1
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Wang J, Zhu Y, Ye B, Dun J, Yu X, Sui Q. Absorption and translocation of selected pharmaceuticals in Pistia stratiotes: Spatial distribution analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134028. [PMID: 38493630 DOI: 10.1016/j.jhazmat.2024.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Phytoremediation can eliminate pharmaceuticals from aquatic environments through absorption; however, understanding of absorption and transport processes in plants remains limited. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method was developed to explore the absorption and translocation mechanisms of seven common pharmaceuticals in Pistia stratiotes. Results showed that 2,3-dicyanohydroquinone, an infrequently used matrix, exhibited outstanding performance in MALDI-MSI analysis, producing the highest signal intensity for four of the seven pharmaceuticals. Region of Interest (ROI) analysis revealed that charge speciation of pharmaceuticals significantly influenced their ability to enter vascular bundle. Neutral and positively charged pharmaceuticals easily entered vascular bundle, while negatively charged pharmaceuticals faced difficulty. ROI results for neutral and negatively charged pharmaceuticals exhibited positive correlation with their transfer factor values, indicating that their translocation ability from root to shoot was related to their capacity to enter vascular bundle. However, no correlation was observed for positively charged pharmaceuticals, suggesting that these compounds, upon entering vascular bundle, encountered difficulties in upward translocation through the xylem. This study introduces an innovative approach and offers novel insights into the retention and migration of pharmaceuticals in plant tissues, aiming to enhance the understanding of pharmaceutical accumulation in plants. ENVIRONMENTAL IMPLICATION: Pharmaceuticals in aquatic environment can inflict detrimental effects on both human health and ecosystem. Phytoremediation can remove pharmaceuticals from aquatic environments through absorption. However, our understanding of absorption and transportation of pharmaceuticals in plants remains limited. This study developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method for pharmaceuticals in plant roots, and to explore the absorption and translocation mechanisms of pharmaceuticals. The study offers direct evidence of differences in accumulation behavior of pharmaceuticals in plants, providing valuable insights for targeted and effective strategies in using plants for remediating the aquatic ecosystem from pharmaceuticals.
Collapse
Affiliation(s)
- Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Péter B, Szekacs I, Horvath R. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024; 10:e25603. [PMID: 38371993 PMCID: PMC10873674 DOI: 10.1016/j.heliyon.2024.e25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| |
Collapse
|
4
|
Gao SQ, Zhao JH, Guan Y, Tang YS, Li Y, Liu LY. Mass Spectrometry Imaging technology in metabolomics: a systematic review. Biomed Chromatogr 2022:e5494. [PMID: 36044038 DOI: 10.1002/bmc.5494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput mass spectrometry with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
Collapse
Affiliation(s)
- Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
5
|
Chen D, Bu XM, Zhang MY, Xu XL, Wang B, Gan YM, Li KX, Xu X, Han J, Shi N. On-tissue pyrene-1-boronic acid labeling assisted MALDI imaging of catecholamines in porcine adrenal gland. J Chromatogr A 2022; 1678:463361. [PMID: 35914408 DOI: 10.1016/j.chroma.2022.463361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
In this study, an on-tissue chemical labeling - matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) method was developed for visualization of the distribution of three catecholamine (CA) compounds (dopamine, epinephrine and norepinephrine) in porcine adrenal gland. Commercially available pyrene-1-boronic acid (PBA) was employed as an effective in situ derivatizing reagent dissolved in acetonitrile containing 0.1% pyridine for the chemical labeling and the matrix coating. Without extra matrix coating, the tissue section was directly analyzed by MALDI-MS. The detection specificity and sensitivity were greatly improved with the on-tissue PBA labeling and successful imaging of the three CAs in porcine adrenal gland was achieved. Compared with previously reported methods for MALDI-MSI of the CAs, the analytical strategy proposed in the study provided a robust, easy-to-use and low-cost on-tissue chemical derivatization method that facilitated simultaneous molecular imaging of the three compounds.
Collapse
Affiliation(s)
- Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xin-Miao Bu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Man-Yu Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xin-Li Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu-Mei Gan
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Kai-Xuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Victoria, BC V8Z 7X8, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
6
|
Gao L, Zhang Z, Wu W, Deng Y, Zhi H, Long H, Lei M, Hou J, Wu W, Guo DA. Quantitative imaging of natural products in fine brain regions using desorption electrospray ionization mass spectrometry imaging (DESI-MSI): Uncaria alkaloids as a case study. Anal Bioanal Chem 2022; 414:4999-5007. [PMID: 35639139 DOI: 10.1007/s00216-022-04130-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023]
Abstract
Uncaria species (Rubiaceae) are used as traditional Chinese medicines (TCMs) to treat central nervous system (CNS) diseases, and monoterpene indole alkaloids are the main bioactive constituents. Localization and quantification of CNS drugs in fine brain regions are important to provide insights into their pharmacodynamics, for which quantitative mass spectrometry imaging (MSI) has emerged as a powerful technique. A systematic study of the quantitative imaging of seven Uncaria alkaloids in rat brains using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was presented. The distribution of the alkaloids in thirteen brain regions was quantified successfully using the calibration curves generated by a modified on-tissue approach. The distribution trend of different Uncaria alkaloids in the rat brain was listed as monoterpene indole alkaloids > monoterpene oxindole alkaloids, R-configuration epimers > S-configuration epimers. Particularly, Uncaria alkaloids were detected directly in the pineal gland for the first time and their enrichment phenomenon in this region had an instructive significance in future pharmacodynamic studies.
Collapse
Affiliation(s)
- Lei Gao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijia Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanping Deng
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijuan Zhi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min Lei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging. Anal Bioanal Chem 2022; 414:4777-4790. [PMID: 35508646 DOI: 10.1007/s00216-022-04102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022]
Abstract
Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.
Collapse
|
8
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
9
|
Unravelling Prostate Cancer Heterogeneity Using Spatial Approaches to Lipidomics and Transcriptomics. Cancers (Basel) 2022; 14:cancers14071702. [PMID: 35406474 PMCID: PMC8997139 DOI: 10.3390/cancers14071702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is a heterogenous disease in terms of disease aggressiveness and therapy response, leading to dilemmas in treatment decisions. This heterogeneity reflects the multifocal nature of prostate cancer and its diversity in cellular and molecular composition, necessitating spatial molecular approaches. Here in view of the emerging importance of rewired lipid metabolism as a source of biomarkers and therapeutic targets for prostate cancer, we highlight recent advancements in technologies that enable the spatial mapping of lipids and related metabolic pathways associated with prostate cancer development and progression. We also evaluate their potential for future implementation in treatment decision-making in the clinical management of prostate cancer. Abstract Due to advances in the detection and management of prostate cancer over the past 20 years, most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable to active surveillance without treatment. However, this has given rise to a new dilemma for disease management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer, leading to substantial overtreatment of some patients and delayed intervention for others. Driving this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers that can inform treatment decision-making and to select and monitor therapy. In part, this lack of progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging and complementary gene-based spatial omics technologies, their application to prostate cancer and recent advancements in these technologies are considered. We put in perspective studies that describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours compared to benign tissue and increased risk of disease progression, with the aim of evaluating the future implementation of spatial lipidomics and complementary transcriptomics for prognostication, target identification and treatment decision-making for prostate cancer.
Collapse
|
10
|
Zhu X, Xu T, Peng C, Wu S. Advances in MALDI Mass Spectrometry Imaging Single Cell and Tissues. Front Chem 2022; 9:782432. [PMID: 35186891 PMCID: PMC8850921 DOI: 10.3389/fchem.2021.782432] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Compared with conventional optical microscopy techniques, mass spectrometry imaging (MSI) or imaging mass spectrometry (IMS) is a powerful, label-free analytical technique, which can sensitively and simultaneously detect, quantify, and map hundreds of biomolecules, such as peptides, proteins, lipid, and other organic compounds in cells and tissues. So far, although several soft ionization techniques, such as desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS) have been used for imaging biomolecules, matrix-assisted laser desorption/ionization (MALDI) is still the most widespread MSI scanning method. Here, we aim to provide a comprehensive review of MALDI-MSI with an emphasis on its advances of the instrumentation, methods, application, and future directions in single cell and biological tissues.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Xu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chen Peng
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Shihua Wu, ; Shihua Wu,
| |
Collapse
|
11
|
Houdelet C, Arafah K, Bocquet M, Bulet P. Molecular histoproteomy by MALDI mass spectrometry imaging to uncover markers of the impact of Nosema on Apis mellifera. Proteomics 2022; 22:e2100224. [PMID: 34997678 DOI: 10.1002/pmic.202100224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.
Collapse
Affiliation(s)
- Camille Houdelet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | - Karim Arafah
- Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | | | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| |
Collapse
|
12
|
Tao XY, Zhang Y, Zhou Y, Liu ZF, Feng XS. Nicotine in Complex Samples: Recent Updates on the Pretreatment and Analysis Method. Crit Rev Anal Chem 2021; 53:1209-1238. [PMID: 34955065 DOI: 10.1080/10408347.2021.2016365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nicotine is a significant evaluation index of tobacco and its related products' quality, but nicotine overdose can pose serious health hazards and cause addiction and dependence, thus it can be seen that it is necessary to find suitable and efficient detection methods to precisely detect nicotine in diverse samples and complex matrices. In this review, an updated summary of the latest trends in pretreatment and analytical techniques for nicotine is provided. We reviewed various sample pretreatment methods, such as solid phase extraction, solid phase microextraction, liquid phase microextraction, QuEChERS, etc., and diverse nicotine assay methods including liquid chromatography, gas chromatography, electrochemical sensors, etc., focusing on the developments since 2015. Furthermore, the recent progress in the applications and applicability of these techniques as well as our prospects for future developments are discussed.HighlightsUpdated pretreatment and analysis methods of nicotine were systematically summarized.Microextraction and automation were main development trends of nicotine pretreatment.The introduction of novel materials added luster to nicotine pretreatment.The evolutions of ion source and mass analyzer were emphasized.
Collapse
Affiliation(s)
- Xin-Yue Tao
- School of Pharmacy, China Medical University, Shenyang, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Jiang X, Chen X, Chen Z, Yu J, Lou H, Wu J. High-Throughput Salivary Metabolite Profiling on an Ultralow Noise Tip-Enhanced Laser Desorption Ionization Mass Spectrometry Platform for Noninvasive Diagnosis of Early Lung Cancer. J Proteome Res 2021; 20:4346-4356. [PMID: 34342461 DOI: 10.1021/acs.jproteome.1c00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lung cancer (LC) is a widespread cancer that is the cause of the highest mortality rate accounting for 25% of all cancer deaths. To date, most LC patients are diagnosed at the advanced stage owing to the lack of obvious symptoms in the early stage and the limitations of current clinical diagnostic techniques. Therefore, developing a high throughput technique for early screening is of great importance. In this work, we established an effective and rapid salivary metabolic analysis platform for early LC diagnosis and combined metabolomics and transcriptomics to reveal the metabolic fluctuations correlated to LC. Saliva samples were collected from a total of 150 volunteers including 89 patients with early LC, 11 patients with advanced LC, and 50 healthy controls. The metabolic profiling of noninvasive samples was investigated on an ultralow noise TELDI-MS platform. In addition, data normalization methods were screened and assessed to overcome the MS signal variation caused by individual difference for biomarker mining. For untargeted metabolic profiling of saliva samples, around 264 peaks could be reliably detected in each sample. After multivariate analysis, 23 metabolites were sorted out and verified to be related to the dysfunction of the amino acid and nucleotide metabolism in early LC. Notably, transcriptomic data from online TCGA repository were utilized to support findings from the salivary metabolomics experiment, including the disorder of amino acid biosynthesis and amino acid metabolism. Based on the verified differential metabolites, early LC patients could be clearly distinguished from healthy controls with a sensitivity of 97.2% and a specificity of 92%. The ultralow noise TELDI-MS platform displayed satisfactory ability to explore salivary metabolite information and discover potential biomarkers that may help develop a noninvasive screening tool for early LC.
Collapse
Affiliation(s)
- Xinrong Jiang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Chen
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Well-Healthcare Technologies Co., Hangzhou 310051, China
| | - Zhao Chen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiekai Yu
- Institute of Cancer Research, The Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
15
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
16
|
Davoli E, Zucchetti M, Matteo C, Ubezio P, D'Incalci M, Morosi L. THE SPACE DIMENSION AT THE MICRO LEVEL: MASS SPECTROMETRY IMAGING OF DRUGS IN TISSUES. MASS SPECTROMETRY REVIEWS 2021; 40:201-214. [PMID: 32501572 DOI: 10.1002/mas.21633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) has seen remarkable development in recent years. The possibility of getting quantitative or semiquantitative data, while maintaining the spatial component in the tissues has opened up unique study possibilities. Now with a spatial window of few tens of microns, we can characterize the events occurring in tissue subcompartments in physiological and pathological conditions. For example, in oncology-especially in preclinical models-we can quantitatively measure drug distribution within tumors, correlating it with pharmacological treatments intended to modify it. We can also study the local effects of the drug in the tissue, and their effects in relation to histology. This review focuses on the main results in the field of drug MSI in clinical pharmacology, looking at the literature on the distribution of drugs in human tissues, and also the first preclinical evidence of drug intratissue effects. The main instrumental techniques are discussed, looking at the different instrumentation, sample preparation protocols, and raw data management employed to obtain the sensitivity required for these studies. Finally, we review the applications that describe in situ metabolic events and pathways induced by the drug, in animal models, showing that MSI makes it possible to study effects that go beyond the simple concentration of the drug, maintaining the space dimension. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Enrico Davoli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lavinia Morosi
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
17
|
Jiang X, Chen X, Wang T, Li Y, Pan A, Wu J. Perfluorinated polymer modified vertical silicon nanowires as ultra low noise laser desorption ionization substrate for salivary metabolites profiling. Talanta 2021; 225:122022. [DOI: 10.1016/j.talanta.2020.122022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
|
18
|
Exploration of tissue distribution of ginsenoside Rg1 by LC-MS/MS and nanospray desorption electrospray ionization mass spectrometry. J Pharm Biomed Anal 2021; 198:113999. [PMID: 33706145 DOI: 10.1016/j.jpba.2021.113999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022]
Abstract
Ginsenoside Rg1 (Rg1) was one of the dominent active components in several Panax medicinal species as Panax notoginseng and Panaxginseng with diversified bioactivities. However, the study on tissue distribution of Rg1 remained limited and needed to be further explored for elucidation of its spatial distribution. In the present study, a LC-MS/MS combined with nanospray desorption electrospray ionization (DESI) mass spectrometry method was developed for exploration of tissue distribution of Rg1 at different time points after intravenous administration to rats. Furthermore, a MS inlet-heat method was developed to improve the imaging efficacy of Rg1 in brain tissue. The results obtained from LC-MS/MS analysis indicated that kidney possessed the highest tissue concentration, followed by liver, lung, spleen, heart and brain. Meanwhile, the elimination of Rg1 was swift within 1 h. For the spatial distribution of Rg1 by DESI-MS, Rg1 mainly accumulated in the pelvis section of kidney. Meanwhile, the imaging result of brain implied that Rg1 might be distributed in the pons and medulla oblongata region of brain at 15 min after intravenous administration. It is anticipated that the data on tissue distribution of Rg1 could provide references for further probing its efficacy and drug development.
Collapse
|
19
|
Tabassum R, Ashfaq M, Oku H. Development of an efficient, one-pot, multicomponent protocol for synthesis of 8-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives. J Heterocycl Chem 2021; 58:534-547. [PMID: 33362294 PMCID: PMC7753469 DOI: 10.1002/jhet.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/11/2022]
Abstract
A one-pot quick and efficient multicomponent reaction has been developed for the synthesis of a new series of functionalized 8-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives using 30 mol% ammonium acetate in ethanol as solvent. This economical protocol run smoothly to give variety of quinoline derivatives in 55% to 98% yield from inexpensive reagents and catalyst in mild reaction conditions. Various spectroscopic techniques like FTIR, 1H NMR and 13C NMR, MALDI-TOF-MS, and EI-MS were used to study and confirm their structure.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of ChemistryThe Islamia University of BahawalpurBahawalpurPakistan
| | - Muhammad Ashfaq
- Department of ChemistryThe Islamia University of BahawalpurBahawalpurPakistan
| | - Hiroyuki Oku
- Division of Molecular ScienceGraduate School of Science & Engineering, Gunma UniversityGunmaJapan
| |
Collapse
|
20
|
Smith A, Piga I, Denti V, Chinello C, Magni F. Elaboration Pipeline for the Management of MALDI-MS Imaging Datasets. Methods Mol Biol 2021; 2361:129-142. [PMID: 34236659 DOI: 10.1007/978-1-0716-1641-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry imaging (MSI) enables the spatial localization of proteins to be mapped directly on tissue sections, simultaneously detecting hundreds in a single analysis. However, the large data size, as well as the complexity of MALDI-MSI proteomics datasets, requires the appropriate tools and statistical approaches in order to reduce the complexity and mine the dataset in a successful manner. Here, a pipeline for the management of MALDI-MSI data is described, starting with preprocessing of the raw data, followed by statistical analysis using both supervised and unsupervised statistical approaches and, finally, annotation of those discriminatory protein signals highlighted by the data mining procedure.
Collapse
Affiliation(s)
- Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy.
| | - Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
22
|
McLaughlin N, Bielinski TM, Tressler CM, Barton E, Glunde K, Stumpo KA. Pneumatically Sprayed Gold Nanoparticles for Mass Spectrometry Imaging of Neurotransmitters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2452-2461. [PMID: 32841002 DOI: 10.1021/jasms.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using citrate-capped gold nanoparticles (AuNPs) for laser desorption ionization mass spectrometry (LDI-MS) is an approach that has demonstrated broad applicability to ionization of different classes of molecules. Here, we show a simple AuNP-based approach for the ionization of neurotransmitters. Specifically, the detection of acetylcholine, dopamine, epinephrine, glutamine, 4-aminobutyric acid, norepinephrine, octopamine, and serotonin was achieved at physiologically relevant concentrations in serum and homogenized tissue. Additionally, pneumatic spraying of AuNPs onto tissue sections facilitated mass spectrometry imaging (MSI) of rabbit brain tissue sections, zebrafish embryos, and neuroblastoma cells for several neurotransmitters simultaneously using this quick and simple sample preparation. AuNP LDI-MS achieved mapping of neurotransmitters in fine structures of zebrafish embryos and neuroblastoma cells at a lateral spatial resolution of 5 μm. The use of AuNPs to ionize small aminergic neurotransmitters in situ provides a fast, high-spatial resolution method for simultaneous detection of a class of molecules that typically evade comprehensive detection with traditional matrixes.
Collapse
Affiliation(s)
- Nolan McLaughlin
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Tyler M Bielinski
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Caitlin M Tressler
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eric Barton
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Katherine A Stumpo
- Department of Chemistry, University of Scranton, Scranton, Pennsylvania 18510, United States
| |
Collapse
|
23
|
Tabassum R, Ashfaq M, Oku H. 7-Hydroxy-4-phenyl-1, 2-dihydroquinoline derivatives: synthesis via one-pot, three-component reaction and structure elucidation. Heliyon 2020; 6:e05035. [PMID: 33020745 PMCID: PMC7527354 DOI: 10.1016/j.heliyon.2020.e05035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022] Open
Abstract
We have developed a new and facile one pot three component protocol catalyzed by ammonium acetate for construction of new functionalized 7-hydroxy-4-phenyl-1,2-dihydroquinoline derivatives. A variety of quinoline derivatives were obtained in good to excellent yield from inexpensive reagents and catalyst in mild reaction conditions that provide atom economy and cost efficacy. Various spectroscopic techniques like FTIR, 1HNMR and 13CNMR were employed to study their structure while mass of the synthesized compounds were confirmed through MALDI-TOF-MS and EI mass spectrometry.
Collapse
Affiliation(s)
- Rukhsana Tabassum
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 36100, Pakistan
| | - Hiroyuki Oku
- Division of Molecular Science, Graduate School of Science &Engineering Gunma University, Gunma, 376-8515, Japan
| |
Collapse
|
24
|
Yu H, Villanueva N, Bittar T, Arsenault E, Labonté B, Huan T. Parallel metabolomics and lipidomics enables the comprehensive study of mouse brain regional metabolite and lipid patterns. Anal Chim Acta 2020; 1136:168-177. [PMID: 33081941 DOI: 10.1016/j.aca.2020.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022]
Abstract
Global profiling of the metabolome and lipidome of specific brain regions is essential to understanding the cellular and molecular mechanisms regulating brain activity. Given the limited amount of starting material, conventional mouse studies comparing brain regions have mainly targeted a set of known metabolites in large brain regions (e.g., cerebrum, cortex). In this work, we developed a multimodal analytical pipeline enabling parallel analyses of metabolomic and lipidomic profiles from anatomically distinct mouse brain regions starting with less than 0.2 mg of protein content. This analytical pipeline is composed of (1) sonication-based tissue homogenization, (2) parallel metabolite and lipid extraction, (3) BCA-based sample normalization, (4) ultrahigh performance liquid chromatography-mass spectrometry-based multimodal metabolome and lipidome profiling, (5) streamlined data processing, and (6) chord plot-based data visualization. We applied this pipeline to the study of four brain regions in males including the amygdala, dorsal hippocampus, nucleus accumbens and ventral tegmental area. With this novel approach, we detected over 5000 metabolic and 6000 lipid features, among which 134 metabolites and 479 lipids were directly confirmed via automated MS2 spectral matching. Interestingly, our analysis identified unique metabolic and lipid profiles in each brain regions. Furthermore, we identified functional relationships amongst metabolic and lipid subclasses, potentially underlying cellular and functional differences across all four brain regions. Overall, our novel workflow generates comprehensive region-specific metabolomic and lipidomic profiles using very low amount of brain sub-regional tissue sample, which could be readily integrated with region-specific genomic, transcriptomic, and proteomic data to reveal novel insights into the molecular mechanisms underlying the activity of distinct brain regions.
Collapse
Affiliation(s)
- Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, V6T 1Z1, BC, Canada
| | - Nathaniel Villanueva
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, V6T 1Z1, BC, Canada
| | - Thibault Bittar
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Center, Québec, G1J 2G3, QC, Canada
| | - Eric Arsenault
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Center, Québec, G1J 2G3, QC, Canada
| | - Benoit Labonté
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Center, Québec, G1J 2G3, QC, Canada
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, V6T 1Z1, BC, Canada.
| |
Collapse
|
25
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Mutuku SM, Trim PJ, Prabhala BK, Irani S, Bremert KL, Logan JM, Brooks DA, Stahl J, Centenera MM, Snel MF, Butler LM. Evaluation of Small Molecule Drug Uptake in Patient-Derived Prostate Cancer Explants by Mass Spectrometry. Sci Rep 2019; 9:15008. [PMID: 31628408 PMCID: PMC6802206 DOI: 10.1038/s41598-019-51549-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Patient-derived explant (PDE) culture of solid tumors is increasingly being applied to preclinical evaluation of novel therapeutics and for biomarker discovery. In this technique, treatments are added to culture medium and penetrate the tissue via a gelatin sponge scaffold. However, the penetration profile and final concentrations of small molecule drugs achieved have not been determined to date. Here, we determined the extent of absorption of the clinical androgen receptor antagonist, enzalutamide, into prostate PDEs, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser/desorption ionisation (MALDI) mass spectrometry imaging (MSI). In a cohort of 11 PDE tissues from eight individual patients, LC-MS/MS quantification of PDE homogenates confirmed enzalutamide (10 µM) uptake by all PDEs, which reached maximal average tissue concentration of 0.24-0.50 ng/µg protein after 48 h culture. Time dependent uptake of enzalutamide (50 µM) in PDEs was visualized using MALDI MSI over 24-48 h, with complete penetration throughout tissues evident by 6 h of culture. Drug signal intensity was not homogeneous throughout the tissues but had areas of markedly high signal that corresponded to drug target (androgen receptor)-rich epithelial regions of tissue. In conclusion, application of MS-based drug quantification and visualization in PDEs, and potentially other 3-dimensional model systems, can provide a more robust basis for experimental study design and interpretation of pharmacodynamic data.
Collapse
Affiliation(s)
- Shadrack M Mutuku
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Paul J Trim
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Bala K Prabhala
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Department of Drug Design and Pharmacology, University of Copenhagen, København, Denmark
| | - Swati Irani
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kayla L Bremert
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jessica M Logan
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jürgen Stahl
- Clinpath Laboratories, Adelaide, SA, 5000, Australia
| | - Margaret M Centenera
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Lisa M Butler
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia. .,Prostate Cancer Research Group, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia. .,Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
27
|
Piotrowski M, Malys B, Owens KG. A Method for Defining the Position of Ion Formation in a MALDI TOFMS by Analysis of the Laser Image on the Sample Surface. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:489-500. [PMID: 30552568 DOI: 10.1007/s13361-018-2107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
A method is developed to determine the position of ion formation along the flight axis of a MALDI TOFMS instrument using the image of the laser on the sample surface. Previous work (JASMS 2018, 29, 422-434) showed that misalignment of the sample stage in a Bruker Autoflex III MALDI TOFMS as well as multiple insertions/mountings of the target plate and differences in target plate shape itself produced reproducible changes in the measured ion time-of-flight which could be attributed to changes in the position of ion formation along the instrument flight axis. Here, a small but reproducible change in the position of the laser in the sample-viewing camera image was observed, with the movement depending on both the sample position and target plate used. Using the change in coordinates of the laser position in the camera image and the known angle of incidence of the laser on the sample surface, the initial z-axis position of the ion at different locations on the plate can be calculated, exactly defining changes in the ion flight path length and the distance between the sample plate and first extraction plate/grid with sample position on the target plate. A correction method is developed to correct the time-of-flight values collected from different locations on the sample plate using the laser images, with the relative standard deviation (RSD) being reduced from 23 ppm to below 6 ppm. The laser images, along with the measured target plate heights, are also used to calculate the misalignment of the sample stage. Graphical Abstract.
Collapse
Affiliation(s)
- Michelle Piotrowski
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104-2875, USA
| | - Brian Malys
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104-2875, USA
| | - Kevin G Owens
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104-2875, USA.
| |
Collapse
|
28
|
Proteomics. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
30
|
Corinti D, Crestoni ME, Fornarini S, Pieper M, Niehaus K, Giampà M. An integrated approach to study novel properties of a MALDI matrix (4-maleicanhydridoproton sponge) for MS imaging analyses. Anal Bioanal Chem 2018; 411:953-964. [DOI: 10.1007/s00216-018-1531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023]
|
31
|
Imaging Mass Microscopy of Kidneys from Azithromycin-Treated Rats with Phospholipidosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1993-2003. [PMID: 29981744 DOI: 10.1016/j.ajpath.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022]
Abstract
Drug-induced phospholipidosis is a lysosomal storage disorder characterized by the excess accumulation of tissue phospholipids. Although azithromycin can be used to induce phospholipidosis, no experimental studies evaluating the relationship between drug accumulation and phospholipid localization have been performed. In this study, azithromycin was orally administered to rats for 7 days, and the relationship between drug and phospholipid accumulation was performed using imaging mass microscopy. The administration of azithromycin induced tubular epithelial vacuolation in the inner stripe of the outer medulla of the kidney, consistent with the lamellar bodies that are typical manifestations of drug-induced phospholipidosis. Azithromycin and phospholipid tissue levels were extensively elevated in the kidneys of azithromycin-treated rats. Imaging mass microscopy revealed that both azithromycin and its metabolites were found in the kidneys of azithromycin-treated rats but not in control animals. The vacuolated areas of the kidneys were primarily found in the inner stripe of the outer medulla, consistent with the areas of high azithromycin concentration. Azithromycin was colocalized with several phospholipids-phosphatidylinositol (18:0/20:4), phosphatidylethanolamine (18:0/20:4 and 16:0/20:4), and possibly didocosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate, a putative biomarker of drug-induced phospholipidosis. In summary, we found correlations between regions of kidney damage and the accumulation of azithromycin, its metabolites, and phospholipids using imaging mass microscopy. Such analyses may help reveal the mechanism and identify putative biomarkers of drug-induced phospholipidosis.
Collapse
|
32
|
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 2018; 410:4015-4038. [DOI: 10.1007/s00216-018-1014-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
33
|
Ando H, Abu Lila AS, Tanaka M, Doi Y, Terada Y, Yagi N, Shimizu T, Okuhira K, Ishima Y, Ishida T. Intratumoral Visualization of Oxaliplatin within a Liposomal Formulation Using X-ray Fluorescence Spectrometry. Mol Pharm 2018; 15:403-409. [PMID: 29287147 DOI: 10.1021/acs.molpharmaceut.7b00762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microsynchrotron radiation X-ray fluorescence spectrometry (μ-SR-XRF) is an X-ray procedure that utilizes synchrotron radiation as an excitation source. μ-SR-XRF is a rapid, nondestructive technique that allows mapping and quantification of metals and biologically important elements in cell or tissue samples. Generally, the intratumor distribution of nanocarrier-based therapeutics is assessed by tracing the distribution of a labeled nanocarrier within tumor tissue, rather than by tracing the encapsulated drug. Instead of targeting the delivery vehicle, we employed μ-SR-XRF to visualize the intratumoral microdistribution of oxaliplatin (l-OHP) encapsulated within PEGylated liposomes. Tumor-bearing mice were intravenously injected with either l-OHP-containing PEGylated liposomes (l-OHP liposomes) or free l-OHP. The intratumor distribution of l-OHP within tumor sections was determined by detecting the fluorescence of platinum atoms, which are the main elemental components of l-OHP. The l-OHP in the liposomal formulation was localized near the tumor vessels and accumulated in tumors at concentrations greater than those seen with the free form, which is consistent with the results of our previous study that focused on fluorescent labeling of PEGylated liposomes. In addition, repeated administration of l-OHP liposomes substantially enhanced the tumor accumulation and/or intratumor distribution of a subsequent dose of l-OHP liposomes, presumably via improvements in tumor vascular permeability, which is also consistent with our previous results. In conclusion, μ-SR-XRF imaging efficiently and directly traced the intratumor distribution of the active pharmaceutical ingredient l-OHP encapsulated in liposomes within tumor tissue. μ-SR-XRF imaging could be a powerful means for estimating tissue distribution and even predicting the pharmacological effect of nanocarrier-based anticancer metal compounds.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University , Zagazig 44519, Egypt.,Department of Pharmaceutics, College of Pharmacy, Hail University , Hail 81442, Saudi Arabia
| | - Masao Tanaka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (JASRI) , 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University , 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
34
|
Abstract
Neural stem/progenitor cells (NSPCs) give rise to billions of cells during development and are critical for proper brain formation. The finding that NSPCs persist throughout adulthood has challenged the view that the brain has poor regenerative abilities and raised hope for stem cell-based regenerative therapies. For decades there has been a strong movement towards understanding the requirements of NSPCs and their regulation, resulting in the discovery of many transcription factors and signaling pathways that can influence NSPC behavior and neurogenesis. However, the role of metabolism for NSPC regulation has only gained attention recently. Lipid metabolism in particular has been shown to influence proliferation and neurogenesis, offering exciting new possible mechanisms of NSPC regulation, as lipids are not only the building blocks of membranes, but can also act as alternative energy sources and signaling entities. Here I review the recent literature examining the role of lipid metabolism for NSPC regulation and neurogenesis.
Collapse
Affiliation(s)
- Marlen Knobloch
- Laboratory of Stem Cell Metabolism, Faculty of Biology and Medicine, Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Wang J, Liu F, Mo Y, Wang Z, Zhang S, Zhang X. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:114102. [PMID: 29195356 DOI: 10.1063/1.4994173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuxiang Mo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhaoying Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Ntshangase S, Shobo A, Kruger HG, Asperger A, Niemeyer D, Arvidsson PI, Govender T, Baijnath S. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging. Xenobiotica 2017; 48:938-944. [PMID: 28859520 DOI: 10.1080/00498254.2017.1375168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the Cmax at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.
Collapse
Affiliation(s)
- Sphamandla Ntshangase
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa
| | - Adeola Shobo
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa
| | - Hendrik G Kruger
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa
| | | | | | - Per I Arvidsson
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa.,c Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Development of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm , Sweden
| | - Thavendran Govender
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa
| | - Sooraj Baijnath
- a Catalysis and Peptide Research Unit, University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|
37
|
Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, Li H, Chen Q, Tian H, Wu E, Wang Y, Zhou R, Lee ST, Lifshitz Y, Kang Z, Liu J. Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS NANO 2017; 11:9500-9513. [PMID: 28850220 DOI: 10.1021/acsnano.7b05328] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small molecules play critical roles in life science, yet their facile detection and imaging in physiological or pathological settings remain a challenge. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a powerful tool for molecular analysis. However, conventional organic matrices (CHCA, DHB, etc.) used in assisting analyte ionization suffer from intensive background noise in the mass region below m/z 700, which hinders MALDI MS applications for small-molecule detection. Here, we report that a hydroxyl-group-dominated graphite dot (GD) matrix overcomes limitations of conventional matrices and allows MALDI MS to be used in fast and high-throughput analysis of small biomolecules. GDs exhibit extremely low background noise and ultrahigh sensitivity (with limit of detection <1 fmol) in MALDI MS. This approach allows identification of complex oligosaccharides, detection of low-molecular-weight components in traditional Chinese herbs, and facile analysis of puerarin and its metabolites in serum without purification. Moreover, we show that the GDs provide an effective matrix for the direct imaging or spatiotemporal mapping of small molecules and their metabolites (m/z < 700) simultaneously at the suborgan tissue level. Density functional theory calculations further provide the mechanistic basis of GDs as an effective MALDI matrix in both the positive-ion and negative-ion modes. Collectively, our work uncovered a useful matrix which reshapes MALDI MS technology for a wide range of applications in biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Huihua Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Qiongyang Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | | | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University , Shenzhen, Guangdong Province 518060, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | | | - Yeshayahu Lifshitz
- Department of Materials Science and Engineering, Technion Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
38
|
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation. Talanta 2017; 174:325-335. [PMID: 28738588 DOI: 10.1016/j.talanta.2017.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection.
Collapse
|
39
|
Abstract
Here, we describe a method for obtaining whole-body MALDI imaging data. MALDI imaging provides chemical compound-specific information not attainable with conventional histology techniques. The specificity of mass spectrometry with the addition of spatial information makes this a very powerful technique, especially for the analysis of endogenous and exogenous small molecules. This chapter will provide the reader with a comprehensive description of the techniques involved in obtaining high-quality MALDI mass spectrometry imaging (MSI) data from large tissue sections.
Collapse
|
40
|
Rivas D, Zonja B, Eichhorn P, Ginebreda A, Pérez S, Barceló D. Using MALDI-TOF MS imaging and LC-HRMS for the investigation of the degradation of polycaprolactone diol exposed to different wastewater treatments. Anal Bioanal Chem 2017; 409:5401-5411. [DOI: 10.1007/s00216-017-0371-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
41
|
Ho YN, Shu LJ, Yang YL. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28488813 DOI: 10.1002/wsbm.1387] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Imaging mass spectrometry (IMS) allows the study of the spatial distribution of small molecules in biological samples. IMS is able to identify and quantify chemicals in situ from whole tissue sections to single cells. Both vacuum mass spectrometry (MS) and ambient MS systems have advanced considerably over the last decade; however, some limitations are still hard to surmount. Sample pretreatment, matrix or solvent choices, and instrument improvement are the key factors that determine the successful application of IMS to different samples and analytes. IMS with innovative MS analyzers, powerful MS spectrum databases, and analysis tools can efficiently dereplicate, identify, and quantify natural products. Moreover, multimodal imaging systems and multiple MS-based systems provide additional structural, chemical, and morphological information and are applied as complementary tools to explore new fields. IMS has been applied to reveal interactions between living organisms at molecular level. Recently, IMS has helped solve many previously unidentifiable relations between bacteria, fungi, plants, animals, and insects. Other significant interactions on the chemical level can also be resolved using expanding IMS techniques. WIREs Syst Biol Med 2017, 9:e1387. doi: 10.1002/wsbm.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
42
|
Affiliation(s)
- Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
| |
Collapse
|
43
|
Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry - A tutorial review. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:726-739. [PMID: 28012871 DOI: 10.1016/j.bbapap.2016.12.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) permits label-free in situ analysis of chemical compounds directly from the surface of two-dimensional biological tissue slices. It links qualitative molecular information of compounds to their spatial coordinates and distribution within the investigated tissue. MALDI-MSI can also provide the quantitative amounts of target compounds in the tissue, if proper calibration techniques are performed. Obviously, as the target molecules are embedded within the biological tissue environment and analysis must be performed at their precise locations, there is no possibility for extensive sample clean-up routines or chromatographic separations as usually performed with homogenized biological materials; ion suppression phenomena therefore become a critical side effect of MALDI-MSI. Absolute quantification by MALDI-MSI should provide an accurate value of the concentration/amount of the compound of interest in relatively small, well-defined region of interest of the examined tissue, ideally in a single pixel. This goal is extremely challenging and will not only depend on the technical possibilities and limitations of the MSI instrument hardware, but equally on the chosen calibration/standardization strategy. These strategies are the main focus of this article and are discussed and contrasted in detail in this tutorial review. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
44
|
Buck A, Aichler M, Huber K, Walch A. In Situ Metabolomics in Cancer by Mass Spectrometry Imaging. Adv Cancer Res 2016; 134:117-132. [PMID: 28110648 DOI: 10.1016/bs.acr.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolomics is a rapidly evolving and a promising research field with the expectation to improve diagnosis, therapeutic treatment prediction, and prognosis of particular diseases. Among all techniques used to assess the metabolome in biological systems, mass spectrometry imaging is the method of choice to qualitatively and quantitatively analyze metabolite distribution in tissues with a high spatial resolution, thus providing molecular data in relation to cancer histopathology. The technique is ideally suited to study tissues molecular content and is able to provide molecular biomarkers or specific mass signatures which can be used in classification or the prognostic evaluation of tumors. Recently, it was shown that FFPE tissue samples are also suitable for metabolic analyses. This progress in methodology allows access to a highly valuable resource of tissues believed to widen and strengthen metabolic discovery-driven studies.
Collapse
Affiliation(s)
- A Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - A Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
45
|
Abstract
Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed.
Collapse
|
46
|
|
47
|
Buck A, Balluff B, Voss A, Langer R, Zitzelsberger H, Aichler M, Walch A. How Suitable is Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight for Metabolite Imaging from Clinical Formalin-Fixed and Paraffin-Embedded Tissue Samples in Comparison to Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry? Anal Chem 2016; 88:5281-9. [DOI: 10.1021/acs.analchem.6b00460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Andreas Voss
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Rupert Langer
- Institute of Pathology, University of Bern, 3012, Bern, Switzerland
| | - Horst Zitzelsberger
- Research Unit Radiation
Cytogenetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| |
Collapse
|