1
|
Panis B, Vos EN, Barić I, Bosch AM, Brouwers MCGJ, Burlina A, Cassiman D, Coman DJ, Couce ML, Das AM, Demirbas D, Empain A, Gautschi M, Grafakou O, Grunewald S, Kingma SDK, Knerr I, Leão-Teles E, Möslinger D, Murphy E, Õunap K, Pané A, Paci S, Parini R, Rivera IA, Scholl-Bürgi S, Schwartz IVD, Sdogou T, Shakerdi LA, Skouma A, Stepien KM, Treacy EP, Waisbren S, Berry GT, Rubio-Gozalbo ME. Brain function in classic galactosemia, a galactosemia network (GalNet) members review. Front Genet 2024; 15:1355962. [PMID: 38425716 PMCID: PMC10902464 DOI: 10.3389/fgene.2024.1355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Classic galactosemia (CG, OMIM #230400, ORPHA: 79,239) is a hereditary disorder of galactose metabolism that, despite treatment with galactose restriction, affects brain function in 85% of the patients. Problems with cognitive function, neuropsychological/social emotional difficulties, neurological symptoms, and abnormalities in neuroimaging and electrophysiological assessments are frequently reported in this group of patients, with an enormous individual variability. In this review, we describe the role of impaired galactose metabolism on brain dysfunction based on state of the art knowledge. Several proposed disease mechanisms are discussed, as well as the time of damage and potential treatment options. Furthermore, we combine data from longitudinal, cross-sectional and retrospective studies with the observations of specialist teams treating this disease to depict the brain disease course over time. Based on current data and insights, the majority of patients do not exhibit cognitive decline. A subset of patients, often with early onset cerebral and cerebellar volume loss, can nevertheless experience neurological worsening. While a large number of patients with CG suffer from anxiety and depression, the increased complaints about memory loss, anxiety and depression at an older age are likely multifactorial in origin.
Collapse
Affiliation(s)
- Bianca Panis
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Croatia, and School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Annet M. Bosch
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, Netherlands
| | - Martijn C. G. J. Brouwers
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Alberto Burlina
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Division of Inherited Metabolic Diseases, Reference Centre Expanded Newborn Screening, University Hospital Padova, Padova, Italy
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - David J. Coman
- Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, QLD, Australia
| | - María L. Couce
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Pediatrics, Diagnosis and Treatment Unit of Congenital Metabolic Diseases, University Clinical Hospital of Santiago de Compostela, IDIS-Health Research Institute of Santiago de Compostela, CIBERER, RICORS Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Anibh M. Das
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Pediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Didem Demirbas
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Aurélie Empain
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics, Metabolic and Nutrition Unit, Division of Endocrinology, Diabetes and Metabolism, University Hospital for Children Queen Fabiola, Bruxelles, Belgium
| | - Matthias Gautschi
- Department of Paediatrics, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Swiss Reference Centre for Inborn Errors of Metabolism, Site Bern, Division of Pediatric Endocrinology, Diabetes and Metabolism, University of Bern, Bern, Switzerland
| | - Olga Grafakou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- IEM Clinic, Arch Makarios III Hospital, Nicosia, Cyprus
| | - Stephanie Grunewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, United Kingdom
| | - Sandra D. K. Kingma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street, University College Dublin, Dublin, Ireland
| | - Elisa Leão-Teles
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Dorothea Möslinger
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery (NHNN), London, United Kingdom
| | - Katrin Õunap
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Genetics and Personalized Medicine Clinic, Faculty of Medicine, Tartu University Hospital, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Adriana Pané
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sabrina Paci
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Inborn Errors of Metabolism, Clinical Department of Pediatrics, San Paolo Hospital - ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Rossella Parini
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Rare Diseases Unit, Department of Internal Medicine, San Gerardo Hospital IRCCS, Monza, Italy
| | - Isabel A. Rivera
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I-Inherited Metabolic Disorders, Medical University Innsbruck, Innsbruck, Austria
| | - Ida V. D. Schwartz
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Triantafyllia Sdogou
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Loai A. Shakerdi
- Adult Metabolics/Genetics, National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Anastasia Skouma
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- Newborn Screening Department, Institute of Child Health, Athens, Greece
| | - Karolina M. Stepien
- Salford Royal Organisation, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Eileen P. Treacy
- School of Medicine, Trinity College Dublin, National Rare Diseases Office, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Susan Waisbren
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - Gerard T. Berry
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Manton Center for Orphan Disease Research, Boston, MA, United States
| | - M. Estela Rubio-Gozalbo
- Department of Pediatrics, MosaKids Children’s Hospital, Maastricht University Medical Centre, Maastricht, Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member, Padova, Italy
- United for Metabolic Diseases (UMD), Amsterdam, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
González-Davis O, Villagrana-Escareño MV, Trujillo MA, Gama P, Chauhan K, Vazquez-Duhalt R. Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology 2023; 580:73-87. [PMID: 36791560 DOI: 10.1016/j.virol.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Enzyme replacement therapy (ERT) has been used to treat a few of the many existing diseases which are originated from the lack of, or low enzymatic activity. Exogenous enzymes are administered to contend with the enzymatic activity deficiency. Enzymatic nanoreactors based on the enzyme encapsulation inside of virus-like particles (VLPs) appear as an interesting alternative for ERT. VLPs are excellent delivery vehicles for therapeutic enzymes as they are biodegradable, uniformly organized, and porous nanostructures that transport and could protect the biocatalyst from the external environment without much affecting the bioactivity. Consequently, significant efforts have been made in the production processes of virus-based enzymatic nanoreactors and their functionalization, which are critically reviewed. The use of virus-based enzymatic nanoreactors for the treatment of lysosomal storage diseases such as Gaucher, Fabry, and Pompe diseases, as well as potential therapies for galactosemia, and Hurler and Hunter syndromes are discussed.
Collapse
Affiliation(s)
- Oscar González-Davis
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Maria V Villagrana-Escareño
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Mario A Trujillo
- School of Medicine, Universidad Xochicalco, Ensenada, Baja California, Mexico
| | - Pedro Gama
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera, Tijuana-Ensenada, Baja California, 22860, Mexico.
| |
Collapse
|
3
|
Corsello A, Scatigno L, Govoni A, Zuccotti G, Gottrand F, Romano C, Verduci E. Gut dysmotility in children with neurological impairment: the nutritional management. Front Neurol 2023; 14:1200101. [PMID: 37213895 PMCID: PMC10196023 DOI: 10.3389/fneur.2023.1200101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Intestinal motility disorders represent a frequent problem in children with neurological impairment. These conditions are characterized by abnormal movements of the gut, which can result in symptoms such as constipation, diarrhea, reflux, and vomiting. The underlying mechanisms leading to dysmotility are various, and the clinical manifestations are often nonspecific. Nutritional management is an important aspect of care for children with gut dysmotility, as it can help to improve their quality of life. Oral feeding, when safe and in the absence of risk of ingestion or severe dysphagia, should always be encouraged. When oral nutrition is insufficient or potentially harmful, it is necessary to switch to an enteral by tube or parenteral nutrition before the onset of malnutrition. In most cases, children with severe gut dysmotility may require feeding via a permanent gastrostomy tube to ensure adequate nutrition and hydration. Drugs may be necessary to help manage gut dysmotility, such as laxatives, anticholinergics and prokinetic agents. Nutritional management of patients with neurological impairment often requires an individualized care plan to optimize growth and nutrition and to improve overall health outcomes. This review tries to sum up most significant neurogenetic and neurometabolic disorders associated with gut dysmotility that may require a specific multidisciplinary care, identifying a proposal of nutritional and medical management.
Collapse
Affiliation(s)
- Antonio Corsello
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Lorenzo Scatigno
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Annalisa Govoni
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Frédéric Gottrand
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, CHU Lille, University of Lille, Lille, France
| | - Claudio Romano
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, Milan, Italy
- Department of Health Science, University of Milan, Milan, Italy
- *Correspondence: Elvira Verduci,
| |
Collapse
|
4
|
Hermans ME, van Weeghel M, Vaz FM, Ferdinandusse S, Hollak CEM, Huidekoper HH, Janssen MCH, van Kuilenburg ABP, Pras-Raves ML, Wamelink MMC, Wanders RJA, Welsink-Karssies MM, Bosch AM. Multi-omics in classical galactosemia: Evidence for the involvement of multiple metabolic pathways. J Inherit Metab Dis 2022; 45:1094-1105. [PMID: 36053831 DOI: 10.1002/jimd.12548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022]
Abstract
Classical galactosemia (CG) is one of the more frequent inborn errors of metabolism affecting approximately 1:40.000 people. Despite a life-saving galactose-restricted diet, patients develop highly variable long-term complications including intellectual disability and movement disorders. The pathophysiology of these complications is still poorly understood and development of new therapies is hampered by a lack of valid prognostic biomarkers. Multi-omics approaches may discover new biomarkers and improve prediction of patient outcome. In the current study, (semi-)targeted mass-spectrometry based metabolomics and lipidomics were performed in erythrocytes of 40 patients with both classical and variant phenotypes and 39 controls. Lipidomics did not show any significant changes or deficiencies. The metabolomics analysis revealed that CG does not only compromise the Leloir pathway, but also involves other metabolic pathways including glycolysis, the pentose phosphate pathway, and nucleotide metabolism in the erythrocyte. Moreover, the energy status of the cell appears to be compromised, with significantly decreased levels of ATP and ADP. This possibly is the consequence of two different mechanisms: impaired formation of ATP from ADP possibly due to reduced flux though the glycolytic pathway and trapping of phosphate in galactose-1-phosphate (Gal-1P) which accumulates in CG. Our findings are in line with the current notion that the accumulation of Gal-1P plays a key role in the pathophysiology of CG not only by depletion of intracellular phosphate levels but also by decreasing metabolite abundance downstream in the glycolytic pathway and affecting other pathways. New therapeutic options for CG could be directed towards the restoration of intracellular phosphate homeostasis.
Collapse
Affiliation(s)
- Merel E Hermans
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- United for Metabolic Diseases, The Netherlands
| | - Sacha Ferdinandusse
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Hidde H Huidekoper
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mia L Pras-Raves
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Mirjam M C Wamelink
- Department of Clinical Chemistry, Metabolic Unit, Gastroenterology Endocrinology Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Mendy M Welsink-Karssies
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| | - Annet M Bosch
- Department of Pediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Fridovich-Keil JL, Berry GT. Pathophysiology of long-term complications in classic galactosemia: What we do and do not know. Mol Genet Metab 2022; 137:33-39. [PMID: 35882174 DOI: 10.1016/j.ymgme.2022.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Despite many decades of research involving both human subjects and model systems, the underlying pathophysiology of long-term complications in classic galactosemia (CG) remains poorly understood. In this review, intended for those already familiar with galactosemia, we focus on the big questions relating to outcomes, mechanism, and markers, drawing on relevant literature where available, attempting to navigate inconsistencies where they appear, and acknowledging gaps in knowledge where they persist.
Collapse
Affiliation(s)
| | - Gerard T Berry
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Althammer M, Regl C, Herburger K, Blöchl C, Voglas E, Huber CG, Tenhaken R. Overexpression of UDP-sugar pyrophosphorylase leads to higher sensitivity towards galactose, providing new insights into the mechanisms of galactose toxicity in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1416-1426. [PMID: 34913539 PMCID: PMC9306886 DOI: 10.1111/tpj.15638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 05/04/2023]
Abstract
Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.
Collapse
Affiliation(s)
- Martina Althammer
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christof Regl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Klaus Herburger
- Department of Plant and Environmental SciencesSection for Plant GlycobiologyUniversity of CopenhagenFrederiksberg1871Denmark
| | - Constantin Blöchl
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Elena Voglas
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Christian G. Huber
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| | - Raimund Tenhaken
- Department of BiosciencesMolecular Plant PhysiologyUniversity of SalzburgHellbrunnerstr. 34Salzburg5020Austria
| |
Collapse
|
7
|
Conte F, van Buuringen N, Voermans NC, Lefeber DJ. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj 2021; 1865:129898. [PMID: 33878388 DOI: 10.1016/j.bbagen.2021.129898] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Galactose is an essential carbohydrate for cellular metabolism, as it contributes to energy production and storage in several human tissues while also being a precursor for glycosylation. Galactosylated glycoconjugates, such as glycoproteins, keratan sulfate-containing proteoglycans and glycolipids, exert a plethora of biological functions, including structural support, cellular adhesion, intracellular signaling and many more. The biological relevance of galactose is further entailed by the number of pathogenic conditions consequent to defects in galactosylation and galactose homeostasis. The growing number of rare congenital disorders involving galactose along with its recent therapeutical applications are drawing increasing attention to galactose metabolism. In this review, we aim to draw a comprehensive overview of the biological functions of galactose in human cells, including its metabolism and its role in glycosylation, and to provide a systematic description of all known congenital metabolic disorders resulting from alterations of its homeostasis.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Nicole van Buuringen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Mackinnon S, Krojer T, Foster WR, Diaz-Saez L, Tang M, Huber KVM, von Delft F, Lai K, Brennan PE, Arruda Bezerra G, Yue WW. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. ACS Chem Biol 2021; 16:586-595. [PMID: 33724769 PMCID: PMC8056384 DOI: 10.1021/acschembio.0c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.
Collapse
Affiliation(s)
- Sabrina
R. Mackinnon
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Tobias Krojer
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - William R. Foster
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Laura Diaz-Saez
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Manshu Tang
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Kilian V. M. Huber
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Frank von Delft
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire, United Kingdom, OX11 0DE
| | - Kent Lai
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Paul E. Brennan
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Gustavo Arruda Bezerra
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Wyatt W. Yue
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| |
Collapse
|
9
|
Gama P, Cadena-Nava RD, Juarez-Moreno K, Pérez-Robles J, Vazquez-Duhalt R. Virus-Based Nanoreactors with GALT Activity for Classic Galactosemia Therapy. ChemMedChem 2021; 16:1438-1445. [PMID: 33595183 DOI: 10.1002/cmdc.202000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Enzymatic nanoreactors were obtained by galactose-1-phosphate uridylyl-transferase (GALT) encapsulation into plant virus capsids by a molecular self-assembly strategy. The aim of this work was to produce virus-like nanoparticles containing GALT for an enzyme-replacement therapy for classic galactosemia. The encapsulation efficiency and the catalytic constants of bio-nanoreactors were determined by using different GALT and virus coat protein ratios. The substrate affinity of nanoreactors was slightly lower than that of the free enzyme; the activity rate was 16 % of the GALT free enzyme. The enzymatic nanoreactors without functionalization were internalized into different cell lines including fibroblast and kidney cells, but especially into hepatocytes. The enzymatic nanoreactors are an innovative enzyme preparation with potential use for the treatment of classic galactosemia.
Collapse
Affiliation(s)
- Pedro Gama
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Ruben D Cadena-Nava
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Karla Juarez-Moreno
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Javier Pérez-Robles
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| | - Rafael Vazquez-Duhalt
- Department of Bionanotechnology, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico
| |
Collapse
|
10
|
Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and Future Treatments for Classic Galactosemia. J Pers Med 2021; 11:jpm11020075. [PMID: 33525536 PMCID: PMC7911353 DOI: 10.3390/jpm11020075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Type I (classic) galactosemia, galactose 1-phosphate uridylyltransferase (GALT)-deficiency is a hereditary disorder of galactose metabolism. The current therapeutic standard of care, a galactose-restricted diet, is effective in treating neonatal complications but is inadequate in preventing burdensome complications. The development of several animal models of classic galactosemia that (partly) mimic the biochemical and clinical phenotypes and the resolution of the crystal structure of GALT have provided important insights; however, precise pathophysiology remains to be elucidated. Novel therapeutic approaches currently being explored focus on several of the pathogenic factors that have been described, aiming to (i) restore GALT activity, (ii) influence the cascade of events and (iii) address the clinical picture. This review attempts to provide an overview on the latest advancements in therapy approaches.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Ana I. Coelho
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
| | - Maria Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3872920
| |
Collapse
|
11
|
Microbial Diversity and Nutritional Properties of Persian "Yellow Curd" ( Kashk Zard), a Promising Functional Fermented Food. Microorganisms 2020; 8:microorganisms8111658. [PMID: 33114666 PMCID: PMC7693697 DOI: 10.3390/microorganisms8111658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023] Open
Abstract
“Yellow curd” (YC) is one of the most popular homemade Persian fermented foods and is consumed by many people. Notwithstanding, no studies are available to date on its nutritional and microbiological composition. In this study, we examined YC samples obtained from different local markets of Sistan and Baluchestan province, Iran. The results of the chemical analyses revealed a homogenous content of protein (13.71% ± 1.07), lipids (4.09% ± 0.73), and carbohydrates (61% ± 2.13) among the samples. By comparing the average mineral content of YC with yogurt, many relevant differences were detected. Apart from the calcium content, which was similar on average to that of YC, all other minerals tested are present in higher amounts in YC than in yogurt. The analysis of the main sugars present (i.e., lactose, galactose and glucose) highlighted relevant differences among samples, indicating that different YC samples contain natural strains with different capabilities to metabolize sugars. The concentration of galactose in YC samples should be taken into consideration by galactose intolerant people. From the microbiological perspective, the metagenomics analysis revealed that lactic acid bacteria, and particularly the genera Lactobacillus, Pediococcus, and Streptococcus, were dominant in YC. The information provided shows that YC is an interesting base for the preparation of novel functional foods with a good content of beneficial bacteria.
Collapse
|
12
|
El Bakly W, Medhat M, Shafei M, Tash R, Elrefai M, Shoukry Y, Omar NN. Optimized platelet rich plasma releasate (O-rPRP) repairs galactosemia-induced ovarian follicular loss in rats by activating mTOR signaling and inhibiting apoptosis. Heliyon 2020; 6:e05006. [PMID: 33005806 PMCID: PMC7509792 DOI: 10.1016/j.heliyon.2020.e05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Platelet rich plasma contains a collection of growth factors, and an optimal formulation, named O-rPRP, contains the highest possible concentration of growth factors. Purpose Challenging the healing power of O-rPRP in a high-galactose diet-induced premature ovarian insufficiency (POI) experimental rat model. Methods Rats were divided into four groups of ten rats each and treated for four week as follows; 1) the control group, fed with normal diet and received intraperitoneal (i.p.) injection of PBS once/week; 2) the POI group, fed with galactose diet (50%) and received PBS (i.p.) once/week; 3) the POI/O-rPRP group, fed a 50% galactose diet and received O-rPRP (i.p.) once/week; 4) the O-rPRP group (negative control), fed with a normal diet and received O-rPRP (i.p.) once/week. The levels of galactose, follicle stimulating hormone, 17 β-estradiol, anti-mullerian hormone and inhibin B were measured in serum samples. Western blotting and quantitative real-time PCR assays were employed to investigate the levels of miR-223, β1 integrin, p70S6k and MCL-1 in ovarian tissues. Results After O-rPRP treatment, β1 integrin expression was enhanced, and miR-223 expression was decreased. Unlike the untreated galactose group, in the group treated with O-rPRP, p70S6k and MCL-1 expression levels were increased, indicating that the mTOR growth signaling pathway was active and that apoptosis was inactive. After the introduction of O-rPRP, the number of follicles and the follicular maturation improved, which was consistent with the improvement of inhibin B levels and subsequent inhibition of FSH. Conclusion O-rPRP inhibited galactose-induced excessive atresia and provided an overall protective effect on the ovarian follicles.
Collapse
Affiliation(s)
- Wesam El Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Medhat
- Department of Pharmacology, National Center for Social & Criminological Research, Egypt
| | - Mohamed Shafei
- Obstetrician and Gynecologist at Sidnawy Health Insurance Hospital, Cairo, Egypt.,Dar Alshifa Hospital, Kuwait
| | - Reham Tash
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Anatomy and Embryology, Faculty of Medicine in Rabigh, King Abdulaziz University, Saudi Arabia
| | - Mohamed Elrefai
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Basic Medical Science Department, Faculty of Medicine, Hashemite University, Alzarqa, Jordan
| | - Yousef Shoukry
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, 11 Saudia Buildings, Nozha Street, 11371, Cairo, Egypt
| |
Collapse
|
13
|
Abstract
Galactosemia is the inherited inability to metabolise galactose. The most common results from a lack of galactose 1-phosphate uridylyltransferase activity. The current treatment, removal of galactose from the diet, is inadequate and often fails to prevent long-term complications. Since 2015, three patents have been filed describing novel therapies. These are: the use of aldose reductase inhibitors to reduce cataracts and, possibly, other symptoms; salubrinal to stimulate cellular stress responses; mRNA therapy to increase cellular galactose 1-phosphate uridylyltransferase activity. The viability of all three is supported by academic studies. The potential and drawbacks of all three are discussed and evaluated.
Collapse
|
14
|
An extensive computational approach to analyze and characterize the functional mutations in the galactose-1-phosphate uridyl transferase (GALT) protein responsible for classical galactosemia. Comput Biol Med 2019; 117:103583. [PMID: 32072977 DOI: 10.1016/j.compbiomed.2019.103583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Type I galactosemia is a very rare autosomal recessive genetic metabolic disorder that occurs because of the mutations present in the galactose-1-phosphate uridyl transferase (GALT) gene, resulting in a deficiency of the GALT enzyme. The action of the GALT enzyme is to convert galactose-1-phosphate and uridine diphosphate glucose into glucose-1-phosphate (G1P) and uridine diphosphate-galactose, a crucial second step of the Leloir pathway. A missense mutation in the GALT enzyme leads to variable galactosemia's clinical presentations, ranging from mild to severe. Our study aimed to employ a comprehensive computational pipeline to analyze the most prevalent missense mutations (p.S135L, p.K285 N, p.Q188R, and p.N314D) responsible for galactosemia; these genes could serve as potential targets for chaperone therapy. We analyzed the four mutations through different computational analyses, including amino acid conservation, in silico pathogenicity and stability predictions, and macromolecular simulations (MMS) at 50 ns The stability and pathogenicity predictors showed that the p.Q188R and p.S135L mutants are the most pathogenic and destabilizing. In agreement with these results, MMS analysis demonstrated that the p.Q188R and p.S135L mutants possess higher deviation patterns, reduced compactness, and intramolecular H-bonds of the protein. This could be due to the physicochemical modifications that occurred in the mutants p.S135L and p.Q188R compared to the native. Evolutionary conservation analysis revealed that the most prevalent mutations positions were conserved among different species except N314. The proposed research study is intended to provide a basis for the therapeutic development of drugs and future treatment of classical galactosemia and possibly other genetic diseases using chaperone therapy.
Collapse
|
15
|
Insights into the Pathophysiology of Infertility in Females with Classical Galactosaemia. Int J Mol Sci 2019; 20:ijms20205236. [PMID: 31652573 PMCID: PMC6834160 DOI: 10.3390/ijms20205236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022] Open
Abstract
Classical galactosaemia (CG) (OMIM 230400) is a rare inborn error of galactose metabolism caused by the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT, EC 2.7.7.12). Primary ovarian insufficiency (POI) is the most common long-term complication experienced by females with CG, presenting with hypergonadotrophic hypoestrogenic infertility affecting at least 80% of females despite new-born screening and lifelong galactose dietary restriction. In this review, we describe the hypothesized pathophysiology of POI from CG, implications of timing of the ovarian dysfunction, and the new horizons and future prospects for treatments and fertility preservation.
Collapse
|
16
|
Kotb MA, Mansour L, Shamma RA. Screening for galactosemia: is there a place for it? Int J Gen Med 2019; 12:193-205. [PMID: 31213878 PMCID: PMC6537461 DOI: 10.2147/ijgm.s180706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022] Open
Abstract
Galactose is a hexose essential for production of energy, which has a prebiotic role and is essential for galactosylation of endogenous and exogenous proteins, ceramides, myelin sheath metabolism and others. The inability to metabolize galactose results in galactosemia. Galactosemia is an autosomal recessive disorder that affects newborns who are born asymptomatic, apparently well and healthy, then develop serious morbidity and mortality upon consuming milk that contains galactose. Those with galactosemia have a deficiency of an enzyme: classic galactosemia (type 1) results from severe deficiency of galactose-1-uridylyltransferase, while galactosemia type II results from galactokinase deficiency and type III results from galactose epimerase deficiency. Many countries include neonatal screening for galactosemia in their national newborn screening program; however, others do not, as the condition is rather rare, with an incidence of 1:30,000-1:100,000, and screening may be seen as not cost-effective and logistically demanding. Early detection and intervention by restricting galactose is not curative but is very rewarding, as it prevents deaths, mental retardation, liver cell failure, renal tubular acidosis and neurological sequelae, and may lead to resolution of cataract formation. Hence, national newborn screening for galactosemia prevents serious potential life-long suffering, morbidity and mortality. Recent advances in communication and biotechnology promise facilitation of logistics of neonatal screening, including improved cost-effectiveness.
Collapse
Affiliation(s)
- Magd A Kotb
- Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Lobna Mansour
- Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| | - Radwa A Shamma
- Pediatrics Department, Faculty of Medicine, Kasr Al Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Hu X, Zhang YQ, Lee OW, Liu L, Tang M, Lai K, Boxer MB, Hall MD, Shen M. Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Aided Mol Des 2019; 33:405-417. [PMID: 30806949 DOI: 10.1007/s10822-019-00190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Classic Galactosemia is a potentially lethal autosomal recessive metabolic disorder caused by deficient galactose-1-phosphate uridyltransferase (GALT) that results in the buildup of galactose-1-phosphate (gal-1-p) in cells. Galactokinase (GALK1) is the enzyme responsible for converting galactose into gal-1-p. A pharmacological inhibitor of GALK1 is hypothesized to be therapeutic strategy for treating galactosemia by reducing production of gal-1-p. In this study, we report the discovery of novel series of GALK1 inhibitors by structure-based virtual screening (VS). Followed by an extensive structural modeling and binding mode analysis of the active compounds identified from quantitative high-throughput screen (qHTS), we developed an efficient pharmacophore-based VS approach and applied for a large-scale in silico database screening. Out of 230,000 compounds virtually screened, 350 compounds were cherry-picked based on multi-factor prioritization procedure, and 75 representing a diversity of chemotypes exhibited inhibitory activity in GALK1 biochemical assay. Furthermore, a phenylsulfonamide series with excellent in vitro ADME properties was selected for downstream characterization and demonstrated its ability to lower gal-1-p in primary patient fibroblasts. The compounds described herein should provide a starting point for further development of drug candidates for the GALK1 modulation in the Classic Galactosemia.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ya-Qin Zhang
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Olivia W Lee
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Liu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Manshu Tang
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Kent Lai
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Matthew B Boxer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
- Nexus Discovery Advisors, 7820B Wormans Mill Road, Suite 208, Frederick, MD, 21701, USA
| | - Matthew D Hall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Min Shen
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
18
|
Zinsser VL, Cox C, McAuley M, Hoey EM, Trudgett A, Timson DJ. A galactokinase-like protein from the liver fluke Fasciola hepatica. Exp Parasitol 2018; 192:65-72. [PMID: 30040960 DOI: 10.1016/j.exppara.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
Abstract
Galactokinase catalyses the ATP-dependent phosphorylation of galactose. A galactokinase-like sequence was identified in a Fasciola hepatica EST library. Recombinant expression of the corresponding protein in Escherichia coli resulted in a protein of approximately 50 kDa. The protein is monomeric, like galactokinases from higher animals, yeasts and some bacteria. The protein has no detectable enzymatic activity with galactose or N-acetylgalactosamine as a substrate. However, it does bind to ATP. Molecular modelling predicted that the protein adopts a similar fold to galactokinase and other GHMP kinases. However, a key loop in the active site was identified which may influence the lack of activity. Sequence analysis strongly suggested that this protein (and other proteins annotated as "galactokinase" in the trematodes Schistosoma mansoni and Clonorchis sinensis) are closer to N-acetylgalactosamine kinases. No other galactokinase-like sequences appear to be present in the genomes of these three species. This raises the intriguing possibility that these (and possibly other) trematodes are unable to catabolise galactose through the Leloir pathway due to the lack of a functional galactokinase.
Collapse
Affiliation(s)
- Veronika L Zinsser
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Ciara Cox
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Margaret McAuley
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Elizabeth M Hoey
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Alan Trudgett
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
19
|
Thakur M, Feldman G, Puscheck EE. Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities. J Assist Reprod Genet 2017; 35:3-16. [PMID: 28932969 DOI: 10.1007/s10815-017-1039-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023] Open
Abstract
Classic galactosemia is an inborn error of the metabolism with devastating consequences. Newborn screening has been successful in markedly reducing the acute neonatal symptoms from this disorder. The dramatic response to dietary treatment is one of the major success stories of newborn screening. However, as children with galactosemia achieve adulthood, they face long-term complications. A majority of women with classic galactosemia develop primary ovarian insufficiency and resulting morbidity. The underlying pathophysiology of this complication is not clear. This review focuses on the reproductive issues seen in girls and women with classic galactosemia. Literature on the effects of classic galactosemia on the female reproductive system was reviewed by an extensive Pubmed search (publications from January 1975 to January 2017) using the keywords: galactosemia, ovarian function/dysfunction, primary ovarian insufficiency/failure, FSH, oxidative stress, fertility preservation. In addition, articles cited in the search articles and literature known to the authors was also included in the review. Our understanding of the role of galactose metabolism in the ovary is limited and the pathogenic mechanisms involved in causing primary ovarian insufficiency are unclear. The relative rarity of galactosemia makes it difficult to accumulate data to determine factors defining timing of ovarian dysfunction or treatment/fertility preservation options for this group of women. In this review, we present reproductive challenges faced by women with classic galactosemia, highlight the gaps in our understanding of mechanisms leading to primary ovarian insufficiency in this population, discuss new advances in fertility preservation options, and recommend collaboration between reproductive medicine and metabolic specialists to improve fertility in these women.
Collapse
Affiliation(s)
- Mili Thakur
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,The Fertility Center, 3230 Eagle Park Dr. NE, Suite 100, Grand Rapids, MI, 49525, USA.
| | - Gerald Feldman
- Division of Genetic, Genomic and Metabolic Disorders, Department of Pediatrics and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
20
|
Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 2017; 40:325-342. [PMID: 28281081 PMCID: PMC5391384 DOI: 10.1007/s10545-017-0029-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
Classic galactosemia is a rare inherited disorder of galactose metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme of the Leloir pathway. It presents in the newborn period as a life-threatening disease, whose clinical picture can be resolved by a galactose-restricted diet. The dietary treatment proves, however, insufficient in preventing severe long-term complications, such as cognitive, social and reproductive impairments. Classic galactosemia represents a heavy burden on patients' and their families' lives. After its first description in 1908 and despite intense research in the past century, the exact pathogenic mechanisms underlying galactosemia are still not fully understood. Recently, new important insights on molecular and cellular aspects of galactosemia have been gained, and should open new avenues for the development of novel therapeutic strategies. Moreover, an international galactosemia network has been established, which shall act as a platform for expertise and research in galactosemia. Herein are reviewed some of the latest developments in clinical practice and research findings on classic galactosemia, an enigmatic disorder with many unanswered questions warranting dedicated research.
Collapse
Affiliation(s)
- Ana I Coelho
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Department of Clinical Genetics, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel Rivera
- Metabolism & Genetics Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Galactose and its Metabolites Deteriorate Metaphase II Mouse Oocyte Quality and Subsequent Embryo Development by Disrupting the Spindle Structure. Sci Rep 2017; 7:231. [PMID: 28331195 PMCID: PMC5427935 DOI: 10.1038/s41598-017-00159-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a frequent long-term complication of classic galactosemia. The majority of women with this disorder develop POI, however rare spontaneous pregnancies have been reported. Here, we evaluate the effect of D-galactose and its metabolites, galactitol and galactose 1-phosphate, on oocyte quality as well as embryo development to elucidate the mechanism through which these compounds mediate oocyte deterioration. Metaphase II mouse oocytes (n = 240), with and without cumulus cells (CCs), were exposed for 4 hours to D-galactose (2 μM), galactitol (11 μM) and galactose 1-phosphate (0.1 mM), (corresponding to plasma concentrations in patients on galactose-restricted diet) and compared to controls. The treated oocytes showed decreased quality as a function of significant enhancement in production of reactive oxygen species (ROS) when compared to controls. The presence of CCs offered no protection, as elevated ROS was accompanied by increased apoptosis of CCs. Our results suggested that D-galactose and its metabolites disturbed the spindle structure and chromosomal alignment, which was associated with significant decline in oocyte cleavage and blastocyst development after in-vitro fertilization. The results provide insight into prevention and treatment strategies that may be used to extend the window of fertility in these patients.
Collapse
|
22
|
McAuley M, Huang M, Timson DJ. Insight into the mechanism of galactokinase: Role of a critical glutamate residue and helix/coil transitions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:321-328. [PMID: 27789348 DOI: 10.1016/j.bbapap.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022]
Abstract
Galactokinase, the enzyme which catalyses the first committed step in the Leloir pathway, has attracted interest due to its potential as a biocatalyst and as a possible drug target in the treatment of type I galactosemia. The mechanism of the enzyme is not fully elucidated. Molecular dynamics (MD) simulations of galactokinase with the active site residues Arg-37 and Asp-186 altered predicted that two regions (residues 174-179 and 231-240) had different dynamics as a consequence. Interestingly, the same two regions were also affected by alterations in Arg-105, Glu-174 and Arg-228. These three residues were identified as important in catalysis in previous computational studies on human galactokinase. Alteration of Arg-105 to methionine resulted in a modest reduction in activity with little change in stability. When Arg-228 was changed to methionine, the enzyme's interaction with both ATP and galactose was affected. This variant was significantly less stable than the wild-type protein. Changing Glu-174 to glutamine (but not to aspartate) resulted in no detectable activity and a less stable enzyme. Overall, these combined in silico and in vitro studies demonstrate the importance of a negative charge at position 174 and highlight the critical role of the dynamics in to key regions of the protein. We postulate that these regions may be critical for mediating the enzyme's structure and function.
Collapse
Affiliation(s)
- Margaret McAuley
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Building, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
23
|
Daenzer JMI, Jumbo-Lucioni PP, Hopson ML, Garza KR, Ryan EL, Fridovich-Keil JL. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation. Dis Model Mech 2016; 9:1375-1382. [PMID: 27562100 PMCID: PMC5117221 DOI: 10.1242/dmm.022988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Classic galactosemia (CG) is a potentially lethal inborn error of metabolism that results from the profound loss of galactose-1-phosphate uridylyltransferase (GALT), the second enzyme in the Leloir pathway of galactose metabolism. Neonatal detection and dietary restriction of galactose minimizes or resolves the acute sequelae of CG, but fails to prevent the long-term complications experienced by a majority of patients. One of the substrates of GALT, galactose-1-phosphate (Gal-1P), accumulates to high levels in affected infants, especially following milk exposure, and has been proposed as the key mediator of acute and long-term pathophysiology in CG. However, studies of treated patients demonstrate no association between red blood cell Gal-1P level and long-term outcome severity. Here, we used genetic, epigenetic and environmental manipulations of a Drosophila melanogaster model of CG to test the role of Gal-1P as a candidate mediator of outcome in GALT deficiency. Specifically, we both deleted and knocked down the gene encoding galactokinase (GALK) in control and GALT-null Drosophila, and assessed the acute and long-term outcomes of the resulting animals in the presence and absence of dietary galactose. GALK is the first enzyme in the Leloir pathway of galactose metabolism and is responsible for generating Gal-1P in humans and Drosophila. Our data confirmed that, as expected, loss of GALK lowered or eliminated Gal-1P accumulation in GALT-null animals. However, we saw no concomitant rescue of larval survival or adult climbing or fecundity phenotypes. Instead, we saw that loss of GALK itself was not benign and in some cases phenocopied or exacerbated the outcome seen in GALT-null animals. These findings strongly contradict the long-standing hypothesis that Gal-1P alone underlies pathophysiology of acute and long-term outcomes in GALT-null Drosophila and suggests that other metabolite(s) of galactose, and/or other pathogenic factors, might be involved. Summary: In a GALT-deficient Drosophila model of classic galactosemia, Gal-1P accumulation is not required for compromised larval survival following galactose exposure or adult movement and fecundity phenotypes.
Collapse
Affiliation(s)
- Jennifer M I Daenzer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Marquise L Hopson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kerry R Garza
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily L Ryan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
24
|
Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions. Int J Mol Sci 2016; 17:ijms17071087. [PMID: 27399692 PMCID: PMC4964463 DOI: 10.3390/ijms17071087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions.
Collapse
|
25
|
Epigenetic and SP1-mediated regulation is involved in the repression of galactokinase 1 gene in the liver of neonatal piglets born to betaine-supplemented sows. Eur J Nutr 2016; 56:1899-1909. [PMID: 27250629 DOI: 10.1007/s00394-016-1232-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE In this study, we sought to investigate the effects of maternal betaine supplementation on the expression and regulation of GALK1 gene in the liver of neonatal piglets. METHODS Sixteen sows of two groups were fed control or betaine-supplemented diets (3 g/kg), respectively, throughout the pregnancy. Newborn piglets were individually weighed immediately after birth, and one male piglet close to mean body weight from the same litter was selected and killed before suckling. Serum samples of newborn piglets were analyzed for biochemical indexes, hormone and amino acid levels. Liver samples were analyzed for GALK1 expression by real-time PCR and western blotting, while GALK1 regulational mechanism was analyzed by methylated DNA immunoprecipitation, chromatin immunoprecipitation and microRNAs expression. RESULTS Betaine-exposed neonatal piglets had lower serum concentration of galactose, which was associated with significantly down-regulated hepatic GALK1 expression. The repression of GALK1 mRNA expression was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3 on its promoter. Binding sites of SP1, GR and STAT3 were predicted on GALK1 promoter, and decreased SP1 protein content and lower SP1 binding to GALK1 promoter were detected in the liver of betaine-exposed piglets. Furthermore, the expression of miRNA-149 targeting GALK1 was up-regulated in the liver of betaine-exposed piglets, along with elevated miRNAs-processing enzymes Dicer and Ago2. CONCLUSIONS Our results suggest that maternal dietary betaine supplementation during gestation suppresses GALK1 expression in the liver of neonatal piglets, which involves complex gene regulation mechanisms including DNA methylation, histone modification, miRNAs expression and SP1-mediated transcriptional modulation.
Collapse
|
26
|
McCorvie TJ, Kopec J, Pey AL, Fitzpatrick F, Patel D, Chalk R, Shrestha L, Yue WW. Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase. Hum Mol Genet 2016; 25:2234-2244. [PMID: 27005423 PMCID: PMC5081055 DOI: 10.1093/hmg/ddw091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we present the 1.9 Å resolution crystal structure of human GALT (hGALT) ternary complex, revealing a homodimer arrangement that contains a covalent uridylylated intermediate and glucose-1-phosphate in the active site, as well as a structural zinc-binding site, per monomer. hGALT reveals significant structural differences from bacterial GALT homologues in metal ligation and dimer interactions, and therefore is a zbetter model for understanding the molecular consequences of disease mutations. Both uridylylation and zinc binding influence the stability and aggregation tendency of hGALT. This has implications for disease-associated variants where p.Gln188Arg, the most commonly detected, increases the rate of aggregation in the absence of zinc likely due to its reduced ability to form the uridylylated intermediate. As such our structure serves as a template in the future design of pharmacological chaperone therapies and opens new concepts about the roles of metal binding and activity in protein misfolding by disease-associated mutants.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Jolanta Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada E-18071, Spain
| | - Fiona Fitzpatrick
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Dipali Patel
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Rod Chalk
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Leela Shrestha
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ , UK
| |
Collapse
|
27
|
Piller F, Mongis A, Piller V. Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications. Methods Mol Biol 2016; 1321:335-59. [PMID: 26082233 DOI: 10.1007/978-1-4939-2760-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
By metabolic glyco-engineering cellular glycoconjugates are modified through the incorporation of synthetic monosaccharides which are usually analogues of naturally present sugars. In order to get incorporated, the monosaccharides need to enter the cytoplasm and to be substrates for the enzymes necessary for their transformation into activated sugars, most often nucleotide sugars. These have to be substrates for glycosyltransferases which finally catalyze their incorporation into glycans. Such pathways are difficult to reconstitute in vitro and therefore new monosaccharide analogues have to be tested in tissue culture for their suitability in metabolic glyco-engineering. For this, glycosylation mutants are the most appropriate since they are unable to synthesize specific glycans but through the introduction of the monosaccharide analogues they may express some glycans at the cell surface with the unnatural sugar incorporated. The presence of those glycans can be easily and quantitatively detected by lectin binding or by chemical methods identifying specific sugars. Monosaccharide analogues can also block the pathways leading to sugar incorporation, thus inhibiting the synthesis of glycan structures which is also easily detectable at the cell surface by lectin labeling. The most useful and most frequently employed application of metabolic glyco-engineering is the introduction of reactive groups which can undergo bio-orthogonal click reactions for the efficient labeling of glycans at the surface of live cells.
Collapse
Affiliation(s)
- Friedrich Piller
- Synthetic Protein Chemistry and Glyco-engineering Group, Centre de Biophysique Moléculaire (CNRS UPR 4301), Orléans, France
| | | | | |
Collapse
|
28
|
Tong F, Yang R, Hong F, Qian G, Jiang P, Gao R. A first case report of UDP-galactose-4'-epimerase deficiency in China: genotype and phenotype. J Pediatr Endocrinol Metab 2016; 29:379-83. [PMID: 26565537 DOI: 10.1515/jpem-2014-0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 10/19/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aim of the study was to investigate the incidence and genotype-phenotype characteristics of UDP-galactose-4'-epimerase (GALE) deficiency in newborn screening of Chinese population. METHODS Neonates were screened at the Newborn Screening Center of Zhejiang Province, China for GALE deficiency and their condition was confirmed by testing of the GALE gene and GALE enzyme. Clinical and laboratory follow-up data were recorded. RESULTS A total of 350,023 of newborns were screened; of which, the condition of one female neonate was diagnosed with GALE deficiency, accounting for an incidence rate of approximately 1:350,000 in our sample. The patient with GALE deficiency clinically manifested slight increase in levels of blood galactose (122-251 mg/L), glutamyl endopeptidase (61 U/L), total bile acid (17 μmol/L), and lactic acid (1.8 mmol/L). The neonate was fed with lactose-free powdered milk and followed-up to 1 year. Re-examination showed that all biochemical indicators recovered to normal range, whereas physical and mental development appeared normal without cataract change. The genotype of GALE deficiency was identified as compound heterozygous mutations: c.505C>T (p.R169W) and c.452G>A (p.G151D). The latter was a novel mutation. The GALE enzyme value was 42% of control. CONCLUSIONS GALE deficiency is relatively rare in China. The genotype of compound heterozygous mutations at R169W and G151D clinically manifest as mild-type; it is recommended to limit galactose diet.
Collapse
Affiliation(s)
- Fan Tong
- Department of Genetics and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Fang Hong
- Department of Genetics and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Guling Qian
- Department of Genetics and Metabolism, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | | | - Rui Gao
- Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
29
|
Abstract
Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.
Collapse
|
30
|
Affiliation(s)
- Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| | | |
Collapse
|
31
|
Urrets-Zavalía JA, Espósito E, Garay I, Monti R, Ruiz-Lascano A, Correa L, Serra HM, Grzybowski A. The eye and the skin in nonendocrine metabolic disorders. Clin Dermatol 2015; 34:166-82. [PMID: 26903184 DOI: 10.1016/j.clindermatol.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As metabolism is controlled by the input of genes and the environment, metabolic disorders result from some disturbance in the interaction between genes and environmental factors. Many metabolic disorders consist in congenital enzyme deficiencies, also known as "inborn errors of metabolism," that may be disabling or cause severe illness and death and are predominantly inherited in an autosomal recessive fashion. The deposit in cells and tissues of storage substances from errors in metabolic processes may produce a wide variety of disorders affecting different organs and functions, with different degrees of severity, and often present around the time of birth or early childhood. Distinctive ocular and skin manifestations accompany many metabolic diseases and may provide clues for their diagnosis and evolution.
Collapse
Affiliation(s)
- Julio A Urrets-Zavalía
- Department of Ophthalmology, University Clinic Reina Fabiola, Catholic University of Córdoba, Oncativo 1248, Córdoba (5000), Argentina.
| | - Evangelina Espósito
- Department of Ophthalmology, University Clinic Reina Fabiola, Catholic University of Córdoba, Oncativo 1248, Córdoba (5000), Argentina.
| | - Iliana Garay
- Department of Dermatology, Hospital Privado Centro Médico de Córdoba, Naciones Unidas 346, Córdoba (5016), Argentina.
| | - Rodolfo Monti
- Department of Ophthalmology, University Clinic Reina Fabiola, Catholic University of Córdoba, Oncativo 1248, Córdoba (5000), Argentina.
| | - Alejandro Ruiz-Lascano
- Department of Dermatology, Hospital Privado Centro Médico de Córdoba, Naciones Unidas 346, Córdoba (5016), Argentina.
| | - Leandro Correa
- Department of Ophthalmology, University Clinic Reina Fabiola, Catholic University of Córdoba, Oncativo 1248, Córdoba (5000), Argentina.
| | - Horacio M Serra
- CIBICI-CONICET, Faculty of Chemical Sciences, National University of Córdoba, Haya de la Torre esquina Medina Allende sin número, Ciudad Universitaria, Córdoba (5000), Argentina.
| | - Andrzej Grzybowski
- Department of Ophthalmology, Poznań City Hospital, ul. Szwajcarska 3, 61-285 Poznań, Poland; Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland.
| |
Collapse
|
32
|
Winter GN, Ben-Pazi H. Neurologic sequela in a patient with galactosemia potentially mediated by interleukin-11 dysfunction. J Child Neurol 2015; 30:922-6. [PMID: 25008910 DOI: 10.1177/0883073814540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 11/16/2022]
Abstract
A 16-year-old galactosemic patient, homozygous for the 5.5-kb gene deletion, suffered severe neurologic regression following streptococcal infection. Since the gene deletion includes the promoter of interleukin-11a receptor involved in neuronal apoptosis, we questioned whether this patient had no interleukin-11a receptor activity-resulting in neuronal toxicity during septicemia. We hypothesized that interleukin-11 levels would be elevated because of a loss of feedback induced by the absent interleukin-11Ra receptor complex. To assess this, we compared interleukin-11 levels in the proband and 2 of his siblings with the same genetic deletion, to age-matched controls. No differences were found in interleukin-11 levels between groups. Our study was not carried out during acute infective states, when the disrupted immunoregulation triggered by sepsis is relevant, and is thus limited. In conclusion, although interleukin-11 was not chronically elevated in individuals with galactosemia and 5.5-kb gene deletion, data do not rule out potential interleukin-11 dysfunction during acute infection.
Collapse
Affiliation(s)
- Gidon N Winter
- Pediatric Movement Disorders, Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Hilla Ben-Pazi
- Pediatric Movement Disorders, Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
33
|
Sirr A, Cromie GA, Jeffery EW, Gilbert TL, Ludlow CL, Scott AC, Dudley AM. Allelic variation, aneuploidy, and nongenetic mechanisms suppress a monogenic trait in yeast. Genetics 2015. [PMID: 25398792 DOI: 10.1534/genetics.114.170563/-/dc1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Clinically relevant features of monogenic diseases, including severity of symptoms and age of onset, can vary widely in response to environmental differences as well as to the presence of genetic modifiers affecting the trait's penetrance and expressivity. While a better understanding of modifier loci could lead to treatments for Mendelian diseases, the rarity of individuals harboring both a disease-causing allele and a modifying genotype hinders their study in human populations. We examined the genetic architecture of monogenic trait modifiers using a well-characterized yeast model of the human Mendelian disease classic galactosemia. Yeast strains with loss-of-function mutations in the yeast ortholog (GAL7) of the human disease gene (GALT) fail to grow in the presence of even small amounts of galactose due to accumulation of the same toxic intermediates that poison human cells. To isolate and individually genotype large numbers of the very rare (∼0.1%) galactose-tolerant recombinant progeny from a cross between two gal7Δ parents, we developed a new method, called "FACS-QTL." FACS-QTL improves upon the currently used approaches of bulk segregant analysis and extreme QTL mapping by requiring less genome engineering and strain manipulation as well as maintaining individual genotype information. Our results identified multiple distinct solutions by which the monogenic trait could be suppressed, including genetic and nongenetic mechanisms as well as frequent aneuploidy. Taken together, our results imply that the modifiers of monogenic traits are likely to be genetically complex and heterogeneous.
Collapse
Affiliation(s)
- Amy Sirr
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Gareth A Cromie
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Eric W Jeffery
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Teresa L Gilbert
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Catherine L Ludlow
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Adrian C Scott
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| | - Aimée M Dudley
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122
| |
Collapse
|
34
|
Abstract
Clinically relevant features of monogenic diseases, including severity of symptoms and age of onset, can vary widely in response to environmental differences as well as to the presence of genetic modifiers affecting the trait’s penetrance and expressivity. While a better understanding of modifier loci could lead to treatments for Mendelian diseases, the rarity of individuals harboring both a disease-causing allele and a modifying genotype hinders their study in human populations. We examined the genetic architecture of monogenic trait modifiers using a well-characterized yeast model of the human Mendelian disease classic galactosemia. Yeast strains with loss-of-function mutations in the yeast ortholog (GAL7) of the human disease gene (GALT) fail to grow in the presence of even small amounts of galactose due to accumulation of the same toxic intermediates that poison human cells. To isolate and individually genotype large numbers of the very rare (∼0.1%) galactose-tolerant recombinant progeny from a cross between two gal7Δ parents, we developed a new method, called “FACS-QTL.” FACS-QTL improves upon the currently used approaches of bulk segregant analysis and extreme QTL mapping by requiring less genome engineering and strain manipulation as well as maintaining individual genotype information. Our results identified multiple distinct solutions by which the monogenic trait could be suppressed, including genetic and nongenetic mechanisms as well as frequent aneuploidy. Taken together, our results imply that the modifiers of monogenic traits are likely to be genetically complex and heterogeneous.
Collapse
|
35
|
Abstract
Classic galactosemia is an inherited metabolic disease for which, at present, no therapy is available apart from galactose-restricted diet. However, the efficacy of the diet is questionable, since it is not able to prevent the insurgence of chronic complications later in life. In addition, it is possible that dietary restriction itself could induce negative side effects. Therefore, there is a need for an alternative therapeutic approach that can avert the manifestation of chronic complications in the patients. In this review, the authors describe the development of a novel class of pharmaceutical agents that target the production of a toxic metabolite, galactose-1-phosphate, considered as the main culprit for the cause of the complications, in the patients.
Collapse
|
36
|
Jumbo-Lucioni PP, Ryan EL, Hopson ML, Bishop HM, Weitner T, Tovmasyan A, Spasojevic I, Batinic-Haberle I, Liang Y, Jones DP, Fridovich-Keil JL. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic galactosemia. Antioxid Redox Signal 2014; 20:2361-71. [PMID: 23758052 PMCID: PMC4005492 DOI: 10.1089/ars.2012.5122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS The goal of this study was to use two manganese (Mn)-based superoxide dismutase (SOD) mimics to test the hypothesis that reactive oxygen species contribute to both acute and long-term outcomes in a galactose-1P uridylyltransferase (GALT)-null Drosophila melanogaster model of classic galactosemia. RESULTS We tested the impact of each of two Mn porphyrin SOD mimics, MnTnBuOE-2-PyP(5+), and MnTE-2-PyP(5+), (i) on survival of GALT-null Drosophila larvae reared in the presence versus absence of dietary galactose and (ii) on the severity of a long-term movement defect in GALT-null adult flies. Both SOD mimics conferred a significant survival benefit to GALT-null larvae exposed to galactose but not to controls or to GALT-null larvae reared in the absence of galactose. One mimic, MnTE-2-PyP(5+), also largely rescued a galactose-independent long-term movement defect otherwise seen in adult GALT-null flies. The survival benefit of both SOD mimics occurred despite continued accumulation of elevated galactose-1P in the treated animals, and studies of thiolated proteins demonstrated that in both the presence and absence of dietary galactose MnTE-2-PyP(5+) largely prevented the elevated protein oxidative damage otherwise seen in GALT-null animals relative to controls. INNOVATION AND CONCLUSIONS Our results confirm oxidative stress as a mediator of acute galactose sensitivity in GALT-null Drosophila larvae and demonstrate for the first time that oxidative stress may also contribute to galactose-independent adult outcomes in GALT deficiency. Finally, our results demonstrate for the first time that both MnTnBuOE-2-PyP(5+) and MnTE-2-PyP(5+) are bioavailable and effective when administered through an oral route in a D. melanogaster model of classic galactosemia.
Collapse
Affiliation(s)
| | - Emily L. Ryan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Marquise L. Hopson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Heather M. Bishop
- Summer Undergraduate Research Program at Emory (SURE), Emory University, Atlanta, Georgia
| | - Tin Weitner
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Yongliang Liang
- Pulmonary Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Dean P. Jones
- Pulmonary Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
37
|
Abstract
Galactosemia is an inherited metabolic disease in which galactose is not properly metabolised. There are various theories to explain the molecular pathology, and recent experimental evidence strongly suggests that oxidative stress plays a key role. High galactose diets are damaging to experimental animals and oxidative stress also plays a role in this toxicity which can be alleviated by purple sweet potato colour (PSPC). This plant extract is rich in acetylated anthocyanins which have been shown to quench free radical production. The objective of this Commentary is to advance the hypothesis that PSPC, or compounds therefrom, may be a viable basis for a novel therapy for galactosemia.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, Medical Biology Centre, Institute for Global Food Security, Queen's University Belfast , Belfast , UK
| |
Collapse
|
38
|
De-Souza EA, Pimentel FSA, Machado CM, Martins LS, da-Silva WS, Montero-Lomelí M, Masuda CA. The unfolded protein response has a protective role in yeast models of classic galactosemia. Dis Model Mech 2013; 7:55-61. [PMID: 24077966 PMCID: PMC3882048 DOI: 10.1242/dmm.012641] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.
Collapse
Affiliation(s)
- Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Xu J, Patton D, Jackson SK, Purcell WM. In-vitro maintenance and functionality of primary renal tubules and their application in the study of relative renal toxicity of nephrotoxic drugs. J Pharmacol Toxicol Methods 2013; 68:269-274. [PMID: 23458725 DOI: 10.1016/j.vascn.2013.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/15/2013] [Accepted: 02/17/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The renal tubules play important roles in substance re-absorption from primary urine of the kidney, drug metabolism and gluconeogenesis in fasting and are vulnerable targets of nephrotoxic chemicals. Therefore, an appropriate functional model of renal tubules would enable the study of their functionality and chemical-induced toxicity. We have developed a method to maintain primary renal tubules and sustain their biochemical functionality in culture for an extended period of time. METHODS Primary rat renal tubules were isolated from male rat kidneys by collagenase perfusion and the tubules maintained in culture as a suspension by a gyratory culture method. RESULTS The tubule fragments gradually formed renal tubule aggregates within 6days and were maintained in culture for up to 12days without apparent morphological changes. Biochemical functions including glucose release, galactose uptake and pyruvate uptake were retained for the observed period of 12days after isolation. The aggregates showed significant cytochrome P450 1A1 activity recovery from day 6 after isolation and this was maintained thereafter during the 12-day period of in-vitro culture. A new toxicity test termed the cell spreading inhibition test (CSIT) of renal tubule aggregates was developed to study the effect of toxicants on cell spreading/growth and determine the minimum concentration of each toxicant that caused cell spreading inhibition (CSI-C). The CSI-Cs of selected nephrotoxic drugs were determined as chlorpromazine (60μM), cisplatin (200μM), diclofenac (800μM), valproic acid (10mM), and gentamycin (30mM). DISCUSSION The gyratory method of primary renal tubule aggregate culture can retain tubular cell functions such as glucose release, galactose uptake and allow cytochrome P450 1A1 activity to recover, which are essential for an in-vitro model. Therefore, renal tubule aggregates can be used as a model for studies of biochemical functions of renal tubules and relative renal toxicity of nephrotoxic agents.
Collapse
Affiliation(s)
- Jinsheng Xu
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, UK.
| | - David Patton
- Centre for Research in Biosciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, UK
| | - Simon K Jackson
- School of Biomedical and Biological Sciences, Plymouth University, Plymouth, UK
| | - Wendy M Purcell
- School of Biomedical and Biological Sciences, Plymouth University, Plymouth, UK
| |
Collapse
|
40
|
Chiappori F, Merelli I, Milanesi L, Marabotti A. Static and dynamic interactions between GALK enzyme and known inhibitors: guidelines to design new drugs for galactosemic patients. Eur J Med Chem 2013; 63:423-34. [PMID: 23517731 DOI: 10.1016/j.ejmech.2013.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The search for inhibitors of galactokinase (GALK) enzyme is interesting for their possible therapeutic application capable to alleviate symptoms in people with classic galactosemia. Several high-throughput screenings in the past have found candidate ligands showing a moderate affinity for GALK. Computational analysis of the binding mode of these compounds in comparison to their target protein has been performed only on crystallographic static structures, therefore missing the evolution of the complex during time. In this work, we applied static and dynamics simulations to analyze the interactions between GALK and its potential inhibitors, while taking into account the temporal evolution of the complexes. The collected data allowed us to identify the most important and persistent anchoring points of the known active site and of the newly identified secondary cavity. These data will be of use to increase the specificity and the affinity of a new generation of GALK inhibitors.
Collapse
Affiliation(s)
- Federica Chiappori
- Institute of Biomedical Technologies, Italian National Research Council, Via F.lli Cervi 93, 20090 Segrate, MI, Italy
| | | | | | | |
Collapse
|
41
|
Freeze HH. Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 2013; 288:6936-45. [PMID: 23329837 DOI: 10.1074/jbc.r112.429274] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.
Collapse
Affiliation(s)
- Hudson H Freeze
- Genetic Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
42
|
Jumbo-Lucioni PP, Hopson ML, Hang D, Liang Y, Jones DP, Fridovich-Keil JL. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis Model Mech 2012; 6:84-94. [PMID: 22773758 PMCID: PMC3529341 DOI: 10.1242/dmm.010207] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Classic galactosemia is a genetic disorder that results from profound loss of galactose-1P-uridylyltransferase (GALT). Affected infants experience a rapid escalation of potentially lethal acute symptoms following exposure to milk. Dietary restriction of galactose prevents or resolves the acute sequelae; however, many patients experience profound long-term complications. Despite decades of research, the mechanisms that underlie pathophysiology in classic galactosemia remain unclear. Recently, we developed a Drosophila melanogaster model of classic galactosemia and demonstrated that, like patients, GALT-null Drosophila succumb in development if exposed to galactose but live if maintained on a galactose-restricted diet. Prior models of experimental galactosemia have implicated a possible association between galactose exposure and oxidative stress. Here we describe application of our fly genetic model of galactosemia to the question of whether oxidative stress contributes to the acute galactose sensitivity of GALT-null animals. Our first approach tested the impact of pro- and antioxidant food supplements on the survival of GALT-null and control larvae. We observed a clear pattern: the oxidants paraquat and DMSO each had a negative impact on the survival of mutant but not control animals exposed to galactose, and the antioxidants vitamin C and α-mangostin each had the opposite effect. Biochemical markers also confirmed that galactose and paraquat synergistically increased oxidative stress on all cohorts tested but, interestingly, the mutant animals showed a decreased response relative to controls. Finally, we tested the expression levels of two transcripts responsive to oxidative stress, GSTD6 and GSTE7, in mutant and control larvae exposed to galactose and found that both genes were induced, one by more than 40-fold. Combined, these results implicate oxidative stress and response as contributing factors in the acute galactose sensitivity of GALT-null Drosophila and, by extension, suggest that reactive oxygen species might also contribute to the acute pathophysiology in classic galactosemia.
Collapse
|