1
|
Li XY, Yu WK, Wu JH, He WJ, Cheng YN, Gao K, Wei YH, Li YS. Tryptophan metabolism-related gene CYP1B1 serves as a shared biomarker for both Parkinson's disease and insomnia. Sci Rep 2025; 15:1362. [PMID: 39779759 PMCID: PMC11711247 DOI: 10.1038/s41598-024-84362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis. We analyzed datasets for PD (GSE100054) and insomnia (GSE208668) obtained from the Gene Expression Omnibus (GEO) database. TMRGs were obtained from the Molecular Signatures Database (MSigDB) and the Genecards database. Tryptophan metabolism-related differentially expressed genes (TM-DEGs) were identified by intersecting TMRGs with shared differentially expressed genes (DEGs) from these datasets. Through Protein-Protein Interaction (PPI) network analysis, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) , and Extreme Gradient Boosting (XGBoost) machine learning, we identified Cytochrome P4501B1 (CYP1B1) and Electron Transfer Flavoprotein Alpha (ETFA) as key hub genes. Subsequently, we employed CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) to further investigate the association between hub genes and peripheral immune activation and inflammatory response. Additionally, gene interaction, Drug-mRNA, Transcription Factor (TF)-mRNA, and competing endogenous RNA (ceRNA) networks centered on these hub genes were constructed to explore regulatory mechanisms and potential drug interactions. Finally, validation through bioinformatics and animal experiments identified CYP1B1 as a promising biomarker associated with both PD and insomnia.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Wen-Kai Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Jing-Hao Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Wen-Jun He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yu-Nan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Kai Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yi-Han Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China.
| |
Collapse
|
2
|
Mosegaard S, Twayana KS, Denis SW, Kroon J, Schomakers BV, van Weeghel M, Houtkooper RH, Olsen RKJ, Holm CK. Human inborn errors of long-chain fatty acid oxidation show impaired inflammatory responses to TLR4-ligand LPS. FASEB Bioadv 2024; 6:337-350. [PMID: 39399475 PMCID: PMC11467727 DOI: 10.1096/fba.2024-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 10/15/2024] Open
Abstract
Stimulation of mammalian cells with inflammatory inducers such as lipopolysaccharide (LPS) leads to alterations in activity of central cellular metabolic pathways. Interestingly, these metabolic changes seem to be important for subsequent release of pro-inflammatory cytokines. This has become particularly clear for enzymes of tricarboxylic acid (TCA) cycle such as succinate dehydrogenase (SDH). LPS leads to inhibition of SDH activity and accumulation of succinate to enhance the LPS-induced formation of IL-1β. If enzymes involved in beta-oxidation of fatty acids are important for sufficient responses to LPS is currently not clear. Using cells from various patients with inborn long-chain fatty acid oxidation disorders (lcFAOD), we report that disease-causing deleterious variants of Electron Transfer Flavoprotein Dehydrogenase (ETFDH) and of Very Long Chain Acyl-CoA Dehydrogenase (ACADVL), both cause insufficient inflammatory responses to stimulation with LPS. The insufficiencies included reduced TLR4 expression levels, impaired TLR4 signaling, and reduced or absent induction of pro-inflammatory cytokines such as IL-6. The insufficient responses to LPS were reproduced in cells from healthy controls by targeted loss-of-function of either ETFDH or ACADVL, supporting that the deleterious ETFDH and ACADVL variants cause the attenuated responses to LPS. ETFDH and ACADVL encode two distinct enzymes both involved in fatty acid beta-oxidation, and patients with these deficiencies cannot sufficiently metabolize long-chain fatty acids. We report that genes important for beta-oxidation of long-chain fatty acids are also important for inflammatory responses to an acute immunogen trigger like LPS, which may have important implications for understanding infection and other metabolic stress induced disease pathology in lcFAODs.
Collapse
Affiliation(s)
- Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Krishna S. Twayana
- Department of Biomedicine, Aarhus Research Center for Innate ImmunologyAarhus UniversityAarhusDenmark
| | - Simone W. Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jeffrey Kroon
- Laboratory of Angiogenesis and Vascular MetabolismVIB‐KU Leuven Center for Cancer Biology, VIBLeuvenBelgium
- Laboratory of Angiogenesis and Vascular Metabolism, Department of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology, Endocrinology, and MetabolismAmsterdamThe Netherlands
- Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
- Emma Center for Personalized MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Rikke K. J. Olsen
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus University and Aarhus University HospitalAarhusDenmark
| | - Christian K. Holm
- Department of Biomedicine, Aarhus Research Center for Innate ImmunologyAarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
4
|
Liu J, Ni W, Deng K, Chen Y, Gu G. The presence of white cell Jordan's anomaly in multiple Acyl-CoA dehydrogenase deficiency: A case report and implications for clinical practice. Clin Biochem 2024; 125:110735. [PMID: 38401771 DOI: 10.1016/j.clinbiochem.2024.110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), also known as Glutaric Aciduria Type II, is an exceptionally rare autosomal recessive genetic disorder that disrupts the metabolism of fatty acids, amino acids, and choline. It presents with a wide range of clinical manifestations, from severe neonatal-onset forms to milder late-onset cases, with symptoms including metabolic disturbances and muscle weakness. Jordan's anomaly is a distinctive morphological feature found in peripheral blood white cells and is typically associated with Neutral Lipid Storage Disease (NLSD). CASE REPORT In our case report, the patient initially presented with symptoms of vomiting, abdominal pain, and altered consciousness. The presence of white cell Jordan's anomaly was detected in the blood smear. Subsequent serum tests revealed elevated levels of transaminases, creatine kinase, uric acid, and multiple acylcarnitines, while blood glucose and free carnitine levels were notably reduced. High-throughput sequencing confirmed heterozygous pathogenic variants in the electron-transferring flavoprotein dehydrogenase (ETFDH) gene, leading to the conclusive diagnosis of MADD. Following a three-month treatment regimen involving high-dose vitamin B2, coenzyme Q10, and other supportive interventions, the patient exhibited significant clinical improvement, ultimately resulting in discharge. CONCLUSION The identification of Jordan's anomaly in a pediatric patient with late-onset MADD sheds light on its broader implications within the realm of lipid storage myopathies. The significance of this finding extends beyond its conventional association with NLSD, challenging the notion of its exclusivity. This novel observation serves as a compelling reminder of the diagnostic significance this morphological abnormality holds, potentially revolutionizing diagnostic practices within the field.
Collapse
Affiliation(s)
- Ji Liu
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, Guangdong, 528402, PR China
| | - Wenpeng Ni
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, Guangdong, 528402, PR China.
| | - Kunyi Deng
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, Guangdong, 528402, PR China
| | - Yanhui Chen
- Clinical Laboratory, Boai Hospital of Zhongshan, Zhongshan, Guangdong, 528402, PR China
| | - Guanghong Gu
- Clinical Laboratory, Zhongshan Torch Development Zone People's Hospital, Zhongshan, Guangdong Province, 528437, 528436, PR China.
| |
Collapse
|
5
|
Kek HP, Tsai WL, Chiu PC, Koh WH, Tsai CC. Navigating the Diagnostic Journey in Pediatric Gastroenterology: Decoding Recurrent Vomiting and Epigastric Pain in a Child with Glutaric Aciduria Type II. CHILDREN (BASEL, SWITZERLAND) 2024; 11:285. [PMID: 38539320 PMCID: PMC10969010 DOI: 10.3390/children11030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Glutaric aciduria type II (GA II), also known as multiple acyl-CoA dehydrogenase deficiency (MADD), is a rare autosomal recessive metabolic disorder with varied manifestations and onset ages. CASE REPORT This study presents a distinctive case of a 10-year-old girl who experienced episodic, intermittent vomiting and epigastric pain, particularly aggravated by high-fat and sweet foods. Despite inconclusive physical examinations and routine laboratory tests, and an initial suspicion of cyclic vomiting syndrome, the persistence of recurrent symptoms and metabolic abnormalities (metabolic acidosis and hypoglycemia) during her third hospital admission necessitated further investigation. Advanced diagnostic tests, including urinary organic acid analysis and genetic testing, identified heterozygous pathogenic variants in the ETFDH gene, confirming a diagnosis of GA IIc. The patient showed a positive response to a custom low-protein, low-fat diet supplemented with carnitine and riboflavin. SIGNIFICANCE This case emphasizes the diagnostic challenges associated with recurrent, nonspecific gastrointestinal symptoms in pediatric patients, particularly in differentiating between common gastrointestinal disorders and rare metabolic disorders like GA II. It highlights the importance of considering a broad differential diagnosis to enhance understanding and guide future medical approaches in similar cases.
Collapse
Affiliation(s)
- Ho-Poh Kek
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City 82445, Taiwan, R.O.C.; (H.-P.K.); (W.-L.T.); (W.-H.K.)
| | - Wan-Long Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City 82445, Taiwan, R.O.C.; (H.-P.K.); (W.-L.T.); (W.-H.K.)
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Road, Zuo-Ying District, Kaohsiung City 813414, Taiwan, R.O.C.;
| | - Wen-Harn Koh
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City 82445, Taiwan, R.O.C.; (H.-P.K.); (W.-L.T.); (W.-H.K.)
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City 82445, Taiwan, R.O.C.; (H.-P.K.); (W.-L.T.); (W.-H.K.)
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City 82445, Taiwan, R.O.C
| |
Collapse
|
6
|
Batterson PM, McGowan EM, Borowik AK, Kinter MT, Miller BF, Newsom SA, Robinson MM. High-fat diet increases electron transfer flavoprotein synthesis and lipid respiration in skeletal muscle during exercise training in female mice. Physiol Rep 2023; 11:e15840. [PMID: 37857571 PMCID: PMC10587055 DOI: 10.14814/phy2.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from β-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFβ, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFβ (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFβ and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.
Collapse
Affiliation(s)
- Philip M. Batterson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Erin M. McGowan
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Agnieszka K. Borowik
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Michael T. Kinter
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging and Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VAOklahoma CityOklahomaUSA
| | - Sean A. Newsom
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Biological and Population Health SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
7
|
Saleh DA, Attia AAEM. Shedding light on the phenotypic–genotypic correlation of rare treatable and potentially treatable pediatric movement disorders. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Advances in genetic science have led to the identification of many rare treatable pediatric movements disorders (MDs). We explored the phenotypic–genotypic spectrum of pediatric patients presenting with MDs. By this, we aimed at raising awareness about such rare disorders, especially in our region. Over the past 3 years, we reviewed the demographic data, clinical profile, molecular genetics and other diagnostic workups of pediatric patients presenting with MDs.
Results
Twelve patients were identified; however, only six patients were genetically confirmed. The phenomenology of MDs ranged from paroxysmal kinesigenic choreoathetosis (1 patient), exercise-induced dyskinesia (2 patients), ataxia (2 patients) and dystonia (2 patients). Whole-exome sequencing in addition to the functional studies for some patients revealed a specific genetic diagnosis being responsible for their MDs. The genetic diagnosis of our patients included infantile convulsions and paroxysmal choreoathetosis syndrome and episodic ataxia due to “pathogenic homozygous mutation of PRRT2 gene,” glucose transporter type 1 deficiency-exercise induced dyskinesia due to “De Novo pathogenic heterozygous missense mutation of exon 4 of SLC2A1 gene,” aromatic L amino acid decarboxylase deficiency due to “pathogenic homozygous mutation of the DDC gene,” myopathy with extrapyramidal signs due to “likely pathogenic homozygous mutations of the MICU1 gene,” mitochondrial trifunctional protein deficiency due to “homozygous variant of uncertain significance (VUS) of HADHB gene” and glutaric aciduria II with serine deficiency due to “homozygous VUS for both ETFDH and PHGDH genes.” After receiving the treatment as per recognized treatment protocols, two patients showed complete resolution of symptoms and the rest showed variable responses.
Conclusion
Identifying the genetic etiology of our patients guided us to provide either disease-specific treatment or redirected our management plan. Hence, highlighting the value of molecular genetic analysis to avoid the diagnostic odyssey and identify treatable MDs.
Collapse
|
8
|
Yan Y, Xu Y, Yang X, Li Z, Niu K, Liu C, Zhao M, Xiao Q, Wu W. Electron Transfer Flavoprotein (ETF) α Controls Blood Vessel Development by Regulating Endothelial Mitochondrial Bioenergetics and Oxygen Consumption. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7969916. [PMID: 35313640 PMCID: PMC8933654 DOI: 10.1155/2022/7969916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
While impairment of vascular homeostasis induced by hypercholesterolemia is the first step of cardiovascular diseases, the molecular mechanism behind such impairment is not well known. Here, we reported that high-cholesterol diet (HCD) induced defective vessel sprouting in zebrafish larvae. Electron transfer flavoprotein subunit α (ETFα) (encoded by the ETFA gene), a protein that mediates transfer of electrons from a series of mitochondrial flavoenzymes to the respiratory chain, was downregulated in HCD-fed zebrafish and in endothelial cells treated with oxidized low-density lipoprotein. Knockdown of ETFα with morpholino antisense oligonucleotides reproduced vascular sprouting defects in zebrafish larvae, while replenishing with exogeneous ETFA mRNA could successfully rescue these defects. ETFA knockdown in endothelial cells reduces cell migration, proliferation, and tube formation in vitro. Finally, knockdown of ETFA in endothelial cells also reduced fatty acid oxidation, oxygen consumption rate, and hypoxia-inducible factor-1α (HIF1α) protein levels. Taken together, we demonstrate that downregulation of ETFα is involved in hypercholesterolemia-induced defective vessel sprouting in zebrafish larvae via inhibition of endothelial proliferation and migration. The molecular mechanism behind this phenomenon is the decrease of HIF1α induced by downregulation of ETFα in endothelial cells. This work suggests that disturbance of ETFα-mediated oxygen homeostasis is one of the mechanisms behind hypercholesterolemia-induced vascular dysfunction.
Collapse
Affiliation(s)
- Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510000, China
| | - Yingyi Xu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xuewen Yang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kaiyuan Niu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Chenxin Liu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingzhong Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital and Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| | - Wei Wu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Lupica A, Oteri R, Volta S, Ghezzi D, Drago SFA, Rodolico C, Musumeci O, Toscano A. Diagnostic Challenges in Late Onset Multiple Acyl-CoA Dehydrogenase Deficiency: Clinical, Morphological, and Genetic Aspects. Front Neurol 2022; 13:815523. [PMID: 35309592 PMCID: PMC8929684 DOI: 10.3389/fneur.2022.815523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid oxidation due to deficiency of the mitochondrial electron transfer chain. The late-onset form is characterized by exercise intolerance, muscle weakness, and lipid storage in myofibers. Most MADD patients greatly benefit from riboflavin supplementation. Patients and methods A retrospective study was conducted on patients with a diagnosis of vacuolar myopathy with lipid storage followed in our neuromuscular unit in the last 20 years. We selected 10 unrelated patients with the diagnosis of MADD according to clinical, morphological, and biochemical aspects. Clinical features, blood tests including serum acylcarnitines, EMG, and ENG were revised. Muscle biopsy was performed in all, and one individual underwent also a sural nerve biopsy. Gene sequencing of ETFA, ETFB, and ETFDH was performed as a first-tier genetic analysis followed by next-generation sequencing of an hyperCKemia gene panel in patients with undefined genotypes. Results Clinical evaluation at onset in all our patients showed fatigue and muscle weakness; four patients showed difficulties in chewing, three patients complained of dysphagia, two patients had a dropped head, and a patient had an unexpected ataxia with numbness and dysesthesia. Laboratory blood tests revealed a variable increase in serum CK (266–6,500) and LDH levels (500–2,000). Plasma acylcarnitine profile evidenced increased levels of different chains intermediates. EMG was either normal or showed myogenic or neurogenic patterns. NCS demonstrated sensory neuropathy in two patients. Muscle biopsies showed a vacuolar myopathy with a variable increase in lipid content. Nerve biopsy evidenced an axonal degeneration with the loss of myelinated fibers. ETFDH genetic analysis identifies 14 pathogenic variants. Patients were treated with high doses of riboflavin (400 mg/die). All of them showed a rapid muscle strength improvement and normalization of abnormal values in laboratory tests. Neuropathic symptoms did not improve. Conclusion Our data confirmed that clinical features in MADD patients are extremely variable in terms of disease onset and symptoms making diagnosis difficult. Laboratory investigations, such as serum acylcarnitine profile and muscle biopsy evaluation, may strongly address to a correct diagnosis. The favorable response to riboflavin supplementation strengthens the importance of an early diagnosis of these disorders among the spectrum of metabolic myopathies.
Collapse
Affiliation(s)
- Antonino Lupica
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Rosaria Oteri
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sara Volta
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Selene Francesca Anna Drago
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Rodolico
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- *Correspondence: Olimpia Musumeci
| | - Antonio Toscano
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
10
|
AlFakhri N, Sojar S, Bortcosh W. Hyperammonemia and Altered Mental Status in a 17-year-old Girl. Pediatr Rev 2022; 43:112-115. [PMID: 35102399 DOI: 10.1542/pir.2020-003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nora AlFakhri
- Department of Pediatrics, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL
| | - Sakina Sojar
- Division of Pediatric Emergency Medicine, Alpert Medical School, Brown University, Providence, RI
| | - William Bortcosh
- Department of Pediatrics, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL.,Division of Pediatric Critical Care, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
11
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
12
|
Tang Z, Gao S, He M, Chen Q, Fang J, Luo Y, Yan W, Shi X, Huang H, Tang J. Clinical Presentations and Genetic Characteristics of Late-Onset MADD Due to ETFDH Mutations in Five Patients: A Case Series. Front Neurol 2021; 12:747360. [PMID: 34819910 PMCID: PMC8606537 DOI: 10.3389/fneur.2021.747360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (LO-MADD) describes a curable autosomal recessive genetic disease caused by ETFDH mutations that result in defects in ETF-ubiquinone oxidoreductase. Almost all patients are responsive to riboflavin. This study describes the clinical presentations and genetic characteristics of five LO-MADD patients. Methods: From 2018 to 2021, we collected clinical and genetic data on five patients diagnosed with LO-MADD at our hospital and retrospectively analyzed their clinical characteristics, laboratory examination, electromyography, muscle biopsy, genetic analysis, and outcome data. Results: This study included three males and two females with mean onset age of 37.8 years. Fluctuating exercise intolerance was the most common presentation. Serum creatine kinase (CK) levels were significantly elevated in all patients, and plasma acylcarnitine profiles revealed an increase in long-chain acylcarnitine species in three cases. The urinary organic acid study revealed a high level of hydroxyglutaric acid in all patients. Electrophysiology demonstrated myogenic impairment. Muscle biopsies revealed lipid storage myopathy. Molecular analysis identified nine mutations (three novels and six reported) in ETFDH. Exercise intolerance and muscle weakness were dramatically improved in all patients treated with riboflavin (100 mg) daily following diagnosis. Conclusions: LO-MADD is caused by ETFDH variants and responds well to riboflavin. Three novel ETFDH pathogenic variants were identified, expanding their spectrum in the Chinese population and facilitating future interpretation and analysis of ETFDH mutations.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Gao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qihua Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Huang
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
De Biase I, Yuzyuk T, Hernandez A, Basinger A. An Unusually High Excretion of Ethylmalonic Acid in a Patient with Multiple Acyl-CoA Dehydrogenase Deficiency. Clin Chem 2021; 67:1290-1292. [PMID: 34470039 DOI: 10.1093/clinchem/hvab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Irene De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | - Tatiana Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | | | - Alice Basinger
- Department of Genetics, Cook Children's Physician Network, TX
| |
Collapse
|
14
|
Ali A, Almesmari FSA, Dhahouri NA, Saleh Ali AM, Aldhanhani MAAMA, Vijayan R, Al Tenaiji A, Al Shamsi A, Hertecant J, Al Jasmi F. Clinical, Biochemical, and Genetic Heterogeneity in Glutaric Aciduria Type II Patients. Genes (Basel) 2021; 12:1334. [PMID: 34573316 PMCID: PMC8466204 DOI: 10.3390/genes12091334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The variants of electron transfer flavoprotein (ETFA, ETFB) and ETF dehydrogenase (ETFDH) are the leading cause of glutaric aciduria type II (GA-II). In this study, we identified 13 patients harboring six variants of two genes associated with GA-II. Out of the six variants, four were missense, and two were frameshift mutations. A missense variant (ETFDH:p.Gln269His) was observed in a homozygous state in nine patients. Among nine patients, three had experienced metabolic crises with recurrent vomiting, abdominal pain, and nausea. In one patient with persistent metabolic acidosis, hypoglycemia, and a high anion gap, the ETFDH:p.Gly472Arg, and ETFB:p.Pro94Thrfs*8 variants were identified in a homozygous, and heterozygous state, respectively. A missense variant ETFDH:p.Ser442Leu was detected in a homozygous state in one patient with metabolic acidosis, hypoglycemia, hyperammonemia and liver dysfunction. The ETFDH:p.Arg41Leu, and ETFB:p.Ile346Phefs*19 variants were observed in a homozygous state in one patient each. Both these variants have not been reported so far. In silico approaches were used to evaluate the pathogenicity and structural changes linked with these six variants. Overall, the results indicate the importance of a newborn screening program and genetic investigations for patients with GA-II. Moreover, careful interpretation and correlation of variants of uncertain significance with clinical and biochemical findings are needed to confirm the pathogenicity of such variants.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Fatmah Saeed Ali Almesmari
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Arwa Mohammad Saleh Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Mohammed Ahmed Ali Mohamed Ahmed Aldhanhani
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amal Al Tenaiji
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates;
| | - Aisha Al Shamsi
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| |
Collapse
|
15
|
Staretz-Chacham O, Amar S, Almashanu S, Pode-Shakked B, Saada A, Wormser O, Hershkovitz E. Multiple Acyl-CoA Dehydrogenase Deficiency with Variable Presentation Due to a Homozygous Mutation in a Bedouin Tribe. Genes (Basel) 2021; 12:genes12081140. [PMID: 34440319 PMCID: PMC8393905 DOI: 10.3390/genes12081140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a fatty acid and amino acid oxidation defect caused by a deficiency of the electron-transfer flavoprotein (ETF) or the electron-transfer flavoprotein dehydrogenase (ETFDH). There are three phenotypes of the disease, two neonatal forms and one late-onset. Previous studies have suggested that there is a phenotype-genotype correlation. We report on six patients from a single Bedouin tribe, five of whom were sequenced and found to be homozygous to the same variant in the ETFDH gene, with variable severity and age of presentation. The variant, NM_004453.3 (ETFDH): c.524G>A, p.(R175H), was previously recognized as pathogenic, although it has not been reported in the literature in a homozygous state before. R175H is located near the FAD binding site, likely affecting the affinity of FAD for EFT:QO. The single homozygous ETFDH pathogenic variant was found to be causing MADD in this cohort with an unexpectedly variable severity of presentation. The difference in severity could partly be explained by early diagnosis via newborn screening and early treatment with the FAD precursor riboflavin, highlighting the importance of early detection by newborn screening.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Metabolic Clinic, Pediatric Division, Soroka University Medical Center, Beer Sheva 84101, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84101, Israel;
- Correspondence: ; Tel.: +972-545-713-191
| | - Shirly Amar
- Genetic Lab, Soroka University Medical Center, Beer Sheva 84101, Israel;
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat Gan 52621, Israel;
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 39040, Israel
| | - Ann Saada
- Hadassah Medical Center, Department of Genetics, Jerusalem 911201, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 911201, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84101, Israel;
| | - Eli Hershkovitz
- Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84101, Israel;
- Department of Pediatrics D, Soroka Medical Center, Beer Sheva 84101, Israel
| |
Collapse
|
16
|
Characterization of ETFDH and PHGDH Mutations in a Patient with Mild Glutaric Aciduria Type II and Serine Deficiency. Genes (Basel) 2021; 12:genes12050703. [PMID: 34066864 PMCID: PMC8150808 DOI: 10.3390/genes12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Glutaric aciduria type II (GA-II) is a rare autosomal recessive disease caused by defects in electron transfer flavoprotein (ETF), ultimately causing insufficiencies in multiple acyl-CoA dehydrogenase (MAD). 3-phosphoglycerate dehydrogenase (3-PHGDH) deficiency, is another rare autosomal disorder that appears due to a defect in the synthesis of L-serine amino acid. Several mutations of ETFDH and PHGDH genes have been associated with different forms of GA-II and serine deficiency, respectively. In this study, we report a unique case of GA-II with serine deficiency using biochemical, genetic, and in silico approaches. The proband of Syrian descent had positive newborn screening (NBS) for GA-II. At two years of age, the patient presented with developmental regression, ataxia, and intractable seizures. Results of amino acid profiling demonstrated extremely low levels of serine. Confirmatory tests for GA-II and whole exome sequencing (WES) were performed to determine the etiology of intractable seizure. Sequencing results indicated a previously reported homozygous missense mutation, c.679 C>A (p.Pro227Thr) in the ETFDH gene and a novel missense homozygous mutation c.1219 T>C (p.Ser407Pro) in the PHGDH gene. In silico tools predicted these mutations as deleterious. Here, the clinical and biochemical investigations indicate that ETFDH:p.Pro227Thr and PHGDH:p.Ser407Pro variants likely underlie the pathogenesis of GA-II and serine deficiency, respectively. This study indicates that two rare autosomal recessive disorders should be considered in consanguineous families, more specifically in those with atypical presentation.
Collapse
|
17
|
Henriques BJ, Katrine Jentoft Olsen R, Gomes CM, Bross P. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 2021; 776:145407. [PMID: 33450351 DOI: 10.1016/j.gene.2021.145407] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
18
|
Ye Z, Shi J, Lu X, Meng Y, Lu W, Wu B, Huang Y. Recurrent abdominal pain, vomiting, velvet-like changes in the small intestine in a patient with multiple acyl-CoA dehydrogenase deficiency: a case report. Transl Pediatr 2021; 10:183-187. [PMID: 33633951 PMCID: PMC7882281 DOI: 10.21037/tp-20-253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inborn error of metabolism in fatty acid oxidation. We described an unusual case of recurrent vomiting and abdominal pain in a child with MADD, presenting with velvet-like changes in the small intestine. Because of prominent gastrointestinal manifestations and small intestine ulcers, the patient was first diagnosed as Crohn's disease. The patient was admitted to our institution because of recurrent symptoms despite treatment. Upper and lower endoscopy, computed tomography and trios exome sequencing were performed. This patient underwent a repeated video endoscopy, which showed velvet-like changes in the small intestine rather than ulcers. Liver steatosis was identified by computed tomography. Serum tandem mass spectrometry showed elevated C8 and C10. Trios exome sequencing revealed compound heterozygous variants of c.250G>A, 524G>T in ETFDH. The diagnosis of MADD was made. Patient responded to oral riboflavin treatment. With this case, we aimed to highlight the importance of tandem mass spectrometry and genetic sequencing, especially when the endoscopic findings are not pathognomonic in pediatric cases with recurrent gastrointestinal complaints. We confirmed the diagnosis with next generation sequencing, and described unusual findings of velvet-like changes mimicking ulcers in the small intestine in this patient with MADD.
Collapse
Affiliation(s)
- Ziqing Ye
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Jieru Shi
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Yingying Meng
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Pediatric Endocrinology and Inborn Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wu Y, Han J, Wang Y, Zhang J, Song X, Ji G. A family with riboflavin-reactive lipid deposition myopathy caused by a novel compound heterozygous mutation in the electron transfer flavoprotein dehydrogenase gene. J Int Med Res 2020; 48:300060520966499. [PMID: 33131365 PMCID: PMC7653293 DOI: 10.1177/0300060520966499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a family with riboflavin-reactive multiple acyl-CoA dehydrogenase
deficiency (RR-MADD) partially caused by a novel mutation in the electron
transfer flavoprotein dehydrogenase gene (ETFDH). The RR-MADD
family was identified by physical examination, electromyography, and muscle
biopsy of the proband. Laboratory examination and electromyography suggested a
muscle disease of the lipid storage myopathies. This was confirmed by a muscle
biopsy that revealed lipid deposition in the muscle fibers. The proband’s sister
previously had a similar disease, so the family underwent genetic testing. This
revealed complex heterozygous ETFDH mutations c.389A > T (p.
D130V) and c.1123C > A (p. P375T) in the proband and her sister, of which
c.1123C > A (p. P375T) is a novel pathogenic mutation. The proband was
treated with riboflavin and changes in physical symptoms and laboratory tests
were evaluated before and after treatment. The discovery of a novel locus
further expands the ETFDH mutation spectrum and suggests that
genotyping is vital for early detection of RR-MADD as it can greatly improve the
prognosis.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Jingzhe Han
- Department of Neurology, Harrison International Peace Hospital, Hebei, Hengshui, P. R. China
| | - Yaye Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Jinru Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Hebei, Shijiazhuang, P. R. China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
20
|
Wang C, Lv H, Xu X, Ma Y, Li Q. Clinical characteristics and gene mutation analysis of an adult patient with ETFDH‑related multiple acyl‑CoA dehydrogenase deficiency. Mol Med Rep 2020; 22:4396-4402. [PMID: 33000234 PMCID: PMC7533516 DOI: 10.3892/mmr.2020.11524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/27/2020] [Indexed: 11/06/2022] Open
Abstract
Multiple acyl‑CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder of fatty acid metabolism caused by defects in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH). These defects are mainly classified into the neonatal and late‑onset types, based on their clinical manifestations. ETFDH gene mutations are generally considered to be associated with the late‑onset type. The present study reported an adult woman with late‑onset MADD accompanied with biochemical and muscle biopsy findings indicating metabolic disorders. Gene sequencing analysis showed that the c.1514T>C homozygous mutation in the region of the 12th exon of the ETFDH gene, which led to the amino acid substitution p.I505T (isoleucine > threonine), resulting in defective ETFDH protein function. The results of family verification revealed that the homozygous mutation originated from her parents. The female patient was treated with a large dose of vitamin B2, L‑carnitine and coenzyme Q10, and the symptoms were significantly relieved. The c.1514T>C mutation in the ETFDH gene, was considered as a novel pathogenic mutation that had not been previously reported. Therefore, it was hypothesized that this mutation was responsible for the clinical characteristics of the adult female patient. Overall, this novel mutation could expand the spectrum of the ETFDH gene mutation and provide the basis for the etiological and prenatal diagnosis of MADD.
Collapse
Affiliation(s)
- Chenyi Wang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xia Xu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qian Li
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
21
|
Ding M, Liu R, Qiubo L, Zhang Y, Kong Q. Neonatal-onset multiple acyl-CoA dehydrogenase deficiency (MADD) in the ETFDH gene: A case report and a literature review. Medicine (Baltimore) 2020; 99:e21944. [PMID: 32925727 PMCID: PMC7489629 DOI: 10.1097/md.0000000000021944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism affecting fatty acid, amino acid, and choline metabolism. The clinical manifestation of MADD is heterogeneous, from severe neonatal forms to mild late-onset forms. PATIENT CONCERNS Here, we report a patient who presented with severe hypoglycemia and exercise intolerance suggestive of MADD. Serum tandem mass spectrometry analysis indicated elevated levels of various acyl carnitines at 25 days of age. Exome sequencing of the proband revealed compound heterozygous mutations, c. 413T>G (p.Leu138Arg) and c.1667C > G (p.Pro556Arg), in the ETFDH gene as the probable causative mutations. DIAGNOSES Based on the patient's clinical presentation and test results, the patient was diagnosed with MADD. INTERVENTIONS A high-calorie and reduced-fat diet was given together with oral supplements of L-carnitine (150 mg/day). OUTCOMES He passed away at the age of 4 months because of severe respiratory distress accompanied by muscle weakness. LESSONS He passed away at the age of 4 months because of severe respiratory distress accompanied by muscle weakness. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD and may not only prevent the need for invasive testing but also allow for timely initiation of treatment.
Collapse
Affiliation(s)
| | - Ruihua Liu
- Department of Pediatric, Affiliated Hospital of Jining Medical University
| | - Li Qiubo
- Department of Pediatric, Affiliated Hospital of Jining Medical University
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong, P.R. China
| |
Collapse
|
22
|
Henriques BJ, Lucas TG, Martins E, Gaspar A, Bandeira A, Nogueira C, Brandão O, Rocha H, Vilarinho L, Gomes CM. Molecular and Clinical Investigations on Portuguese Patients with Multiple acyl-CoA Dehydrogenase Deficiency. Curr Mol Med 2020; 19:487-493. [PMID: 31418342 DOI: 10.2174/1566524019666190507114748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a congenital rare metabolic disease with broad clinical phenotypes and variable evolution. This inborn error of metabolism is caused by mutations in the ETFA, ETFB or ETFDH genes, which encode for the mitochondrial ETF and ETF:QO proteins. A considerable group of patients has been described to respond positively to riboflavin oral supplementation, which constitutes the prototypic treatment for the pathology. OBJECTIVES To report mutations in ETFA, ETFB and ETFDH genes identified in Portuguese patients, correlating, whenever possible, biochemical and clinical outcomes with the effects of mutations on the structure and stability of the affected proteins, to better understand MADD pathogenesis at the molecular level. METHODS MADD patients were identified based on the characteristic urinary profile of organic acids and/or acylcarnitine profiles in blood spots during newborn screening. Genotypic, clinical and biochemical data were collected for all patients. In silico structural analysis was employed using bioinformatic tools carried out in an ETF:QO molecular model for the identified missense mutations. RESULTS A survey describing clinical and biochemical features of eight Portuguese MADD patients was made. Genotype analysis identified five ETFDH mutations, including one extension (p.X618QextX*14), two splice mutations (c.34+5G>C and c.405+3A>T) and two missense mutations (ETF:QO-p.Arg155Gly and ETF:QO-p.Pro534Leu), and one ETFB mutation (ETFβ- p.Arg191Cys). Homozygous patients containing the ETFDH mutations p.X618QextX*14, c.34+5G>C and ETF:QO-p.Arg155Gly, all presented severe (lethal) MADD phenotypes. However, when any of these mutations are in heterozygosity with the known ETF:QO-p.Pro534Leu mild variant, the severe clinical effects are partly and temporarily attenuated. Indeed, the latter destabilizes an ETF-interacting loop, with no major functional consequences. However, the position 155 in ETF:QO is localized at the ubiquinone binding and membrane interacting domain, and is thus expected to perturb protein structure and membrane insertion, with severe functional effects. Structural analysis of molecular models is therefore demonstrated to be a valuable tool to rationalize the effects of mutations in the context of the clinical phenotype severity. CONCLUSION Advanced molecular diagnosis, structural analysis and clinical correlations reveal that MADD patients harboring a severe prognosis mutation in one allele can actually revert to a milder phenotype by complementation with a milder mutation in the other allele. However, such patients are nevertheless in a precarious metabolic balance which can revert to severe fatal outcomes during catabolic stress or secondary pathology, thus requiring strict clinical follow-up.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| | - Tânia G Lucas
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| | - Esmeralda Martins
- Centro de Referencia na area de Doencas Hereditarias do Metabolismo, Centro Hospitalar do Porto - CHP, Porto, Portugal
| | - Ana Gaspar
- Unidade de Doencas Metabolicas, Centro Hospitalar Lisboa Norte - Hospital Santa Maria, Lisboa, Portugal
| | - Anabela Bandeira
- Centro de Referencia na area de Doencas Hereditarias do Metabolismo, Centro Hospitalar do Porto - CHP, Porto, Portugal
| | - Célia Nogueira
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Otilia Brandão
- Servico de Patologia Clinica, Hospital Sao Joao, Porto, Portugal
| | - Hugo Rocha
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Laura Vilarinho
- Unidade de Rastreio Neonatal, Metabolismo e Genetica, Departamento de Genetica Humana - Instituto Nacional de Saude Doutor Ricardo Jorge, Porto, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, and Departamento de Quimica e Bioquimica, Faculdade de Ciencias, 1749-016 Lisboa, Portugal
| |
Collapse
|
23
|
Boucher JM, Ryzhova L, Harrington A, Davis-Knowlton J, Turner JE, Cooper E, Maridas D, Ryzhov S, Rosen CJ, Vary CPH, Liaw L. Pathological Conversion of Mouse Perivascular Adipose Tissue by Notch Activation. Arterioscler Thromb Vasc Biol 2020; 40:2227-2243. [PMID: 32640901 DOI: 10.1161/atvbaha.120.314731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.
Collapse
Affiliation(s)
- Joshua M Boucher
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Larisa Ryzhova
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Anne Harrington
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jessica Davis-Knowlton
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jacqueline E Turner
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Emily Cooper
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - David Maridas
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Sergey Ryzhov
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Clifford J Rosen
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Calvin P H Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| |
Collapse
|
24
|
Whole-Organ Genomic Characterization of Mucosal Field Effects Initiating Bladder Carcinogenesis. Cell Rep 2020; 26:2241-2256.e4. [PMID: 30784602 DOI: 10.1016/j.celrep.2019.01.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
We used whole-organ mapping to study the locoregional molecular changes in a human bladder containing multifocal cancer. Widespread DNA methylation changes were identified in the entire mucosa, representing the initial field effect. The field effect was associated with subclonal low-allele frequency mutations and a small number of DNA copy alterations. A founder mutation in the RNA splicing gene, ACIN1, was identified in normal mucosa and expanded clonally with an additional 21 mutations in progression to carcinoma. The patterns of mutations and copy number changes in carcinoma in situ and foci of carcinoma were almost identical, confirming their clonal origins. The pathways affected by the DNA copy alterations and mutations, including the Kras pathway, were preceded by the field changes in DNA methylation, suggesting that they reinforced mechanisms that had already been initiated by methylation. The results demonstrate that DNA methylation can serve as the initiator of bladder carcinogenesis.
Collapse
|
25
|
Lucas TG, Henriques BJ, Gomes CM. Conformational analysis of the riboflavin-responsive ETF:QO-p.Pro456Leu variant associated with mild multiple acyl-CoA dehydrogenase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140393. [PMID: 32087359 DOI: 10.1016/j.bbapap.2020.140393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed to a wider coverage of MADD genotypes. However, the impact of non-lethal mutations on ETF:QO function remains scarcely understood from a structural perspective. To this end, we here revisit the relatively common MADD mutation ETF:QO-p.Pro456Leu, in order to clarify how it affects enzyme structure and folding. Given the limitation in recombinant expression of human ETF:QO, we resort to its bacterial homologue from Rhodobacter sphaeroides (Rs), in which the corresponding mutation (p.Pro389Leu) was inserted. The in vitro biochemical and biophysical investigations of the Rs ETF:QO-p.Pro389Leu variant showed that, while the mutation does not significantly affect the protein α/β fold, it introduces some plasticity on the tertiary structure and within flavin interactions. Indeed, in the p.Pro389Leu variant, FAD exhibits a higher thermolability during thermal denaturation and a faster rate of release in temperature-induced dissociation experiments, in comparison to the wild type. Therefore, although this clinical mutation occurs in the ubiquinone domain, its effect likely propagates to the nearby FAD binding domain, probably influencing electron transfer and redox potentials. Overall, our results provide a molecular rational for the decreased enzyme activity observed in patients and suggest that compromised FAD interactions in ETF:QO might account for the known riboflavin responsiveness of this mutation.
Collapse
Affiliation(s)
- Tânia G Lucas
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
26
|
Rabenstein M, Weis J, Abicht A, Fink GR, Lehmann HC, Wunderlich G. Multipler Acyl-CoA-Dehydrogenase-Mangel/Glutarazidurie Typ II: schwierige Diagnose, einfache Therapie. DER NERVENARZT 2020; 91:349-352. [DOI: 10.1007/s00115-020-00886-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Nilipour Y, Fatehi F, Sanatinia S, Bradshaw A, Duff J, Lochmüller H, Horvath R, Nafissi S. Multiple acyl-coenzyme A dehydrogenase deficiency shows a possible founder effect and is the most frequent cause of lipid storage myopathy in Iran. J Neurol Sci 2020; 411:116707. [PMID: 32007756 DOI: 10.1016/j.jns.2020.116707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Multiple acyl-coenzyme A dehydrogenase deficiency disorder (MADD) is a relatively rare disorders of lipid metabolism. This study aimed to investigate the demographic, clinical, and genetic features of MADD in Iran. METHODS Twenty-nine patients with a definite diagnosis of lipid storage myopathy were recruited. All patients were tested for mutation in the ETFDH gene, and 19 had a biallelic mutation in this gene. RESULTS Of 19 patients with definite mutations, 11 (57.9%) were female, and the median age was 31 years. Twelve patients had c.1130 T > C (p.L377P) mutation in exon 10. Two patients had two novel heterozygote pathogenic variants (c.679C > T (p.P227S) in exon 6 and c.814G > A (p.G272R) in exon 7) and two patients had c.1699G > A (p.E567K) in exon 13. Before treatment, the median muscle power was 4.6 (IQR: 4-4.7) that increased to 5 (IQR: 5-5) after treatment (Z = -3.71, p = .000). The median CK was 1848 U/l (IQR: 1014-3473) before treatment, which declined to 188 U/l (IQR: 117-397) after treatment (Z = -3.41, p = .001). Sixteen patients (84.2%) had full recovery after the treatment. The disease onset was earlier (12 years of age; IQR: 6-18) in patients with homozygous c.1130 T > C; p.(L377P) mutation compared to other ETFDH mutations (30 years of age; IQR: 20-35) (p = .00). DISCUSSION MADD has different clinical presentations. As the patients respond favorably to treatment, early diagnosis and treatment may prevent the irreversible complications of the disease.
Collapse
Affiliation(s)
- Yalda Nilipour
- Pediatric pathology research center, Research institute for children's health, AND Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Aix Marseille University, CNRS (UMR 7339), Centre de Resonance Magnétique Biologique et Medicale, Faculte de Medecine, 27 bd. J. Moulin, 13005 Marseille, France
| | - Saleheh Sanatinia
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna Bradshaw
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer Duff
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - the University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Hepatic neddylation targets and stabilizes electron transfer flavoproteins to facilitate fatty acid β-oxidation. Proc Natl Acad Sci U S A 2020; 117:2473-2483. [PMID: 31941714 DOI: 10.1073/pnas.1910765117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neddylation is a ubiquitination-like pathway that controls cell survival and proliferation by covalently conjugating NEDD8 to lysines in specific substrate proteins. However, the physiological role of neddylation in mammalian metabolism remains elusive, and no mitochondrial targets have been identified. Here, we report that mouse models with liver-specific deficiency of NEDD8 or ubiquitin-like modifier activating enzyme 3 (UBA3), the catalytic subunit of the NEDD8-activating enzyme, exhibit neonatal death with spontaneous fatty liver as well as hepatic cellular senescence. In particular, liver-specific UBA3 deficiency leads to systemic abnormalities similar to glutaric aciduria type II (GA-II), a rare autosomal recessive inherited fatty acid oxidation disorder resulting from defects in mitochondrial electron transfer flavoproteins (ETFs: ETFA and ETFB) or the corresponding ubiquinone oxidoreductase. Neddylation inhibition by various strategies results in decreased protein levels of ETFs in neonatal livers and embryonic hepatocytes. Hepatic neddylation also enhances ETF expression in adult mice and prevents fasting-induced steatosis and mortality. Interestingly, neddylation is active in hepatic mitochondria. ETFs are neddylation substrates, and neddylation stabilizes ETFs by inhibiting their ubiquitination and degradation. Moreover, certain mutations of ETFs found in GA-II patients hinder the neddylation of these substrates. Taken together, our results reveal substrates for neddylation and add insight into GA-II.
Collapse
|
29
|
Yıldız Y, Talim B, Haliloglu G, Topaloglu H, Akçören Z, Dursun A, Sivri HS, Coşkun T, Tokatlı A. Determinants of Riboflavin Responsiveness in Multiple Acyl-CoA Dehydrogenase Deficiency. Pediatr Neurol 2019; 99:69-75. [PMID: 31331668 DOI: 10.1016/j.pediatrneurol.2019.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase (MADD) deficiency, which is a rare metabolic disorder involving electron transport flavoproteins, has a wide array of clinical phenotypes. In this article, we describe 25 patients with MADD deficiency and present the clinical and laboratory characteristics and diagnostic challenges associated with riboflavin-responsive MADD deficiency. METHODS Hospital records of patients with biallelic mutations in ETFA, ETFB, or ETFDH genes diagnosed in a single center were analyzed retrospectively. Demographic, clinical, and laboratory characteristics of patients with riboflavin-responsive and riboflavin-unresponsive MADD deficiency were compared using Mann-Whitney U and Fisher's exact tests. RESULTS Respiratory distress and depressed consciousness were significantly more common in patients with riboflavin-unresponsive MADD deficiency (P = 0.015 and P < 0.001), who presented at a younger age (P < 0.001). Patients with riboflavin-responsive MADD deficiency had favorable outcomes but also had life-threatening complications, longer diagnostic delay (median of two years versus 30 days; P < 0.001), and multiple differential diagnoses, resulting in unnecessary investigations and maltreatment. Biopsies showed lipid storage, and complete autopsy was performed in one newborn with riboflavin-unresponsive MADD deficiency, revealing multiple abnormalities. Metabolic profiles were not distinguishable between riboflavin-responsive and riboflavin-unresponsive MADD deficiency (P > 0.05). Four novel variants were detected in ETFDH, one of which (c.1790C>T) may confer riboflavin responsiveness. Siblings with the common myopathic ETFDH c.1130T>C mutation presented with a new phenotype dominated by chronic fatigue without apparent myopathy. CONCLUSIONS Symptoms and outcomes significantly differed between riboflavin-responsive and unresponsive MADD deficiency, but metabolic profiles did not. Functional studies are needed to better characterize the novel ETFDH variants. As treatment is available for riboflavin-responsive MADD deficiency, physicians should maintain a high index of suspicion for MADD deficiency in all age groups.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey.
| | - Beril Talim
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Goknur Haliloglu
- Division of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Haluk Topaloglu
- Division of Pediatric Neurology, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Zuhal Akçören
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Turgay Coşkun
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| | - Ayşegül Tokatlı
- Division of Pediatric Metabolism, Hacettepe University Children's Hospital, Ankara, Turkey
| |
Collapse
|
30
|
McGlaughon JL, Pasquali M, Wallace K, Ross J, Senol-Cosar O, Shen W, Weaver MA, Feigenbaum A, Lyon E, Enns GM, Mao R, Baudet HG. Assessing the strength of evidence for genes implicated in fatty acid oxidation disorders using the ClinGen clinical validity framework. Mol Genet Metab 2019; 128:122-128. [PMID: 31399326 DOI: 10.1016/j.ymgme.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
Newborn screening is an incredibly useful tool for the early identification of many metabolic disorders, including fatty acid oxidation (FAO) disorders. In many cases, molecular tests are necessary to reach a final diagnosis, highlighting the need for a thorough evaluation of genes implicated in FAO disorders. Using the ClinGen (Clinical Genome Resource) clinical validity framework, thirty genes were analyzed for the strength of evidence supporting their association with FAO disorders. Evidence was gathered from the literature by biocurators and presented to disease experts for review in order to assign a clinical validity classification of Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Reported Evidence. Of the gene-disease relationships evaluated, 22/30 were classified as Definitive, three as Moderate, one as Limited, three as No Reported Evidence and one as Disputed. Gene-disease relationships with a Limited, Disputed, and No Reported Evidence were found on two, six, and up to four panels out of 30 FAO disorder-specific panels, respectively, in the National Institute of Health Genetic Testing Registry, while over 70% of the genes on panels are definitively associated with an FAO disorder. These results highlight the need to systematically assess the clinical relevance of genes implicated in fatty acid oxidation disorders in order to improve the interpretation of genetic testing results and diagnosis of patients with these disorders.
Collapse
Affiliation(s)
- Jennifer L McGlaughon
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Marzia Pasquali
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Kathleen Wallace
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Justyne Ross
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Ozlem Senol-Cosar
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA, USA; Department of Pathology, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Shen
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Meredith A Weaver
- American College of Medical Genetics and Genomics, Bethesda, MD, USA
| | - Annette Feigenbaum
- Department of Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Elaine Lyon
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, CA, USA
| | - Rong Mao
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Heather G Baudet
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Fischer T, Elpers C, Och U, Fobker M, Marquardt T. Ketone body therapy with D/L-β-hydroxybutyric acid solution in severe MADD. Mol Genet Metab Rep 2019; 20:100491. [PMID: 31312603 PMCID: PMC6610240 DOI: 10.1016/j.ymgmr.2019.100491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives Multiple acyl-CoA dehydrogenase deficiency (MADD) is a severe inborn disorder of mitochondrial fatty acid oxidation. The only treatment option for MADD is the use of exogenous ketone bodies, like sodium β-hydroxybutyrate (NaβHB). However, the use of ketone body salts leads to a high intake of accompanying minerals, which can lead to additional side effects. The use of mineral-free formulations could improve tolerability. Methods In this report, the use of a βHB acid (βHBA) in a patient with MADD is described. The production of D/L-βHBA was carried out using ion exchange chromatography (IEX) and using a precipitation method. During two inpatient treatment intervals, the tolerability as well as clinical and metabolic effects were monitored. D-βHB in serum, blood gas analysis, and standard blood measurements (like minerals) were used as control parameters. Results Production of D/L-βHBA using the precipitation method was more effective than using IEX. The tube feed solution used had a minimum pH of 3.5. Capillary D-βHB measurements were between 0.1 and 0.4 mmol/L and venous were at 0.1 mmol/L or below. Minerals and serum pH were within the normal range. During application of D/L-βHBA, gastrointestinal discomfort occurred and no clinical improvement was observed. Conclusions The use of D/L-βHBA in the therapy of severe MADD could be a good addition to the use of classical ketone body salts. The observed gastrointestinal side effects were of a mild nature and could not be specifically attributed to the D/L-βHBA treatment. In short-term application, no clinical benefit and no substantial increase of D-βHB in serum were noted. No tendency towards acidosis or alkalosis was observed during the entire period of treatment.
Collapse
Affiliation(s)
- Tobias Fischer
- University Hospital Muenster, Department of Pediatrics, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Christiane Elpers
- University Hospital Muenster, Department of Pediatrics, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Ulrike Och
- University Hospital Muenster, Department of Pediatrics, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Manfred Fobker
- University Hospital Muenster, Center of laboratory medicine, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - Thorsten Marquardt
- University Hospital Muenster, Department of Pediatrics, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| |
Collapse
|
32
|
Fischer T, Och U, Marquardt T. Long-term ketone body therapy of severe multiple acyl-CoA dehydrogenase deficiency: A case report. Nutrition 2018; 60:122-128. [PMID: 30557775 DOI: 10.1016/j.nut.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multiple acyl-CoA dehydrogenase deficiency (MADD) is the most severe disorder of mitochondrial fatty acid β-oxidation. Treatment of this disorder is difficult because the functional loss of the electron transfer flavoprotein makes energy supply from fatty acids impossible. Acetyl-CoA, provided by exogenous ketone bodies such as NaßHB, is the only treatment option in severe cases. Short-term therapy attempts have shown positive results. To our knowledge, no reports exist concerning long-term application of ketone body salts in patients with severe MADD. METHODS This case report is a detailed retrospective metabolic analysis of a boy with severe MADD. Treatment with sodium β-hydroxybutyrate (NaβHB) started 8 d after birth using gradually increasing doses. In the initial phase, metabolic and acid-base parameters were checked multiple times a day. After 8 y of standardized therapy with 16 g NaβHB, substitution with calcium β-hydroxybutyrate (CaβHB) was attempted. In addition to the β-hydroxybutyrate (βHB) supplementation, continuous adjustments were made to the child's nutrition to provide necessary nutrients. RESULTS Treatment with βHB salts leads to adverse effects like gastrointestinal discomfort and alkalosis. Measured concentrations of βHB were predominantly at 0.1 mmol/L or below detectable concentration. Nutritional therapy based on amino acid and acylcarnitine profiles is a necessary part of the therapy in MADD. CONCLUSIONS Therapy with NaβHB is lifesaving in cases of severe MADD but can have significant adverse effects. Supplementation with CaβHB led to gastrointestinal discomfort and had no additional positive clinical effect. The determined tolerable dose of βHB salt for long-term therapy was not high enough for a notable increase of βHB concentrations in blood.
Collapse
Affiliation(s)
- Tobias Fischer
- University of Applied Sciences Muenster, Department of Food, Nutrition, and Facilities, Muenster, Germany; University Hospital Muenster, Department of Pediatrics, Muenster, Germany.
| | - Ulrike Och
- University Hospital Muenster, Department of Pediatrics, Muenster, Germany
| | - Thorsten Marquardt
- University Hospital Muenster, Department of Pediatrics, Muenster, Germany
| |
Collapse
|
33
|
Chokchaiwong S, Kuo YT, Lin SH, Hsu YC, Hsu SP, Liu YT, Chou AJ, Kao SH. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic Res 2018; 52:1445-1455. [PMID: 30003820 DOI: 10.1080/10715762.2018.1500695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In β-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient β-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1β release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with β-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.
Collapse
Affiliation(s)
- Suphannee Chokchaiwong
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yung-Ting Kuo
- b Department of Pediatrics, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan.,c Department of Pediatrics , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan
| | - Shih-Hsiang Lin
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yi-Ching Hsu
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Sung-Po Hsu
- e Department of Physiology, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Yu-Ting Liu
- f Taipei First Girls' High School , Taipei , Taiwan
| | - An-Je Chou
- f Taipei First Girls' High School , Taipei , Taiwan
| | - Shu-Huei Kao
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
34
|
Yang SC, Yu GE, Ha J, Kwon S, Hwang JH, Park DH, Kang DG, Kim TW, Park HC, An SM, Kim CW. Association between an electron transfer flavoprotein alpha subunit polymorphism (rs321948383) and the meat quality of Berkshire pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1481856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Seung Chang Yang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | | | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, South Korea
| |
Collapse
|
35
|
Yıldız Y, Olsen RKJ, Sivri HS, Akçören Z, Nygaard HH, Tokatlı A. Post-mortem detection of FLAD1 mutations in 2 Turkish siblings with hypotonia in early infancy. Neuromuscul Disord 2018; 28:787-790. [PMID: 30061063 DOI: 10.1016/j.nmd.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Inherited defects of vitamin B2 (riboflavin) metabolism may cause different phenotypes with common biochemical markers of multiple acyl-CoA dehydrogenase deficiency (MADD). Most recently, mutations in FLAD1, which encodes flavin adenine dinucleotide (FAD) synthase, has been implicated in MADD with combined respiratory chain deficiency in nine patients. Here, we describe two siblings with FAD synthase deficiency, who were diagnosed post-mortem upon suspicion of this newly-described disease. Hypotonia was evident at two months of age in both infants, followed by feeding difficulties, respiratory distress and death in six months despite partial response to riboflavin. The older sibling had documented lipid storage myopathy and biochemical markers of MADD. Our observations support the previous reports of unexpected riboflavin-responsiveness in frameshift mutations in the second exon of FLAD1 and suggest dysmorphic auricular helix and hypospadias as possible additional clinical features. More reports and studies are needed to better describe and treat FAD synthase deficiency.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey.
| | | | - Hatice Serap Sivri
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey
| | - Zuhal Akçören
- Pediatric Pathology Unit, Hacettepe University Children's Hospital, Turkey
| | - Helle Highland Nygaard
- Molekylær Medicinsk Forskningsenhed (MMF), Institut for Klinisk Medicin Aarhus Universitet, Denmark
| | - Ayşegül Tokatlı
- Division of Pediatric Metabolic Diseases, Department of Pediatrics, Hacettepe University, Turkey
| |
Collapse
|
36
|
Goh LL, Lee Y, Tan ES, Lim JSC, Lim CW, Dalan R. Patient with multiple acyl-CoA dehydrogenase deficiency disease and ETFDH mutations benefits from riboflavin therapy: a case report. BMC Med Genomics 2018; 11:37. [PMID: 29615056 PMCID: PMC5883299 DOI: 10.1186/s12920-018-0356-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lipid storage myopathy (LSM) is a diverse group of lipid metabolic disorders with great variations in the clinical phenotype and age of onset. Classical multiple acyl-CoA dehydrogenase deficiency (MADD) is known to occur secondary to mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene. Whole exome sequencing (WES) with clinical correlations can be useful in identifying genomic alterations for targeted therapy. Case presentation We report a patient presented with severe muscle weakness and exercise intolerance, suggestive of LSM. Diagnostic testing demonstrated lipid accumulation in muscle fibres and elevated plasma acyl carnitine levels. Exome sequencing of the proband and two of his unaffected siblings revealed compound heterozygous mutations, c.250G > A (p.Ala84Thr) and c.770A > G (p.Tyr257Cys) in the ETFDH gene as the probable causative mutations. In addition, a previously unreported variant c.1042C > T (p.Arg348Trp) in ACOT11 gene was found. This missense variant was predicted to be deleterious but its association with lipid storage in muscle is unclear. The diagnosis of MADD was established and the patient was treated with riboflavin which resulted in rapid clinical and biochemical improvement. Conclusions Our findings support the role of WES as an effective tool in the diagnosis of highly heterogeneous disease and this has important implications in the therapeutic strategy of LSM treatment. Electronic supplementary material The online version of this article (10.1186/s12920-018-0356-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yingshan Lee
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ee Shien Tan
- Department of Paediatrics, Genetics Services, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - James Soon Chuan Lim
- Biochemical Genetics and National Expanded Newborn Screening, Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899, Singapore
| | - Chia Wei Lim
- Molecular Diagnostic Laboratory, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore.
| |
Collapse
|
37
|
Augustin P, Toplak M, Fuchs K, Gerstmann EC, Prassl R, Winkler A, Macheroux P. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein. J Biol Chem 2018; 293:2829-2840. [PMID: 29301933 PMCID: PMC5827430 DOI: 10.1074/jbc.ra117.000846] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/14/2017] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria.
Collapse
Affiliation(s)
- Peter Augustin
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Marina Toplak
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Katharina Fuchs
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | | | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II.
| |
Collapse
|
38
|
Bezerra Júnior RQ, Eloy ÂMX, Furtado JR, Pinheiro RR, Andrioli A, Moreno FB, Pinto Lobo MD, Monteiro-Moreira ACO, de Azevedo Moreira R, Farias Pinto TM, da Silva Teixeira MF. A panel of protein candidates for comprehensive study of Caprine Arthritis Encephalitis (CAE) infection. Trop Anim Health Prod 2017; 50:43-48. [DOI: 10.1007/s11250-017-1398-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
|
39
|
Creanza A, Cotugno M, Mazzaccara C, Frisso G, Parenti G, Capaldo B. Successful Pregnancy in a Young Woman with Multiple Acyl-CoA Dehydrogenase Deficiency. JIMD Rep 2017; 39:1-6. [PMID: 28685490 PMCID: PMC5953900 DOI: 10.1007/8904_2017_38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 03/30/2024] Open
Abstract
Multiple acyl-CoA dehydrogenation deficiency (MADD) is an inborn disorder of fatty acid oxidation due to a defect in electron transfer to the respiratory chain. We describe the medical/nutritional management of a successful pregnancy in a 19-year-old woman with a known diagnosis of MADD. A high-carbohydrate, low-fat, six-meal diet supplemented with protein was prescribed to meet the nutritional needs during pregnancy. L-Carnitine supplementation was also progressively increased over the weeks. Serum acyl-carnitine profile revealed raised levels of chain-length C6-C14, which remained substantially unchanged during pregnancy. Serum amino acid profile was in the normal range indicating an adequate nutritional support. Pregnancy progressed uneventful and the patient gave birth to a healthy boy without any complication.A careful clinical monitoring associated with an adequate medical/nutritional management may improve pregnancy outcome in women with MADD.
Collapse
Affiliation(s)
- Annalisa Creanza
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mariella Cotugno
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Biotechnologies, CEINGE-Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Biotechnologies, CEINGE-Biotecnologie Avanzate, University of Naples Federico II, Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine (G.P.), University of Naples Federico II, Naples, Italy
| | - Brunella Capaldo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
40
|
Stauch KL, Villeneuve LM, Purnell PR, Ottemann BM, Emanuel K, Fox HS. Loss of Pink1 modulates synaptic mitochondrial bioenergetics in the rat striatum prior to motor symptoms: concomitant complex I respiratory defects and increased complex II-mediated respiration. Proteomics Clin Appl 2016; 10:1205-1217. [PMID: 27568932 PMCID: PMC5810131 DOI: 10.1002/prca.201600005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Mutations in PTEN-induced putative kinase 1 (Pink1), a mitochondrial serine/threonine kinase, cause a recessive inherited form of Parkinson's disease (PD). Pink1 deletion in rats results in a progressive PD-like phenotype, characterized by significant motor deficits starting at 4 months of age. Despite the evidence of mitochondrial dysfunction, the pathogenic mechanism underlying disease due to Pink1-deficiency remains obscure. EXPERIMENTAL DESIGN Striatal synaptic mitochondria from 3-month-old Pink1-deficient rats were characterized using bioenergetic and mass spectroscopy (MS)-based proteomic analyses. RESULTS Striatal synaptic mitochondria from Pink1-deficient rats exhibit decreased complex I-driven respiration and increased complex II-mediated respiration compared with wild-type rats. MS-based proteomics revealed 69 of the 811 quantified mitochondrial proteins were differentially expressed between Pink1-deficient rats and controls. Down-regulation of several electron carrier proteins, which shuttle electrons to reduce ubiquinone at complex III, in the Pink1-knockouts suggests disruption of the linkage between fatty acid, amino acid, and choline metabolism and the mitochondrial respiratory system. CONCLUSIONS AND CLINICAL RELEVANCE These results suggest that complex II activity is increased to compensate for loss of electron transfer mechanisms due to reduced complex I activity and loss of electron carriers within striatal nerve terminals early during disease progression. This may contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Kelly L. Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lance M. Villeneuve
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Phillip R. Purnell
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M. Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
41
|
Zhao Q, Yang Y, Wang C, Hou Y, Chen H. ATP5B and ETFB metabolic markers in children with congenital hydronephrosis. Mol Med Rep 2016; 14:5111-5115. [PMID: 27840937 PMCID: PMC5355659 DOI: 10.3892/mmr.2016.5914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/03/2016] [Indexed: 11/06/2022] Open
Abstract
Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Disorders of mitochondrial energy metabolism may be a primary factor underlying tubular cell apoptosis in hydronephrosis. The β-F1-ATPase (ATP5B) and electron transfer flavoprotein β subunit (ETFB) metabolic markers are involved in mitochondrial energy metabolism in other diseases. The aim of the present study was to evaluate whether ATP5B and ETFB are represented in the hydronephrotic kidney, and whether they are associated with the progression of hydronephrosis. The cohort examined consisted of 20 children with hydronephrosis, graded III and IV using the Society for Fetal Urology grading system, and a control group consisting of 20 patients with nephroblastoma. Reverse transcription-quantitative polymerase chain reaction and immunoblot analyses were used to investigate the differential expression of genes and proteins in the two groups. The gene and protein expression levels of ATP5B and ETFB were upregulated in the hydronephrosis group. Correlation analyses revealed negative correlations between ATP5B, ETFB protein and split renal function (SRF). Receiver-operator curve analysis found a diagnostic profile of the ETFB protein in identifying children with hydronephrosis with abnormal SRF (<45%). These results suggested that increasing levels of ATP5B and ETFB were associated with worsening renal injury. ATP5B and ETFB may be novel markers in hydronephrosis and require further detailed investigation.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Changlin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Hou
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hui Chen
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
42
|
Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function. Mol Cell 2016; 63:621-632. [PMID: 27499296 DOI: 10.1016/j.molcel.2016.06.033] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/25/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
Abstract
Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.
Collapse
|
43
|
Liao Y, Castello A, Fischer B, Leicht S, Föehr S, Frese CK, Ragan C, Kurscheid S, Pagler E, Yang H, Krijgsveld J, Hentze MW, Preiss T. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Cell Rep 2016; 16:1456-1469. [PMID: 27452465 PMCID: PMC4977271 DOI: 10.1016/j.celrep.2016.06.084] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs) in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism. mRNA interactome capture and RBDmap reveal the cardiomyocyte RNA-binding proteome 1,148 RBPs are identified, 393 of which are thus far unique to cardiomyocytes Many cardiac RBPs have links to heart disease and mitochondrial metabolism Contacts of metabolic enzymes with RNA frequently involve Rossmann fold domains
Collapse
Affiliation(s)
- Yalin Liao
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Alfredo Castello
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stefan Leicht
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sophia Föehr
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian K Frese
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Sebastian Kurscheid
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Eloisa Pagler
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Hao Yang
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) ACT 2601, Australia; Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), NSW 2010, Australia.
| |
Collapse
|
44
|
Li Y, Zhu J, Hu J, Meng X, Zhang Q, Zhu K, Chen X, Chen X, Li G, Wang Z, Lu G. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus. Sci Rep 2016; 6:24911. [PMID: 27113712 PMCID: PMC4845064 DOI: 10.1038/srep24911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/07/2016] [Indexed: 11/09/2022] Open
Abstract
Electron-transferring flavoprotein (ETF) and its dehydrogenase (ETFDH) are highly conserved electron carriers which mainly function in mitochondrial fatty acid β oxidation. Here, we report the identification and characterization of ETF α and β subunit encoding genes (ETFA and ETFB) and ETFDH encoding gene (ETFDH) in the rice blast fungus Magnaporthe oryzae. It was demonstrated that, by impacting fatty acid metabolism, ETF and ETFDH mutations led to severe growth and conidiation defects, which could be largely rescued by exogenous acetate or carbonate. Furthermore, although conidium germination and appressorium formation appeared to be normal in ETF and ETFDH mutants, most appressoria failed to penetrate the host epidermis due to low turgor pressure. The few appressoria that succeeded in penetration were severely restricted in invasive growth and consequently failed to cause disease. Moreover, ETF mutant etfb(-) induced ROS accumulation in infected host cells and exogenous antioxidant GSH accelerated mutant invading growth without increasing the penetration rate. In addition, mutant etfb(-) displayed elevated lipid body accumulation and reduced ATP synthesis. Taken together, ETF and ETFDH play an important role in fungal development and plant infection in M. oryzae by regulation of fatty acid metabolism, turgor establishment and induction of host ROS accumulation.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jindong Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiexiong Hu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiuli Meng
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qi Zhang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kunpeng Zhu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaomin Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xuehang Chen
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zonghua Wang
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Guodong Lu
- Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
45
|
Béhin A, Acquaviva-Bourdain C, Souvannanorath S, Streichenberger N, Attarian S, Bassez G, Brivet M, Fouilhoux A, Labarre-Villa A, Laquerrière A, Pérard L, Kaminsky P, Pouget J, Rigal O, Vanhulle C, Eymard B, Vianey-Saban C, Laforêt P. Multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of late-onset treatable metabolic disease. Rev Neurol (Paris) 2016; 172:231-41. [PMID: 27038534 DOI: 10.1016/j.neurol.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare, treatable, beta-oxidation disorder responsible for neuromuscular symptoms in adults. This case series describes the clinical and biochemical features of 13 French patients with late-onset MADD. METHODS AND RESULTS Thirteen ambulant patients (eight women, five men), with a median age at onset of 27 years, initially experienced exercise intolerance (n=9), isolated muscle weakness (n=1) and a multisystemic pattern with either central nervous system or hepatic dysfunction (n=3). During the worsening period, moderate rhabdomyolysis (n=5), a pseudomyasthenic pattern (n=5) and acute respiratory failure (n=1) have been observed. Weakness typically affected the proximal limbs and axial muscles, and there was sometimes facial asymmetry (n=3). Moderate respiratory insufficiency was noted in one case. Median baseline creatine kinase was 190IU/L. Lactacidemia was sometimes moderately increased at rest (3/10) and after exercise (1/3). The acylcarnitine profile was characteristic, with increases in all chain-length acylcarnitine species. Electromyography revealed a myogenic pattern, while muscle biopsy showed lipidosis, sometimes with COX-negative fibers (n=2). The mitochondrial respiratory chain was impaired in five cases, with coenzyme Q10 decreased in two cases. All patients harbored mutations in the ETFDH gene (four homozygous, seven compound heterozygous, two single heterozygous), with nine previously unidentified mutations. All patients were good responders to medical treatment, but exercise intolerance and/or muscular weakness persisted in 11 of them. CONCLUSION Late-onset forms of MADD may present as atypical beta-oxidation disorders. Acylcarnitine profiling and muscle biopsy remain the most decisive investigations for assessing the diagnosis. These tests should thus probably be performed more widely, particularly in unexplained cases of neuromuscular and multisystemic disorders.
Collapse
Affiliation(s)
- A Béhin
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| | - C Acquaviva-Bourdain
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - S Souvannanorath
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - N Streichenberger
- Service de Neuropathologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Université Claude Bernard Lyon I, 69500 Bron, France
| | - S Attarian
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - G Bassez
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Ouest, CHU Henri-Mondor, Créteil, France
| | - M Brivet
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - A Fouilhoux
- Centre de Référence lyonnais des Maladies Héréditaires du Métabolisme, Groupement Hospitalier Est, Hôpital Femme Mère-Enfant, CHU de Lyon, 69500 Bron, France
| | - A Labarre-Villa
- Centre de Référence Rhône-Alpes des Maladies Neuromusculaires, CHU de Grenoble, 38000 Grenoble, France
| | - A Laquerrière
- Service d'Anatomie et Cytologie pathologiques, CHU de Rouen, 76000 Rouen, France
| | - L Pérard
- Service de Médecine Interne, Hôpital Édouard-Herriot, 69437 Lyon cedex 03, France
| | - P Kaminsky
- Centre de Référence des Maladies Neuromusculaires, CHU de Nancy (Hôpitaux de Brabois), 54500 Vandœuvre-Lès-Nancy, France
| | - J Pouget
- AP-HM, Centre de Référence des Maladies Neuromusculaires et de la SLA, CHU de La Timone, 13005 Marseille, France
| | - O Rigal
- AP-HP, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert-Debré, 75020 Paris, France
| | - C Vanhulle
- Centre de Compétences Pathologies Neuromusculaires Enfants, Néonatalogie et Réanimation Pédiatrique, CHU de Rouen, 76000 Rouen, France
| | - B Eymard
- AP-HP, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| | - C Vianey-Saban
- Centre de Référence des Maladies Héréditaires du Métabolisme, Inserm U820, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France
| | - P Laforêt
- AP-HP, Service de Biochimie, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
46
|
Schiff M, Veauville-Merllié A, Su CH, Tzagoloff A, Rak M, Ogier de Baulny H, Boutron A, Smedts-Walters H, Romero NB, Rigal O, Rustin P, Vianey-Saban C, Acquaviva-Bourdain C. SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. N Engl J Med 2016; 374:795-7. [PMID: 26933868 PMCID: PMC4867164 DOI: 10.1056/nejmc1513610] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Hélène Smedts-Walters
- University of California, San Francisco, Benioff Children's Hospital Oakland, San Francisco, CA
| | | | - Odile Rigal
- Robert-Debré University Hospital, Paris, France
| | | | | | | |
Collapse
|
47
|
Bent spine syndrome as an initial manifestation of late-onset multiple acyl-CoA dehydrogenase deficiency: a case report and literature review. BMC Neurol 2015. [PMID: 26205240 PMCID: PMC4513616 DOI: 10.1186/s12883-015-0380-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive inherited disease of metabolic dysfunction clinically characterized by fluctuating proximal muscle weakness, excise intolerance, and dramatic riboflavin responsiveness. Dropped head syndrome can occasionally be observed in some severe patients with late-onset MADD; however, bent spine syndrome as an initial symptom had not been reported in patients with late-onset MADD. Case presentation A 46-year-old man lost the ability to hold his trunk upright, and had difficulty in raising his head, but he had no obvious symptoms of limb weakness. Meanwhile, he developed persistent numbness of limbs and lips around. Myopathological features and combined elevation of multiple acylcarnitines indicated that the axial myopathy might be caused by lipid storage myopathy. Cervical and lumbosacral MRI revealed a lot of abnormal signals diffusing along paravertebral muscles, while the abnormal signals almost disappeared after riboflavin treatment. Nerve conduction study indicated the patient suffering from predominantly sensory neuropathy and mildly motor neuropathy. Muscle pathology also demonstrated no typical neurogenic change, which was consistent with the electrophysiological findings. Causative mutations were found in the ETFDH gene. Conclusion We report the first case of late-onset MADD with sensory neuropathy initially manifesting as bent spine syndrome and dropped head syndrome.
Collapse
|
48
|
Scalco RS, Gardiner AR, Pitceathly RD, Zanoteli E, Becker J, Holton JL, Houlden H, Jungbluth H, Quinlivan R. Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 2015; 10:51. [PMID: 25929793 PMCID: PMC4522153 DOI: 10.1186/s13023-015-0264-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/09/2015] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyolysis (RM) is a clinical emergency characterized by fulminant skeletal muscle damage and release of intracellular muscle components into the blood stream leading to myoglobinuria and, in severe cases, acute renal failure. Apart from trauma, a wide range of causes have been reported including drug abuse and infections. Underlying genetic disorders are also a cause of RM and can often pose a diagnostic challenge, considering their marked heterogeneity and comparative rarity. In this paper we review the range of rare genetic defects known to be associated with RM. Each gene has been reviewed for the following: clinical phenotype, typical triggers for RM and recommended diagnostic approach. The purpose of this review is to highlight the most important features associated with specific genetic defects in order to aid the diagnosis of patients presenting with hereditary causes of recurrent RM.
Collapse
Affiliation(s)
- Renata Siciliani Scalco
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil. .,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, Brazil.
| | - Alice R Gardiner
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Robert Ds Pitceathly
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK.
| | - Edmar Zanoteli
- Department of Neurology, School of Medicine, Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Jefferson Becker
- Department of Neurology, HSL, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London (KCL), London, UK. .,Department of Paediatric Neurology, Evelina Children's Hospital, Guy's & St Thomas NHS Foundation Trust, London, UK. .,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK.
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases and Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. .,Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
49
|
Chen P, Yang W, Tian Y, Sun S, Chen G, Zhang C, Ma F, Xun Y, Shi L, Yang C, Zhao L, Zhou Y, Du H. Electron Transfer Flavoprotein Subunit Beta Is a Candidate Endothelial Cell Autoantigen in Behçet's Disease. PLoS One 2015; 10:e0124760. [PMID: 25915519 PMCID: PMC4410958 DOI: 10.1371/journal.pone.0124760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/05/2015] [Indexed: 01/10/2023] Open
Abstract
Behçet’s disease (BD) is a chronic inflammatory disease with multisystem involvement, and it is listed as a rare disease in the United States but is common in the Middle East, China, and Japan. The aim of this study was to identify novel autoantigens in Chinese patients with BD. First, the candidate autoantigens were screened by Western blotting, and the sequences of putative antigens were identified by LC-MALDI-TOF/TOF mass spectrometry. Next, the screened protein was cloned, expressed and purified. Then, an optimized ELISA was developed, and the serological criteria were evaluated using a large number of confirmed patients. One antigen with a molecular weight of approximately 28 kDa was identified as electron transfer flavoprotein subunit beta (ETFB). Positive reactivity was detected in recombinant human ETFB sera from 38 of 92 BD patients (41 %) and 1 of 90 healthy controls (1 %).
Collapse
Affiliation(s)
- Peng Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weikang Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaping Tian
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shutao Sun
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangyu Chen
- ImmunoHunt Corporation, 139 Fengtai Rd, Beijing, 100071, China
| | - ChunYan Zhang
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fuxin Ma
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiping Xun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lili Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chunhe Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lanqing Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yabin Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- * E-mail:
| |
Collapse
|
50
|
Hering DM, Lecewicz M, Kordan W, Kamiński S. Association between ETFA genotype and activity of superoxide dismutase, catalase and glutathione peroxidase in cryopreserved sperm of Holstein-Friesian bulls. Reprod Domest Anim 2014; 50:168-71. [PMID: 25472694 DOI: 10.1111/rda.12459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether C/T missense mutation within the ETFA gene is associated with sperm antioxidant enzymatic activity. One hundred and twenty Holstein-Friesian bulls were genotyped by the PCR-RFLP technique (MwoI). Commercial straws of frozen-thawed semen were used to evaluate the activity of three antioxidant enzymes: superoxide dismutase, catalase and glutathione peroxidase. Among all bulls investigated, genotype CT was the most frequent (44.2%), in comparison with CC (42.5%) and TT (13.3%). Significant differences in glutathione peroxidase activity were observed between homozygous individuals (CC vs TT) with heterozygous CT having intermediate values. Dismutase activity was significantly associated with ETFA genotype, although only bulls with the CT genotype were significantly different from bulls carrying the CC genotype. The activity of catalase showed a similar trend (but was not statistically significant). In conclusion, we found that bulls with the ETFA TT genotype produce sperm with the highest glutathione peroxidase activity and can therefore be more efficiently protected from reactive oxygen. The mechanism of this interaction needs to be elucidated in future research.
Collapse
Affiliation(s)
- D M Hering
- Department of Animal Genetics, University of Warmia and Mazury, Olsztyn, Poland
| | | | | | | |
Collapse
|