1
|
Anwar F, Mosley MT, Jasbi P, Chi J, Gu H, Jadavji NM. Maternal Dietary Deficiencies in Folic Acid and Choline Change Metabolites Levels in Offspring after Ischemic Stroke. Metabolites 2024; 14:552. [PMID: 39452933 PMCID: PMC11509810 DOI: 10.3390/metabo14100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/objectives: Ischemic stroke is a major health concern, and nutrition is a modifiable risk factor that can influence recovery outcomes. This study investigated the impact of maternal dietary deficiencies in folic acid (FADD) or choline (ChDD) on the metabolite profiles of offspring after ischemic stroke. Methods: A total of 32 mice (17 males and 15 females) were used to analyze sex-specific differences in response to these deficiencies. Results: At 1-week post-stroke, female offspring from the FADD group showed the greatest number of altered metabolites, including pathways involved in cholesterol metabolism and neuroprotection. At 4 weeks post-stroke, both FADD and ChDD groups exhibited significant disruptions in metabolites linked to inflammation, oxidative stress, and neurotransmission. Conclusions: These alterations were more pronounced in females compared to males, suggesting sex-dependent responses to maternal dietary deficiencies. The practical implications of these findings suggest that ensuring adequate maternal nutrition during pregnancy may be crucial for reducing stroke susceptibility and improving post-stroke recovery in offspring. Nutritional supplementation strategies targeting folic acid and choline intake could potentially mitigate the long-term adverse effects on metabolic pathways and promote better neurological outcomes. Future research should explore these dietary interventions in clinical settings to develop comprehensive guidelines for maternal nutrition and stroke prevention.
Collapse
Affiliation(s)
- Faizan Anwar
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
| | - Mary-Tyler Mosley
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA; (F.A.); (M.-T.M.)
- Department of Human Biology, Stanford University, Stanford, CA 94305, USA
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA
| | - Jinhua Chi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (P.J.); (J.C.); (H.G.)
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Child Health, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Bozkurt AS, Yılmaz ŞG, Kaplan DS, Bal R. The regenerative effect of exosomes isolated from mouse embryonic fibroblasts in mice created as a sciatic nerve crush injury model. Mol Biol Rep 2024; 51:1046. [PMID: 39388029 DOI: 10.1007/s11033-024-09962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exosomes (Exos) are candidates for functional recovery and regeneration following sciatic nerve crushed (SNC) injury due to their composition which can accelerate tissue regeneration. Therefore, mouse embryonic fibroblast-derived exosomes were evaluated for their regenerative capacity in SNC injury. METHODS AND RESULTS In the study, 40 Balb/c males (20 ± 5 g) and two pregnant mice (for embryonic fibroblast tissue) were used and crushed injury was induced in the left sciatic nerve with an aneurysm clamp. Sciatic nerve model mice were randomly divided into 5 groups (n = 8; control, n = 8; sham, n = 8; SNC, n = 8; Mouse embryonic fibroblast exosome (mExo), n = 8; SNC + Mouse embryonic fibroblast exosome (SNC + mExo). Rotarod tests for motor functions and hot plate and von Frey tests for sensory functions were analyzed in the groups. Expression changes of exosome genes (RARRES1, NAGS, HOXA13, and MEIS1) immunohistochemical analysis of these gene proteins, and structural exosome NF-200 and S100 proteins were evaluated by confocal microscopy. Behavioral analyses showed that the damage in SNC was significant between groups on day14 and day28 (P < 0.05). In behavioral analyses, it was determined that motor functions and mechanical sensitivity lost in SNC were regained after mExo treatment. While expression of all genes was detected in MEF-derived exosomes, the high expression was MESI1 and the low expression was HOXA13. NF200, an indicator of axon number and neurofilament density, was found to decrease in SNC (P < 0.001) and increase after treatment, but not significantly. The decreased S100 protein levels in SNC and the increase detected after treatment were not significant. CONCLUSION The expression of four mRNAs in mExos indicates that these genes may have an effect on regenerative processes after SNC injury. The regenerative process supported by tissue protein expressions demonstrates the therapeutic potential of mExo treatment.
Collapse
Affiliation(s)
- Ahmet Sarper Bozkurt
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey.
| | - Şenay Görücü Yılmaz
- Nutrition and Dietetics Department, Health Science Faculty, Gaziantep University, Gaziantep, Turkey
| | - Davut Sinan Kaplan
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey
| | - Ramazan Bal
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Kijpaisalratana N, Ament Z, Patki A, Bhave VM, Jones AC, Garcia Guarniz AL, Couch CA, Cushman M, Long DL, Irvin MR, Kimberly WT. Acetylglutamine Differentially Associated with First-Time Versus Recurrent Stroke. Transl Stroke Res 2024; 15:941-949. [PMID: 37531033 PMCID: PMC10834852 DOI: 10.1007/s12975-023-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Approximately one-quarter of strokes occur in individuals with prior stroke. Despite the advancement in secondary stroke prevention, the long-term risk of recurrent stroke has remained unchanged. The objective of this study was to identify metabolite risk markers that are associated with recurrent stroke. We performed targeted metabolomic profiling of 162 metabolites by liquid chromatography-tandem mass spectrometry in baseline plasma in a stroke case-cohort study nested within the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, an observational cohort study of 30,239 individuals aged 45 and older enrolled in 2003-2007. Weighted Cox proportional hazard models were used to identify metabolites that had a differential effect on first-time versus recurrent stroke using an interaction term between metabolite and prior stroke at baseline (yes or no). The study included 1391 incident stroke cases identified during 7.1 ± 4.5 years of follow-up and 1050 participants in the random cohort sample. Among 162 metabolites, 13 candidates had a metabolite-by-prior stroke interaction at a p-value <0.05, with one metabolite, acetylglutamine, surpassing the Bonferroni adjusted p-value threshold (p for interaction = 5.78 × 10-5). In an adjusted model that included traditional stroke risk factors, acetylglutamine was associated with recurrent stroke (HR = 2.27 per SD increment, 95% CI = 1.60-3.20, p = 3.52 × 10-6) but not with first-time stroke (HR = 0.96 per SD increment, 95% CI = 0.87-1.06, p = 0.44). Acetylglutamine was associated with recurrent stroke but not first-time stroke, independent of traditional stroke risk factors. Future studies are warranted to elucidate the pathogenesis of acetylglutamine and recurrent stroke risk.
Collapse
Affiliation(s)
- Naruchorn Kijpaisalratana
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amit Patki
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alana C Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Catharine A Couch
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Chen Q, Zhu Y, Zhang J, Tong Y, Liu H, Rensing C, Feng R. Toxicity of antimony to plants: Effects on metabolism of N and S in a rice plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109069. [PMID: 39241630 DOI: 10.1016/j.plaphy.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Excess antimony (Sb) has been shown to damage plant growth. Rice plants readily absorb a large amount of Sb after a long period of flooding, yet the mechanisms underlying Sb toxicity in plants have not been solved. This study was conducted to explore the effects of Sb on the uptake of N and S, and monitor the concentrations of reduced glutathione (GSH) and enzymes associated with these processes. In addition, we analyzed differentially expressed metabolites (DEMs) correlated with amino acids (AAs) and oligopeptides, specifically DEMs containing sulfur (S), GSH and indole-3-acetic acid (IAA). The results showed that antimonite [Sb(III)] inhibited shoot growth whereas antimonate [Sb(V)] stimulated shoot growth. Interestingly, Sb(III)5/10 enhanced shoot concentrations of total nitrogen (N), NH4+-N [only at Sb(III)10] and S; but reduced the shoot concentrations of NO3-N and soluble protein. Sb(III)5/10 addition significantly increased oxidized glutathione (GSSG) concentration and activities of glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) but non-significantly affected concentration of reduced glutathione (GSH) and activities of γ-glutamylcysteine synthetase (GCL) and glutathione reductase (GR), suggesting Sb(III) restricted GSH recycling. Addition of Sb (1) increased the abundance of DEMs associated with lignins, Ca uptake, toxicity/detoxification, and branched chain AAs; (2) decreased the abundance of AAs inclcuding isoleucine (Ile), leucine (Leu), tryptophan (Trp), tyrosine (Tyr) and histidine (His); (3) increased the abundance of arginine (Arg), putrescine (Put) and spermidine (Spd); and (4) affected methylation and acetylation of many AAs, especially acetylation.
Collapse
Affiliation(s)
- QiaoYuan Chen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JiaJia Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YiRan Tong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Navarro SL, Williamson BD, Huang Y, Nagana Gowda GA, Raftery D, Tinker LF, Zheng C, Beresford SAA, Purcell H, Djukovic D, Gu H, Strickler HD, Tabung FK, Prentice RL, Neuhouser ML, Lampe JW. Metabolite Predictors of Breast and Colorectal Cancer Risk in the Women's Health Initiative. Metabolites 2024; 14:463. [PMID: 39195559 DOI: 10.3390/metabo14080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolomics has been used extensively to capture the exposome. We investigated whether prospectively measured metabolites provided predictive power beyond well-established risk factors among 758 women with adjudicated cancers [n = 577 breast (BC) and n = 181 colorectal (CRC)] and n = 758 controls with available specimens (collected mean 7.2 years prior to diagnosis) in the Women's Health Initiative Bone Mineral Density subcohort. Fasting samples were analyzed by LC-MS/MS and lipidomics in serum, plus GC-MS and NMR in 24 h urine. For feature selection, we applied LASSO regression and Super Learner algorithms. Prediction models were subsequently derived using logistic regression and Super Learner procedures, with performance assessed using cross-validation (CV). For BC, metabolites did not increase predictive performance over established risk factors (CV-AUCs~0.57). For CRC, prediction increased with the addition of metabolites (median CV-AUC across platforms increased from ~0.54 to ~0.60). Metabolites related to energy metabolism: adenosine, 2-hydroxyglutarate, N-acetyl-glycine, taurine, threonine, LPC (FA20:3), acetate, and glycerate; protein metabolism: histidine, leucic acid, isoleucine, N-acetyl-glutamate, allantoin, N-acetyl-neuraminate, hydroxyproline, and uracil; and dietary/microbial metabolites: myo-inositol, trimethylamine-N-oxide, and 7-methylguanine, consistently contributed to CRC prediction. Energy metabolism may play a key role in the development of CRC and may be evident prior to disease development.
Collapse
Affiliation(s)
- Sandi L Navarro
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Brian D Williamson
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Biostatistics Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - G A Nagana Gowda
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shirley A A Beresford
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Hayley Purcell
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Haiwei Gu
- Center for Metabolic and Vascular Biology, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fred K Tabung
- Department of Internal Medicine, Division of Medical Oncology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ross L Prentice
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Marian L Neuhouser
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Johanna W Lampe
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
7
|
Mohr AE, Sweazea KL, Bowes DA, Jasbi P, Whisner CM, Sears DD, Krajmalnik-Brown R, Jin Y, Gu H, Klein-Seetharaman J, Arciero KM, Gumpricht E, Arciero PJ. Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nat Commun 2024; 15:4155. [PMID: 38806467 PMCID: PMC11133430 DOI: 10.1038/s41467-024-48355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR, n = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Judith Klein-Seetharaman
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA
| | | | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA.
- School of Health and Rehabilitation Sciences, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Qi P, Lv J, Bai LH, Yan XD, Zhang L. Effects of Hypoxemia by Acute High-Altitude Exposure on Human Intestinal Flora and Metabolism. Microorganisms 2023; 11:2284. [PMID: 37764130 PMCID: PMC10535934 DOI: 10.3390/microorganisms11092284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
This study examined the effects of hypoxemia caused by acute high-altitude hypoxia (AHAH) exposure on the human intestinal flora and its metabolites. The changes in the intestinal flora, metabolism, and erythropoietin content in the AHAH population under altitude hypoxia conditions were comprehensively analyzed using 16S rRNA sequencing, metabonomics, and erythropoietin content. The results showed that compared with those in the control group (C group), the flora and metabolites in the hypoxemia group (D group) were altered. We found alterations in the flora according to the metabolic marker tyrosine through random forest and ROC analyses. Fecal and serum metabonomics analyses revealed that microbial metabolites could be absorbed into the blood and participate in human metabolism. Finally, a significant correlation between tyrosine and erythropoietin (EPO) content was found, which shows that human intestinal flora and its metabolites can help to confront altitude stress by regulating EPO levels. Our findings provide new insights into the adaptive mechanism and prevention of AHAH.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liu-Hui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiang-Dong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (P.Q.); (J.L.); (L.-H.B.); (X.-D.Y.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Jones E, Glanz H, Wilkinson S, Fogle E. A report on learning gains and student confidence after incorporating an enzyme purification and characterization course-based undergraduate experience. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:128-136. [PMID: 36484398 DOI: 10.1002/bmb.21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Course-based undergraduate research experiences (CUREs) can provide undergraduate students access to research opportunities when student and faculty resources are limited. In addition to expanding research opportunities, CUREs may also be explored as a pedagogical tool for improving student learning of course content and laboratory skills, as well as improving meta-cognitive features such as confidence. We examined how a 6-week CURE in an upper-level undergraduate biochemistry lab affected student gains in content knowledge and confidence in scientific abilities, compared to a non-CURE section of the same course. We find that gains in content knowledge were similar between CURE and non-CURE sections, indicating the CURE does not negatively impact student learning. The CURE was associated with a statistically significant gain in student confidence, compared to non-CURE group. These results show that even a relatively short CURE can be effective in improving student confidence at scientific research skills, in addition to expanding access to research.
Collapse
Affiliation(s)
- Eric Jones
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California, USA
| | - Hunter Glanz
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California, USA
| | - Steven Wilkinson
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California, USA
| | - Emily Fogle
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
10
|
Liu Z, Yan F, Mi H, Lv X, Wang K, Li B, Jin T, Chen L, Zhang G, Huang X, Zhou C, Tan Z. N-Carbamoylglutamate Supplementation on the Digestibility, Rumen Fermentation, Milk Quality, Antioxidant Parameters, and Metabolites of Jersey Cattle in High-Altitude Areas. Front Vet Sci 2022; 9:848912. [PMID: 35445104 PMCID: PMC9014120 DOI: 10.3389/fvets.2022.848912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the impact of the dietary supplementation of N-carbamoylglutamate (NCG) on nutrient digestibility, rumen fermentation, milk quality, oxidative stress, and metabolites in the plasma and feces of Jersey cattle under high altitude with the hypoxic condition. A total of 14 healthy lactating Jersey dairy cows with similar body conditions were selected and randomly divided into 2 groups. The control group (CON group, N = 6 replicates) was fed with a conventional complete diet, whereas the experimental group (NCG group, N = 8 replicates) received 20 g/d per head NCG supplementation. The experiment lasted for 60 days, the adaptation period was 12 days, and the formal experiment period was 48 days. Except that the NCG group showed an upward trend in dry matter intake (DMI) (p = 0.09) and the fermentation parameters, the molar proportion of butyric acid tended to decrease (p = 0.08); the two groups had no significant differences (p > 0.05) in nutrients digestibility, plasma immunity, and antioxidant ability. However, compared with the CON group, the milk fat rate and blood oxygen saturation of the NCG group showed an upward trend (p = 0.09). For indexes associated with altitude stress, the contents of thyroxine, transferrin, and endothelin both decreased significantly (p < 0.05) in the NCG group. Meanwhile, heat shock protein (p = 0.07) and aldosterone (p = 0.06) also showed a downward trend. A total of 114 different metabolites were identified from feces and plasma, 42 metabolites were derived from plasma that mainly included 5 kinds of Super Class, and 72 metabolites were derived from feces that mainly included 9 kinds of Super Class. The significantly increased plasma differential metabolites were 2,5-dihydroxybenzoate and salicyluric acid, and the significantly increased fecal differential metabolites were Butenafine (fold change > 2). Pathway analysis showed that after applying NCG as a feed additive, the changes of the Jersey dairy cows mainly focused on amino acid metabolism and lipid metabolism. These results indicated that adding NCG to the diet can prevent the hypoxic stress state of lactating Jersey cows in high-altitude areas and has a tendency to improve milk quality.
Collapse
Affiliation(s)
- Zixin Liu
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fuyong Yan
- Hunan Jiuding Technology (Group) Co., Ltd, Changsha, China
| | - Hui Mi
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaokang Lv
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bin Li
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Tao Jin
- Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Liang Chen
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Ximei Huang
- Changsha Green Top Biotech Co., Ltd, Changsha, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Science and Technology, Guangxi University, Nanning, China.,Institute of Animal Science of Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agri-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution CON and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
11
|
Zhao C, Wang Y, Yang H, Wang S, Tang MC, Cyr D, Parente F, Allard P, Waters P, Furtos A, Yang G, Mitchell GA. Propionic acidemia in mice: Liver acyl-CoA levels and clinical course. Mol Genet Metab 2022; 135:47-55. [PMID: 34896004 DOI: 10.1016/j.ymgme.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Propionic acidemia (PA) is a severe autosomal recessive metabolic disease caused by deficiency of propionyl-CoA carboxylase (PCC). We studied PA transgenic (Pat) mice that lack endogenous PCC but express a hypoactive human PCCA cDNA, permitting their survival. Pat cohorts followed from 3 to 20 weeks of age showed growth failure and lethal crises of lethargy and hyperammonemia, commoner in males (27/50, 54%) than in females (11/52, 21%) and occurring mainly in Pat mice with the most severe growth deficiency. Groups of Pat mice were studied under basal conditions (P-Ba mice) and during acute crises (P-Ac). Plasma acylcarnitines in P-Ba mice, compared to controls, showed markedly elevated C3- and low C2-carnitine, with a further decrease in C2-carnitine in P-Ac mice. These clinical and biochemical findings resemble those of human PA patients. Liver acyl-CoA measurements showed that propionyl-CoA was a minor species in controls (propionyl-CoA/acetyl-CoA ratio, 0.09). In contrast, in P-Ba liver the ratio was 1.4 and in P-Ac liver, 13, with concurrent reductions of the levels of acetyl-CoA and other acyl-CoAs. Plasma ammonia levels in control, P-Ba and P-Ac mice were 109 ± 10, 311 ± 48 and 551 ± 61 μmol/L respectively. Four-week administration to Pat mice, of carglumate (N-carbamyl-L-glutamic acid), an analogue of N-carbamylglutamate, the product of the only acyl-CoA-requiring reaction directly related to the urea cycle, was associated with increased food consumption, improved growth and absence of fatal crises. Pat mice showed many similarities to human PA patients and provide a useful model for studying tissue pathophysiology and treatment outcomes.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China; Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada
| | - Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada
| | | | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Quebec, Canada
| | - Fabienne Parente
- Biochemical Genetics Laboratory, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Pierre Allard
- Biochemical Genetics Laboratory, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Quebec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montreal, Quebec, Canada
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China.
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Markolin P, Davidson N, Hirt CK, Chabbert CD, Zamboni N, Schwank G, Krek W, Rätsch G. Identification of HIF-dependent alternative splicing in gastrointestinal cancers and characterization of a long, coding isoform of SLC35A3. Genomics 2021; 113:515-529. [PMID: 33418078 DOI: 10.1016/j.ygeno.2020.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Intra-tumor hypoxia is a common feature in many solid cancers. Although transcriptional targets of hypoxia-inducible factors (HIFs) have been well characterized, alternative splicing or processing of pre-mRNA transcripts which occurs during hypoxia and subsequent HIF stabilization is much less understood. Here, we identify many HIF-dependent alternative splicing events after whole transcriptome sequencing in pancreatic cancer cells exposed to hypoxia with and without downregulation of the aryl hydrocarbon receptor nuclear translocator (ARNT), a protein required for HIFs to form a transcriptionally active dimer. We correlate the discovered hypoxia-driven events with available sequencing data from pan-cancer TCGA patient cohorts to select a narrow set of putative biologically relevant splice events for experimental validation. We validate a small set of candidate HIF-dependent alternative splicing events in multiple human gastrointestinal cancer cell lines as well as patient-derived human pancreatic cancer organoids. Lastly, we report the discovery of a HIF-dependent mechanism to produce a hypoxia-dependent, long and coding isoform of the UDP-N-acetylglucosamine transporter SLC35A3.
Collapse
Affiliation(s)
- Philipp Markolin
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Natalie Davidson
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Christian K Hirt
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093 Zürich, Switzerland
| | - Gerald Schwank
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland; Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland
| | - Wilhelm Krek
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Gunnar Rätsch
- Biomedical Informatics Group, ETH Zurich, 8092 Zürich, Switzerland.
| |
Collapse
|
13
|
Haskins N, Bhuvanendran S, Anselmi C, Gams A, Kanholm T, Kocher KM, LoTempio J, Krohmaly KI, Sohai D, Stearrett N, Bonner E, Tuchman M, Morizono H, Jaiswal JK, Caldovic L. Mitochondrial Enzymes of the Urea Cycle Cluster at the Inner Mitochondrial Membrane. Front Physiol 2021; 11:542950. [PMID: 33551825 PMCID: PMC7860981 DOI: 10.3389/fphys.2020.542950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein—“variable segment,” which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.
Collapse
Affiliation(s)
- Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Claudio Anselmi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Anna Gams
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC, United States
| | - Tomas Kanholm
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Kristen M Kocher
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Jonathan LoTempio
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Kylie I Krohmaly
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Danielle Sohai
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Nathaniel Stearrett
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States.,Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Erin Bonner
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
14
|
Galsgaard KD, Pedersen J, Kjeldsen SAS, Winther-Sørensen M, Stojanovska E, Vilstrup H, Ørskov C, Wewer Albrechtsen NJ, Holst JJ. Glucagon receptor signaling is not required for N-carbamoyl glutamate- and l-citrulline-induced ureagenesis in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G912-G927. [PMID: 32174131 DOI: 10.1152/ajpgi.00294.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon regulates the hepatic amino acid metabolism and increases ureagenesis. Ureagenesis is activated by N-acetylglutamate (NAG), formed via activation of N-acetylglutamate synthase (NAGS). With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we investigated whether glucagon receptor-mediated activation of ureagenesis is required in a situation where NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle in vivo. Female C57BL/6JRj mice treated with a glucagon receptor antagonist (GRA), glucagon receptor knockout (Gcgr-/-) mice, and wild-type (Gcgr+/+) littermates received an intraperitoneal injection of N-carbamoyl glutamate (Car; a stable variant of NAG), l-citrulline (Cit), Car and Cit (Car + Cit), or PBS. In separate experiments, Gcgr-/- and Gcgr+/+ mice were administered N-carbamoyl glutamate and l-citrulline (wCar + wCit) in the drinking water for 8 wk. Car, Cit, and Car + Cit significantly (P < 0.05) increased plasma urea concentrations, independently of pharmacological and genetic disruption of glucagon receptor signaling (P = 0.9). Car increased blood glucose concentrations equally in GRA- and vehicle-treated mice (P = 0.9), whereas the increase upon Car + Cit was impaired in GRA-treated mice (P = 0.008). Blood glucose concentrations remained unchanged in Gcgr-/- mice upon Car (P = 0.2) and Car + Cit (P = 0.9). Eight weeks administration of wCar + wCit did not change blood glucose (P > 0.2), plasma amino acid (P > 0.4), and urea concentrations (P > 0.3) or the area of glucagon-positive cells (P > 0.3) in Gcgr-/- and Gcgr+/+ mice. Our data suggest that glucagon-mediated activation of ureagenesis is not required when NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle.NEW & NOTEWORTHY Hepatic ureagenesis is essential in amino acid metabolism and is importantly regulated by glucagon, but the exact mechanism is unclear. With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we here show, contrary to our hypothesis, that glucagon receptor-mediated activation of ureagenesis is not required when N-acetylglutamate synthase activity and/or N-acetylglutamate levels are sufficient to activate the first step of the urea cycle in vivo.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Walsh SC, Miles JR, Yao L, Broeckling CD, Rempel LA, Wright‐Johnson EC, Pannier AK. Metabolic compounds within the porcine uterine environment are unique to the type of conceptus present during the early stages of blastocyst elongation. Mol Reprod Dev 2020; 87:174-190. [PMID: 31840336 PMCID: PMC7003770 DOI: 10.1002/mrd.23306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The objective of this study was to identify metabolites within the porcine uterine milieu during the early stages of blastocyst elongation. At Days 9, 10, or 11 of gestation, reproductive tracts of White cross-bred gilts (n = 38) were collected immediately following harvest and flushed with Roswell Park Memorial Institute-1640 medium. Conceptus morphologies were assessed from each pregnancy and corresponding uterine flushings were assigned to one of five treatment groups based on these morphologies: (a) uniform spherical (n = 8); (b) heterogeneous spherical and ovoid (n = 8); (c) uniform ovoid (n = 8); (d) heterogeneous ovoid and tubular (n = 8); and (e) uniform tubular (n = 6). Uterine flushings from these pregnancies were submitted for nontargeted profiling by gas chromatography-mass spectrometry (GC-MS) and ultra performance liquid chromatography (UPLC)-MS techniques. Unsupervised multivariate principal component analysis (PCA) was performed using pcaMethods and univariate analysis of variance was performed in R with false discovery rate (FDR) adjustment. PCA analysis of the GC-MS and UPLC-MS data identified 153 and 104 metabolites, respectively. After FDR adjustment of the GC-MS and UPLC-MS data, 38 and 59 metabolites, respectively, differed (p < .05) in uterine flushings from pregnancies across the five conceptus stages. Some metabolites were greater (p < .05) in abundance for uterine flushings containing earlier stage conceptuses (i.e., spherical), such as uric acid, tryptophan, and tyrosine. In contrast, some metabolites were greater (p < .05) in abundance for uterine flushings containing later stage conceptuses (i.e., tubular), such as creatinine, serine, and urea. These data illustrate several putative metabolites that change within the uterine milieu during early porcine blastocyst elongation.
Collapse
Affiliation(s)
- Sophie C. Walsh
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| | - Jeremy R. Miles
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | - Linxing Yao
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Corey D. Broeckling
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Lea A. Rempel
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | | | - Angela K. Pannier
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| |
Collapse
|
16
|
Metabolite Repair Enzymes Control Metabolic Damage in Glycolysis. Trends Biochem Sci 2019; 45:228-243. [PMID: 31473074 DOI: 10.1016/j.tibs.2019.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.
Collapse
|
17
|
Zhang S, Yang W, Chen H, Liu B, Lin B, Tao Y. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microb Cell Fact 2019; 18:130. [PMID: 31387584 PMCID: PMC6685171 DOI: 10.1186/s12934-019-1177-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
Background Acetyl-CoA is an important metabolic intermediate and serves as an acetylation precursor for the biosynthesis of various value-added acetyl-chemicals. Acetyl-CoA can be produced from glucose, acetate, or fatty acids via metabolic pathways in Escherichia coli. Although glucose is an efficient carbon source for acetyl-CoA production, the pathway from acetate to acetyl-CoA is the shortest and fatty acids can produce acetyl-CoA through fatty acid oxidation along with abundant NADH and FADH2. In this study, metabolically engineered E. coli strains for efficiently supplying acetyl-CoA from glucose, acetate, and fatty acid were constructed and applied in one-step biosynthesis of N-acetylglutamate (NAG) from glutamate and acetyl-CoA. Results A metabolically engineered E. coli strain for NAG production was constructed by overexpressing N-acetylglutamate synthase from Kitasatospora setae in E. coli BW25113 with argB and argA knockout. The strain was further engineered to utilize glucose, acetate, and fatty acid to produce acetyl-CoA. When glucose was used as a carbon source, the combined mutants of ∆ptsG::glk, ∆galR::zglf, ∆poxB::acs, ∆ldhA, and ∆pta were more efficient for supplying acetyl-CoA. The acetyl-CoA synthetase (ACS) pathway and acetate kinase-phosphate acetyltransferase (ACK-PTA) pathway from acetate to acetyl-CoA were investigated, and the ACK-PTA pathway showed to be more efficient for supplying acetyl-CoA. When fatty acid was used as a carbon source, acetyl-CoA supply was improved by deletion of fadR and constitutive expression of fadD under the strong promoter CPA1. Comparison of acetyl-CoA supply from glucose, acetate and palmitic acid revealed that a higher conversion rate of glutamate (98.2%) and productivity (an average of 6.25 mmol/L/h) were obtained when using glucose as a carbon source. The results also demonstrated the great potential of acetate and fatty acid to supply acetyl-CoA, as the molar conversion rate of glutamate was more than 80%. Conclusions Metabolically engineered E. coli strains were developed for NAG production. The metabolic pathways of acetyl-CoA from glucose, acetate, or fatty acid were optimized for efficient acetyl-CoA supply to enhance NAG production. The metabolic strategies for efficient acetyl-CoA supply used in this study can be exploited for other chemicals that use acetyl-CoA as a precursor or when acetylation is involved. Electronic supplementary material The online version of this article (10.1186/s12934-019-1177-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shasha Zhang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Liu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baixue Lin
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Guo H, Wang J, Yao J, Sun S, Sheng N, Zhang X, Guo X, Guo Y, Sun Y, Dai J. Comparative Hepatotoxicity of Novel PFOA Alternatives (Perfluoropolyether Carboxylic Acids) on Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3929-3937. [PMID: 30865431 DOI: 10.1021/acs.est.9b00148] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As novel alternatives to perfluorooctanoic acid (PFOA), perfluoropolyether carboxylic acids (multiether PFECAs, CF3(OCF2) nCOO-, n = 2-4) have been detected in various environmental matrices; however, public information regarding their toxicities remains unavailable. To compare the hepatotoxicity of multiether PFECAs (e.g., PFO2HxA, PFO3OA, and PFO4DA) with PFOA, male mice were exposed to 0.4, 2, or 10 mg/kg/d of each chemical for 28 d, respectively. Results demonstrated that PFO2HxA and PFO3OA exposure did not induce marked increases in relative liver weight; whereas 2 and 10 mg/kg/d of PFO4DA significantly increased relative liver weight. Furthermore, PFO2HxA and PFO3OA demonstrated almost no accumulation in the liver or serum; whereas PFO4DA was accumulated but with weaker potential than PFOA. Exposure to 10 mg/kg/d of PFO4DA led to 198 differentially expressed liver genes (56 down-regulated, 142 up-regulated), with bioinformatics analysis highlighting the urea cycle disorder. Like PFOA, 10 mg/kg/d of PFO4DA decreased the urea cycle-related enzyme protein levels (e.g., carbamoyl phosphate synthetase 1) and serum ammonia content in a dose-dependent manner. Both PFOA and PFO4DA treatment (highest concentration) caused a decrease in glutamate content and increase in both glutamine synthetase activity and aquaporin protein levels in the brain. Thus, we concluded that PFO4DA caused hepatotoxicity, as indicated by hepatomegaly and karyolysis, though to a lesser degree than PFOA, and induced urea cycle disorder, which may contribute to the observed toxic effects.
Collapse
Affiliation(s)
- Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Jingzhi Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Sujie Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xiaowen Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing 210029 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
19
|
Adam AAA, van der Mark VA, Ruiter JPN, Wanders RJA, Oude Elferink RPJ, Chamuleau RAFM, Hoekstra R. Overexpression of carbamoyl-phosphate synthase 1 significantly improves ureagenesis of human liver HepaRG cells only when cultured under shaking conditions. Mitochondrion 2019; 47:298-308. [PMID: 30802674 DOI: 10.1016/j.mito.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Hyperammonemia is an important contributing factor to hepatic encephalopathy in end-stage liver failure patients. Therefore reducing hyperammonemia is a requisite of bioartificial liver support (BAL). Ammonia elimination by human liver HepaRG cells occurs predominantly through reversible fixation into amino acids, whereas the irreversible conversion into urea is limited. Compared to human liver, the expression and activity of the three urea cycle (UC) enzymes carbamoyl-phosphate synthase1 (CPS1), ornithine transcarbamoylase (OTC) and arginase1, are low. To improve HepaRG cells as BAL biocomponent, its rate limiting factor of the UC was determined under two culture conditions: static and dynamic medium flow (DMF) achieved by shaking. HepaRG cells increasingly converted escalating arginine doses into urea, indicating that arginase activity is not limiting ureagenesis. Neither was OTC activity, as a stable HepaRG line overexpressing OTC exhibited a 90- and 15.7-fold upregulation of OTC transcript and activity levels, without improvement in ureagenesis. However, a stable HepaRG line overexpressing CPS1 showed increased mitochondrial stress and reduced hepatic differentiation without promotion of the CPS1 transcript level or ureagenesis under static-culturing conditions, yet, it exhibited a 4.3-fold increased ureagenesis under DMF. This was associated with increased CPS1 transcript and activity levels amounting to >2-fold, increased mitochondrial abundance and hepatic differentiation. Unexpectedly, the transcript levels of several other UC genes increased up to 6.8-fold. We conclude that ureagenesis can be improved in HepaRG cells by CPS1 overexpression, however, only in combination with DMF-culturing, suggesting that both the low CPS1 level and static-culturing, possibly due to insufficient mitochondria, are limiting UC.
Collapse
Affiliation(s)
- Aziza A A Adam
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Vincent A van der Mark
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Surgical Laboratory, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jos P N Ruiter
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Robert A F M Chamuleau
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Surgical Laboratory, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Phowthongkum P, Ittiwut C, Shotelersuk V. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation. JIMD Rep 2017; 41:11-16. [PMID: 29159461 DOI: 10.1007/8904_2017_74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/07/2017] [Accepted: 11/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. CASE PRESENTATION We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. CONCLUSION Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.
Collapse
Affiliation(s)
- P Phowthongkum
- Division of Medical Genetics and Genomics, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Medical Genetics Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
| | - C Ittiwut
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - V Shotelersuk
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
21
|
Wasim M, Awan FR, Khan HN, Tawab A, Iqbal M, Ayesha H. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options. Biochem Genet 2017; 56:7-21. [PMID: 29094226 DOI: 10.1007/s10528-017-9825-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited metabolic disorders which are caused by mutations in the specific genes that lead to impaired proteins or enzymes production. Different metabolic pathways are perturbed due to the deficiency or lack of enzymes. To date, more than 500 IEMs have been reported with most of them being untreatable. However, fortunately 91 such disorders are potentially treatable, if diagnosed at an earlier stage of life. IEMs have been classified into different categories and one class of IEMs, characterized by the physiological disturbances of amino acids is called as aminoacidopathies. Out of 91 treatable IEM, thirteen disorders are amino acid related. Aminoacidopathies can be detected by chromatography and mass spectrometry based analytical techniques (e.g., HPLC, GC-MS, LC-MS/MS) for amino acid level changes, and through genetic assays (e.g., PCR, TaqMan Genotyping, DNA sequencing) at the mutation level in the corresponding genes. Hence, this review is focused to describe thirteen common aminoacidopathies namely: Phenylketonuria (PKU), Maple Syrup Urine Disease (MSUD), Homocystinuria/Methylene Tetrahydrofolate Reductase (MTHFR) deficiency, Tyrosinemia type II, Citrullinemia type I and type II, Argininosuccinic aciduria, Carbamoyl Phosphate Synthetase I (CPS) deficiency, Argininemia (arginase deficiency), Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) syndrome, N-Acetylglutamate Synthase (NAGS) deficiency, Ornithine Transcarbamylase (OTC) deficiency, and Pyruvate Dehydrogenase (PDH) complex deficiency. Furthermore, the etiology, prevalence and commonly used analytical techniques for screening of aminoacidopathies are briefly described. This information would be helpful to researchers and clinicians especially from developing countries to initiate newborn screening programs for aminoacidopathies.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) / [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad], Jhang Road, P.O. Box. 577, Faisalabad, 38000, Pakistan
| | - Hina Ayesha
- DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| |
Collapse
|
22
|
Moedas M, Adam A, Farelo M, IJlst L, Chamuleau R, Hoekstra R, Wanders R, Silva M. Advances in methods for characterization of hepatic urea cycle enzymatic activity in HepaRG cells using UPLC-MS/MS. Anal Biochem 2017; 535:47-55. [DOI: 10.1016/j.ab.2017.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
23
|
Diez-Fernandez C, Häberle J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets 2017; 21:391-399. [PMID: 28281899 DOI: 10.1080/14728222.2017.1294685] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.
Collapse
Affiliation(s)
- Carmen Diez-Fernandez
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| | - Johannes Häberle
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| |
Collapse
|
24
|
Effect of arginine on oligomerization and stability of N-acetylglutamate synthase. Sci Rep 2016; 6:38711. [PMID: 27934952 PMCID: PMC5146650 DOI: 10.1038/srep38711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/15/2016] [Indexed: 11/08/2022] Open
Abstract
N-acetylglutamate synthase (NAGS; E.C.2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from acetyl coenzyme A and glutamate. In microorganisms and plants, NAG is the first intermediate of the L-arginine biosynthesis; in animals, NAG is an allosteric activator of carbamylphosphate synthetase I and III. In some bacteria bifunctional N-acetylglutamate synthase-kinase (NAGS-K) catalyzes the first two steps of L-arginine biosynthesis. L-arginine inhibits NAGS in bacteria, fungi, and plants and activates NAGS in mammals. L-arginine increased thermal stability of the NAGS-K from Maricaulis maris (MmNAGS-K) while it destabilized the NAGS-K from Xanthomonas campestris (XcNAGS-K). Analytical gel chromatography and ultracentrifugation indicated tetrameric structure of the MmMNAGS-K in the presence and absence of L-arginine and a tetramer-octamer equilibrium that shifted towards tetramers upon binding of L-arginine for the XcNAGS-K. Analytical gel chromatography of mouse NAGS (mNAGS) indicated either different oligomerization states that are in moderate to slow exchange with each other or deviation from the spherical shape of the mNAGS protein. The partition coefficient of the mNAGS increased in the presence of L-arginine suggesting smaller hydrodynamic radius due to change in either conformation or oligomerization. Different effects of L-arginine on oligomerization of NAGS may have implications for efforts to determine the three-dimensional structure of mammalian NAGS.
Collapse
|
25
|
Chapel-Crespo CC, Diaz GA, Oishi K. Efficacy of N-carbamoyl-L-glutamic acid for the treatment of inherited metabolic disorders. Expert Rev Endocrinol Metab 2016; 11:467-473. [PMID: 30034506 PMCID: PMC6054484 DOI: 10.1080/17446651.2016.1239526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION N-carbamoyl-L-glutamic acid (NCG) is a synthetic analogue of N-acetyl glutamate (NAG) that works effectively as a cofactor for carbamoyl phosphate synthase 1 and enhances ureagenesis by activating the urea cycle. NCG (brand name, Carbaglu) was recently approved by the United States Food and Drug Administration (US FDA) for the management of NAGS deficiency and by the European Medicines Agency (EMA) for the treatment of NAGS deficiency as well as for the treatment of hyperammonenia in propionic, methylmalonic and isovaleric acidemias in Europe. AREAS COVERED The history, mechanism of action, and efficacy of this new drug are described. Moreover, clinical utility of NCG in a variety of inborn errors of metabolism with secondary NAGS deficiency is discussed. EXPERT COMMENTARY NCG has favorable pharmacological features including better bioavailability compared to NAG. The clinical use of NCG has proven to be so effective as to make dietary protein restriction unnecessary for patients with NAGS deficiency. It has been also demonstrated to be effective for hyperammonemia secondary to other types of inborn errors of metabolism. NCG may have additional therapeutic potential in conditions such as hepatic hyperammonemic encephalopathy secondary to chemotherapies or other liver pathology.
Collapse
Affiliation(s)
- Cristel C Chapel-Crespo
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach. SCIENTIFICA 2016; 2016:9828672. [PMID: 27051561 PMCID: PMC4804091 DOI: 10.1155/2016/9828672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/31/2016] [Indexed: 05/30/2023]
Abstract
One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Ashok K. Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Amit K. Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| | - Siddhartha Maity
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Srimanta Sarkar
- Dr. Reddy's Laboratories Limited, Bachupally, Hyderabad, Telangana 502325, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Raebareli Road, Vidyavihar, Lucknow 226025, India
| |
Collapse
|
27
|
Wu X, Wan D, Xie C, Li T, Huang R, Shu X, Ruan Z, Deng Z, Yin Y. Acute and sub-acute oral toxicological evaluations and mutagenicity of N-carbamylglutamate (NCG). Regul Toxicol Pharmacol 2015; 73:296-302. [PMID: 26188117 DOI: 10.1016/j.yrtph.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
Abstract
N-carbamylglutamate (NCG) is a metabolically stable analog of N-acetylglutamate that activates carbamyl phosphate synthase-1, a key arginine synthesis enzyme in enterocytes. It is a promising feed additive in swine in China. In this study, we assessed the acute and sub-acute toxicity of NCG in Sprague-Dawley (SD) rats. All rats survived until they were killed at a scheduled time point. No adverse effects or mortality was observed following acute oral administration of 5000 mg/kg NCG to SD rats. No biologically significant or test substance-related differences were observed in body weights, feed consumption, clinical signs, a functional observational battery, organ weights, histopathology, ophthalmology, hematology, coagulation, and clinical chemistry parameters in any of the treatment groups in sub-acute doses of NCG at target concentrations corresponding to 500, 2000, and 3000 mg/kg/day for 28 days neither. In addition, no evidence of mutagenicity or genotoxicity was found, either in vitro in bacterial reverse mutation assay or in vivo in mice bone marrow micronucleus assay and sperm shape abnormality assay. On the basis of our findings, we conclude that NCG is a non-toxic substance with no genotoxicity.
Collapse
Affiliation(s)
- Xin Wu
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Dan Wan
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Chunyan Xie
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Tiejun Li
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruilin Huang
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xugang Shu
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China; Guangzhou Tanke BIO-TECH Co. Ltd., Guangzhou 510800, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China
| | - Yulong Yin
- Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; State Key Laboratory of Food Science and Technology and College of Life Science and Food Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
28
|
Hyperargininemia due to arginase I deficiency: the original patients and their natural history, and a review of the literature. Amino Acids 2015; 47:1751-62. [DOI: 10.1007/s00726-015-2032-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
|
29
|
Kim JH, Kim YM, Lee BH, Cho JH, Kim GH, Choi JH, Yoo HW. Short-term efficacy of N-carbamylglutamate in a patient with N-acetylglutamate synthase deficiency. J Hum Genet 2015; 60:395-7. [PMID: 25787344 DOI: 10.1038/jhg.2015.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
N-acetylglutamate synthase (NAGS) deficiency is a rare inborn error regarding the urea cycle, however, its diagnosis is important as it can be effectively treated by N-carbamylglutamate. We evaluated a patient with NAGS deficiency who harbored two novel NAGS mutations and who showed excellent responsiveness during 1 year of N-carbamylglutamate treatment.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoo-Mi Kim
- Department of Pediatrics, Children's Hospital, Pusan National University, Pusan, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja Hyang Cho
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids 2014; 47:45-53. [PMID: 25399054 DOI: 10.1007/s00726-014-1861-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
The present review focuses on the physiological functions of glutamate-glutamine exchange involving placental amino acid transport and umbilical amino acid uptake in mammals (particularly in sows), with special emphasis on the associated regulating mechanisms. Glutamate plus glutamine are among the most abundant and the most utilized amino acids in fetus during late gestation. During pregnancy, amino acids, notably as precursors of macromolecules including proteins and nucleotides are involved in fetal development and growth. Amino acid concentrations in fetus are generally higher than in the mother. Among amino acids, the transport and metabolism of glutamate and glutamine during fetal development exhibit characteristics that clearly emphasize the importance of the interaction between the placenta and the fetal liver. Glutamate is quite remarkable among amino acids, which originate from the placenta, and is cleared from fetal plasma. In addition, the flux of glutamate through the placenta from the fetal plasma is highly correlated with the umbilical glutamate delivery rate. Glutamine plays a central role in fetal carbon and nitrogen metabolism and exhibits one of the highest fetal/maternal plasma ratio among all amino acids in human and other mammals. Glutamate is taken up by placenta from the fetal circulation and then converted to glutamine before being released back into the fetal circulation. Works are required on the glutamate-glutamine metabolism during late pregnancy in physiological and pathophysiological situations since such works may help to improve fetal growth and development both in humans and other mammals. Indeed, glutamine supplementation appears to ameliorate fetal growth retardation in sows and reduces preweaning mortality of piglets.
Collapse
Affiliation(s)
- Xin Wu
- Hunan Engineering and Research Center of Animal and Poultry Science, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, China,
| | | | | | | | | | | |
Collapse
|
31
|
Schwob E, Hagos Y, Burckhardt G, Burckhardt BC. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency. Am J Physiol Renal Physiol 2014; 307:F1373-9. [PMID: 25354943 DOI: 10.1152/ajprenal.00482.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inborn defects in N-acetylglutamate (NAG) synthase (NAGS) cause a reduction of NAG, an essential cofactor for the initiation of the urea cycle. As a consequence, blood ammonium concentrations are elevated, leading to severe neurological disorders. The orphan drug N-carbamoylglutamate (NCG; Carbaglu), efficiently overcomes NAGS deficiency. However, not much is known about the transporters involved in the uptake, distribution, and elimination of the divalent organic anion NCG. Organic anion-transporting polypeptides (OATPs) as well as organic anion transporters (OATs) working in cooperation with sodium dicarboxylate cotransporter 3 (NaDC3) accept a wide variety of structurally unrelated drugs. To test for possible interactions with OATPs and OATs, the impact of NCG on these transporters in stably transfected human embryonic kidney-293 cells was measured. The two-electrode voltage-clamp technique was used to monitor NCG-mediated currents in Xenopus laevis oocytes that expressed NaDC3. Neither OATPs nor OAT2 and OAT3 interacted with NCG, but OAT1 transported NCG. In addition, NCG was identified as a high-affinity substrate of NaDC3. Preincubation of OAT4-transfected human embryonic kidney-293 cells with NCG showed an increased uptake of estrone sulfate, the reference substrate of OAT4, indicating efflux of NCG by OAT4. In summary, NaDC3 and, to a lesser extent, OAT1 are likely to be responsible for the uptake of NCG from the blood. Efflux of NCG across the luminal membrane into the tubular lumen probably occurs by OAT4 completing renal secretion of this drug.
Collapse
Affiliation(s)
- Elisabeth Schwob
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Yohannes Hagos
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Birgitta C Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Caldovic L, Haskins N, Mumo A, Majumdar H, Pinter M, Tuchman M, Krufka A. Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase. PLoS One 2014; 9:e85597. [PMID: 24465614 PMCID: PMC3899043 DOI: 10.1371/journal.pone.0085597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1) catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS) at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M) while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C). Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km(app) for acetyl coenzyme A increased while the Km(app) for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under physiological conditions zebrafish NAGS catalyzes formation of N-acetylglutamate at the maximal rate.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
- Department of Integrative Systems Biology, The George Washington University, Washington D.C., United States of America
- * E-mail:
| | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
- Molecular and Cellular Biology Program, University of Maryland, College Park, Maryland, United States of America
| | - Amy Mumo
- American Society for Radiation Oncology, Fairfax, Virginia, United States of America
| | - Himani Majumdar
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
| | - Mary Pinter
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington D.C., United States of America
| | - Alison Krufka
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
33
|
Abstract
N-acetyl-glutamate synthase (NAGS) deficiency is a rare autosomal recessive urea cycle disorder (UCD) that uncommonly presents in adulthood. Adult presentations of UCDs include; confusional episodes, neuropsychiatric symptoms and encephalopathy. To date, there have been no detailed neurological descriptions of an adult onset presentation of NAGS deficiency. In this review we examine the clinical presentation and management of UCDs with an emphasis on NAGS deficiency. An illustrative case is provided. Plasma ammonia levels should be measured in all adult patients with unexplained encephalopathy, as treatment can be potentially life-saving. Availability of N-carbamylglutamate (NCG; carglumic acid) has made protein restriction largely unnecessary in treatment regimens currently employed. Genetic counselling remains an essential component of management of NAGS.
Collapse
|
34
|
Wu X, Zhang Y, Liu Z, Li TJ, Yin YL. Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weanling piglets1. J Anim Sci 2012; 90 Suppl 4:337-9. [DOI: 10.2527/jas.53752] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- X. Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Y. Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Z. Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - T. J. Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Y. L. Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
35
|
Häberle J. Carglumic acid for the treatment of N-acetylglutamate synthase deficiency and acute hyperammonemia. Expert Rev Endocrinol Metab 2012; 7:263-271. [PMID: 30780843 DOI: 10.1586/eem.12.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carglumic acid is a structural analog and the first registered synthetic form of the naturally occurring allosteric activator of the urea cycle, N-acetylglutamate (NAG), which is the product of the enzyme NAG synthase (NAGS). Because NAG is essential for the function of carbamoylphosphate synthetase 1 as the first step of the urea cycle, a decreased availability of NAG due to primary or secondary defects of NAGS will affect ammonia detoxification in the urea cycle. Carglumic acid (Carbaglu®, Orphan Europe SARL, Paris, France) is approved for the acute and long-term treatment of primary defects of NAGS in Europe and the USA. In addition, it is approved in Europe for the treatment of acute hyperammonemia in patients with specific organic acidurias that can lead to NAG deficiency secondary to inhibition of NAGS. This article reviews the use of carglumic acid for both approved indications and considers the potential of this compound for acute hyperammonemias in general.
Collapse
Affiliation(s)
- Johannes Häberle
- a University Children's Hospital, Division of Metabolism, Children's Research Center, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland.
| |
Collapse
|
36
|
de Cima S, Gil-Ortiz F, Crabeel M, Fita I, Rubio V. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase. PLoS One 2012; 7:e34734. [PMID: 22529931 PMCID: PMC3329491 DOI: 10.1371/journal.pone.0034734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ∼150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the −110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.
Collapse
Affiliation(s)
- Sergio de Cima
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Fernando Gil-Ortiz
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Marjolaine Crabeel
- Department of Genetics and Microbiology Emeritus, Vrije Universiteit, Brussel, Belgium
| | - Ignacio Fita
- Instituto de Biologia Molecular de Barcelona IBMB-CSIC/Institute of Research in Biomedicine (IRB-Barcelona), Parc Cientific, Barcelona, Spain
- * E-mail: (VR); (IF)
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
- * E-mail: (VR); (IF)
| |
Collapse
|
37
|
Ah Mew N, Caldovic L. N-acetylglutamate synthase deficiency: an insight into the genetics, epidemiology, pathophysiology, and treatment. APPLICATION OF CLINICAL GENETICS 2011; 4:127-35. [PMID: 23776373 PMCID: PMC3681184 DOI: 10.2147/tacg.s12702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The conversion of ammonia into urea by the human liver requires the coordinated function of the 6 enzymes and 2 transporters of the urea cycle. The initial and rate-limiting enzyme of the urea cycle, carbamylphosphate synthetase 1 (CPS1), requires an allosteric activator, N-acetylglutamate (NAG). The formation of this unique cofactor from glutamate and acetyl Coenzyme-A is catalyzed by N-acetylglutamate synthase (NAGS). An absence of NAG as a consequence of NAGS deficiency may compromise flux through CPS1 and result in hyperammonemia. The NAGS gene encodes a 528-amino acid protein, consisting of a C-terminal catalytic domain, a variable segment, and an N-terminal mitochondrial targeting signal. Only 22 mutations in the NAGS gene have been reported to date, mostly in the catalytic domain. NAGS is primarily expressed in the liver and intestine. However, it is also surprisingly expressed in testis, stomach and spleen, and during early embryonic development at levels not concordant with the expression of other urea cycle enzymes, CPS1, or ornithine transcarbamylase. The purpose of NAGS expression in these tissues, and its significance to NAGS deficiency is as yet unknown. Inherited NAGS deficiency is the rarest of the urea cycle disorders, and we review the currently reported 34 cases. Treatment of NAGS deficiency with N-carbamyglutamate, a stable analog of NAG, can restore deficient urea cycle function and normalize blood ammonia in affected patients.
Collapse
Affiliation(s)
- Nicholas Ah Mew
- Center for Genetic Medicine Research, Children's Research institute, Children's National Medical Center, Washington DC, USA
| | | |
Collapse
|
38
|
The nuclear receptor FXR regulates hepatic transport and metabolism of glutamine and glutamate. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1522-31. [PMID: 21757002 DOI: 10.1016/j.bbadis.2011.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 11/22/2022]
Abstract
Hepatic transport and metabolism of glutamate and glutamine are regulated by intervention of several proteins. Glutamine is taken up by periportal hepatocytes and is the major source of ammonia for urea synthesis and glutamate for N-acetylglutamate (NAG) synthesis, which is catalyzed by the N-acetylglutamate synthase (NAGS). Glutamate is taken up by perivenous hepatocytes and is the main source for the synthesis of glutamine, catalyzed by glutamine synthase (GS). Accumulation of glutamate and ammonia is a common feature of chronic liver failure, but mechanism that leads to failure of the urea cycle in this setting is unknown. The Farnesoid X Receptor (FXR) is a bile acid sensor in hepatocytes. Here, we have investigated its role in the regulation of the metabolism of both glutamine and glutamate. In vitro studies in primary cultures of hepatocytes from wild type and FXR(-/-) mice and HepG2 cells, and in vivo studies, in FXR(-/-) mice as well as in a rodent model of hepatic liver failure induced by carbon tetrachloride (CCl(4)), demonstrate a role for FXR in regulating this metabolism. Further on, promoter analysis studies demonstrate that both human and mouse NAGS promoters contain a putative FXRE, an ER8 sequence. EMSA, ChIP and luciferase experiments carried out to investigate the functionality of this sequence demonstrate that FXR is essential to induce the expression of NAGS. In conclusion, FXR activation regulates glutamine and glutamate metabolism and FXR ligands might have utility in the treatment of hyperammonemia states.
Collapse
|
39
|
Hoekstra R, Nibourg GAA, van der Hoeven TV, Ackermans MT, Hakvoort TBM, van Gulik TM, Lamers WH, Elferink RPO, Chamuleau RAFM. The HepaRG cell line is suitable for bioartificial liver application. Int J Biochem Cell Biol 2011; 43:1483-9. [PMID: 21726661 DOI: 10.1016/j.biocel.2011.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/14/2011] [Accepted: 06/18/2011] [Indexed: 12/17/2022]
Abstract
For bioartificial liver application, cells should meet the following minimal requirements: ammonia elimination, drug metabolism and blood protein synthesis. Here we explore the suitability of HepaRG cells, a human cell line reported to differentiate into hepatocyte clusters and surrounding biliary epithelial-like cells at high density and after exposure to dimethyl sulfoxide (DMSO). The effect of carbamoyl-glutamate (CG), an activator of urea cycle enzyme carbamoylphosphate synthetase (CPS) was studied additionally. The effects of DMSO and/or CG were assessed in presence of (15)NH(4)Cl on HepaRG cells in monolayer. We tested hepatocyte-specific functions at transcript and biochemical level, cell damage parameters and performed immunostainings. Ureagenesis, ammonia/galactose elimination and albumin, glutamine synthetase and CPS transcript levels were higher in -DMSO than +DMSO cultures, probably due to a higher cell content and/or cluster-neighbouring regions contributing to their functionality. DMSO treatment increased cytochrome P450 (CYP) transcript levels and CYP3A4 activity, but also cell damage and repressed hepatic functionality in cluster-neighbouring regions. The levels of ammonia elimination, apolipoprotein A-1 production, and transcription of CYP3A4, CYP2B6 and albumin reached those of primary hepatocytes in either the + or -DMSO cultures. Preconditioning with CG increased conversion of (15)NH(4)Cl into (15)N-urea 4-fold only in -DMSO cultures. Hence, HepaRG cells show high metabolic and synthetic functionality in the absence of DMSO, however, their drug metabolism is only high in the presence of DMSO. An unparalleled broad hepatic functionality, suitable for bioartificial liver application, can be accomplished by combining CG treated -DMSO cultures with +DMSO cultures.
Collapse
Affiliation(s)
- Ruurdtje Hoekstra
- Surgical Laboratory, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nissim I, Horyn O, Nissim I, Daikhin Y, Caldovic L, Barcelona B, Cervera J, Tuchman M, Yudkoff M. Down-regulation of hepatic urea synthesis by oxypurines: xanthine and uric acid inhibit N-acetylglutamate synthase. J Biol Chem 2011; 286:22055-68. [PMID: 21540182 DOI: 10.1074/jbc.m110.209023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with (15)N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent K(m) for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states.
Collapse
Affiliation(s)
- Itzhak Nissim
- Division of Child Development, Rehabilitation Medicine, and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Daniotti M, la Marca G, Fiorini P, Filippi L. New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int J Gen Med 2011; 4:21-8. [PMID: 21403788 PMCID: PMC3056327 DOI: 10.2147/ijgm.s10490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hyperammonemia is a true neonatal emergency with high toxicity for the central nervous system and developmental delay. The causes of neonatal hyperammonemia are genetic defects of urea cycle enzymes, organic acidemias, lysinuric protein intolerance, hyperammonemia-hyperornithinemia- homocitrullinemia syndrome, transient hyperammonemia of the newborn, and congenital hyperinsulinism with hyperammonemia. In some of these conditions the high blood ammonia levels are due to the reduction of N-acetylglutamate, an essential cofactor necessary for the function of the urea cycle, or to the reduction of carbamoyl-phosphate synthase-I activity. In these cases, N-carbamylglutamate (carglumic acid) can be administered together with the conventional therapy. Carglumic acid is an analog of N-acetylglutamate that has a direct action on carbamoyl-phosphate synthase-I. Its effects are reactivation of the urea cycle and reduction of plasma ammonia levels. As a consequence it improves the traditional treatment, avoiding the need of hemodialysis and peritoneal dialysis. In this review we evaluate the possible field of application of carglumic acid and its effectiveness and safety.
Collapse
Affiliation(s)
- Marta Daniotti
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Giancarlo la Marca
- Mass Spectrometry, Clinical Chemistry and Pharmacology Laboratory, Neuroscience Department, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Patrizio Fiorini
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Department of Perinatal Medicine, “A. Meyer” University Children’s Hospital, Florence, Italy
| |
Collapse
|