1
|
Wang G, Wang Y, Wu Y, Dong S, Zhao H, Deng H, Chen Y, Song W, Wang R, Ma C. Metabolic engineering of Escherichia coli for de novo production of 5-hydroxyvalerate via L-lysine α-oxidase pathway. BIORESOURCE TECHNOLOGY 2024; 412:131359. [PMID: 39197663 DOI: 10.1016/j.biortech.2024.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/06/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
5-hydroxyvalerate (5-HV) is a crucial C5 platform chemical with versatile applications, yet its efficient production remains a challenge. The Raip, gabT, and yahK genes were integrated into the E. coli LE genome, deleted gabD, and enhanced gabP expression, resulting in the QluMG strain. Additionally, the impact of ethanol and H2O2 on 5-HV production was investigated. Further enhancement was achieved by incorporating an NADPH supplementation system, resulting in the QluMG strain. In the 5 L fermenter, the QluMGD strain produced 21.7 g/L of 5-HV from 50 g/L glucose, with a conversion rate of 43.4 %. The successful integration of the RaiP pathway into the E. coli genome significantly enhanced 5-HV production. The QluMG strain achieved the highest reported yield from glucose in engineered E. coli to date. This study provides a new strategy for the efficient production of 5-HV and other chemicals using 5-HV as a precursor, demonstrating potential for industrial application.
Collapse
Affiliation(s)
- Guodong Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Yuanwei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Yingshuai Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Shitong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Han Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Hongyu Deng
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yonghua Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Wenzhu Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China
| | - Chunling Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, 250353, PR China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Science) Jinan, 250353, PR China.
| |
Collapse
|
2
|
Pandey VK, Shafi Z, Tripathi A, Singh G, Singh R, Rustagi S. Production of biodegradable food packaging from mango peel via enzymatic hydrolysis and polyhydroxyalkanoates synthesis: A review on microbial intervention. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100292. [PMID: 39497936 PMCID: PMC11533516 DOI: 10.1016/j.crmicr.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The rising environmental problem of plastic packaging waste has led to the development of sustainable alternatives, particularly for food packaging. Polyhydroxyalkanoates (PHAs) are biodegradable, thermoplastic polyesters. They are employed in the production of various products, including packaging films. The bio-based nature and appropriate features of PHAs, similar to conventional synthetic plastics, have garnered significant attention from researchers and industries. The current study aimed to produce biodegradable food packaging using mango peel (a major agricultural waste) with enzymatic hydrolysis and PHAs synthesis. Mango peel is the hub for macro-and micronutrients, including phytochemicals. The process includes an enzymatic hydrolysis step that converts complex carbohydrates into simple sugars using mango peel as a substrate. The produced sugars are used as raw materials for bacteria to synthesize PHAs, which are a class of biodegradable polymers produced by these microorganisms that can serve as packaging materials in the food industry. To solve environmental problems and increase the utilization of agricultural by-products, this review presents a practical method for producing food packaging that is environmentally friendly.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University) Faridabad 121004 Haryana, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow-226026, Uttar Pradesh, India
| | - Anjali Tripathi
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Gurmeet Singh
- Department of chemistry, Guru Nanak College of Pharmaceutical & Paramedical Sciences, Dehradun, Uttarakhand, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
3
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2024:d4py00623b. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
4
|
Zhu F, Xia L, Wen J, Zhang L. Recent Advances in the Biosynthesis of Mid- and Long-Chain Dicarboxylic Acids Using Terminally Oxidizing Unconventional Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19566-19580. [PMID: 39207200 DOI: 10.1021/acs.jafc.4c05028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As high-performance monomers for the manufacture of polyamide materials, mid- and long-chain dicarboxylic acids (DCAi, i ≥ 6) have received extensive attention from researchers. Biosynthesis is gradually replacing chemical synthesis due to its outstanding advantages in the industrial production of mid- and long-chain dicarboxylic acids, which is mostly achieved by using the strong terminal oxidation ability of nonmodel microorganisms such as Candida tropicalis to oxidize hydrophobic substrates such as alkanes. Here, we first summarize the metabolic pathways of oxidative alkane conversion into dicarboxylic acid by terminally oxidizing unconventional yeasts and the corresponding metabolic engineering strategies. Then, we summarize the research progress on new dicarboxylic acid production processes. Finally, the future development directions in the biosynthesis of mid- and long-chain dicarboxylic acids are prospected from synthetic biology and bioprocess engineering, which can also provide a reference for the synthesis of other biobased chemicals and biomaterials.
Collapse
Affiliation(s)
- Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Xia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| |
Collapse
|
5
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Manoli MT, Gargantilla-Becerra Á, Del Cerro Sánchez C, Rivero-Buceta V, Prieto MA, Nogales J. A model-driven approach to upcycling recalcitrant feedstocks in Pseudomonas putida by decoupling PHA production from nutrient limitation. Cell Rep 2024; 43:113979. [PMID: 38517887 DOI: 10.1016/j.celrep.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Bacterial polyhydroxyalkanoates (PHAs) have emerged as promising eco-friendly alternatives to petroleum-based plastics since they are synthesized from renewable resources and offer exceptional properties. However, their production is limited to the stationary growth phase under nutrient-limited conditions, requiring customized strategies and costly two-phase bioprocesses. In this study, we tackle these challenges by employing a model-driven approach to reroute carbon flux and remove regulatory constraints using synthetic biology. We construct a collection of Pseudomonas putida-overproducing strains at the expense of plastics and lignin-related compounds using growth-coupling approaches. PHA production was successfully achieved during growth phase, resulting in the production of up to 46% PHA/cell dry weight while maintaining a balanced carbon-to-nitrogen ratio. Our strains are additionally validated under an upcycling scenario using enzymatically hydrolyzed polyethylene terephthalate as a feedstock. These findings have the potential to revolutionize PHA production and address the global plastic crisis by overcoming the complexities of traditional PHA production bioprocesses.
Collapse
Affiliation(s)
- Maria-Tsampika Manoli
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Álvaro Gargantilla-Becerra
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain
| | - Carlos Del Cerro Sánchez
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), 28040 Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain; 3Systems Biotechnology Group, Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid 28049, Spain; CNB DNA Biofoundry (CNBio), CSIC, Madrid, Spain.
| |
Collapse
|
7
|
Park S, Roh S, Yoo J, Ahn JH, Gong G, Lee SM, Um Y, Han SO, Ko JK. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16. Int J Biol Macromol 2024; 263:130360. [PMID: 38387639 DOI: 10.1016/j.ijbiomac.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
As thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.g., sugar or CO2), we used the lithoautotrophic bacterium Cupriavidus necator H16 as a microbial platform. Specifically, we synthesized tailored PHA copolymers with varying MCL-3-hydroxyalkanoate (3HA) compositions (10-70 mol%) from fructose by rewiring the MCL-3HA biosynthetic pathways, including (i) the thioesterase-mediated free fatty acid biosynthetic pathway coupled with the beta-oxidation cycle and (ii) the hydroxyacyl transferase-mediated fatty acid de novo biosynthetic pathway. In addition to sugar-based feedstocks, engineered strains are also promising platforms for the lithoautotrophic production of SCL/MCL-PHAs from CO2. The set of engineered C. necator strains developed in this study provides greater opportunities to produce customized polymers with controllable monomer compositions from renewable resources.
Collapse
Affiliation(s)
- Soyoung Park
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soonjong Roh
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
9
|
Zhang Y, Cai C, Xu K, Yang X, Yu L, Gao L, Dong S. A supramolecular approach for converting renewable biomass into functional materials. MATERIALS HORIZONS 2024; 11:1315-1324. [PMID: 38170848 DOI: 10.1039/d3mh01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rational transformation and utilization of biomass have attracted increasing attention because of its high importance in sustainable development and green economy. In this study, we used a supramolecular approach to convert biomass into functional materials. Six biomass raw materials with distinct chemical structures and physical properties were copolymerized with thioctic acid (TA) to afford poly[TA-biomass]s. The solvent-free copolymerization leads to the convenient and quantitative fabrication of biomass-based versatile materials. The non-covalent bonding and reversible solid-liquid transitions in poly[TA-biomass]s endow them with diversified features, including thermal processability, 3D printing, wet and dry adhesion, recyclability, impact resistance, and antimicrobial activity. Benefiting from their good biocompatibility and nontoxicity, these biomass-based materials are promising candidates for biological applications.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ke Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China.
| | - Xiao Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China.
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
10
|
Chacón M, Wongsirichot P, Winterburn J, Dixon N. Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste. Curr Opin Biotechnol 2024; 85:103024. [PMID: 38056203 DOI: 10.1016/j.copbio.2023.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Biopolymers produced as microbial carbon storage systems, such as polyhydroxyalkanoates (PHAs), offer potential to be used in place of petrochemically derived plastics. Low-value organic feedstocks, such as food waste, have been explored as a potential substrate for the microbial production of PHAs. In this review, we discuss the biosynthesis, composition and producers of PHAs, with a particular focus on the genetic and process engineering efforts to utilise non-native substrates, derived from food waste from across the entire supply chain, for microbial growth and PHA production. We highlight a series of studies that have achieved impressive advances and discuss the challenges of producing PHAs with consistent composition and properties from mixed and variable food waste and by-products.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Phavit Wongsirichot
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Winterburn
- Department of Chemical Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
11
|
Chang JY, Syauqi TA, Sudesh K, Ng SL. Insights into biofilm development on polyhydroxyalkanoate biofilm carrier for anoxic azo dye decolourization of acid orange 7. BIORESOURCE TECHNOLOGY 2024; 393:130054. [PMID: 37995876 DOI: 10.1016/j.biortech.2023.130054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are promising alternatives to non-degradable polymers in various applications. This study explored the use of biologically recovered PHA as a biofilm carrier in a moving bed biofilm reactor for acid orange 7 treatment. The PHA was comprised of 86 ± 1 mol% of 3-hydroxybutyrate and 14 ± 1 mol% of 3-hydroxyhexanoate and was melt-fused at 140 °C into pellets. The net positive surface charge of the PHA biocarrier facilitated attachment of negatively charged activated sludge, promoting biofilm formation. A 236-µm mature biofilm developed after 26 days. The high polysaccharides-to-protein ratio (>1) in the biofilm's extracellular polymeric substances indicated a stable biofilm structure. Four main microbial strains in the biofilm were identified as Leclercia adecarboxylata, Leuconostoc citreum, Bacillus cereus, and Rhodotorula mucilaginosa, all of which exhibited decolourization abilities. In conclusion, PHA holds promise as an effective biocarrier for biofilm development, offering a sustainable alternative in wastewater treatment applications.
Collapse
Affiliation(s)
- Jia Yun Chang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Taufiq Ahmad Syauqi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Si Ling Ng
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
12
|
Kim SM, Lee HI, Nam SW, Jin DH, Jeong GT, Nam SW, Burns B, Jeon YJ. The Halophilic Bacterium Paracoccus haeundaensis for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Single Carbon Sources. J Microbiol Biotechnol 2024; 34:74-84. [PMID: 37997264 PMCID: PMC10840474 DOI: 10.4014/jmb.2305.05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The study objective was to evaluate the potential production of polyhydroxyalkanoates (PHAs), a biodegradable plastic material, by Paracoccus haeundaensis for which PHA production has never been reported. To identify the most effective nitrogen-limited culture conditions for PHAs production from this bacterium, batch fermentation using glucose concentrations ranging from 4 g l-1 to 20 g l-1 with a fixed ammonium concentration of 0.5 g l-1 was carried out at 30°C and pH 8.0. A glucose supplement of 12 g l-1 produced the highest PHA concentration (1.6 g l-1) and PHA content (0.63 g g-1) thereby identifying the optimal condition for PHA production from this bacterium. Gas chromatography-mass spectrometry analysis suggests that P. haeundaensis mostly produced copolymer types of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from glucose concentrations at 12 g l-1 or higher under the nitrogen-limited conditions. When several other single carbon sources were evaluated for the most efficient PHA production, fructose provided the highest biomass (2.8 g l-1), and PHAs (1.29 g l-1) concentrations. Results indicated that this bacterium mostly produced the copolymers P(3HB-co-3HV) from single carbon sources composing a range of 93-98% of 3-hydroxybutyrate and 2-7% of 3-hydroxyvalerate, whereas mannose-supplemented conditions produced the only homopolymer type of P(3HB). However, when propionic acid as a secondary carbon source were supplemented into the media, P. haeundaensis produced the copolymer P(3HB-co-3HV), composed of a 50% maximum monomeric unit of 3-hydroxyvaleric acid (3HV). However, as the concentration of propionic acid increased, cell biomass and PHAs concentrations substantially decreased due to cell toxicity.
Collapse
Affiliation(s)
- Seon Min Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hye In Lee
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seung Won Nam
- Bioresources Collection and Research Team, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Deok Hyeon Jin
- Bioresources Collection and Research Team, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Gwi-Taek Jeong
- School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Soo-Wan Nam
- Department of Smart Bio-Health, Dong-eui University, Busan 47340, Republic of Korea
- Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Republic of Korea
| | - Brendan Burns
- School of Biotechnology & Biomolecular Science, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Young Jae Jeon
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
- School of Marine and Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
13
|
Yang F, Wang H, Zhao C, Zhang L, Liu X, Park H, Yuan Y, Ye JW, Wu Q, Chen GQ. Metabolic engineering of Halomonas bluephagenesis for production of five carbon molecular chemicals derived from L-lysine. Metab Eng 2024; 81:227-237. [PMID: 38072357 DOI: 10.1016/j.ymben.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT1+2, which produced 16.4 g L-1 and 67.4 g L-1 5-AVA in flask cultures and in 7 L bioreactor, respectively. It was able to de novo synthesize 5-AVA from glucose by L-lysine-overproducing H. bluephagenesis TD226. Corn steep liquor was used instead of yeast extract for cost reduction during the 5-AVA production. Using promoter engineering based on Pporin mutant library for downstream genes, H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC produced 6 g L-1 5HV in shake flask growth, while H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC-Pporin278-phaCRE-abfT synthesized 42 wt% P(3HB-co-4.8 mol% 5HV) under the same condition. Thus, H. bluephagenesis was successfully engineered to produce 5-AVA and 5HV in supernatant and intracellular P(3HB-co-5HV) utilizing L-lysine as the substrate.
Collapse
Affiliation(s)
- Fang Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiping Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
15
|
Manoli MT, Blanco FG, Rivero-Buceta V, Kniewel R, Alarcon SH, Salgado S, Prieto MA. Heterologous constitutive production of short-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2440: the involvement of IbpA inclusion body protein. Front Bioeng Biotechnol 2023; 11:1275036. [PMID: 38026847 PMCID: PMC10646324 DOI: 10.3389/fbioe.2023.1275036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Designing cell factories for the production of novel polyhydroxyalkanoates (PHAs) via smart metabolic engineering is key to obtain à la carte materials with tailored physicochemical properties. To this end, we used the model medium-chain-length-PHA producing bacterium, P. putida KT2440 as a chassis, which is characterized by its metabolic versatility and stress tolerance. Different PHA biosynthetic modules were assembled in expression plasmids using the Golden gate/MoClo modular assembly technique to implement an orthogonal short-chain-lengh-PHA (scl-PHA) switch in a "deaf" PHA mutant. This was specifically constructed to override endogenous multilevel regulation of PHA synthesis in the native strain. We generated a panel of engineered approaches carrying the genes from Rhodospirillum rubrum, Cupriavidus necator and Pseudomonas pseudoalcaligenes, demonstrating that diverse scl-PHAs can be constitutively produced in the chassis strain to varying yields from 23% to 84% PHA/CDW. Co-feeding assays of the most promising engineered strain harboring the PHA machinery from C. necator resulted to a panel of PHBV from 0.6% to 19% C5 monomeric incorporation. Chromosomally integrated PHA machineries with high PhaCCn synthase dosage successfully resulted in 68% PHA/CDW production. Interestingly, an inverse relationship between PhaC synthase dosage and granule size distribution was demonstrated in the heterologous host. In this vein, it is proposed the key involvement of inclusion body protein IbpA to the heterologous production of tailored PHA in P. putida KT2440.
Collapse
Affiliation(s)
- Maria-Tsampika Manoli
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ryan Kniewel
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sandra Herrera Alarcon
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sergio Salgado
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Polymer Biotechnology Group, Department of Microbial and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
16
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
18
|
Panaitescu DM, Frone AN, Nicolae CA, Gabor AR, Miu DM, Soare MG, Vasile BS, Lupescu I. Poly(3-hydroxybutyrate) nanocomposites modified with even and odd chain length polyhydroxyalkanoates. Int J Biol Macromol 2023:125324. [PMID: 37307975 DOI: 10.1016/j.ijbiomac.2023.125324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC. The addition of mcl-PHAs decreased the storage modulus (E') of PHB blends by about 40 %. The further addition of NC mitigated this decrease bringing the E' of PHB/PHO/NC close to that of PHB and having a minor effect on the E' of PHB/PHN/NC. The biodegradability of PHB/PHN/NC was higher than that of PHB/PHO/NC, the latter's being close to that of neat PHB after soil burial for four months. The results showed a complex effect of NC, which enhanced the interaction between PHB and mcl-PHAs and decreased the size of PHO/PHN inclusions (1.9 ± 0.8/2.6 ± 0.9 μm) while increasing the accessibility of water and microorganisms during soil burial. The blown film extrusion test showed the ability of mcl-PHA and NC modified PHB to stretch forming uniform tube and supports the application of these biomaterials in the packaging sector.
Collapse
Affiliation(s)
- Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Dana Maria Miu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Mariana-Gratiela Soare
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania
| | - Bogdan Stefan Vasile
- National Research Centre for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299 Bucharest, Romania; Department of Veterinary Medicine, Spiru Haret University, 256 Bulevardul Basarabia, 030352 Bucharest, Romania
| |
Collapse
|
19
|
Penchev H, Abdelhamid AE, Ali EA, Budurova D, Grancharov G, Ublekov F, Koseva N, Zaharieva K, El-Sayed AA, Khalil AM. Novel Electrospun Composite Membranes Based on Polyhydroxybutyrate and Poly(vinyl formate) Loaded with Protonated Montmorillonite for Organic Dye Removal: Kinetic and Isotherm Studies. MEMBRANES 2023; 13:582. [PMID: 37367786 DOI: 10.3390/membranes13060582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
The use of biodegradable polyesters derived from green sources and their combination with natural abundantly layered aluminosilicate clay, e.g., natural montmorillonite, meets the requirements for the development of new sustainable, disposable, and biodegradable organic dye sorbent materials. In this regard, novel electrospun composite fibers, based on poly β-hydroxybutyrate (PHB) and in situ synthesized poly(vinyl formate) (PVF), loaded with protonated montmorillonite (MMT-H) were prepared via electrospinning in the presence of formic acid, a volatile solvent for polymers and a protonating agent for the pristine MMT-Na. The morphology and structure of electrospun composite fibers were investigated through SEM, TEM, AFM, FT-IR, and XRD analyses. The contact angle (CA) measurements showed increased hydrophilicity of the composite fibers incorporated with MMT-H. The electrospun fibrous mats were evaluated as membranes for removing cationic (methylene blue) and anionic (Congo red) dyes. PHB/MMT 20% and PVF/MMT 30% showed significant performance in dye removal compared with the other matrices. PHB/MMT 20% was the best electrospun mat for adsorbing Congo red. The PVF/MMT 30% fibrous membrane exhibited the optimum activity for the adsorption of methylene blue and Congo red dyes.
Collapse
Affiliation(s)
- Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev 103A, 1113 Sofia, Bulgaria
| | - Ahmed E Abdelhamid
- Polymers and Pigments Department, National Research Centre, El-Buhouth Str., Giza 12622, Egypt
| | - Eman A Ali
- Polymers and Pigments Department, National Research Centre, El-Buhouth Str., Giza 12622, Egypt
| | - Dessislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev 103A, 1113 Sofia, Bulgaria
| | - Georgy Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev 103A, 1113 Sofia, Bulgaria
| | - Filip Ublekov
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev 103A, 1113 Sofia, Bulgaria
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev 103A, 1113 Sofia, Bulgaria
| | - Katerina Zaharieva
- Institute of Mineralogy and Crystallography Acad. I. Kostov, Bulgarian Academy of Sciences, Acad. G. Bonchev 107, 1113 Sofia, Bulgaria
| | - Ahmed A El-Sayed
- Photochemistry Department, National Research Centre, El-Buhouth Str., Giza 12622, Egypt
| | - Ahmed M Khalil
- Photochemistry Department, National Research Centre, El-Buhouth Str., Giza 12622, Egypt
| |
Collapse
|
20
|
Song L, Wang M, Yu D, Li Y, Yu H, Han X. Enhancing Production of Medium-Chain-Length Polyhydroxyalkanoates from Pseudomonas sp. SG4502 by tac Enhancer Insertion. Polymers (Basel) 2023; 15:polym15102290. [PMID: 37242866 DOI: 10.3390/polym15102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Pseudomonas sp. SG4502 screened from biodiesel fuel by-products can synthesize medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glycerol as a substrate. It contains a typical PHA class II synthase gene cluster. This study revealed two genetic engineering methods for improving the mcl-PHA accumulation capacity of Pseudomonas sp. SG4502. One way was to knock out the PHA-depolymerase phaZ gene, the other way was to insert a tac enhancer into the upstream of the phaC1/phaC2 genes. Yields of mcl-PHAs produced from 1% sodium octanoate by +(tac-phaC2) and ∆phaZ strains were enhanced by 53.8% and 23.1%, respectively, compared with those produced by the wild-type strain. The increase in mcl-PHA yield from +(tac-phaC2) and ∆phaZ was due to the transcriptional level of the phaC2 and phaZ genes, as determined by RT-qPCR (the carbon source was sodium octanoate). 1H-NMR results showed that the synthesized products contained 3-hydroxyoctanoic acid (3HO), 3-hydroxydecanoic acid (3HD) and 3-hydroxydodecanoic acid (3HDD) units, which is consistent with those synthesized by the wild-type strain. The size-exclusion chromatography by GPC of mcl-PHAs from the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains were 2.67, 2.52 and 2.60, respectively, all of which were lower than that of the wild-type strain (4.56). DSC analysis showed that the melting temperature of mcl-PHAs produced by recombinant strains ranged from 60 °C to 65 °C, which was lower than that of the wild-type strain. Finally, TG analysis showed that the decomposition temperature of mcl-PHAs synthesized by the (∆phaZ), +(tac-phaC1) and +(tac-phaC2) strains was 8.4 °C, 14.7 °C and 10.1 °C higher than that of the wild-type strain, respectively.
Collapse
Affiliation(s)
- Linxin Song
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun 130118, China
| | - Ming Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Dengbin Yu
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xuerong Han
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun 130118, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
21
|
Zhou G, Zhang H, Su Z, Zhang X, Zhou H, Yu L, Chen C, Wang X. A Biodegradable, Waterproof, and Thermally Processable Cellulosic Bioplastic Enabled by Dynamic Covalent Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301398. [PMID: 37127887 DOI: 10.1002/adma.202301398] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The growing environmental concern over petrochemical-based plastics continuously promotes the exploration of green and sustainable substitute materials. Compared with petrochemical products, cellulose has overwhelming superiority in terms of availability, cost, and biodegradability; however, cellulose's dense hydrogen-bonding network and highly ordered crystalline structure make it hard to be thermoformed. A strategy to realize the partial disassociation of hydrogen bonds in cellulose and the reassembly of cellulose chains via constructing a dynamic covalent network, thereby endowing cellulose with thermal processability as indicated by the observation of a moderate glass transition temperature (Tg = 240 °C), is proposed. Moreover, the cellulosic bioplastic delivers a high tensile strength of 67 MPa, as well as excellent moisture and solvent resistance, good recyclability, and biodegradability in nature. With these advantageous features, the developed cellulosic bioplastic represents a promising alternative to traditional plastics.
Collapse
Affiliation(s)
- Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haishan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
22
|
Kumar V, Lakkaboyana SK, Tsouko E, Maina S, Pandey M, Umesh M, Singhal B, Sharma N, Awasthi MK, Andler R, Jayaraj I, Yuzir A. Commercialization potential of agro-based polyhydroxyalkanoates biorefinery: A technical perspective on advances and critical barriers. Int J Biol Macromol 2023; 234:123733. [PMID: 36801274 DOI: 10.1016/j.ijbiomac.2023.123733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.
Collapse
Affiliation(s)
- Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Sivarama Krishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India; Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Erminta Tsouko
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece
| | - Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | - Neha Sharma
- Metagenomics and Bioprocess Design Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Chile
| | - Iyyappan Jayaraj
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT)-Universiti Technologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Jang YS, Kim WJ, Im JA, Palaniswamy S, Yao Z, Lee HL, Yoon YR, Seong HJ, Papoutsakis ET, Lee SY. Efforts to install a heterologous Wood-Ljungdahl pathway in Clostridium acetobutylicum enable the identification of the native tetrahydrofolate (THF) cycle and result in early induction of solvents. Metab Eng 2023; 77:188-198. [PMID: 37054966 DOI: 10.1016/j.ymben.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Here, we report the construction of a Clostridium acetobutylicum strain ATCC 824 (pCD07239) by heterologous expression of carbonyl branch genes (CD630_0723∼CD630_0729) from Clostridium difficile, aimed at installing a heterologous Wood-Ljungdahl pathway (WLP). As part of this effort, in order to validate the methyl branch of the WLP in the C. acetobutylicum, we performed 13C-tracing analysis on knockdown mutants of four genes responsible for the formation of 5-methyl-tetrahydrofolate (5-methyl-THF) from formate: CA_C3201, CA_C2310, CA_C2083, and CA_C0291. While C. acetobutylicum 824 (pCD07239) could not grow autotrophically, in heterotrophic fermentation, it began producing butanol at the early growth phase (OD600 of 0.80; 0.162 g/L butanol). In contrast, solvent production in the parent strain did not begin until the early stationary phase (OD600 of 7.40). This study offers valuable insights for future research on biobutanol production during the early growth phase.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea.
| | - Won Jun Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jung Ae Im
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Zhuang Yao
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Haeng Lim Lee
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Ye Rin Yoon
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Hyeon Jeong Seong
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University (GNU), Jinju, 52828, Republic of Korea
| | - Eleftherios T Papoutsakis
- Delaware Biotechnology Institute, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA; Department of Biological Sciences, University of Delaware, 118 Wolf Hall, Newark, DE, 19716, USA
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
24
|
Caputo MR, Fernández M, Aguirresarobe R, Kovalcik A, Sardon H, Candal MV, Müller AJ. Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate). Polymers (Basel) 2023; 15:polym15081817. [PMID: 37111965 PMCID: PMC10143864 DOI: 10.3390/polym15081817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
Collapse
Affiliation(s)
- Maria Rosaria Caputo
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Mercedes Fernández
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Robert Aguirresarobe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - María Virginia Candal
- School of Engineering, Science and Technology, Valencian International University (VIU), 46002 Valencia, Spain
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
25
|
Li M, Li W, Zhang T, Guo K, Feng D, Liang F, Xu C, Xian M, Zou H. De Novo Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxypropionate) from Oil by Engineered Cupriavidus necator. Bioengineering (Basel) 2023; 10:bioengineering10040446. [PMID: 37106633 PMCID: PMC10135886 DOI: 10.3390/bioengineering10040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Keyi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chao Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
26
|
Mahato RP, Kumar S, Singh P. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch Microbiol 2023; 205:172. [PMID: 37017747 DOI: 10.1007/s00203-023-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Bioplastics replace synthetic plastics of petrochemical origin, which contributes challenge to both polymer quality and economics. Novel polyhydroxyalkanoates (PHA)-composite materials, with desirable product quality, could be developed, thus targeting the global plastics market, in the coming years. It is possible that PHA can be a greener substitute for their petroleum-based competitors since they are simply decomposed, which may lessen the pressure on municipal and industrial waste management systems. PHA production has proven to be the bottleneck in industrial application and commercialization because of the high price of carbon substrates and downstream processes required to achieve reliability. Bacterial PHA production by these municipal and industrial wastes, which act as a cheap, renewable carbon substrate, eliminates waste management hassles and acts as an efficient substitute for synthetic plastics. In the present review, challenges and opportunities related to the commercialization of polyhydroxyalkanoates are discussed and presented. Moreover, it discusses critical steps of their production process, feedstock evaluation, optimization strategies, and downstream processes. This information may provide us the complete utilization of bacterial PHA during possible applications in packaging, nutrition, medicine, and pharmaceuticals.
Collapse
Affiliation(s)
- Richa Prasad Mahato
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India.
| | - Saurabh Kumar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Padma Singh
- Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar, 249407, India
| |
Collapse
|
27
|
Madhusoodhanan G, KS S, Hariharapura RC, Somashekara DM. Cascading Beta-oxidation Intermediates for the Polyhydroxyalkanoate Copolymer Biosynthesis by Metabolic Flux using Co-substrates and Inhibitors. Des Monomers Polym 2023; 26:1-14. [PMID: 36860326 PMCID: PMC9970204 DOI: 10.1080/15685551.2023.2179763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers that are produced within the microbial cells in the presence of excess carbon and nutrient limitation. Different strategies have been studied to increase the quality and quantity of this biopolymer which in turn can be utilized as biodegradable polymers replacing conventional petrochemical plastics. In the present study, Bacillus endophyticus, a gram-positive PHA-producing bacterium, was cultivated in the presence of fatty acids along with beta-oxidation inhibitor acrylic acid. A novel approach for incorporating different hydroxyacyl groups provided using fatty acids as co-substrate and beta-oxidation inhibitors to direct the intermediates to co-polymer synthesis was experimented. It was observed that higher fatty acids and inhibitors had a greater influence on PHA production. The addition of acrylic acid along with propionic acid had a positive impact, giving 56.49% of PHA along with sucrose which was 1.2-fold more than the control devoid of fatty acids and inhibitors. Along with the copolymer production, the possible PHA pathway functional leading to the copolymer biosynthesis was hypothetically interpreted in this study. The obtained PHA was analyzed by FTIR and 1H NMR to confirm the copolymer production, which indicated the presence of poly3hydroxybutyrate-co-hydroxyvalerate (PHB-co-PHV), poly3hydroxybutyrate-co-hydroxyhexanoate (PHB-co-PHx).
Collapse
Affiliation(s)
- Geethu Madhusoodhanan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Shruthi KS
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divyashree M Somashekara
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India,CONTACT Divyashree M Somashekara Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
28
|
Vermeer CM, Depaz L, van den Berg E, Koelmans T, Kleerebezem R. Production of medium-chain-length PHA in octanoate-fed enrichments dominated by Sphaerotilus sp. Biotechnol Bioeng 2023; 120:687-701. [PMID: 36515096 DOI: 10.1002/bit.28306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by using microbial enrichments is a promising but largely unexplored approach to obtain elastomeric biomaterials from secondary resources. In this study, several enrichment strategies were tested to select a community with a high mcl-PHA storage capacity when feeding octanoate. On the basis of analysis of the metabolic pathways, the hypothesis was formulated that mcl-PHA production is more favorable under oxygen-limited conditions than short-chain-length PHA (scl-PHA). This hypothesis was confirmed by bioreactor experiments showing that oxygen limitation during the PHA accumulation experiments resulted in a higher fraction of mcl-PHA over scl-PHA (i.e., a PHA content of 76 wt% with an mcl fraction of 0.79 with oxygen limitation, compared to a PHA content of 72 wt% with an mcl-fraction of 0.62 without oxygen limitation). Physicochemical analysis revealed that the extracted PHA could be separated efficiently into a hydroxybutyrate-rich fraction with a higher Mw and a hydroxyhexanoate/hydroxyoctanoate-rich fraction with a lower Mw . The ratio between the two fractions could be adjusted by changing the environmental conditions, such as oxygen availability and pH. Almost all enrichments were dominated by Sphaerotilus sp. This is the first scientific report that links this genus to mcl-PHA production, demonstrating that microbial enrichments can be a powerful tool to explore mcl-PHA biodiversity and to discover novel industrially relevant strains.
Collapse
Affiliation(s)
- Chris M Vermeer
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lena Depaz
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Emily van den Berg
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Koelmans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
29
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
30
|
An J, Ha B, Lee SK. Production of polyhydroxyalkanoates by the thermophile Cupriavidus cauae PHS1. BIORESOURCE TECHNOLOGY 2023; 371:128627. [PMID: 36646360 DOI: 10.1016/j.biortech.2023.128627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Thermophilic production of polyhydroxyalkanoate is considered a very promising way to overcome the problems that may arise when using mesophilic strains. This study reports the first thermophilic polyhydroxybutyrate-producing Cupriavidus species, which are known as the best polyhydroxybutyrate-producing microorganisms. Cupriavidus cauae PHS1 harbors a phbCABR cluster with high similarity to the corresponding proteins of C. necator H16 (80, 93, 96, and 97 %). This strain can produce polyhydroxybutyrate from a range of substrates, including acetate (5 g/L) and phenol (1 g/L), yielding 7.6 % and 18.9 % polyhydroxybutyrate, respectively. Moreover, the strain produced polyhydroxybutyrate at temperatures ranging from 25 to 50 °C, with the highest polyhydroxybutyrate content (47 °C) observed at 45 °C from gluconate. Additionally, the strain could incorporate 3-hydroxyvalerate (12.5 mol. %) into the polyhydroxybutyrate polymer using levulinic acid as a precursor. Thus, Cupriavidus cauae PHS1 may be a promising polyhydroxybutyrate producer as alternative for mesophilic polyhydroxybutyrate-producing Cupriavidus species.
Collapse
Affiliation(s)
- Jeongvin An
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Boram Ha
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
31
|
Qiu S, Blank LM. Recent Advances in Yeast Recombinant Biosynthesis of the Triterpenoid Protopanaxadiol and Glycosylated Derivatives Thereof. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2197-2210. [PMID: 36696911 DOI: 10.1021/acs.jafc.2c06888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant natural products are a seemingly endless resource for novel chemical structures. However, their extraction often results in high prices, fluctuation in both quantity and quality, and negative environmental impact. The latter might result from the extraction procedure but more often from the high amount of plant biomass required. With the advent of synthetic biology, producing natural plant products in large quantities using yeasts as hosts has become possible. Here, we focus on the recent advances in metabolic engineering of the yeasts species Saccharomyces cerevisiae and Yarrowia lipolytica for the synthesis of ginsenoside triterpenoids, namely, dammarenediol-II, protopanaxadiol, protopanaxatriol, compound K, ginsenoside Rh1, ginsenoside Rh2, ginsenoside Rg3, and ginsenoside F1. A discussion is provided on advanced synthetic biology, bioprocess strategies, and current challenges for the biosynthesis of ginsenoside triterpenoids. Finally, future directions in metabolic and process engineering are summarized and may help reify sustainable ginsenoside production.
Collapse
Affiliation(s)
- Shangkun Qiu
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
32
|
Li HF, Tian L, Lian G, Fan LH, Li ZJ. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front Bioeng Biotechnol 2023; 11:1130368. [PMID: 36824353 PMCID: PMC9941669 DOI: 10.3389/fbioe.2023.1130368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Vibrio alginolyticus LHF01 was engineered to efficiently produce poly-3-hydroxybutyrate (PHB) from starch in this study. Firstly, the ability of Vibrio alginolyticus LHF01 to directly accumulate PHB using soluble starch as the carbon source was explored, and the highest PHB titer of 2.06 g/L was obtained in 18 h shake flask cultivation. Then, with the analysis of genomic information of V. alginolyticus LHF01, the PHB synthesis operon and amylase genes were identified. Subsequently, the effects of overexpressing PHB synthesis operon and amylase on PHB production were studied. Especially, with the co-expression of PHB synthesis operon and amylase, the starch consumption rate was improved and the PHB titer was more than doubled. The addition of 20 g/L insoluble corn starch could be exhausted in 6-7 h cultivation, and the PHB titer was 4.32 g/L. To the best of our knowledge, V. alginolyticus was firstly engineered to produce PHB with the direct utilization of starch, and this stain can be considered as a novel host to produce PHB using starch as the raw material.
Collapse
Affiliation(s)
- Hong-Fei Li
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,Qingyuan Innovation Laboratory, Quanzhou, China
| | - Linyue Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guoli Lian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,Qingyuan Innovation Laboratory, Quanzhou, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| | - Zheng-Jun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| |
Collapse
|
33
|
Christensen M, Chiciudean I, Jablonski P, Tanase AM, Shapaval V, Hansen H. Towards high-throughput screening (HTS) of polyhydroxyalkanoate (PHA) production via Fourier transform infrared (FTIR) spectroscopy of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99. PLoS One 2023; 18:e0282623. [PMID: 36888636 PMCID: PMC9994712 DOI: 10.1371/journal.pone.0282623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
High-throughput screening (HTS) methods for characterization of microbial production of polyhydroxyalkanoates (PHA) are currently under investigated, despite the advent of such systems in related fields. In this study, phenotypic microarray by Biolog PM1 screening of Halomonas sp. R5-57 and Pseudomonas sp. MR4-99 identified 49 and 54 carbon substrates to be metabolized by these bacteria, respectively. Growth on 15 (Halomonas sp. R5-57) and 14 (Pseudomonas sp. MR4-99) carbon substrates was subsequently characterized in 96-well plates using medium with low nitrogen concentration. Bacterial cells were then harvested and analyzed for putative PHA production using two different Fourier transform infrared spectroscopy (FTIR) systems. The FTIR spectra obtained from both strains contained carbonyl-ester peaks indicative of PHA production. Strain specific differences in the carbonyl-ester peak wavenumber indicated that the PHA side chain configuration differed between the two strains. Confirmation of short chain length PHA (scl-PHA) accumulation in Halomonas sp. R5-57 and medium chain length PHA (mcl-PHA) in Pseudomonas sp. MR4-99 was done using Gas Chromatography-Flame Ionization Detector (GC-FID) analysis after upscaling to 50 mL cultures supplemented with glycerol and gluconate. The strain specific PHA side chain configurations were also found in FTIR spectra of the 50 mL cultures. This supports the hypothesis that PHA was also produced in the cells cultivated in 96-well plates, and that the HTS approach is suitable for analysis of PHA production in bacteria. However, the carbonyl-ester peaks detected by FTIR are only indicative of PHA production in the small-scale cultures, and appropriate calibration and prediction models based on combining FTIR and GC-FID data needs to be developed and optimized by performing more extensive screenings and multivariate analyses.
Collapse
Affiliation(s)
- Mikkel Christensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| | - Iulia Chiciudean
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Ana-Maria Tanase
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
| | - Hilde Hansen
- Department of Chemistry, UiT The Arctic University of Norway, Tromso, Norway
- * E-mail: (MC); (HH)
| |
Collapse
|
34
|
Liu Y, Zhao W, Wang S, Huo K, Chen Y, Guo H, Wang S, Liu R, Yang C. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9. Int J Biol Macromol 2022; 223:240-251. [PMID: 36347367 DOI: 10.1016/j.ijbiomac.2022.10.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Microbial production of bioplastics polyhydroxyalkanoates (PHA) has opened new avenues to resolve "white pollution" caused by petroleum-based plastics. PHAs consisting of short- and medium-chain-length monomers, designated as SCL-co-MCL PHAs, exhibit much better thermal and mechanical properties than PHA homopolymers. In this study, a halophilic bacterium Halomonas cupida J9 was isolated from highly saline wastewater and proven to produce SCL-co-MCL PHA consisting of 3-hydroxybutyrate (3HB) and 3-hydroxydodecanoate (3HDD) from glucose and glycerol. Whole-genome sequencing and functional annotation suggest that H. cupida J9 may possess three putative PHA biosynthesis pathways and a class I PHA synthase (PhaCJ9). Interestingly, the purified His6-tagged PhaCJ9 from E. coli BL21 (DE3) showed polymerizing activity towards 3HDD-CoA and a phaCJ9-deficient mutant was unable to produce PHA, which indicated that a low-substrate-specificity PhaCJ9 was exclusively responsible for PHA polymerization in H. cupida J9. Docking simulation demonstrated higher binding affinity between 3HB-CoA and PhaCJ9 and identified the key residues involved in hydrogen bonds formation between 3-hydroxyacyl-CoA and PhaCJ9. Furthermore, His489 was identified by site-specific mutagenesis as the key residue for the interaction of 3HDD-CoA with PhaCJ9. Finally, PHA was produced by H. cupida J9 from glucose and glycerol in shake flasks and a 5-L fermentor under unsterile conditions. The open fermentation mode makes this strain a promising candidate for low-cost production of SCL-co-MCL PHAs. Especially, the low-specificity PhaCJ9 has great potential to be engineered for an enlarged substrate range to synthesize tailor-made novel SCL-co-MCL PHAs.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
35
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
36
|
Genome Analysis of Halomonas elongata Strain 153B and Insights Into Polyhydroxyalkanoate Synthesis and Adaptive Mechanisms to High Saline Environments. Curr Microbiol 2022; 80:18. [PMID: 36460760 DOI: 10.1007/s00284-022-03115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022]
Abstract
Species of the Halomonas genus are gram-negative, aerobic, moderately halophilic bacteria that synthesize polyhydroxyalkanoates (PHAs) and other high-value products that have a wide range of potential uses in the food, feed, cosmetics, pharmaceutical, and chemical sectors. Genome sequencing studies allow for the description and comparison of genetic traits with other strains and species, allowing for the exploration of the organism's potential, necessary to further biotechnology applications. Here, the genome of Halomonas elongata strain 153B was sequenced, its features compared to 5 other strains and 7 species, and a description of features for adaptations to hypersaline environments and bioproducts synthesis was done. Whole-genome analysis showed H. elongata 153B has more similar features to the reference strain H. elongata DSM 2581 compared to 4 other reported strains. Comparative genomics showed 2064 core genomic clusters between the strains and 666 singletons for strain 153B. Several genes in transport and signaling, osmoregulation, and oxidative stress that have roles in adaptation to environments with high osmolarity were also revealed. These appear to form an intricate network of overlapping systems carefully coordinated to bring about adaptation. H. elongata 153B genes for the synthesis of PHAs, ectoine, vitamins, and the degradation of drugs and aromatic compounds were described. The results will aid in the study of halophile physiology, provide a mine for valuable enzymes, and help speed up research for other biotechnology applications.
Collapse
|
37
|
Achinas S, Poulios E, Bergsma S, Euverink GJW. Ovation of biopolymers in conterminous EU members via clustering of biotechnological advances : A mini-compendium. Front Bioeng Biotechnol 2022; 10:1061652. [DOI: 10.3389/fbioe.2022.1061652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
|
38
|
Gutschmann B, Huang B, Santolin L, Thiele I, Neubauer P, Riedel SL. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review. Microbiol Res 2022; 264:127177. [DOI: 10.1016/j.micres.2022.127177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
39
|
Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure. Polymers (Basel) 2022; 14:polym14194140. [PMID: 36236088 PMCID: PMC9571417 DOI: 10.3390/polym14194140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with various 3-hydroxyvalerate (3HV) contents biosynthesized by mixed microbial consortia (MMC) fed fermented dairy manure at the large-scale level was assessed over a 3-month period. The thermal, mechanical, and rheological behavior and the chemical structure of the extracted PHBV biopolymers were studied. The recovery of crude PHBV extracted in a large Soxhlet extractor with CHCl3 for 24 h ranged between 20.6% to 31.8% and purified to yield between 8.9% to 26.9% all based on original biomass. 13C-NMR spectroscopy revealed that the extracted PHBVs have a random distribution of 3HV and 3-hydroxybutyrate (3HB) units and with 3HV content between 16% and 24%. The glass transition temperature (Tg) of the extracted PHBVs varied between −0.7 and −7.4 °C. Some of the extracted PHBVs showed two melting temperatures (Tm) which the lower Tm1 ranged between 126.1 °C and 159.7 °C and the higher Tm2 varied between 152.1 °C and 170.1 °C. The weight average molar mass of extracted PHBVs was wide ranging from 6.49 × 105 g·mol−1 to 28.0 × 105 g·mol−1. The flexural and tensile properties were also determined. The extracted polymers showed a reverse relationship between the 3HV content and Young’s modulus, tensile strength, flexural modulus, and flexural strength properties.
Collapse
|
40
|
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C. Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. Microbiologyopen 2022; 11:e1328. [PMID: 36314754 PMCID: PMC9597258 DOI: 10.1002/mbo3.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Salt tolerant organisms are increasingly being used for the industrial production of high-value biomolecules due to their better adaptability compared to mesophiles. Chromohalobacter canadensis is one of the early halophiles to show promising biotechnology potential, which has not been explored to date. Advanced high throughput technologies such as whole-genome sequencing allow in-depth insight into the potential of organisms while at the frontiers of systems biology. At the same time, genome-scale metabolic models (GEMs) enable phenotype predictions through a mechanistic representation of metabolism. Here, we sequence and analyze the genome of C. canadensis 85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux balance analysis and validate it against literature data on C. canadensis. We show that C. canadensis 85B is a metabolically versatile organism with many features for stress and osmotic adaptation. Pathways to produce ectoine and polyhydroxybutyrates were also predicted. The GEM reveals the ability to grow on several carbon sources in a minimal medium and reproduce osmoadaptation phenotypes. Overall, this study reveals insights from the genome of C. canadensis 85B, providing genomic data and a draft GEM that will serve as the first steps towards a better understanding of its metabolism, for novel applications in industrial biotechnology.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
| | - Belma Nural Yaman
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureEskişehir Osmangazi UniversityEskişehirTurkey
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Environmental Protection and Control ProgramEskişehir Osmangazi UniversityEskişehirTurkey
| | - Mehmet Burçin Mutlu
- Department of Biology, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey
| | - Claudio Angione
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
41
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
42
|
Ramírez Rojas AA, Swidah R, Schindler D. Microbes of traditional fermentation processes as synthetic biology chassis to tackle future food challenges. Front Bioeng Biotechnol 2022; 10:982975. [PMID: 36185425 PMCID: PMC9523148 DOI: 10.3389/fbioe.2022.982975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.
Collapse
|
43
|
Zhou Y, Kumar V, Harirchi S, Vigneswaran VS, Rajendran K, Sharma P, Wah Tong Y, Binod P, Sindhu R, Sarsaiya S, Balakrishnan D, Mofijur M, Zhang Z, Taherzadeh MJ, Kumar Awasthi M. Recovery of value-added products from biowaste: A review. BIORESOURCE TECHNOLOGY 2022; 360:127565. [PMID: 35788392 DOI: 10.1016/j.biortech.2022.127565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - V S Vigneswaran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Deepanraj Balakrishnan
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - M Mofijur
- Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
44
|
Zhang P, Chen K, Xu B, Li J, Hu C, Yuan JS, Dai SY. Chem-Bio interface design for rapid conversion of CO2 to bioplastics in an integrated system. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Carruthers DN, Lee TS. Translating advances in microbial bioproduction to sustainable biotechnology. Front Bioeng Biotechnol 2022; 10:968437. [PMID: 36082166 PMCID: PMC9445250 DOI: 10.3389/fbioe.2022.968437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in synthetic biology have radically changed our ability to rewire microorganisms and significantly improved the scalable production of a vast array of drop-in biopolymers and biofuels. The success of a drop-in bioproduct is contingent on market competition with petrochemical analogues and weighted upon relative economic and environmental metrics. While the quantification of comparative trade-offs is critical for accurate process-level decision making, the translation of industrial ecology to synthetic biology is often ambiguous and assessment accuracy has proven challenging. In this review, we explore strategies for evaluating industrial biotechnology through life cycle and techno-economic assessment, then contextualize how recent developments in synthetic biology have improved process viability by expanding feedstock availability and the productivity of microbes. By juxtaposing biological and industrial constraints, we highlight major obstacles between the disparate disciplines that hinder accurate process evaluation. The convergence of these disciplines is crucial in shifting towards carbon neutrality and a circular bioeconomy.
Collapse
Affiliation(s)
- David N. Carruthers
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- *Correspondence: Taek Soon Lee,
| |
Collapse
|
46
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Zhang N, Ding M, Yuan Y. Current Advances in Biodegradation of Polyolefins. Microorganisms 2022; 10:1537. [PMID: 36013955 PMCID: PMC9416408 DOI: 10.3390/microorganisms10081537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Polyolefins, including polyethylene (PE), polypropylene (PP) and polystyrene (PS), are widely used plastics in our daily life. The excessive use of plastics and improper handling methods cause considerable pollution in the environment, as well as waste of energy. The biodegradation of polyolefins seems to be an environmentally friendly and low-energy consumption method for plastics degradation. Many strains that could degrade polyolefins have been isolated from the environment. Some enzymes have also been identified with the function of polyolefin degradation. With the development of synthetic biology and metabolic engineering strategies, engineered strains could be used to degrade plastics. This review summarizes the current advances in polyolefin degradation, including isolated and engineered strains, enzymes and related pathways. Furthermore, a novel strategy for polyolefin degradation by artificial microbial consortia is proposed, which would be helpful for the efficient degradation of polyolefin.
Collapse
Affiliation(s)
- Ni Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (N.Z.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
48
|
Borrero‐de Acuña JM, Poblete‐Castro I. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery. Microb Biotechnol 2022; 16:262-285. [PMID: 35792877 PMCID: PMC9871526 DOI: 10.1111/1751-7915.14109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial production of biopolymers derived from renewable substrates and waste streams reduces our heavy reliance on petrochemical plastics. One of the most important biodegradable polymers is the family of polyhydroxyalkanoates (PHAs), naturally occurring intracellular polyoxoesters produced for decades by bacterial fermentation of sugars and fatty acids at the industrial scale. Despite the advances, PHA production still suffers from heavy costs associated with carbon substrates and downstream processing to recover the intracellular product, thus restricting market positioning. In recent years, model-aided metabolic engineering and novel synthetic biology approaches have spurred our understanding of carbon flux partitioning through competing pathways and cellular resource allocation during PHA synthesis, enabling the rational design of superior biopolymer producers and programmable cellular lytic systems. This review describes these attempts to rationally engineering the cellular operation of several microbes to elevate PHA production on specific substrates and waste products. We also delve into genome reduction, morphology, and redox cofactor engineering to boost PHA biosynthesis. Besides, we critically evaluate engineered bacterial strains in various fermentation modes in terms of PHA productivity and the period required for product recovery.
Collapse
Affiliation(s)
| | - Ignacio Poblete‐Castro
- Biosystems Engineering LaboratoryDepartment of Chemical and Bioprocess EngineeringUniversidad de Santiago de Chile (USACH)SantiagoChile
| |
Collapse
|
49
|
Hyper production of polyhydroxyalkanoates by a novel bacterium Salinivibrio sp. TGB11. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Zhao L, Cai S, Zhang J, Zhang Q, Chen L, Ji X, Zhang R, Cai T. Poly(3-hydroxybutyrate) biosynthesis under non-sterile conditions: Piperazine as nitrogen substrate control switch. Int J Biol Macromol 2022; 209:1457-1464. [PMID: 35461873 DOI: 10.1016/j.ijbiomac.2022.04.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB), as a kind of bioplastics for sustainable development, can be synthesized by various microorganisms, however, the high cost of its microbial fermentation is a challenge for its large-scale application. In this study, piperazine degrading strain, Paracoccus sp. TOH, was developed as an excellent chassis for open PHB fermentation with piperazine as controlling element. Whole-genome analysis showed that TOH possesses multi-substrate metabolic pathways to synthesize PHB. Next, TOH could achieve a maximum PHB concentration of 2.42 g L-1, representing a yield of 0.36 g-PHB g-1-glycerol when C/N ratio was set as 60:1 with 10 g L-1 glycerol as substrate. Furthermore, TOH could even synthesize 0.39 g-PHB g-1-glycerol under non-sterile conditions when piperazine was fed with a suitable rate of 1 mg L-1 h-1. 16S rRNA gene sequencing analysis showed that microbial contamination could be effectively inhibited through the regulation of piperazine under non-sterile conditions and TOH dominated the microbial community with a relative abundance of 72.3% at the end of the operational period. This study offers an inspired open PHB fermentation system with piperazine as the control switch, which will realize the goal of efficient industrial biotechnology as well as industrial wastewater treatment.
Collapse
Affiliation(s)
- Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|