.
Collapse
|
37
|
Nejabati HR, Roshangar L. Kaempferol: A potential agent in the prevention of colorectal cancer. Physiol Rep 2022; 10:e15488. [PMID: 36259115 PMCID: PMC9579739 DOI: 10.14814/phy2.15488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 04/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in relation to incidence and mortality rate and its incidence is considerably increasing annually due to the change in the dietary habit and lifestyle of the world population. Although conventional therapeutic options, such as surgery, chemo- and radiotherapy have profound impacts on the treatment of CRC, dietary therapeutic agents, particularly natural products have been regarded as the safest alternatives for the treatment of CRC. Kaempferol (KMP), a naturally derived flavonol, has been shown to reduce the production of reactive oxygen species (ROS), such as superoxide ions, hydroxyl radicals, and reactive nitrogen species (RNS), especially peroxynitrite. Furthermore, this flavonol inhibits xanthine oxidase (XO) activity and increases the activities of catalase, heme oxygenase-1 (HO), and superoxide dismutase (SOD) in a wide range of cancer and non-cancer cells. Based on several studies, KMP is also a hopeful anticancer which carries out its anticancer action via suppression of angiogenesis, stimulation of apoptosis, and cell cycle arrest. Due to various applications of KMP as an anticancer flavonol, this review article aims to highlight the current knowledge regarding the role of KMP in CRC.
Collapse
Affiliation(s)
| | - Leila Roshangar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
38
|
Kim DH, Hwang HG, Jung GY. Optimum flux rerouting for efficient production of naringenin from acetate in engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:90. [PMID: 36056377 PMCID: PMC9440541 DOI: 10.1186/s13068-022-02188-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/20/2022] [Indexed: 11/13/2022]
Abstract
Background Microbial production of naringenin has received much attention owing to its pharmaceutical applicability and potential as a key molecular scaffold for various flavonoids. In the microbial fermentation, a cheap and abundant feedstock is required to achieve an economically feasible bioprocess. From this perspective, utilizing acetate for naringenin production could be an effective strategy, with the advantages of both low-cost and abundant feedstock. For the efficient production of naringenin using acetate, identification of the appropriate regulatory node of carbon flux in the biosynthesis of naringenin from acetate would be important. While acetyl-CoA is a key precursor for naringenin production, carbon flux between the TCA cycle and anaplerosis is effectively regulated at the isocitrate node through glyoxylate shunt in acetate metabolism. Accordingly, appropriate rerouting of TCA cycle intermediates from anaplerosis into naringenin biosynthesis via acetyl-CoA replenishment would be required. Results This study identified the isocitrate and oxaloacetate (OAA) nodes as key regulatory nodes for the naringenin production using acetate. Precise rerouting at the OAA node for enhanced acetyl-CoA was conducted, avoiding extensive loss of OAA by fine-tuning the expression of pckA (encoding phosphoenolpyruvate carboxykinase) with flux redistribution between naringenin biosynthesis and cell growth at the isocitrate node. Consequently, the flux-optimized strain exhibited a significant increase in naringenin production, a 27.2-fold increase (with a 38.3-fold increase of naringenin yield on acetate) over that by the unoptimized strain, producing 97.02 mg/L naringenin with 21.02 mg naringenin/g acetate, which is a competitive result against those in previous studies on conventional substrates, such as glucose. Conclusions Collectively, we demonstrated efficient flux rerouting for maximum naringenin production from acetate in E. coli. This study was the first attempt of naringenin production from acetate and suggested the potential of biosynthesis of various flavonoids derived from naringenin using acetate. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02188-w.
Collapse
|
39
|
Akdemir H, Liu Y, Zhuang L, Zhang H, Koffas MAG. Utilization of microbial cocultures for converting mixed substrates to valuable bioproducts. Curr Opin Microbiol 2022; 68:102157. [DOI: 10.1016/j.mib.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
40
|
Atkinson E, Tuza Z, Perrino G, Stan GB, Ledesma-Amaro R. Resource-aware whole-cell model of division of labour in a microbial consortium for complex-substrate degradation. Microb Cell Fact 2022; 21:115. [PMID: 35698129 PMCID: PMC9195437 DOI: 10.1186/s12934-022-01842-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-cost sustainable feedstocks are essential for commercially viable biotechnologies. These feedstocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capacity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour (DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway. RESULTS Here, we model a two-strain consortium, with one strain expressing an endohydrolase and a second strain expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a balance between increasing expression to enhance degradation versus the burden that higher expression causes. Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single-cell monoculture. CONCLUSIONS We demonstrate that resource-aware whole-cell models can be used to predict the benefits and limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, complex-substrate degradation pathways.
Collapse
Affiliation(s)
- Eliza Atkinson
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Zoltan Tuza
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Giansimone Perrino
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
41
|
Li J, Qiu Z, Zhao GR. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture. Synth Syst Biotechnol 2022; 7:718-729. [PMID: 35330959 PMCID: PMC8927788 DOI: 10.1016/j.synbio.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Resveratrol, a valuable plant-derived polyphenolic compound with various bioactivities, has been widely used in nutraceutical industries. Microbial production of resveratrol suffers from metabolic burden and low malonyl-CoA availability, which is a big challenge for synthetic biology. Herein, we took advantage of coculture engineering and divided the biosynthetic pathway of resveratrol into the upstream and downstream strains. By enhancing the supply of malonyl-CoA via CRISPRi system and fine-tuning the expression intensity of the synthetic pathway genes, we significantly improved the resveratrol productivity of the downstream strain. Furthermore, we developed a resveratrol addiction circuit that coupled the growth of the upstream strain and the resveratrol production of the downstream strain. The bidirectional interaction stabilized the coculture system and increased the production of resveratrol by 74%. Moreover, co-utilization of glucose and arabinose by the coculture system maintained the growth advantage of the downstream strain for production of resveratrol throughout the fermentation process. Under optimized conditions, the engineered E. coli coculture system produced 204.80 mg/L of resveratrol, 12.8-fold improvement over monoculture system. This study demonstrates the promising potential of coculture engineering for efficient production of natural products from biomass.
Collapse
|
42
|
Wu X, Liu J, Liu D, Yuwen M, Koffas MAG, Zha J. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum. Microb Cell Fact 2022; 21:86. [PMID: 35568867 PMCID: PMC9107716 DOI: 10.1186/s12934-022-01815-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background Eriodictyol is a bioactive flavonoid compound that shows potential applications in medicine development and food processing. Microbial synthesis of eriodictyol has been attracting increasing attention due to several benefits. In this study, we employed a GRAS strain Corynebacterium glutamicum as the host to produce eriodictyol directly from tyrosine. Results We firstly optimized the biosynthetic module of naringenin, the upstream intermediate for eriodictyol production, through screening of different gene orthologues. Next, to improve the level of the precursor malonyl-CoA necessary for naringenin production, we introduced matB and matC from Rhizobium trifolii into C. glutamicum to convert extracellular malonate to intracellular malonyl-CoA. This combinatorial engineering resulted in around 35-fold increase in naringenin production from tyrosine compared to the initial recombinant C. glutamicum. Subsequently, the hpaBC genes from E. coli encoding 4-hydroxyphenylacetate 3-hydroxylase were expressed in C. glutamicum to synthesize eriodictyol from naringenin. Further optimization of the biotransformation process parameters led to the production of 14.10 mg/L eriodictyol. Conclusions The biosynthesis of the ortho-hydroxylated flavonoid eriodictyol in C. glutamicum was achieved for the first time via functional expression of E. coli hpaBC, providing a baseline strain for biosynthesis of other complex flavonoids. Our study demonstrates the potential application of C. glutamicum as a host microbe for the biosynthesis of value-added natural compounds from tyrosine.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Jingyi Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Dan Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Miaomiao Yuwen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
43
|
Thuan NH, Tatipamula VB, Canh NX, Van Giang N. Recent advances in microbial co-culture for production of value-added compounds. 3 Biotech 2022; 12:115. [PMID: 35547018 PMCID: PMC9018925 DOI: 10.1007/s13205-022-03177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Micro-organisms have often been used to produce bioactive compounds as antibiotics, antifungals, and anti-tumors, etc. due to their easy and applicable culture, genetic manipulation, and extraction, etc. Mainly, microbial mono-cultures have been applied to produce value-added compounds and gotten numerous valuable results. However, mono-culture also has several complicated problems, such as metabolic burdens affecting the growth and development of the host, leading to a decrease in titer of the target compound. To circumvent those limitations, microbial co-culture has been technically developed and gained much interest compared to mono-culture. For example, co-culture simplifies the design of artificial biosynthetic pathways and restricts the recombinant host's metabolic burden, causing increased titer of desired compounds. This paper summarizes the recent advanced progress in applying microbial platform co-culture to produce natural products, such as flavonoid, terpenoid, alkaloid, etc. Furthermore, importantly different strategies for enhancing production, overcoming the metabolic burdens, building autonomous modulation of cell growth rate and culture composition in response to a quorum-sensing signal, etc., were also described in detail.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Duy Tan University, Da Nang, 550000 Vietnam
| | | | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi Vietnam
| |
Collapse
|
44
|
Gao H, Manishimwe C, Yang L, Wang H, Jiang Y, Jiang W, Zhang W, Xin F, Jiang M. Applications of synthetic light-driven microbial consortia for biochemicals production. BIORESOURCE TECHNOLOGY 2022; 351:126954. [PMID: 35288267 DOI: 10.1016/j.biortech.2022.126954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microbial consortia provide a versatile and efficient platform for biochemicals production through the labor division. Especially, microbial communities composed of phototrophs and heterotrophs offer a promising alternative, as they can directly convert carbon dioxide (CO2) into chemicals. Within this system, photoautotrophic microbes can convert CO2 into organic carbon for microbial growth and metabolites synthesis by the heterotrophic partners. In return, heterotrophs can provide additional CO2 to support the growth of photoautotrophic microbes. However, the unmatched growing conditions, low stability and production efficiency of synthetic microbial consortia hinder their further applications. Thus, design and construction of mutualistic and stable synthetic light-driven microbial consortia are urgently needed. In this review, the progress of synthetic light-driven microbial consortia for chemicals production was comprehensively summarized. In addition, space-efficient synthetic light-driven microbial consortia in hydrogel system were reviewed. Perspectives on orderly distribution of light-driven microbial consortia associated with 3D printing technology in biomanufacturing were also addressed.
Collapse
Affiliation(s)
- Hao Gao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Clarisse Manishimwe
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lu Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hanxiao Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
45
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
46
|
Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol: A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr 2022; 63:9580-9604. [PMID: 35468008 DOI: 10.1080/10408398.2022.2067121] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Vandana Chaudhary
- College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, New Delhi, India
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government of Home Science College, Chandigarh, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
47
|
Yeo HC, Park SY, Tan T, Ng SK, Lakshmanan M, Lee DY. Combined multivariate statistical and flux balance analyses uncover media bottlenecks to the growth and productivity of CHO cell cultures. Biotechnol Bioeng 2022; 119:1740-1754. [PMID: 35435243 DOI: 10.1002/bit.28104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/06/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for producing recombinant proteins. To enhance their productivity and product quality, media reformulation has been a key strategy, albeit with several technical challenges, due to the myriad of complex molecular mechanisms underlying media effects on culture performance. Thus, it is imperative to characterize metabolic bottlenecks under various media conditions systematically. To do so, we combined partial least square regression (PLS-R) with the flux balance analysis of a genome-scale metabolic model to elucidate the physiological states and metabolic behaviors of human alpha-1 antitrypsin producing CHO-DG44 cells grown in one commercial and another two in-house media under development. At the onset, PLS-R was used to identify metabolite exchanges that were correlated to specific growth and productivity. Then, by comparing metabolic states described by resultant flux distributions under two of the media conditions, we found sub-optimal level of four nutrients and two metabolic wastes, which plausibly hindered cellular growth and productivity; mechanistically, lactate and ammonia recycling were modulated by glutamine and asparagine metabolisms in the media conditions, and also by hitherto unsuspected folate and choline supplements. Our work demonstrated how multivariate statistical analysis can be synergistically combined with metabolic modelling to uncover the mechanistic elements underlying differing media performance. It thus paved the way for the systematic identification of nutrient targets for medium reformulation to enhance recombinant protein production in CHO cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668.,Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Singapore, 138671
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tessa Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668.,School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
48
|
Design of stable and self-regulated microbial consortia for chemical synthesis. Nat Commun 2022; 13:1554. [PMID: 35322005 PMCID: PMC8943006 DOI: 10.1038/s41467-022-29215-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Microbial coculture engineering has emerged as a promising strategy for biomanufacturing. Stability and self-regulation pose a significant challenge for the generation of intrinsically robust cocultures for large-scale applications. Here, we introduce the use of multi-metabolite cross-feeding (MMCF) to establish a close correlation between the strains and the design rules for selecting the appropriate metabolic branches. This leads to an intrinicially stable two-strain coculture where the population composition and the product titer are insensitive to the initial inoculation ratios. With an intermediate-responsive biosensor, the population of the microbial coculture is autonomously balanced to minimize intermediate accumulation. This static-dynamic strategy is extendable to three-strain cocultures, as demonstrated with de novo biosynthesis of silybin/isosilybin. This strategy is generally applicable, paving the way to the industrial application of microbial cocultures. Stability and tunability are two desirable properties of microbial consortia-based bioproduction. Here, the authors integrate a caffeate-responsive biosensor into two and three strains coculture system to achieve autonomous regulation of strain ratios for coniferol and silybin/isosiltbin production, respectively.
Collapse
|
49
|
Qiu Z, Liu X, Li J, Qiao B, Zhao GR. Metabolic Division in an Escherichia coli Coculture System for Efficient Production of Kaempferide. ACS Synth Biol 2022; 11:1213-1227. [PMID: 35167258 DOI: 10.1021/acssynbio.1c00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kaempferide, a plant-derived natural flavonoid, exhibits excellent pharmacological activities with nutraceutical and medicinal applications in human healthcare. Efficient microbial production of complex flavonoids suffers from metabolic crosstalk and burden, which is a big challenge for synthetic biology. Herein, we identified 4'-O-methyltransferases and divided the artificial biosynthetic pathway of kaempferide into upstream, midstream, and downstream modules. By combining heterologous genes from different sources and fine-tuning the expression, we optimized each module for the production of kaempferide. Furthermore, we designed and evaluated four division patterns of synthetic labor in coculture systems by plug-and-play modularity. The linear division of three modules in a three-strain coculture showed higher productivity of kaempferide than that in two-strain cocultures. The U-shaped division by co-distributing the upstream and downstream modules in one strain led to the best performance of the coculture system, which produced 116.0 ± 3.9 mg/L kaempferide, which was 510, 140, and 50% higher than that produced by the monoculture, two-strain coculture, and three-strain coculture with the linear division, respectively. This is the first report of efficient de novo production of kaempferide in a robust Escherichia coli coculture. The strategy of U-shaped pathway division in the coculture provides a promising way for improving the productivity of valuable and complex natural products.
Collapse
Affiliation(s)
- Zetian Qiu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Jia Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan
District, Shenzhen 518055, China
| |
Collapse
|
50
|
Hussain MH, Mohsin MZ, Zaman WQ, Yu J, Zhao X, Wei Y, Zhuang Y, Mohsin A, Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth Syst Biotechnol 2022; 7:586-601. [PMID: 35155840 PMCID: PMC8816652 DOI: 10.1016/j.synbio.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced biosynthesis of natural products that are known functional ingredients with numerous applications in the food, cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes the optimization of genetic and physicochemical parameters of the microbial system for improved production of natural products. Also, this review presents a brief history of natural consortium and describes the functional properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve the productibility of both monoculture and consortial based systems have been greatly emphasized. In this context, possible strategies are also discussed to give an insight into microbial engineering for improved production of natural products in the future. In summary, it is concluded that the coupling of genomic modifications with optimum physicochemical factors would be promising for producing a robust microbial cell factory that shall contribute to the increased production of natural products.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. P.O. box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, PR China.
| |
Collapse
|