1
|
Baruteau J, Brunetti-Pierri N, Gissen P. Liver-directed gene therapy for inherited metabolic diseases. J Inherit Metab Dis 2024; 47:9-21. [PMID: 38171926 DOI: 10.1002/jimd.12709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| |
Collapse
|
2
|
Oteng AB, Pittala S, Kliewer A, Qiu Y, Wess J. Hepatic GRK2 is dispensable for glucose homeostasis and other key metabolic parameters in mice. Mol Metab 2024; 79:101866. [PMID: 38159884 PMCID: PMC10809122 DOI: 10.1016/j.molmet.2023.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE G-protein-coupled receptor (GPCR) kinases (GRKs) abrogate GPCR signaling by promoting receptor desensitization and internalization. Accumulating evidence suggests that GRK2 represents an important regulator of GPCR-mediated effects on systemic glucose metabolism, obesity, and insulin resistance. Despite the key role of the liver in maintaining euglycemia, the potential metabolic relevance of hepatic GRK2 has yet to be examined. Thus, the goal of this study was to explore the potential role of hepatic GRK2 in maintaining glucose homeostasis and other key metabolic functions. METHODS To address this question, we generated mice that showed a ∼90% reduction in GRK2 protein expression selectively in hepatocytes (Hep-GRK2-KO mice) and subjected these mice, together with their control littermates, to systematic metabolic phenotyping studies. RESULTS We found that Hep-GRK2-KO mice maintained on regular chow did not differ significantly from their control littermates in glycemia, glucose tolerance, insulin sensitivity, in vivo gluconeogenesis, and glucagon-induced hyperglycemia. We obtained similar findings when we analyzed Hep-GRK2-KO mice and control littermates consuming an obesogenic high-fat diet. Likewise, plasma levels of insulin, glucagon, free fatty acids, and ketone bodies remained unaffected by the lack of hepatocyte GRK2. The same was true when we examined the expression levels of key genes regulating hepatic glucose and fatty acid metabolism. CONCLUSION In summary, our data suggest that hepatocyte GRK2 is dispensable for systemic glucose homeostasis and other key metabolic functions in both lean and obese mice. This finding suggests that drug development efforts aimed at inhibiting GRK2 to improve impaired glucose homeostasis and insulin sensitivity need to focus on other metabolically important tissues.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| | - Srinivas Pittala
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Andrea Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yishu Qiu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Amioka N, Wu CH, Sawada H, Ito S, Pettey AC, Wu C, Moorleghen JJ, Howatt DA, Graf GA, Vander Kooi CW, Daugherty A, Lu HS. Functional Exploration of Conserved Sequences in the Distal Face of Angiotensinogen-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:1524-1532. [PMID: 37345525 PMCID: PMC10527926 DOI: 10.1161/atvbaha.122.318930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Angiotensinogen (AGT) is an essential component in the renin-angiotensin system. AGT has highly conserved sequences in the loop and β-sheet regions among species; however, their functions have not been studied. METHODS Adeno-associated viral vector (AAV) serotype 2/8 encoding mouse AGT with mutations of conserved sequences in the loop (AAV.loop-Mut), β-sheet (AAV.βsheet-Mut), or both regions (AAV.loop/βsheet-Mut) was injected into male hepatocyte-specific AGT-deficient (hepAGT-/-) mice in an LDL (low-density lipoprotein) receptor-deficient background. AAV containing mouse wild-type AGT (AAV.mAGT) or a null vector (AAV.null) were used as controls. Two weeks after AAV administration, all mice were fed a western diet for 12 weeks. To determine how AGT secretion is regulated in hepatocytes, AAVs containing the above mutations were transducted into HepG2 cells. RESULTS In hepAGT-/- mice infected with AAV.loop-Mut or βsheet-Mut, plasma AGT concentrations, systolic blood pressure, and atherosclerosis were comparable to those in AAV.mAGT-infected mice. Interestingly, plasma AGT concentrations, systolic blood pressure, and atherosclerotic lesion size in hepAGT-/- mice infected with AAV.loop/βsheet-Mut were not different from mice infected with AAV.null. In contrast, hepatic Agt mRNA abundance was elevated to a comparable magnitude as AAV.mAGT-infected mice. Immunostaining showed that AGT protein was accumulated in hepatocytes of mice infected with AAV.loop/βsheet-Mut or HepG2 cells transducted with AAV.loop/βsheet-Mut. Accumulated AGT was not located in the endoplasmic reticulum. CONCLUSIONS The conserved sequences in either the loop or β-sheet region individually have no effect on AGT regulation, but the conserved sequences in both regions synergistically contribute to the secretion of AGT from hepatocytes.
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Chia-Hua Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Alex C. Pettey
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Surgery, University of Kentucky, Lexington, KY
- Department of Microbiology, Immunology, and Molecular Genetics University of Kentucky, Lexington, KY
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
| | - Gregory A. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Craig W. Vander Kooi
- Department of Molecular and Cellular Biochemistry University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
4
|
Boffa I, Polishchuk E, De Stefano L, Dell'Aquila F, Nusco E, Marrocco E, Audano M, Pedretti S, Caterino M, Bellezza I, Ruoppolo M, Mitro N, Cellini B, Auricchio A, Brunetti‐Pierri N. Liver-directed gene therapy for ornithine aminotransferase deficiency. EMBO Mol Med 2023; 15:e17033. [PMID: 36647689 PMCID: PMC10086579 DOI: 10.15252/emmm.202217033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.
Collapse
Affiliation(s)
- Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Matteo Audano
- Department of Pharmacology and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Silvia Pedretti
- Department of Pharmacology and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Marianna Caterino
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”NaplesItaly
- CEINGE – Biotecnologie Avanzate s.c.a.r.l.NaplesItaly
| | - Ilaria Bellezza
- Department of Experimental Medicine, Section of Physiology and BiochemistryUniversity of PerugiaPerugiaItaly
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”NaplesItaly
- CEINGE – Biotecnologie Avanzate s.c.a.r.l.NaplesItaly
| | - Nico Mitro
- Department of Pharmacology and Biomolecular SciencesUniversity of MilanMilanItaly
- Department of Experimental Oncology, IEOEuropean Institute of Oncology IRCCSMilanItaly
| | - Barbara Cellini
- Department of Experimental Medicine, Section of Physiology and BiochemistryUniversity of PerugiaPerugiaItaly
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Department of Advanced Biomedical Sciences“Federico II” UniversityNaplesItaly
| | - Nicola Brunetti‐Pierri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Department of Translational Medicine“Federico II” UniversityNaplesItaly
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine ProgramUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
5
|
Maturana CJ, Chan A, Verpeut JL, Engel EA. Local and systemic administration of AAV vectors with alphaherpesvirus latency-associated promoter 2 drives potent transgene expression in mouse liver, kidney, and skeletal muscle. J Virol Methods 2023; 314:114688. [PMID: 36736702 PMCID: PMC10236909 DOI: 10.1016/j.jviromet.2023.114688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Adeno-associated virus (AAV) has great potential as a source of treatments for conditions that might respond to potent and ubiquitous transgene expression. However, among its drawbacks, the genetic "payload" of AAV vectors is limited to <4.9 kb and some commonly used gene promoters are sizeable and susceptible to transcriptional silencing. We recently described a short (404 bp), potent, and persistent promoter obtained from the genome of pseudorabies virus (PrV) called alphaherpesvirus latency-associated promoter 2 (LAP2). Here, we evaluated the biodistribution and potency of transgene expression in mouse peripheral tissues in response to local and systemic administration of AAV8-LAP2 and AAV9-LAP2. We found that administration of these vectors resulted in levels of transgene expression that were similar to the larger EF1α promoter. LAP2 drives potent transgene expression in mouse liver and kidney when administered systemically and in skeletal muscle in response to intramuscular delivery. Notably, in skeletal muscle, administration of vectors with LAP2 and EF1α promoters resulted in preferential transduction of myofibers type 2. A direct side-by-side comparison between LAP2 and the EF1α promoter revealed that, despite its smaller size, LAP2 was equally potent to the EF1α promoter and resulted in widespread gene expression after IV and IM administration of AAV8 or AAV9 vectors. Collectively, these findings suggest that constructs that include LAP2 may have the capacity to deliver large therapeutically effective payloads in support of future gene therapy protocols.
Collapse
Affiliation(s)
- Carola J Maturana
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Angela Chan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Cabanes-Creus M, Navarro RG, Liao SH, Scott S, Carlessi R, Roca-Pinilla R, Knight M, Baltazar G, Zhu E, Jones M, Denisenko E, Forrest AR, Alexander IE, Tirnitz-Parker JE, Lisowski L. Characterization of the humanized FRG mouse model and development of an AAV-LK03 variant with improved liver lobular biodistribution. Mol Ther Methods Clin Dev 2023; 28:220-237. [PMID: 36700121 PMCID: PMC9860073 DOI: 10.1016/j.omtm.2022.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. In the present study, we first investigated the validity of a liver xenograft mouse model repopulated with primary hepatocytes using single-nucleus RNA sequencing (sn-RNA-seq) by studying the transcriptomic profile of human hepatocytes pre- and post-engraftment. Complementary immunofluorescence analyses performed in highly engrafted animals confirmed that the human hepatocytes organize and present appropriate patterns of zone-dependent enzyme expression in this model. Next, we tested a set of rationally designed HSPG de-targeted AAV-LK03 variants for relative transduction performance in human hepatocytes. We used immunofluorescence, next-generation sequencing, and single-nucleus transcriptomics data from highly engrafted FRG mice to demonstrate that the optimally HSPG de-targeted AAV-LK03 displayed a significantly improved lobular transduction profile in this model.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H.Y. Liao
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Ramon Roca-Pinilla
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children’s Medical Research Institute and The Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Matthew Jones
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Elena Denisenko
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Alistair R.R. Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute and The Children’s Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Janina E.E. Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
- UWA Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
7
|
Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, Tietgens AJ. Iron-tracking strategies: Chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci 2023; 10:1127690. [PMID: 36818045 PMCID: PMC9932599 DOI: 10.3389/fmolb.2023.1127690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Cells express hundreds of iron-dependent enzymes that rely on the iron cofactors heme, iron-sulfur clusters, and mono-or di-nuclear iron centers for activity. Cells require systems for both the assembly and the distribution of iron cofactors to their cognate enzymes. Proteins involved in the binding and trafficking of iron ions in the cytosol, called cytosolic iron chaperones, have been identified and characterized in mammalian cells. The first identified iron chaperone, poly C-binding protein 1 (PCBP1), has also been studied in mice using genetic models of conditional deletion in tissues specialized for iron handling. Studies of iron trafficking in mouse tissues have necessitated the development of new approaches, which have revealed new roles for PCBP1 in the management of cytosolic iron. These approaches can be applied to investigate use of other nutrient metals in mammals.
Collapse
|
8
|
Abstract
Gene therapy is poised to revolutionize modern medicine, with seemingly unlimited potential for treating and curing genetic disorders. For otherwise incurable indications, including most inherited metabolic liver disorders, gene therapy provides a realistic therapeutic option. In this Review, we discuss gene supplementation and gene editing involving the use of recombinant adeno-associated virus (rAAV) vectors for the treatment of inherited liver diseases, including updates on several ongoing clinical trials that are producing promising results. Clinical testing has been essential in highlighting many key translational challenges associated with this transformative therapy. In particular, the interaction of a patient's immune system with the vector raises issues of safety and the duration of treatment efficacy. Furthermore, several serious adverse events after the administration of high doses of rAAVs suggest greater involvement of innate immune responses and pre-existing hepatic conditions than initially anticipated. Finally, permanent modification of the host genome associated with rAAV genome integration and gene editing raises concerns about the risk of oncogenicity that require careful evaluation. We summarize the main progress, challenges and pathways forward for gene therapy for liver diseases.
Collapse
|
9
|
Brunetti-Pierri N, Gissen P. A retrograde approach for liver gene transfer. Mol Ther Methods Clin Dev 2022; 27:488-490. [PMID: 36458113 PMCID: PMC9709090 DOI: 10.1016/j.omtm.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Institute of Health Research, Great Ormond Street Biomedical Research Centre, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Harmatz P, Prada CE, Burton BK, Lau H, Kessler CM, Cao L, Falaleeva M, Villegas AG, Zeitler J, Meyer K, Miller W, Wong Po Foo C, Vaidya S, Swenson W, Shiue LH, Rouy D, Muenzer J. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther 2022; 30:3587-3600. [PMID: 36299240 PMCID: PMC9734078 DOI: 10.1016/j.ymthe.2022.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Zinc-finger nuclease (ZFN)-based in vivo genome editing is a novel treatment that can potentially provide lifelong protein replacement with single intravenous administration. Three first-in-human open-label ascending single-dose phase 1/2 studies were performed in parallel (starting November 2017) primarily to assess safety and tolerability of ZFN in vivo editing therapy in mucopolysaccharidosis I (MPS I) (n = 3), MPS II (n = 9), and hemophilia B (n = 1). Treatment was well tolerated with no serious treatment-related adverse events. At the 1e13 vg/kg dose, evidence of genome editing was detected through albumin-transgene fusion transcripts in liver for MPS II (n = 2) and MPS I (n = 1) subjects. The MPS I subject also had a transient increase in leukocyte iduronidase activity to the lower normal range. At the 5e13 vg/kg dose, one MPS II subject had a transient increase in plasma iduronate-2-sulfatase approaching normal levels and one MPS I subject approached mid-normal levels of leukocyte iduronidase activity with no evidence of genome editing. The hemophilia B subject was not able to decrease use of factor IX concentrate; genome editing could not be assessed. Overall, ZFN in vivo editing therapy had a favorable safety profile with evidence of targeted genome editing in liver, but no long-term enzyme expression in blood.
Collapse
Affiliation(s)
- Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, CA 94609, USA,Corresponding author
| | - Carlos E. Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA,Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA,Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Barbara K. Burton
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA,Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA
| | - Heather Lau
- Department of Neurology, NYU School of Medicine, New York, NY, USA
| | | | - Liching Cao
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | | | | | | | | | | | | | | | | | | | - Didier Rouy
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | - Joseph Muenzer
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Seo JW, Ajenjo J, Wu B, Robinson E, Raie MN, Wang J, Tumbale SK, Buccino P, Anders DA, Shen B, Habte FG, Beinat C, James ML, Reyes ST, Ravindra Kumar S, Miles TF, Lee JT, Gradinaru V, Ferrara KW. Multimodal imaging of capsid and cargo reveals differential brain targeting and liver detargeting of systemically-administered AAVs. Biomaterials 2022; 288:121701. [PMID: 35985893 PMCID: PMC9621732 DOI: 10.1016/j.biomaterials.2022.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022]
Abstract
The development of gene delivery vehicles with high organ specificity when administered systemically is a critical goal for gene therapy. We combine optical and positron emission tomography (PET) imaging of 1) reporter genes and 2) capsid tags to assess the temporal and spatial distribution and transduction of adeno-associated viruses (AAVs). AAV9 and two engineered AAV vectors (PHP.eB and CAP-B10) that are noteworthy for maximizing blood-brain barrier transport were compared. CAP-B10 shares a modification in the 588 loop with PHP.eB, but also has a modification in the 455 loop, added with the goal of reducing off-target transduction. PET and optical imaging revealed that the additional modifications retained brain receptor affinity. In the liver, the accumulation of AAV9 and the engineered AAV capsids was similar (∼15% of the injected dose per cc and not significantly different between capsids at 21 h). However, the engineered capsids were primarily internalized by Kupffer cells rather than hepatocytes, and liver transduction was greatly reduced. PET reporter gene imaging after engineered AAV systemic injection provided a non-invasive method to monitor AAV-mediated protein expression over time. Through comparison with capsid tagging, differences between brain localization and transduction were revealed. In summary, AAV capsids bearing imaging tags and reporter gene payloads create a unique and powerful platform to assay the pharmacokinetics, cellular specificity and protein expression kinetics of AAV vectors in vivo, a key enabler for the field of gene therapy.
Collapse
Affiliation(s)
- Jai Woong Seo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Javier Ajenjo
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bo Wu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elise Robinson
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Nura Raie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - James Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Spencer K Tumbale
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Pablo Buccino
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - David Alexander Anders
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bin Shen
- Stanford Cyclotron & Radiochemistry Facility (CRF), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Frezghi G Habte
- Stanford Center for Innovation in In vivo Imaging (SCi3), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Corinne Beinat
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michelle L James
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha Taylor Reyes
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Timothy F Miles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jason T Lee
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katherine W Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Kaltenbacher T, Löprich J, Maresch R, Weber J, Müller S, Oellinger R, Groß N, Griger J, de Andrade Krätzig N, Avramopoulos P, Ramanujam D, Brummer S, Widholz SA, Bärthel S, Falcomatà C, Pfaus A, Alnatsha A, Mayerle J, Schmidt-Supprian M, Reichert M, Schneider G, Ehmer U, Braun CJ, Saur D, Engelhardt S, Rad R. CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nat Protoc 2022; 17:1142-1188. [PMID: 35288718 DOI: 10.1038/s41596-021-00677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022]
Abstract
Genetically engineered mouse models (GEMMs) transformed the study of organismal disease phenotypes but are limited by their lengthy generation in embryonic stem cells. Here, we describe methods for rapid and scalable genome engineering in somatic cells of the liver and pancreas through delivery of CRISPR components into living mice. We introduce the spectrum of genetic tools, delineate viral and nonviral CRISPR delivery strategies and describe a series of applications, ranging from gene editing and cancer modeling to chromosome engineering or CRISPR multiplexing and its spatio-temporal control. Beyond experimental design and execution, the protocol describes quantification of genetic and functional editing outcomes, including sequencing approaches, data analysis and interpretation. Compared to traditional knockout mice, somatic GEMMs face an increased risk for mouse-to-mouse variability because of the higher experimental demands of the procedures. The robust protocols described here will help unleash the full potential of somatic genome manipulation. Depending on the delivery method and envisaged application, the protocol takes 3-5 weeks.
Collapse
Affiliation(s)
- Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Jessica Löprich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Roman Maresch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Müller
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nina Groß
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Joscha Griger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Petros Avramopoulos
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sabine Brummer
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
| | - Sebastian A Widholz
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ahmed Alnatsha
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ursula Ehmer
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Institute of Experimental Cancer Therapy, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany. .,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
13
|
Panday R, Monckton CP, Khetani SR. The Role of Liver Zonation in Physiology, Regeneration, and Disease. Semin Liver Dis 2022; 42:1-16. [PMID: 35120381 DOI: 10.1055/s-0041-1742279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such "zonation" can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species-specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
14
|
Chen F. Quantification of Clonal Expansion of Hepatocytes in Normal and Injured Liver. Methods Mol Biol 2022; 2544:207-216. [PMID: 36125721 DOI: 10.1007/978-1-0716-2557-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A fundamental part of understanding how a tissue regenerates is how individual cells that make up the tissue divide. This protocol describes a method to label a random and representative sampling of hepatocytes throughout the mouse liver and quantify their cell division and clonal expansion during homeostasis and after liver injury. Clonal expansion is quantified through 3D imaging, which has improved accuracy over 2D imaging. This information can be used to answer questions such as which hepatocytes contribute to hepatocyte renewal during homeostasis and during regeneration after injury, as well as how much individual hepatocytes in the different zones of the liver divide.
Collapse
Affiliation(s)
- Feng Chen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Hutt JA, Assaf BT, Bolon B, Cavagnaro J, Galbreath E, Grubor B, Kattenhorn LM, Romeike A, Whiteley LO. Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicol Pathol 2021; 50:118-146. [PMID: 34657529 DOI: 10.1177/01926233211041962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.
Collapse
Affiliation(s)
- Julie A Hutt
- Greenfield Pathology Services, Inc, Greenfield, IN, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | | | | | - Branka Grubor
- Biogen, Preclinical Safety/Comparative Pathology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
16
|
Zhou B, Zhang Y, Li S, Wu L, Fejes-Toth G, Naray-Fejes-Toth A, Soukas AA. Serum- and glucocorticoid-induced kinase drives hepatic insulin resistance by directly inhibiting AMP-activated protein kinase. Cell Rep 2021; 37:109785. [PMID: 34610303 PMCID: PMC8576737 DOI: 10.1016/j.celrep.2021.109785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022] Open
Abstract
A hallmark of type 2 diabetes (T2D) is hepatic resistance to insulin's glucose-lowering effects. The serum- and glucocorticoid-regulated family of protein kinases (SGK) is activated downstream of mechanistic target of rapamycin complex 2 (mTORC2) in response to insulin in parallel to AKT. Surprisingly, despite an identical substrate recognition motif to AKT, which drives insulin sensitivity, pathological accumulation of SGK1 drives insulin resistance. Liver-specific Sgk1-knockout (Sgk1Lko) mice display improved glucose tolerance and insulin sensitivity and are protected from hepatic steatosis when fed a high-fat diet. Sgk1 promotes insulin resistance by inactivating AMP-activated protein kinase (AMPK) via phosphorylation on inhibitory site AMPKαSer485/491. We demonstrate that SGK1 is dominant among SGK family kinases in regulation of insulin sensitivity, as Sgk1, Sgk2, and Sgk3 triple-knockout mice have similar increases in hepatic insulin sensitivity. In aggregate, these data suggest that targeting hepatic SGK1 may have therapeutic potential in T2D.
Collapse
Affiliation(s)
- Ben Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yuyao Zhang
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lianfeng Wu
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Geza Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Aniko Naray-Fejes-Toth
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Kiourtis C, Wilczynska A, Nixon C, Clark W, May S, Bird TG. Specificity and off-target effects of AAV8-TBG viral vectors for the manipulation of hepatocellular gene expression in mice. Biol Open 2021; 10:271899. [PMID: 34435198 PMCID: PMC8487635 DOI: 10.1242/bio.058678] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mice are a widely used pre-clinical model system in large part due to their potential for genetic manipulation. The ability to manipulate gene expression in specific cells under temporal control is a powerful experimental tool. The liver is central to metabolic homeostasis and a site of many diseases, making the targeting of hepatocytes attractive. Adeno-associated virus 8 (AAV8) vectors are valuable instruments for the manipulation of hepatocellular gene expression. However, their off-target effects in mice have not been thoroughly explored. Here, we sought to identify the short-term off-target effects of AAV8 administration in mice. To do this, we injected C57BL/6J wild-type mice with either recombinant AAV8 vectors expressing Cre recombinase or control AAV8 vectors and characterised the changes in general health and in liver physiology, histology and transcriptomics compared to uninjected controls. We observed an acute and transient trend for reduction in homeostatic liver proliferation together with induction of the DNA damage marker γH2AX following AAV8 administration. The latter was enhanced upon Cre recombinase expression by the vector. Furthermore, we observed transcriptional changes in genes involved in circadian rhythm and response to infection. Notably, there were no additional transcriptomic changes upon expression of Cre recombinase by the AAV8 vector. Overall, there was no evidence of liver injury, and only mild T-cell infiltration was observed 14 days following AAV8 infection. These data advance the technique of hepatocellular genome editing through Cre-Lox recombination using Cre expressing AAV vectors, demonstrating their minimal effects on murine physiology and highlight the more subtle off target effects of these systems.
Collapse
Affiliation(s)
- Christos Kiourtis
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Ania Wilczynska
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Stephanie May
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK.,MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH164TJ, UK
| |
Collapse
|
18
|
The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential. Proc Natl Acad Sci U S A 2021; 118:2104666118. [PMID: 34161287 DOI: 10.1073/pnas.2104666118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.
Collapse
|
19
|
Cabanes-Creus M, Navarro RG, Liao SHY, Baltazar G, Drouyer M, Zhu E, Scott S, Luong C, Wilson LOW, Alexander IE, Lisowski L. Single amino acid insertion allows functional transduction of murine hepatocytes with human liver tropic AAV capsids. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:607-620. [PMID: 34095344 PMCID: PMC8142051 DOI: 10.1016/j.omtm.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Recent successes in clinical gene therapy applications have intensified the interest in using adeno-associated viruses (AAVs) as vectors for gene delivery into human liver. An inherent intriguing characteristic of AAVs is that vector variants vary substantially in their ability to transduce hepatocytes from different species. This has historically limited the value of preclinical studies using rodent models for predicting the efficiency of AAV vectors in liver-targeted gene therapy clinical studies. In this work, we aimed to investigate the key determinants of the observed differential interspecies transduction abilities among AAV variants. We took advantage of domain swapping strategies between AAV-KP1, a newly identified variant with enhanced murine liver tropism, and AAV3b, which functions poorly in mice. The systematic in vivo comparison of AAV3b/AAV-KP1 chimeric variants allowed us to identify a threonine insertion at position 265 within variable region I (VR-I) as the key residue that confers murine hepatic transduction to human-derived clade B (AAV2-like) and clade C (AAV3b-like) variants. We propose to use this insertion to generate phylogenetically related AAV surrogates in support of toxicology and dosing studies in the murine liver model.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia.,Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, NSW 2113, Australia
| | - Clement Luong
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Laurence O W Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, NSW 2113, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and The Children's Hospital at Westmead, The University of Sydney, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141 Warsaw, Poland
| |
Collapse
|
20
|
Genome editing in the human liver: Progress and translational considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:257-288. [PMID: 34175044 DOI: 10.1016/bs.pmbts.2021.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver-targeted genome editing offers the prospect of life-long therapeutic benefit following a single treatment and is set to rapidly supplant conventional gene addition approaches. Combining progress in liver-targeted gene delivery with genome editing technology, makes this not only feasible but realistically achievable in the near term. However, important challenges remain to be addressed. These include achieving therapeutic levels of editing, particularly in vivo, avoidance of off-target effects on the genome and the potential impact of pre-existing immunity to bacteria-derived nucleases, when used to improve editing rates. In this chapter, we outline the unique features of the liver that make it an attractive target for genome editing, the impact of liver biology on therapeutic efficacy, and disease specific challenges, including whether the approach targets a cell autonomous or non-cell autonomous disease. We also discuss strategies that have been used successfully to achieve genome editing outcomes in the liver and address translational considerations as genome editing technology moves into the clinic.
Collapse
|
21
|
Piccolo P, Rossi A, Brunetti-Pierri N. Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opin Biol Ther 2020; 21:229-240. [PMID: 32880494 DOI: 10.1080/14712598.2020.1817375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Inborn errors of metabolism include several genetic disorders due to disruption of cellular biochemical reactions. Although individually rare, collectively they are a large and heterogenous group of diseases affecting a significant proportion of patients. Available treatments are often unsatisfactory. Liver-directed gene therapy has potential for treatment of several inborn errors of metabolism. While lentiviral vectors and lipid nanoparticle-mRNA have shown attractive features in preclinical studies and still have to be investigated in humans, adeno-associated virus (AAV) vectors have shown clinical success in both preclinical and clinical trials for in vivo liver-directed gene therapy. AREAS COVERED In this review, we discussed the most relevant clinical applications and the challenges of liver-directed gene-based approaches for therapy of inborn errors of metabolism. EXPERT OPINION Challenges and prospects of clinical gene therapy trials and preclinical studies that are believed to have the greatest potential for clinical translation are presented.
Collapse
Affiliation(s)
- Pasquale Piccolo
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Alessandro Rossi
- Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine , Pozzuoli, Italy.,Department of Translational Medicine, Federico II University of Naples , Naples, Italy
| |
Collapse
|
22
|
Wahlicht T, Vièyres G, Bruns SA, Meumann N, Büning H, Hauser H, Schmitz I, Pietschmann T, Wirth D. Controlled Functional Zonation of Hepatocytes In Vitro by Engineering of Wnt Signaling. ACS Synth Biol 2020; 9:1638-1649. [PMID: 32551516 DOI: 10.1021/acssynbio.9b00435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized β-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.
Collapse
Affiliation(s)
- Tom Wahlicht
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gabrielle Vièyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Svenja A. Bruns
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nadja Meumann
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Department of Scientific Strategy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Medical University Hannover, 30625 Hannover, Germany
| |
Collapse
|
23
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Cabanes-Creus M, Westhaus A, Navarro RG, Baltazar G, Zhu E, Amaya AK, Liao SHY, Scott S, Sallard E, Dilworth KL, Rybicki A, Drouyer M, Hallwirth CV, Bennett A, Santilli G, Thrasher AJ, Agbandje-McKenna M, Alexander IE, Lisowski L. Attenuation of Heparan Sulfate Proteoglycan Binding Enhances In Vivo Transduction of Human Primary Hepatocytes with AAV2. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1139-1154. [PMID: 32490035 PMCID: PMC7260615 DOI: 10.1016/j.omtm.2020.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Erwan Sallard
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kimberley L Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Arkadiusz Rybicki
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100 Puławy, Poland
| |
Collapse
|
25
|
Richards DY, Winn SR, Dudley S, Nygaard S, Mighell TL, Grompe M, Harding CO. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:234-245. [PMID: 31970201 PMCID: PMC6962637 DOI: 10.1016/j.omtm.2019.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
Phenylketonuria (PKU) due to recessively inherited phenylalanine hydroxylase (PAH) deficiency results in hyperphenylalaninemia, which is toxic to the central nervous system. Restriction of dietary phenylalanine intake remains the standard of PKU care and prevents the major neurologic manifestations of the disease, yet shortcomings of dietary therapy remain, including poor adherence to a difficult and unpalatable diet, an increased incidence of neuropsychiatric illness, and imperfect neurocognitive outcomes. Gene therapy for PKU is a promising novel approach to promote lifelong neurological protection while allowing unrestricted dietary phenylalanine intake. In this study, liver-tropic recombinant AAV2/8 vectors were used to deliver CRISPR/Cas9 machinery and facilitate correction of the Pah enu2 allele by homologous recombination. Additionally, a non-homologous end joining (NHEJ) inhibitor, vanillin, was co-administered with the viral drug to promote homology-directed repair (HDR) with the AAV-provided repair template. This combinatorial drug administration allowed for lifelong, permanent correction of the Pah enu2 allele in a portion of treated hepatocytes of mice with PKU, yielding partial restoration of liver PAH activity, substantial reduction of blood phenylalanine, and prevention of maternal PKU effects during breeding. This work reveals that CRISPR/Cas9 gene editing is a promising tool for permanent PKU gene editing.
Collapse
Affiliation(s)
- Daelyn Y Richards
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sandra Dudley
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sean Nygaard
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Taylor L Mighell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Markus Grompe
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY, Ravindranathan A, Stohr BA, Willenbring H. Broad Distribution of Hepatocyte Proliferation in Liver Homeostasis and Regeneration. Cell Stem Cell 2019; 26:27-33.e4. [PMID: 31866223 DOI: 10.1016/j.stem.2019.11.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
Hepatocyte proliferation is the principal mechanism for generating new hepatocytes in liver homeostasis and regeneration. Recent studies have suggested that this ability is not equally distributed among hepatocytes but concentrated in a small subset of hepatocytes acting like stem cells, located around the central vein or distributed throughout the liver lobule and exhibiting active WNT signaling or high telomerase activity, respectively. These findings were obtained by utilizing components of these growth regulators as markers for genetic lineage tracing. Here, we used random lineage tracing to localize and quantify clonal expansion of hepatocytes in normal and injured liver. We found that modest proliferation of hepatocytes distributed throughout the lobule maintains the hepatocyte mass and that most hepatocytes proliferate to regenerate it, with diploidy providing a growth advantage over polyploidy. These results show that the ability to proliferate is broadly distributed among hepatocytes rather than limited to a rare stem cell-like population.
Collapse
Affiliation(s)
- Feng Chen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Robert J Jimenez
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khushbu Sharma
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; College of Arts and Sciences, University of San Francisco, San Francisco, CA 94117, USA
| | - Hubert Y Luu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Division of General Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bernadette Y Hsu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ajay Ravindranathan
- Division of Surgical Pathology, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bradley A Stohr
- Division of Surgical Pathology, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Weiskirchen S, Kim P, Weiskirchen R. Determination of copper poisoning in Wilson's disease using laser ablation inductively coupled plasma mass spectrometry. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S72. [PMID: 31179309 DOI: 10.21037/atm.2018.10.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper (Cu) is an essential trace element that is vital to the health of all living organisms. As a transition metal, it is involved in a myriad of biological processes. Balance studies estimated that the adult human requirement for copper is in the range of 1.3 to 2 mg per day. Cu deficiency alters immune function, neuropeptide synthesis and antioxidant defense, while the excess in Cu results in oxidative stress and progressive structural damage of mitochondrial and clinically in hepatic and/or neurological symptoms. This becomes particularly visible in Wilson's disease (WD) representing a rare autosomal recessive inherited disorder with a disease prevalence of about 1 in 30,000 people. The affected gene, i.e., ATP7B, belongs to the class of ATP-dependent, P-type Cu-transporting ATPases. To understand the pathomechanism in WD, several experimental models for studying WD were established. Independent studies performed in these models showed that the inactivation of the Atp7b gene results in a gradual increase in Cu in many organs during life span. However, the exact distribution of Cu and the potential impact of elevated Cu concentrations on other metals within the tissue are only sparely analyzed. Recently, novel laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)-based protocols for metal bio-imaging in liver and brain were established. In the present review, we will discuss the methodological background of this innovative technique and summarize our experiences using LA-ICP-MS imaging in biological monitoring, exact measurement, and spatial assignment of metals within tissue obtained from Atp7b null mice and clinical specimens taken from patients suffering from genetically confirmed WD. Using WD as an example, the data discussed demonstrates that LA-ICP-MS has multi-element capability, allowing precise measurement and visualization of metals in the tissue with high spatial resolution, sensitivity, quantification ability, and exceptional reproducibility.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Philipp Kim
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
28
|
Palaschak B, Herzog RW, Markusic DM. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods Mol Biol 2019; 1950:333-360. [PMID: 30783984 DOI: 10.1007/978-1-4939-9139-6_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.,Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - David M Markusic
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Greig JA, Calcedo R, Kuri-Cervantes L, Nordin JML, Albrecht J, Bote E, Goode T, Chroscinski EA, Bell P, Richman LK, Betts MR, Wilson JM. AAV8 Gene Therapy for Crigler-Najjar Syndrome in Macaques Elicited Transgene T Cell Responses That Are Resident to the Liver. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:191-201. [PMID: 30547050 PMCID: PMC6282099 DOI: 10.1016/j.omtm.2018.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022]
Abstract
Systemic delivery of adeno-associated viral (AAV) vectors has been evaluated for the treatment of several liver diseases, including homozygous familial hypercholesterolemia, ornithine transcarbamylase deficiency, and hemophilia. Here, we evaluated this approach for the treatment of Crigler-Najjar syndrome. We administered wild-type rhesus macaques with 1.0 × 1013 or 2.5 × 1013 genome copies/kg of an AAV serotype 8 vector expressing a codon-optimized version of human uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) from a liver-specific promoter. We extensively studied vector biodistribution, transgene expression, and immune responses following vector administration. All rhesus macaques survived until their scheduled necropsy at day 56 and showed no clinical abnormalities during the course of the study. Macaques administered with either vector dose developed a T cell response to the AAV capsid and/or transgene. We mapped the immunodominant epitope in the human UGT1A1 sequence, and we found no correlation between peripheral and tissue-resident lymphocyte responses. Upon further investigation, we characterized CD107a+, granzyme B+, CD4+, and CD8+ transgene-specific cellular responses that were restricted to tissue-resident T cells. This study highlights the importance of studying immune responses at the vector transduction site and the limited usefulness of blood as a surrogate to evaluate tissue-restricted T cell responses.
Collapse
Affiliation(s)
- Jenny A Greig
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayme M L Nordin
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Albrecht
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erin Bote
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward A Chroscinski
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Richman
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Fang CC, Wu CF, Liao YJ, Huang SF, Chen M, Chen YMA. AAV serotype 8-mediated liver specific GNMT expression delays progression of hepatocellular carcinoma and prevents carbon tetrachloride-induced liver damage. Sci Rep 2018; 8:13802. [PMID: 30217986 PMCID: PMC6138656 DOI: 10.1038/s41598-018-30800-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is abundantly expressed in normal livers and plays a protective role against tumor formation. GNMT depletion leads to progression of hepatocellular carcinoma (HCC). In this study, we investigated the activity of ectopic GNMT delivered using recombinant adeno-associated virus (AAV) gene therapy in mouse models of liver cirrhosis and HCC. Injection of AAV serotype 8 (AAV8) vector carrying the GNMT gene (AAV8-GNMT) in Gnmt−/− mice increased GNMT expression and downregulated pro-inflammatory responses, resulting in reduced liver damage and incidence of liver tumors. Moreover, AAV8-GNMT resulted in the amelioration of carbon tetrachloride (CCl4)-induced liver fibrosis in BALB/c mice. We showed that AAV8-GNMT protected hepatocytes from CCl4-induced liver damage. AAV8-GNMT significantly attenuated the levels of pro-fibrotic markers and increased efficiency of hepatocyte proliferation. These results suggest that correction of hepatic GNMT by gene therapy of AAV8-mediated gene enhancement may provide a potential strategy for preventing and delaying development of liver diseases.
Collapse
Affiliation(s)
- Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fen Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
31
|
Development and testing of AAV-delivered single-chain variable fragments for the treatment of methamphetamine abuse. PLoS One 2018; 13:e0200060. [PMID: 29958300 PMCID: PMC6025879 DOI: 10.1371/journal.pone.0200060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (METH) substance abuse disorders have major impact on society, yet no medications have proven successful at preventing METH relapse or cravings. Anti-METH monoclonal antibodies can reduce METH brain concentrations; however, this therapy has limitations, including the need for repeated dosing throughout the course of addiction recovery. An adeno-associated viral (AAV)-delivered DNA sequence for a single-chain variable fragment could offer long-term, continuous expression of anti-METH antibody fragments. For these studies, we injected mice via tail vein with 1 x 1012 vector genomes of two AAV8 scFv constructs and measured long-term expression of the antibody fragments. Mice expressed each scFv for at least 212 days, achieving micromolar scFv concentrations in serum. In separate experiments 21 days and 50 days after injecting mice with AAV-scFvs mice were challenged with METH in vivo. The circulating scFvs were capable of decreasing brain METH concentrations by up to 60% and sequestering METH in serum for 2 to 3 hrs. These results suggest that AAV-delivered scFv could be a promising therapy to treat methamphetamine abuse.
Collapse
|
32
|
Duarte S, Matian P, Ma S, Busuttil RW, Coito AJ. Adeno-Associated Virus-Mediated Gene Transfer of Tissue Inhibitor of Metalloproteinases-1 Impairs Neutrophil Extracellular Trap Formation and Ameliorates Hepatic Ischemia and Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1820-1832. [PMID: 29870740 DOI: 10.1016/j.ajpath.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) is abundantly expressed by infiltrating leukocytes and contributes to the pathogenesis of hepatic ischemia and reperfusion injury (IRI). On the other hand, its physiological inhibitor, the tissue inhibitor of metalloproteinases-1 (TIMP-1), is available in insufficient levels to hamper MMP-9 activity during hepatic IRI. In this study, we generated recombinant adeno-associated virus type 8 vectors (rAAV8) encoding mouse TIMP-1 driven by a liver-specific thyroxine-binding globulin promoter as a strategy to increase the levels of TIMP-1 during liver IRI. Biodistribution analysis confirmed selective overexpression of TIMP-1 in livers of rAAV8-TIMP-1 vector treated C57BL/6 mice. rAAV8-TIMP-1-treated mice showed reduced MMP-9 activity, diminished leukocyte trafficking and activation, lowered transaminase levels, and improved histology after liver IRI. Moreover, the rAAV8-TIMP-1 vector therapy enhanced significantly the 7-day survival rate of TIMP-1-/- mice subjected to hepatic IRI. Neutrophils are the first cells recruited to inflamed tissues and, once activated, they release nuclear DNA-forming web-like structures, known as neutrophil extracellular traps. It was found that TIMP-1 has the ability to reduce formation of neutrophil extracellular traps and, consequently, limit the impact of neutrophil extracellular trap-mediated cytotoxicity in hepatic IRI. This is the first report demonstrating that TIMP-1 overexpression is hepatoprotective in ischemia and reperfusion injury. Hence, TIMP-1 may represent a promising molecule for drug development to treat liver IRI.
Collapse
Affiliation(s)
- Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Matian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stacy Ma
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ronald W Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
33
|
Xiao W, Gao G, Ling C, Herzog RW, Xiao X, Samulski RJ. Impact of neutralizing antibodies against AAV is a key consideration in gene transfer to nonhuman primates. Nat Med 2018; 24:699. [PMID: 29867233 PMCID: PMC6290466 DOI: 10.1038/s41591-018-0062-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Weidong Xiao
- Sol Sherry Thrombosis Research Center, Temple University Medical School, Philadelphia, PA, USA.
- Department of Microbiology and Immunology, Temple University Medical School, Philadelphia, PA, USA.
- Cardiovascular Research Center, Temple University Medical School, Philadelphia, PA, USA.
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| | - Roland W Herzog
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Richard J Samulski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Porro F, Bortolussi G, Barzel A, De Caneva A, Iaconcig A, Vodret S, Zentilin L, Kay MA, Muro AF. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol Med 2018; 9:1346-1355. [PMID: 28751579 PMCID: PMC5623861 DOI: 10.15252/emmm.201707601] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crigler‐Najjar syndrome type I (CNSI) is a rare monogenic disease characterized by severe neonatal unconjugated hyperbilirubinemia with a lifelong risk of neurological damage and death. Liver transplantation is the only curative option, which has several limitations and risks. We applied an in vivo gene targeting approach based on the insertion, without the use of nucleases, of a promoterless therapeutic cDNA into the albumin locus of a mouse model reproducing all major features of CNSI. Neonatal transduction with the donor vector resulted in the complete rescue from neonatal lethality, with a therapeutic reduction in plasma bilirubin lasting for at least 12 months, the latest time point analyzed. Mutant mice, which expressed about 5–6% of WT Ugt1a1 levels, showed normal liver histology and motor‐coordination abilities, suggesting no functional liver or brain abnormalities. These results proved that the promoterless gene therapy is applicable for CNSI, providing therapeutic levels of an intracellular ER membrane‐bound enzyme responsible for a lethal liver metabolic disease.
Collapse
Affiliation(s)
- Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Adi Barzel
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Alessia De Caneva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
35
|
Visualization of the therapeutic efficacy of a gene correction approach in Wilson's disease by laser-ablation inductively coupled mass spectrometry. J Hepatol 2018; 68:1088-1090. [PMID: 29317295 DOI: 10.1016/j.jhep.2017.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
|
36
|
Masia R, McCarty WJ, Lahmann C, Luther J, Chung RT, Yarmush ML, Yellen G. Live cell imaging of cytosolic NADH/NAD + ratio in hepatocytes and liver slices. Am J Physiol Gastrointest Liver Physiol 2018; 314:G97-G108. [PMID: 29025729 PMCID: PMC5866369 DOI: 10.1152/ajpgi.00093.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD+ ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD+ ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD+ ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD+ ratio, and this increase is mitigated by the presence of NAD+-generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD+ ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD+ ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real-time measurements of the ratio in living, functioning liver cells, overcoming many limitations of previous methods for measuring this important redox parameter. The feasibility of using Peredox in liver slices is particularly attractive because slices allow preservation of hepatic microanatomy and metabolic zonation of hepatocytes.
Collapse
Affiliation(s)
- Ricard Masia
- 1Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts,2Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - William J. McCarty
- 3Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Carolina Lahmann
- 2Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Jay Luther
- 4Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Raymond T. Chung
- 4Gastrointestinal Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin L. Yarmush
- 3Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Gary Yellen
- 2Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Gene Therapy with BMN 270 Results in Therapeutic Levels of FVIII in Mice and Primates and Normalization of Bleeding in Hemophilic Mice. Mol Ther 2017; 26:496-509. [PMID: 29292164 PMCID: PMC5835117 DOI: 10.1016/j.ymthe.2017.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/28/2017] [Accepted: 12/09/2017] [Indexed: 01/22/2023] Open
Abstract
Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.
Collapse
|
38
|
Lempp FA, Wiedtke E, Qu B, Roques P, Chemin I, Vondran FWR, Le Grand R, Grimm D, Urban S. Sodium taurocholate cotransporting polypeptide is the limiting host factor of hepatitis B virus infection in macaque and pig hepatocytes. Hepatology 2017; 66:703-716. [PMID: 28195359 DOI: 10.1002/hep.29112] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Infections with the human hepatitis B virus (HBV) and hepatitis D virus (HDV) depend on species-specific host factors like the receptor human sodium taurocholate cotransporting polypeptide (hNTCP). Complementation of mouse hepatocytes with hNTCP confers susceptibility to HDV but not HBV, indicating the requirement of additional HBV-specific factors. As an essential premise toward the establishment of an HBV-susceptible animal model, we investigated the role of hNTCP as a limiting factor of hepatocytes in commonly used laboratory animals. Primary hepatocytes from mice, rats, dogs, pigs, rhesus macaques, and cynomolgus macaques were transduced with adeno-associated viral vectors encoding hNTCP and subsequently infected with HBV. Cells were analyzed for Myrcludex B binding, taurocholate uptake, HBV covalently closed circular DNA formation, and expression of all HBV markers. Sodium taurocholate cotransporting polypeptide (Ntcp) from the respective species was cloned and analyzed for HBV and HDV receptor activity in a permissive hepatoma cell line. Expression of hNTCP in mouse, rat, and dog hepatocytes permits HDV infection but does not allow establishment of HBV infection. Contrarily, hepatocytes from cynomolgus macaques, rhesus macaques, and pigs became fully susceptible to HBV upon hNTCP expression with efficiencies comparable to human hepatocytes. Analysis of cloned Ntcp from all species revealed a pronounced role of the human homologue to support HBV and HDV infection. CONCLUSION Ntcp is the key host factor limiting HBV infection in cynomolgus and rhesus macaques and in pigs. In rodents (mouse, rat) and dogs, transfer of hNTCP supports viral entry but additional host factors are required for the establishment of HBV infection. This finding paves the way for the development of macaques and pigs as immunocompetent animal models to study HBV infection in vivo, immunological responses against the virus and viral pathogenesis. (Hepatology 2017;66:703-716).
Collapse
Affiliation(s)
- Florian A Lempp
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, BioQuant, University Hospital Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pierre Roques
- Division of ImmunoVirology, Institute of Emerging Diseases and Innovative Therapies, Centre d'Energie Atomique, Fontenay aux Roses, Paris, France.,UMRE01, UMR1184, Université Paris Sud, Orsay, France
| | - Isabelle Chemin
- Université de Lyon, INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Florian W R Vondran
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Roger Le Grand
- Division of ImmunoVirology, Institute of Emerging Diseases and Innovative Therapies, Centre d'Energie Atomique, Fontenay aux Roses, Paris, France.,UMRE01, UMR1184, Université Paris Sud, Orsay, France
| | - Dirk Grimm
- Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, BioQuant, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Infection Research, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Ferla R, Alliegro M, Marteau JB, Dell'Anno M, Nusco E, Pouillot S, Galimberti S, Valsecchi MG, Zuliani V, Auricchio A. Non-clinical Safety and Efficacy of an AAV2/8 Vector Administered Intravenously for Treatment of Mucopolysaccharidosis Type VI. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:143-158. [PMID: 28932756 PMCID: PMC5552066 DOI: 10.1016/j.omtm.2017.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
In vivo gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. We recently demonstrated that AAV8-mediated liver gene transfer is effective in animal models of mucopolysaccharidosis type VI (MPS VI), a rare lysosomal storage disease that is caused by arylsulfatase B (ARSB) deficiency. In preparing for a first-in-human trial, we performed non-clinical studies to assess the safety of intravenous administrations of AAV2/8.TBG.hARSB produced under good manufacturing practice-like conditions. No toxicity was observed in AAV-treated mice, except for a transient increase in alanine aminotransferase in females and thyroid epithelial hypertrophy. AAV2/8.TBG.hARSB biodistribution and expression confirmed the liver as the main site of both infection and transduction. Shedding and breeding studies suggest that the risk of both horizontal and germline transmission is minimal. An AAV dose-response study in MPS VI mice was performed to define the range of doses to be used in the clinical study. Overall, these data support the non-clinical safety and efficacy of AAV2/8.TBG.hARSB and pave the way for a phase I/II clinical trial based on intravascular infusions of AAV8 in patients with MPS VI.
Collapse
Affiliation(s)
- Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples) 80078, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Marialuisa Alliegro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples) 80078, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | | | - Margherita Dell'Anno
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples) 80078, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples) 80078, Italy
| | | | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (Naples) 80078, Italy.,Department of Advanced Biomedicine, Federico II University, Naples 80131, Italy
| |
Collapse
|
40
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
41
|
Wang L, Bell P, Morizono H, He Z, Pumbo E, Yu H, White J, Batshaw ML, Wilson JM. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol Genet Metab 2017; 120:299-305. [PMID: 28283349 PMCID: PMC5423267 DOI: 10.1016/j.ymgme.2017.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/23/2022]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder of the urea cycle. Hemizygous males and heterozygous females may experience life-threatening elevations of ammonia in blood and brain, leading to irreversible cognitive impairment, coma, and death. Recent evidence of acute liver failure and fibrosis/cirrhosis is also emerging in OTC-deficient patients. Here, we investigated the long-term consequences of abnormal ureagenesis in female mice heterozygous (Het) for a null mutation in the OTC gene. Two-month-old Het OTC knockout (KO) mice received a single dose of self-complementary adeno-associated virus (AAV) encoding a codon-optimized human OTC gene at 1×1010, 3×1010, or 1×1011 vector genome copies per mouse. We compared liver pathology from 18-month-old treated Het OTC-KO mice, age-matched untreated Het OTC-KO mice, and WT littermates, and assessed urinary orotic acid levels and vector genome copies in liver at 4, 10, and 16months following vector administration. Het OTC-KO female mice showed evidence of liver inflammation and the eventual development of significant fibrosis. Treatment with AAV gene therapy not only corrected the underlying metabolic abnormalities, but also prevented the development of liver fibrosis. Our study demonstrates that early treatment of OTC deficiency with gene therapy may prevent clinically relevant consequences of chronic liver damage from developing.
Collapse
Affiliation(s)
- Lili Wang
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, 111 Michigan Ave., Washington, DC 20010, USA
| | - Zhenning He
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA
| | - Elena Pumbo
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, 111 Michigan Ave., Washington, DC 20010, USA
| | - Hongwei Yu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA
| | - John White
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA
| | - Mark L Batshaw
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, 111 Michigan Ave., Washington, DC 20010, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 125 S. 31st Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM, Grange RW, Elverman MR, Denard J, Veron P, Buscara L, Le Bec C, Hogrel JY, Brezovec AG, Meng H, Yang L, Liu F, O'Callaghan M, Gopal N, Kelly VE, Smith BK, Strande JL, Mavilio F, Beggs AH, Mingozzi F, Lawlor MW, Buj-Bello A, Childers MK. Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Mol Ther 2017; 25:839-854. [PMID: 28237839 DOI: 10.1016/j.ymthe.2017.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.
Collapse
MESH Headings
- Animals
- Biopsy
- Dependovirus/classification
- Dependovirus/genetics
- Disease Models, Animal
- Disease Progression
- Dogs
- Gait
- Gene Expression
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Genetic Vectors/pharmacokinetics
- Immunity, Cellular
- Immunity, Humoral
- Kaplan-Meier Estimate
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Myopathies, Structural, Congenital/diagnosis
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/mortality
- Myopathies, Structural, Congenital/therapy
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Recovery of Function
- Reflex
- Respiratory Function Tests
- Tissue Distribution
- Transgenes/genetics
- Transgenes/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | - Karine Poulard
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Melissa A Goddard
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | | | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Matthew R Elverman
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | | | - Philippe Veron
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Laurine Buscara
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | | | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institut de Myologie, 75651 Paris, France
| | - Annie G Brezovec
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Fujun Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Nikhil Gopal
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98019, USA
| | - Valerie E Kelly
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fulvio Mavilio
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Federico Mingozzi
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France; Institut de Myologie, University Pierre and Marie Curie, 75005 Paris, France
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France.
| | - Martin K Childers
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA.
| |
Collapse
|
43
|
Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16079. [PMID: 27933307 PMCID: PMC5142508 DOI: 10.1038/mtm.2016.79] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022]
Abstract
Systemically delivered adeno-associated viral (AAV) vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP) expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge.
Collapse
|
44
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
45
|
Grimm D, Zolotukhin S. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution. Mol Ther 2015; 23:1819-31. [PMID: 26388463 PMCID: PMC4700111 DOI: 10.1038/mt.2015.173] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022] Open
Abstract
Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Infectious Diseases/Virology, Cluster of Excellence CellNetworks, Heidelberg University Hospital, Heidelberg, Germany
| | - Sergei Zolotukhin
- Division of Cell and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction. Proc Natl Acad Sci U S A 2015; 112:11276-81. [PMID: 26305933 DOI: 10.1073/pnas.1503607112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.
Collapse
|
47
|
Adeno-associated virus-mediated rescue of neonatal lethality in argininosuccinate synthetase-deficient mice. Mol Ther 2013; 21:1823-31. [PMID: 23817206 DOI: 10.1038/mt.2013.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/22/2013] [Indexed: 12/15/2022] Open
Abstract
Viral vectors based on adeno-associated virus (AAV) are showing exciting promise in gene therapy trials targeting the adult liver. A major challenge in extending this promise to the pediatric liver is the loss of episomal vector genomes that accompanies hepatocellular proliferation during liver growth. Hence maintenance of sufficient transgene expression will be critical for success in infants and children. We therefore set out to explore the therapeutic efficacy and durability of liver-targeted gene transfer in the challenging context of a neonatal lethal urea cycle defect, using the argininosuccinate synthetase deficient mouse. Lethal neonatal hyperammonemia was prevented by prenatal and early postnatal vector delivery; however, hyperammonemia subsequently recurred limiting survival to no more than 33 days despite vector readministration. Antivector antibodies acquired in milk from vector-exposed dams were subsequently shown to be blocking vector readministration, and were avoided by crossfostering vector-treated pups to vector-naive dams. In the absence of passively acquired antivector antibodies, vector redelivery proved efficacious with mice surviving to adulthood without recurrence of significant hyperammonemia. These data demonstrate the potential of AAV vectors in the developing liver, showing that vector readministration can be used to counter growth-associated loss of transgene expression provided the challenge of antivector humoral immunity is addressed.
Collapse
|
48
|
Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 2013; 96:121-9. [PMID: 23792151 DOI: 10.1016/j.biochi.2013.06.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
Abstract
The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic features, leading to zonation of metabolic processes across the liver acinus. Zonation of processes involved in glucose and fatty acid metabolism is rather flexible and therefore prone to change under (patho)physiological conditions. Hepatic zonation appears to play an important role in the segregation of the different metabolic pathways in the liver. As a consequence, perturbations in metabolic zonation may be a part of metabolic liver diseases. The metabolic syndrome is characterized by the inability of insulin to adequately suppress hepatic gluconeogenesis, leading to hyperglycemia, hyperinsulinemia and eventually to type II diabetes. As insulin promotes lipogenesis through the transcription factor sterol regulatory element binding protein (SREBP)-1c, one would expect that lipogenesis should also be impaired in insulin-resistant states. However, in the metabolic syndrome hepatic de novo lipogenesis is increased, leading to hyperlipidemia and hepatosteatosis, primarily in the pericentral zone. These observations suggest the co-existence of insulin resistant glucose metabolism and insulin sensitive lipid metabolism in the metabolic syndrome. Here we provide a theoretical framework to explain this so-called 'insulin signaling paradox' in the context of metabolic zonation of the liver.
Collapse
Affiliation(s)
- Brenda S Hijmans
- Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Goodrich LR, Phillips JN, McIlwraith CW, Foti SB, Grieger JC, Gray SJ, Samulski RJ. Optimization of scAAVIL-1ra In Vitro and In Vivo to Deliver High Levels of Therapeutic Protein for Treatment of Osteoarthritis. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e70. [PMID: 23385523 PMCID: PMC3586798 DOI: 10.1038/mtna.2012.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) affects over 40 million people annually. We evaluated interleukin-1 receptor antagonist (IL-1ra) gene transfer in an equine model based on IL-1ra protein therapy which inhibits inflammation through blocking IL-1. Using the self-complementary adeno-associated virus (scAAV)IL-1ra equine gene as a starting construct, we optimized the transgene cassette by analyzing promoters (cytomegalovirus (CMV) versus chicken β-actin hybrid (CBh)), coding sequences (optimized versus unoptimized), vector capsid (serotype 2 versus chimeric capsid), and biological activity in vitro. AAV serotypes 2 and 2.5 CMV scAAVoptIL-1ra were tested in equine joints. We evaluated two doses of scAAVIL-1ra, scAAVGFP, and saline. We developed a novel endoscopy procedure and confirmed vector-derived transgene expression (GFP) in chondrocytes 6 months post-injection. AAVIL-1ra therapeutic protein levels were 200-800 ng/ml of synovial fluid over 23 and 186 days, respectively. No evidence of intra-articular toxicity was detected and no vector genomes were found in contralateral joints based on GFP fluorescence microscopy and quantitative PCR. Finally, we assayed vector-derived IL-1ra activity based on functional assays which supported anti-inflammatory activity of our protein. These studies represent the first large animal intra-articular gene transfer approach with a therapeutic gene using scAAV and demonstrate high levels of protein production over extended time supporting further clinical investigation using scAAV gene therapy for OA.Molecular Therapy - Nucleic Acids (2013) 2, e70; doi:10.1038/mtna.2012.61; published online 5 February 2013.
Collapse
Affiliation(s)
- Laurie R Goodrich
- Orthopaedic Research Center, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tarantal AF, Skarlatos SI. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community. Hum Gene Ther 2012; 23:1130-5. [PMID: 22974119 PMCID: PMC3498881 DOI: 10.1089/hum.2012.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.
Collapse
Affiliation(s)
- Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, University of California, Davis, 95616, USA.
| | | |
Collapse
|