1
|
Belur LR, Huber AK, Mantone H, Robertson M, Smith MC, Karlen AD, Kitto KF, Ou L, Whitley CB, Braunlin E, Furcich J, Lund TC, Seelig D, Fairbanks CA, Buss N, Kim KH, McIvor RS. Intrathecal or intravenous AAV9-IDUA/RGX-111 at minimal effective dose prevents cardiac, skeletal and neurologic manifestations of murine MPS I. Mol Ther Methods Clin Dev 2024; 32:101369. [PMID: 39687731 PMCID: PMC11646787 DOI: 10.1016/j.omtm.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare metabolic disorder caused by deficiency of α-L-iduronidase (IDUA), resulting in glycosaminoglycan (GAG) accumulation and multisystemic disease. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy, but these do not address all manifestations of the disease. We infused MPS I mice with an adeno-associated virus 9 (AAV9)-IDUA vector (RGX-111) at doses from 107 to 1010 vector genomes (vg) via intrathecal (IT), intravenous (IV), and intrathecal+intravenous (IT+IV) routes of administration. In mice administered doses ≤109 vg IT or ≤108 vg IV, there was no therapeutic benefit, while in mice administered 109 vg IV, there was a variable increase in IDUA activity with inconclusive neurocognitive and cardiac assessments. However, at the 1010 vg dose, we observed substantial metabolic correction, with restored IDUA levels and normalized tissue GAGs for all treatment groups. Aortic insufficiency was mostly normalized, neurologic deficit was prevented, and microcomputed tomography (micro-CT) analysis showed normalization of skeletal parameters. Histologic analysis showed minimal GAG storage and lysosomal pathology. We thus report a minimal effective dose of 1010 vg (5 × 1011 per kg) RGX-111 for IV and IT routes of administration in MPS I mice, which prevented neurocognitive deficit, cardiac insufficiency, and skeletal manifestations, as a model for genetic therapy of human MPS I.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Avery K. Huber
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Hillary Mantone
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mason Robertson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis MN, USA
| | - Li Ou
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
3
|
MPSI Manifestations and Treatment Outcome: Skeletal Focus. Int J Mol Sci 2022; 23:ijms231911168. [PMID: 36232472 PMCID: PMC9569890 DOI: 10.3390/ijms231911168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients’ quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.
Collapse
|
4
|
Kingma SDK, Jonckheere AI. MPS I: Early diagnosis, bone disease and treatment, where are we now? J Inherit Metab Dis 2021; 44:1289-1310. [PMID: 34480380 DOI: 10.1002/jimd.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by α-L-iduronidase deficiency. Patients present with a broad spectrum of disease severity ranging from the most severe phenotype (Hurler) with devastating neurocognitive decline, bone disease and early death to intermediate (Hurler-Scheie) and more attenuated (Scheie) phenotypes, with a normal life expectancy. The most severely affected patients are preferably treated with hematopoietic stem cell transplantation, which halts the neurocognitive decline. Patients with more attenuated phenotypes are treated with enzyme replacement therapy. There are several challenges to be met in the treatment of MPS I patients. First, to optimize outcome, early recognition of the disease and clinical phenotype is needed to guide decisions on therapeutic strategies. Second, there is thus far no effective treatment available for MPS I bone disease. The pathophysiological mechanisms behind bone disease are largely unknown, limiting the development of effective therapeutic strategies. This article is a state of the art that comprehensively discusses three of the most urgent open issues in MPS I: early diagnosis of MPS I patients, pathophysiology of MPS I bone disease, and emerging therapeutic strategies for MPS I bone disease.
Collapse
Affiliation(s)
- Sandra D K Kingma
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| | - An I Jonckheere
- Centre for Metabolic Diseases, University Hospital Antwerp, University of Antwerp, Edegem, Antwerp, Belgium
| |
Collapse
|
5
|
Bose SK, White BM, Kashyap MV, Dave A, De Bie FR, Li H, Singh K, Menon P, Wang T, Teerdhala S, Swaminathan V, Hartman HA, Jayachandran S, Chandrasekaran P, Musunuru K, Jain R, Frank DB, Zoltick P, Peranteau WH. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat Commun 2021; 12:4291. [PMID: 34257302 PMCID: PMC8277817 DOI: 10.1038/s41467-021-24443-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
In utero base editing has the potential to correct disease-causing mutations before the onset of pathology. Mucopolysaccharidosis type I (MPS-IH, Hurler syndrome) is a lysosomal storage disease (LSD) affecting multiple organs, often leading to early postnatal cardiopulmonary demise. We assessed in utero adeno-associated virus serotype 9 (AAV9) delivery of an adenine base editor (ABE) targeting the Idua G→A (W392X) mutation in the MPS-IH mouse, corresponding to the common IDUA G→A (W402X) mutation in MPS-IH patients. Here we show efficient long-term W392X correction in hepatocytes and cardiomyocytes and low-level editing in the brain. In utero editing was associated with improved survival and amelioration of metabolic, musculoskeletal, and cardiac disease. This proof-of-concept study demonstrates the possibility of efficiently performing therapeutic base editing in multiple organs before birth via a clinically relevant delivery mechanism, highlighting the potential of this approach for MPS-IH and other genetic diseases.
Collapse
Affiliation(s)
- Sourav K Bose
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon M White
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meghana V Kashyap
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felix R De Bie
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haiying Li
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kshitiz Singh
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pallavi Menon
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiankun Wang
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiva Teerdhala
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vishal Swaminathan
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heather A Hartman
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sowmya Jayachandran
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant Chandrasekaran
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Pulmonary Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Zoltick
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William H Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
7
|
Hampe CS, Wesley J, Lund TC, Orchard PJ, Polgreen LE, Eisengart JB, McLoon LK, Cureoglu S, Schachern P, McIvor RS. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021; 11:189. [PMID: 33572941 PMCID: PMC7911293 DOI: 10.3390/biom11020189] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal disease, caused by a deficiency of the enzyme alpha-L-iduronidase (IDUA). IDUA catalyzes the degradation of the glycosaminoglycans dermatan and heparan sulfate (DS and HS, respectively). Lack of the enzyme leads to pathologic accumulation of undegraded HS and DS with subsequent disease manifestations in multiple organs. The disease can be divided into severe (Hurler syndrome) and attenuated (Hurler-Scheie, Scheie) forms. Currently approved treatments consist of enzyme replacement therapy (ERT) and/or hematopoietic stem cell transplantation (HSCT). Patients with attenuated disease are often treated with ERT alone, while the recommended therapy for patients with Hurler syndrome consists of HSCT. While these treatments significantly improve disease manifestations and prolong life, a considerable burden of disease remains. Notably, treatment can partially prevent, but not significantly improve, clinical manifestations, necessitating early diagnosis of disease and commencement of treatment. This review discusses these standard therapies and their impact on common disease manifestations in patients with MPS I. Where relevant, results of animal models of MPS I will be included. Finally, we highlight alternative and emerging treatments for the most common disease manifestations.
Collapse
Affiliation(s)
| | | | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Lynda E. Polgreen
- The Lundquist Institute at Harbor, UCLA Medical Center, Torrance, CA 90502, USA;
| | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (T.C.L.); (P.J.O.); (J.B.E.)
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sebahattin Cureoglu
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - Patricia Schachern
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA; (S.C.); (P.S.)
| | - R. Scott McIvor
- Immusoft Corp, Minneapolis, MN 55413, USA;
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol Ther 2020; 29:489-504. [PMID: 33221437 DOI: 10.1016/j.ymthe.2020.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Collapse
Affiliation(s)
- Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
9
|
Belur LR, Podetz-Pedersen KM, Tran TA, Mesick JA, Singh NM, Riedl M, Vulchanova L, Kozarsky KF, McIvor RS. Intravenous delivery for treatment of mucopolysaccharidosis type I: A comparison of AAV serotypes 9 and rh10. Mol Genet Metab Rep 2020; 24:100604. [PMID: 32461912 PMCID: PMC7242863 DOI: 10.1016/j.ymgmr.2020.100604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/25/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of alpha-L-iduronidase (IDUA), resulting in accumulation of heparan and dermatan sulfate glycosaminoglycans (GAGs). Individuals with the most severe form of the disease (Hurler syndrome) suffer from neurodegeneration, intellectual disability, and death by age 10. Current treatments for this disease include allogeneic hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT). However, these treatments do not address CNS manifestations of the disease. In this study we compared the ability of intravenously administered AAV serotypes 9 and rh10 (AAV9 and AAVrh10) for delivery and expression of the IDUA gene in the CNS. Adult C57BL/6 MPS I mice were infused intravenously with either AAV9 or AAVrh10 vector encoding the human IDUA gene. Treated animals demonstrated supraphysiological levels and widespread restoration of IDUA enzyme activity in the plasma and all organs including the CNS. High levels of IDUA enzyme activity were observed in the plasma, brain and spinal cord ranging from 10 to 100-fold higher than heterozygote controls, while levels in peripheral organs were also high, ranging from 1000 to 10,000-fold higher than control animals. In general, levels of IDUA expression were slightly higher in peripheral organs for AAVrh10 administered animals although these differences were not significant except for the lung. Levels of IDUA expression between AAV 9 and rh10 were roughly equivalent in the brain. Urinary and tissue GAGs were significantly reduced starting at 3 weeks after vector infusion, with restoration of normal GAG levels by the end of the study in animals treated with either AAV9 or rh10. These results demonstrate that non-invasive intravenous AAV9 or AAVrh10-mediated IDUA gene therapy is a potentially effective treatment for both systemic and CNS manifestations of MPS I, with implications for the treatment of other metabolic and neurological diseases as well.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Kelly M. Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Thuy An Tran
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Joshua A. Mesick
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Nathaniel M. Singh
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| | - Maureen Riedl
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, Church St. S.E, Minneapolis, MN 55455, USA
| | - Karen F. Kozarsky
- REGENXBIO Inc., 9600 Blackwell Road, Suite 210, Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Church St. S. E, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Hampe CS, Eisengart JB, Lund TC, Orchard PJ, Swietlicka M, Wesley J, McIvor RS. Mucopolysaccharidosis Type I: A Review of the Natural History and Molecular Pathology. Cells 2020; 9:cells9081838. [PMID: 32764324 PMCID: PMC7463646 DOI: 10.3390/cells9081838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive inherited disease, caused by deficiency of the enzyme α-L-iduronidase, resulting in accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate in organs and tissues. If untreated, patients with the severe phenotype die within the first decade of life. Early diagnosis is crucial to prevent the development of fatal disease manifestations, prominently cardiac and respiratory disease, as well as cognitive impairment. However, the initial symptoms are nonspecific and impede early diagnosis. This review discusses common phenotypic manifestations in the order in which they develop. Similarities and differences in the three animal models for MPS I are highlighted. Earliest symptoms, which present during the first 6 months of life, include hernias, coarse facial features, recurrent rhinitis and/or upper airway obstructions in the absence of infection, and thoracolumbar kyphosis. During the next 6 months, loss of hearing, corneal clouding, and further musculoskeletal dysplasias develop. Finally, late manifestations including lower airway obstructions and cognitive decline emerge. Cardiac symptoms are common in MPS I and can develop in infancy. The underlying pathogenesis is in the intra- and extracellular accumulation of partially degraded GAGs and infiltration of cells with enlarged lysosomes causing tissue expansion and bone deformities. These interfere with the proper arrangement of collagen fibrils, disrupt nerve fibers, and cause devastating secondary pathophysiological cascades including inflammation, oxidative stress, and other disruptions to intracellular and extracellular homeostasis. A greater understanding of the natural history of MPS I will allow early diagnosis and timely management of the disease facilitating better treatment outcomes.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Immusoft Corp, Seattle, WA 98103, USA; (M.S.); (J.W.)
- Correspondence: ; Tel.: +1-206-554-9181
| | - Julie B. Eisengart
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (J.B.E.); (T.C.L.); (P.J.O.)
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (J.B.E.); (T.C.L.); (P.J.O.)
| | - Paul J. Orchard
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; (J.B.E.); (T.C.L.); (P.J.O.)
| | | | - Jacob Wesley
- Immusoft Corp, Seattle, WA 98103, USA; (M.S.); (J.W.)
| | - R. Scott McIvor
- Immusoft Corp, Minneapolis, MN 55413, USA; or
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55413, USA
| |
Collapse
|
11
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
12
|
Poletto E, Pasqualim G, Giugliani R, Matte U, Baldo G. Effects of gene therapy on cardiovascular symptoms of lysosomal storage diseases. Genet Mol Biol 2019; 42:261-285. [PMID: 31132295 PMCID: PMC6687348 DOI: 10.1590/1678-4685-gmb-2018-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited conditions caused by impaired lysosomal function and consequent substrate storage, leading to a range of clinical manifestations, including cardiovascular disease. This may lead to significant symptoms and even cardiac failure, which is an important cause of death among patients. Currently available treatments do not completely correct cardiac involvement in the LSDs. Gene therapy has been tested as a therapeutic alternative with promising results for the heart disease. In this review, we present the results of different approaches of gene therapy for LSDs, mainly in animal models, and its effects in the heart, focusing on protocols with cardiac functional analysis.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Pasqualim
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Ou L, DeKelver RC, Rohde M, Tom S, Radeke R, St Martin SJ, Santiago Y, Sproul S, Przybilla MJ, Koniar BL, Podetz-Pedersen KM, Laoharawee K, Cooksley RD, Meyer KE, Holmes MC, McIvor RS, Wechsler T, Whitley CB. ZFN-Mediated In Vivo Genome Editing Corrects Murine Hurler Syndrome. Mol Ther 2018; 27:178-187. [PMID: 30528089 PMCID: PMC6319315 DOI: 10.1016/j.ymthe.2018.10.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Michelle Rohde
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Susan Tom
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Robert Radeke
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | | | - Yolanda Santiago
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Scott Sproul
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Michelle J Przybilla
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brenda L Koniar
- Research Animal Resources, University of Minnesota, Minneapolis, MN, USA
| | - Kelly M Podetz-Pedersen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kanut Laoharawee
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Renee D Cooksley
- Gene Therapy Center, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen E Meyer
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - Michael C Holmes
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | - R Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Wechsler
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Richmond, CA, USA
| | | |
Collapse
|
14
|
Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res 2018; 84:545-551. [PMID: 30323349 PMCID: PMC6266866 DOI: 10.1038/s41390-018-0095-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND Targeting specific tissues remains a major challenge to the promise of gene therapy. For example, several strategies have failed to target adeno-associated virus 2 (AAV2) vectors, to bone. We have evaluated in vitro and in vivo the affinity of an AAV2 vector to bone matrix, hydroxyapatite (HA) to treat Mucopolysacccharidosis IVA. METHODS To increase vector affinity to HA, an aspartic acid octapeptide (D8) was inserted immediately after the N-terminal region of the VP2 capsid protein. The modified vector had physical titers and transduction efficiencies comparable to the unmodified vector. RESULTS The bone-targeting vector had significantly higher HA affinity and vector genome copies in bone than the unmodified vector. The modified vector was also released from HA, and its enzyme activity in bone, 3 months post infusion, was 4.7-fold higher than the unmodified vector. CONCLUSION Inserting a bone-targeting peptide into the vector capsid increases gene delivery and expression in the bone without decreasing enzyme expression. This approach could be a novel strategy to treat systemic bone diseases.
Collapse
Affiliation(s)
- Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
| |
Collapse
|
15
|
Differences in maxillomandibular morphology among patients with mucopolysaccharidoses I, II, III, IV and VI: a retrospective MRI study. Clin Oral Investig 2017; 22:1541-1549. [PMID: 29046964 DOI: 10.1007/s00784-017-2240-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aims of this study were to analyze the maxillomandibular morphology of patients with mucopolysaccharidosis (MPS) type I, II, III, IVa and VI and to evaluate the craniofacial effect of hematopoietic stem cell transplantation (HCST) in MPS I. MATERIALS AND METHODS One hundred head magnetic resonance images were retrospectively analyzed from 41 MPS and 27 control individuals. The width, height and length of the maxilla and mandible were plotted against age and the means of controls, MPS I, MPS II and MPS III were statistically compared. To determine the effect of HSCT in MPS I, jaw morphology was compared between MPS I patients with full donor chimerism versus patients with mixed/no donor chimerism. RESULTS Maxillary dimensions were not statistically different between the MPS types. The height and length of the mandible were clearly smaller in MPS I as compared to those in controls, MPS II and MPS III. This was associated with progressive resorption of the mandibular condyles in MPS I, which was also observed in MPS II and VI, but not in MPS III or IVa. Whereas the success of HCST did not affect these changes, mandibular width was significantly smaller in MPS I individuals with full donor chimerism. CONCLUSION MPS I individuals have a smaller mandible as compared to control, MPS II and MPS III individuals due to progressive condylar degeneration. These abnormalities are also evident following successful HSCT. CLINICAL RELEVANCE Clinicians should be aware of specific differences in mandibular morphology and condylar involvement among the MPS subtypes.
Collapse
|
16
|
Parini R, Deodato F, Di Rocco M, Lanino E, Locatelli F, Messina C, Rovelli A, Scarpa M. Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis 2017; 12:112. [PMID: 28619065 PMCID: PMC5472858 DOI: 10.1186/s13023-017-0662-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidosis I-Hurler (MPS I-H) is the most severe form of a metabolic genetic disease caused by mutations of IDUA gene encoding the lysosomal α-L-iduronidase enzyme. MPS I-H is a rare, life-threatening disease, evolving in multisystem morbidity including progressive neurological disease, upper airway obstruction, skeletal deformity and cardiomyopathy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the gold standard for the treatment of MPS I-H in patients diagnosed and treated before 2–2.5 years of age, having a high rate of success. Beyond the child’s age, other factors influence the probability of treatment success, including the selection of patients, of graft source and the donor type employed. Enzyme replacement therapy (ERT) with human recombinant laronidase has also been demonstrated to be effective in ameliorating the clinical conditions of pre-transplant MPS I-H patients and in improving HSCT outcome, by peri-transplant co-administration. Nevertheless the long-term clinical outcome even after successful HSCT varies considerably, with a persisting residual disease burden. Other strategies must then be considered to improve the outcome of these patients: one is to pursue early pre-symptomatic diagnosis through newborn screening and another one is the identification of novel treatments. In this perspective, even though newborn screening can be envisaged as a future attractive perspective, presently the best path to be pursued embraces an improved awareness of signs and symptoms of the disorder by primary care providers and pediatricians, in order for the patients’ timely referral to a qualified reference center. Furthermore, sensitive new biochemical markers must be identified to better define the clinical severity of the disease at birth, to support clinical judgement during the follow-up and to compare the effects of the different therapies. A prolonged neuropsychological follow-up of post-transplant cognitive development of children and residual disease burden is needed. In this perspective, the reference center must guarantee a multidisciplinary follow-up with an expert team. Diagnostic and interventional protocols of reference centers should be standardized whenever possible to allow comparison of clinical data and evaluation of results. This review will focus on all these critical issues related to the management of MPS I-H.
Collapse
Affiliation(s)
- Rossella Parini
- UOS Malattie Metaboliche Rare, Clinica Pediatrica dell'Università Milano Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy.
| | - Federica Deodato
- Division of Metabolic Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Edoardo Lanino
- UOSD Centro Trapianto di Midollo Osseo, Dipartimento Ematologia-Oncologia Pediatrica, IRCCS "Giannina Gaslini" Children's Hospital, Genoa, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,University of Pavia, Pavia, Italy
| | - Chiara Messina
- Dipartimento di Pediatria, DAI di Salute della Donna e del Bambino, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Attilio Rovelli
- Centro Trapianto di Midollo Osseo, Clinica Pediatrica dell'Università di Milano-Bicocca, Fondazione MBBM, ASST Monza e Brianza, Monza, Italy
| | - Maurizio Scarpa
- Department for the Woman and Child Health, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Belur LR, Temme A, Podetz-Pedersen KM, Riedl M, Vulchanova L, Robinson N, Hanson LR, Kozarsky KF, Orchard PJ, Frey WH, Low WC, McIvor RS. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I. Hum Gene Ther 2017; 28:576-587. [PMID: 28462595 DOI: 10.1089/hum.2017.187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive, multi-systemic, inherited metabolic disease caused by deficiency of α-L-iduronidase (IDUA). Current treatments for this disease are ineffective in treating central nervous system (CNS) disease due to the inability of lysosomal enzymes to traverse the blood-brain barrier. A noninvasive and effective approach was taken in the treatment of CNS disease by intranasal administration of an IDUA-encoding adeno-associated virus serotype 9 (AAV9) vector. Adult IDUA-deficient mice aged 3 months were instilled intranasally with AAV9-IDUA vector. Animals sacrificed 5 months post instillation exhibited IDUA enzyme activity levels that were up to 50-fold that of wild-type mice in the olfactory bulb, with wild-type levels of enzyme restored in all other parts of the brain. Intranasal treatment with AAV9-IDUA also resulted in the reduction of tissue glycosaminoglycan storage materials in the brain. There was strong IDUA immunofluorescence staining of tissue sections observed in the nasal epithelium and olfactory bulb, but there was no evidence of the presence of transduced cells in other portions of the brain. This indicates that reduction of storage materials most likely occurred as a result of enzyme diffusion from the olfactory bulb and the nasal epithelium into deeper areas of the brain. At 8 months of age, neurocognitive testing using the Barnes maze to assess spatial navigation demonstrated that treated IDUA-deficient mice were no different from normal control animals, while untreated IDUA-deficient mice exhibited significant learning and navigation deficits. This novel, noninvasive strategy for intranasal AAV9-IDUA instillation could potentially be used to treat CNS manifestations of human MPS I.
Collapse
Affiliation(s)
- Lalitha R Belur
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Alexa Temme
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Kelly M Podetz-Pedersen
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| | - Maureen Riedl
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Lucy Vulchanova
- 2 Department of Neuroscience, University of Minnesota , Minneapolis
| | - Nicholas Robinson
- 3 Department of Research Animal Resources, University of Minnesota , Minneapolis
| | - Leah R Hanson
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | | | - Paul J Orchard
- 6 Program in Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota , Minneapolis
| | - William H Frey
- 4 HealthPartners Neurosciences, Regions Hospital , St. Paul, Minneapolis
| | - Walter C Low
- 7 Department of Neurosurgery and Graduate Program in Neuroscience, University of Minnesota , Minneapolis
| | - R Scott McIvor
- 1 Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis
| |
Collapse
|
18
|
Ou L, Przybilla MJ, Whitley CB. Proteomic analysis of mucopolysaccharidosis I mouse brain with two-dimensional polyacrylamide gel electrophoresis. Mol Genet Metab 2017; 120:101-110. [PMID: 27742266 PMCID: PMC5293606 DOI: 10.1016/j.ymgme.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/08/2016] [Accepted: 10/08/2016] [Indexed: 12/19/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is due to deficiency of α-l-iduronidase (IDUA) and subsequent storage of undegraded glycosaminoglycans (GAG). The severe form of the disease, known as Hurler syndrome, is characterized by mental retardation and neurodegeneration of unknown etiology. To identify potential biomarkers and unveil the neuropathology mechanism of MPS I disease, two-dimensional polyacrylamide gel electrophoresis (PAGE) and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) were applied to compare proteome profiling of brains from MPS I and control mice (5-month old). A total of 2055 spots were compared, and 25 spots (corresponding to 50 different proteins) with a fold change ≥3.5 and a p value <0.05 between MPS I and control mice were further analyzed by nanoLC-MS/MS. These altered proteins could be divided into three major groups based on Gene Ontology (GO) terms: proteins involved in metabolism, neurotransmission and cytoskeleton. Cytoskeletal proteins including ACTA1, ACTN4, TUBB4B and DNM1 were significantly downregulated. STXBP1, a regulator of synaptic vesicle fusion and docking was also downregulated, indicating impaired synaptic transmission. Additionally, proteins regulating Ca2+ and H+ homeostasis including ATP6V1B2 and RYR3 were downregulated, which may be related to disrupted autophagic and endocytotic pathways. Notably, there is no altered expression in proteins associated with cell death, ubiquitin or inflammation. These results for the first time highlight the important role of alterations in metabolism pathways, intracellular ionic homeostasis and the cytoskeleton in the neuropathology of MPS I disease. The proteins identified in this study would provide potential biomarkers for diagnostic and therapeutic studies of MPS I.
Collapse
Affiliation(s)
- Li Ou
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Michael J Przybilla
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chester B Whitley
- Gene Therapy Center, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
19
|
Low-dose Gene Therapy Reduces the Frequency of Enzyme Replacement Therapy in a Mouse Model of Lysosomal Storage Disease. Mol Ther 2016; 24:2054-2063. [PMID: 27658524 PMCID: PMC5159621 DOI: 10.1038/mt.2016.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022] Open
Abstract
Enzyme replacement therapy (ERT) is the standard of care for several lysosomal storage diseases (LSDs). ERT, however, requires multiple and costly administrations and has limited efficacy. We recently showed that a single high dose administration of adeno-associated viral vector serotype 8 (AAV2/8) is at least as effective as weekly ERT in a mouse model of mucopolysaccharidosis type VI (MPS VI). However, systemic administration of high doses of AAV might result in both cell-mediated immune responses and insertional mutagenesis. Here we evaluated whether the combination of low doses of AAV2/8 with a less frequent (monthly) than canonical (weekly) ERT schedule may be as effective as the single treatments at high doses or frequent regimen. A greater reduction of both urinary glycosaminoglycans, considered a sensitive biomarker of therapeutic efficacy, and storage in the myocardium and heart valves was observed in mice receiving the combined than the single therapies. Importantly, these levels of correction were similar to those we obtained in a previous study following either high doses of AAV2/8 or weekly ERT. Our data show that low-dose gene therapy can be used as a means to rarify ERT administration, thus reducing both the risks and costs associated with either therapies.
Collapse
|
20
|
Sawamoto K, Suzuki Y, Mackenzie WG, Theroux MC, Pizarro C, Yabe H, Orii KE, Mason RW, Orii T, Tomatsu S. Current therapies for Morquio A syndrome and their clinical outcomes. Expert Opin Orphan Drugs 2016; 4:941-951. [PMID: 28217429 PMCID: PMC5312776 DOI: 10.1080/21678707.2016.1214572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Morquio A syndrome is characterized by a unique skeletal dysplasia, leading to short neck and trunk, pectus carinatum, laxity of joints, kyphoscoliosis, and tracheal obstruction. Cervical spinal cord compression/inability, a restrictive and obstructive airway, and/or bone deformity and imbalance of growth, are life-threatening to Morquio A patients, leading to a high morbidity and mortality. It is critical to review the current therapeutic approaches with respect to their efficacy and limitations. AREAS COVERED Patients with progressive skeletal dysplasia often need to undergo orthopedic surgical interventions in the first two decades of life. Recently, we have treated four patients with a new surgery to correct progressive tracheal obstruction. Enzyme replacement therapy (ERT) has been approved clinically. Cell-based therapies such as hematopoietic stem cell therapy (HSCT) and gene therapy are typically one-time, permanent treatments for enzyme deficiencies. We report here on four Morquio A patients treated with HSCT approved in Japan and followed for at least ten years after treatment. Gene therapy is under investigation on mouse models but not yet available as a therapeutic option. EXPERT OPINION ERT and HSCT in combination with surgical intervention(s) are a therapeutic option for Morquio A; however, the approach for bone and cartilage lesion remains an unmet challenge.
Collapse
Affiliation(s)
- Kazuki Sawamoto
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Yasuyuki Suzuki
- Medical Education Development Center, Gifu University, Gifu, Japan
| | | | - Mary C. Theroux
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Hiromasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Kenji E. Orii
- Division of Neonatal Intensive Care Unit, Gifu University Hospital, Gifu, Japan
| | - Robert W. Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Tadao Orii
- Department of Pediatrics, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Gifu University, Gifu, Japan
| |
Collapse
|
21
|
Abstract
Viral vectors have frequently been applied in gene therapy with the final goal of treating various diseases in the areas of neurology, neurodegeneration, metabolic disease, and cancer. Vectors have been engineered based on AAV, adenoviruses, alphaviruses, herpes simplex viruses, lentiviruses, and retroviruses. Some vectors are suitable for short-term episomal transgene expression, whereas others are integrated into the host cell genome to provide long-term expression. Additionally, hybrid vectors with favorable features from different viruses have been developed. Therapeutic genes of choice have typically been toxic genes such as thymidine kinase, pro-apoptotic genes like Bax, and immunostimulatory genes (for instance, interleukin-12). A large number of animal studies have demonstrated proof of concept of viral gene therapy. Many types of viral vectors have been employed in more than 700 clinical trials that have been carried out or are currently in progress.
Collapse
Affiliation(s)
- Kenneth Lundstrom
- Regulon Inc., Chemin des Croisettes 22, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
22
|
Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis 2016; 39:189-202. [PMID: 26578156 PMCID: PMC4754332 DOI: 10.1007/s10545-015-9900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/03/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA.
- Skeletal Dysplasia Lab, Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| | - Isabella Azario
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA
| | - Alice Silvia Pievani
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, Via Pergolesi, 33, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
23
|
Mendez DC, Stover AE, Rangel AD, Brick DJ, Nethercott HE, Torres MA, Khalid O, Wong AM, Cooper JD, Jester JV, Monuki ES, McGuire C, Le SQ, Kan SH, Dickson PI, Schwartz PH. A novel, long-lived, and highly engraftable immunodeficient mouse model of mucopolysaccharidosis type I. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:14068. [PMID: 26052536 PMCID: PMC4449030 DOI: 10.1038/mtm.2014.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 02/06/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is an inherited α-L-iduronidase (IDUA, I) deficiency in which glycosaminoglycan (GAG) accumulation causes progressive multisystem organ dysfunction, neurological impairment, and death. Current MPS I mouse models, based on a NOD/SCID (NS) background, are short-lived, providing a very narrow window to assess the long-term efficacy of therapeutic interventions. They also develop thymic lymphomas, making the assessment of potential tumorigenicity of human stem cell transplantation problematic. We therefore developed a new MPS I model based on a NOD/SCID/Il2rγ (NSG) background. This model lives longer than 1 year and is tumor-free during that time. NSG MPS I (NSGI) mice exhibit the typical phenotypic features of MPS I including coarsened fur and facial features, reduced/abnormal gait, kyphosis, and corneal clouding. IDUA is undetectable in all tissues examined while GAG levels are dramatically higher in most tissues. NSGI brain shows a significant inflammatory response and prominent gliosis. Neurological MPS I manifestations are evidenced by impaired performance in behavioral tests. Human neural and hematopoietic stem cells were found to readily engraft, with human cells detectable for at least 1 year posttransplantation. This new MPS I model is thus suitable for preclinical testing of novel pluripotent stem cell-based therapy approaches.
Collapse
Affiliation(s)
- Daniel C Mendez
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Alexander E Stover
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Anthony D Rangel
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - David J Brick
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Hubert E Nethercott
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Marissa A Torres
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Omar Khalid
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| | - Andrew Ms Wong
- King's College, London, Institute of Psychiatry, Psychology & Neuroscience , London, UK
| | - Jonathan D Cooper
- King's College, London, Institute of Psychiatry, Psychology & Neuroscience , London, UK
| | - James V Jester
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine , Irvine, California, USA ; Department of Biomedical Engineering, Gavin Herbert Eye Institute, University of California, Irvine , Irvine, California, USA
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, California, USA ; Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine , Irvine, California, USA
| | - Cian McGuire
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Steven Q Le
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, California, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Centers for Neuroscience and Translational Research, CHOC Children's Research Institute , Orange, California, USA
| |
Collapse
|
24
|
Baldo G, Lorenzini DM, Santos DS, Mayer FQ, Vitry S, Bigou S, Heard JM, Matte U, Giugliani R. Shotgun proteomics reveals possible mechanisms for cognitive impairment in Mucopolysaccharidosis I mice. Mol Genet Metab 2015; 114:138-45. [PMID: 25541102 DOI: 10.1016/j.ymgme.2014.12.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is due to deficient alpha-L-iduronidase (IDUA) which leads to storage of undegraded glycosaminoglycans (GAG). The severe form of the disease is characterized by mental retardation of unknown etiology. Trying to unveil the mechanisms that lead to cognitive impairment in MPS I, we studied alterations in the proteome from MPS I mouse hippocampus. Eight-month old mice presented increased LAMP-1 expression, GAG storage in neurons and glial cells, and impaired aversive and non-aversive memory. Shotgun proteomics was performed and 297 proteins were identified. Of those, 32 were differentially expressed. We found elevation in proteins such as cathepsins B and D; however their increase did not lead to cell death in MPS I brains. Glial fibrillary acid protein (GFAP) was markedly elevated, and immunohistochemistry confirmed a neuroinflammatory process that could be responsible for neuronal dysfunction. We didn't observe any differences in ubiquitin expression, as well as in other proteins related to protein folding, suggesting that the ubiquitin system is working properly. Finally, we observed alterations in several proteins involved in synaptic plasticity, including overexpression of post synaptic density-95 (PSD95) and reduction of microtubule-associated proteins 1A and 1B. These results together suggest that the cognitive impairment in MPS I mice is not due to massive cell death, but rather to neuronal dysfunction caused by multiple processes, including neuroinflammation and alterations in synaptic plasticity.
Collapse
Affiliation(s)
- Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil.
| | - Daniel Macedo Lorenzini
- Research Center in Molecular and Functional Biology, National Institute of Science and Technology on Tuberculosis, Pontifícia Universidade Católica do Rio Grande do Sul, RS, Brazil
| | - Diogenes Santiago Santos
- Research Center in Molecular and Functional Biology, National Institute of Science and Technology on Tuberculosis, Pontifícia Universidade Católica do Rio Grande do Sul, RS, Brazil
| | | | - Sandrine Vitry
- Retrovirus and Genetic Transfer Unit, Department of Neuroscience, Pasteur Institute, Paris, France
| | - Stephanie Bigou
- Retrovirus and Genetic Transfer Unit, Department of Neuroscience, Pasteur Institute, Paris, France
| | - Jean Michael Heard
- Retrovirus and Genetic Transfer Unit, Department of Neuroscience, Pasteur Institute, Paris, France
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil; Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil; Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, RS, Brazil
| |
Collapse
|
25
|
Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015; 33:73-80. [PMID: 25357182 PMCID: PMC4289409 DOI: 10.1038/nbt.3081] [Citation(s) in RCA: 1069] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022]
Abstract
Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcription activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of unmodified Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
Collapse
Affiliation(s)
- John A. Zuris
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - David B. Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Yilai Shu
- Department of Otolaryngology, Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Otology and Skull Base Surgery, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Health Ministry for Hearing Medicine, Shanghai, China
| | - John P. Guilinger
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jeffrey L. Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Johnny H. Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology, Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - David R. Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Wolf DA, Banerjee S, Hackett PB, Whitley CB, McIvor RS, Low WC. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Expert Opin Drug Deliv 2014; 12:283-96. [PMID: 25510418 DOI: 10.1517/17425247.2015.966682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS) are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent, the nervous system is not adequately responsive to current therapeutic approaches. AREAS COVERED Recent advances in gene therapy show great promise for treating MPS. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of MPS. EXPERT OPINION Gene therapy for treating neurological manifestations of MPS can be achieved by intraventricular, intrathecal, intranasal and systemic administrations. The intraventricular route of administration appears to provide the most widespread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain. The systemic route of delivery via intravenous infusion can also achieve widespread delivery to the CNS; however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of MPS.
Collapse
Affiliation(s)
- Daniel A Wolf
- University of Minnesota, Department of Genetics, Cell Biology, and Development , Minneapolis, MN 55455 , USA
| | | | | | | | | | | |
Collapse
|
27
|
Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I. Blood 2014; 125:1662-71. [PMID: 25298037 DOI: 10.1182/blood-2014-06-581207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear.
Collapse
|
28
|
Janson CG, Romanova LG, Leone P, Nan Z, Belur L, McIvor RS, Low WC. Comparison of Endovascular and Intraventricular Gene Therapy With Adeno-Associated Virus-α-L-Iduronidase for Hurler Disease. Neurosurgery 2014; 74:99-111. [PMID: 24077583 DOI: 10.1227/neu.0000000000000157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hurler disease (mucopolysaccharidosis type I [MPS-I]) is an inherited metabolic disorder characterized by deficiency of the lysosomal enzyme α-L-iduronidase (IDUA). Currently, the only therapies for MPS-I, enzyme replacement and hematopoietic stem cell transplantation, are generally ineffective for central nervous system manifestations. OBJECTIVE To test whether brain-targeted gene therapy with recombinant adeno-associated virus (rAAV5)-IDUA vectors in an MPS-I transgenic mouse model would reverse the pathological hallmarks. METHODS Gene therapy approaches were compared using intraventricular or endovascular delivery with a marker (rAAV5-green fluorescent protein) or therapeutic (rAAV5-IDUA) vector. To improve the efficiency of brain delivery, we tested different applications of hyperosmolar mannitol to disrupt the blood-brain barrier or ependymal-brain interface. RESULTS Intraventricular delivery of 1 × 10 viral particles of rAAV5-IDUA with systemic 5 g/kg mannitol co-administration resulted in IDUA expression throughout the brain, with global enzyme activity >200% of the baseline level in age-matched, wild-type mice. Endovascular delivery of 1 × 10 viral particles of rAAV5-IDUA to the carotid artery with 29.1% mannitol blood-brain barrier disruption resulted in mainly ipsilateral brain IDUA expression and ipsilateral brain enzyme activity 42% of that in wild-type mice. Quantitative assays for glycosaminoglycans showed a significant decrease in both hemispheres after intraventricular delivery and in the ipsilateral hemisphere after endovascular delivery compared with untreated MPS-I mice. Immunohistochemistry for ganglioside GM3, another disease marker, showed reversal of neuronal inclusions in areas with IDUA co-expression in both delivery methods. CONCLUSION Physiologically relevant biochemical correction is possible with neurosurgical or endovascular gene therapy approaches for MPS-I. Intraventricular or endovascular delivery of rAAV5-IDUA was effective in reversing brain pathology, but in the latter method, effects were limited to the ipsilateral hemisphere.
Collapse
Affiliation(s)
- Christopher G Janson
- *Department of Neurosurgery, ‡Department of Neurology, ¶Department of Medicine, and ‖Genetics and Cell Biology, University of Minnesota, School of Medicine §Cell & Gene Therapy Center, University of Medicine and Dentistry of New Jersey School of Medicine
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferla R, Claudiani P, Cotugno G, Saccone P, De Leonibus E, Auricchio A. Similar therapeutic efficacy between a single administration of gene therapy and multiple administrations of recombinant enzyme in a mouse model of lysosomal storage disease. Hum Gene Ther 2014; 25:609-18. [PMID: 24725025 DOI: 10.1089/hum.2013.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enzyme replacement therapy (ERT) has become the standard of care for several lysosomal storage disorders (LSDs). Despite ERT's undisputed efficacy, the requirement for multiple and costly administrations as well as ERT's limited improvement of some LSD manifestations prompts the search for better therapies. Using a mouse model of mucopolysaccharidosis VI, we compared the efficacy of a single intravascular administration of an adeno-associated viral vector targeting liver to weekly infusions of human recombinant enzyme at the same doses used in mucopolysaccharidosis VI patients. While gene therapy results in increased and stable levels of circulating enzyme up to 1 year after vector administration, ERT has typical peak-and-drop serum kinetics. Both therapies similarly reduced glycosaminoglycan levels in urine and tissues including heart valves and myocardium, with gene therapy improving skeletal skull abnormalities slightly better, although not significantly, than ERT. Both therapies seem to similarly improve animal motor performance, with gene therapy possibly associated with less animal distress. Thus, a single vector administration that converts liver into a factory organ for systemic secretion of therapeutic proteins is at least as effective as ERT in a mouse model of LSD, potentially eliminating problems with compliance and costs. Only testing in humans will prove whether this holds true in a clinical setting.
Collapse
Affiliation(s)
- Rita Ferla
- 1 Telethon Institute of Genetics and Medicine , 80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Ou L, Herzog TL, Wilmot CM, Whitley CB. Standardization of α-L-iduronidase enzyme assay with Michaelis-Menten kinetics. Mol Genet Metab 2014; 111:113-5. [PMID: 24332804 PMCID: PMC4014300 DOI: 10.1016/j.ymgme.2013.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/30/2022]
Abstract
The lack of methodological uniformity in enzyme assays has been a long-standing difficulty, a problem for bench researchers, for the interpretation of clinical diagnostic tests, and an issue for investigational drug review. Illustrative of the problem, α-L-iduronidase enzyme catalytic activity is frequently measured with the substrate 4-methylumbelliferyl-α-L-iduronide (4MU-iduronide); however, final substrate concentrations used in different assays vary greatly, ranging from 25 μM to 1425 μM (Km ≈ 180 μM) making it difficult to compare results between laboratories. In this study, α-L-iduronidase was assayed with 15 different substrate concentrations. The resulting activity levels from the same specimens varied greatly with different substrate concentrations but, as a group, obeyed the expectations of Michaelis-Menten kinetics. Therefore, for the sake of improved comparability, it is proposed that α-L-iduronidase enzyme assays should be conducted either (1) under substrate saturating conditions; or (2) when concentrations are significantly below substrate saturation, with results standardized by arithmetic adjustment that considers Michaelis-Menten kinetics. The approach can be generalized to many other enzyme assays.
Collapse
Affiliation(s)
- Li Ou
- Department of Genetics, Cell Biology and Development, PWB 13-146, 516 Delaware Str SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, PWB 13-146, 516 Delaware Str SE, Minneapolis, MN 55455, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Tyler L Herzog
- Department of Biochemistry, Molecular Biology and Biophysics, 5-120 NHH, 312 Church Str SE, Minneapolis, MN 55455, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA
| | - Carrie M Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, 5-120 NHH, 312 Church Str SE, Minneapolis, MN 55455, USA
| | - Chester B Whitley
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, PWB 13-146, 516 Delaware Str SE, Minneapolis, MN 55455, USA; Gene Therapy Center, Department of Pediatrics, University of Minnesota, USA.
| |
Collapse
|
31
|
Shi Y, Falahati R, Zhang J, Flebbe-Rehwaldt L, Gaensler KML. Role of antigen-specific regulatory CD4+CD25+ T cells in tolerance induction after neonatal IP administration of AAV-hF.IX. Gene Ther 2013; 20:987-96. [PMID: 23759700 PMCID: PMC3795474 DOI: 10.1038/gt.2013.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 01/07/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
Neonatal AAV8-mediated Factor IX (F.IX) gene delivery was applied as a model for exploring mechanisms of tolerance induction during immune ontogeny. Intraperitoneal delivery of AAV8/ Factor IX (hF.IX) during weeks 1–4 of life, over a 20-fold dose range, directed stable hF.IX expression, correction of coagulopathy in F.IX-null hemophilia B mice, and induction of tolerance to hF.IX; however, only primary injection at 1–2 days of life enabled increasing AAV8-mediated hF.IX expression after re-administration, due to the absence of anti-viral capsid antibodies. Adoptive splenocyte transfer from tolerized mice demonstrated induction of CD4+CD25+ T regulatory (Treg) populations that specifically suppressed anti-hF.IX antibody responses, but not responses to third party antigen. Induction of hF.IX antibodies was only observed in tolerized mice after in vivo CD4+CD25+ cell depletion and hF.IX challenge. Thus, primary injection of AAV during a critical period in the first week of life does not elicit antiviral responses, enabling re-administration of AAV and augmentation of hF.IX levels. Expansion of hF.IX-specific CD4+CD25+ Tregs has a major role in tolerance induction early in immune ontogeny. Neonatal gene transfer provides a useful approach for defining the ontogeny of immune responses and may suggest approaches for inducing tolerance in the context of genetic therapies.
Collapse
Affiliation(s)
- Y Shi
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
32
|
Baldo G, Wozniak DF, Ohlemiller KK, Zhang Y, Giugliani R, Ponder KP. Retroviral-vector-mediated gene therapy to mucopolysaccharidosis I mice improves sensorimotor impairments and other behavioral deficits. J Inherit Metab Dis 2013; 36:499-512. [PMID: 22983812 PMCID: PMC3548941 DOI: 10.1007/s10545-012-9530-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 12/20/2022]
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to α-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Systemic gene therapy to MPS I mice can reduce lysosomal storage in the brain, but few data are available regarding the effect upon behavioral function. We investigated the effect of gene therapy with a long-terminal-repeat (LTR)-intact retroviral vector or a self-inactivating (SIN) vector on behavioral function in MPS I mice. The LTR vector was injected intravenously to 6-week-old MPS I mice, and the SIN vector was given to neonatal or 6-week-old mice. Adult-LTR, neonatal-SIN, and adult-SIN-treated mice achieved serum IDUA activity of 235 ± 20 (84-fold normal), 127 ± 10, and 71 ± 7 U/ml, respectively. All groups had reduction in histochemical evidence of lysosomal storage in the brain, with the adult-LTR group showing the best response, while adult-LTR mice had reductions in lysosomal storage in the cristae of the vestibular system. Behavioral evaluation was performed at 8 months. Untreated MPS I mice had a markedly reduced ability to hold onto an inverted screen or climb down a pole. LTR-vector-treated mice had marked improvements on both of these tests, whereas neonatal-SIN mice showed improvement in the pole test. We conclude that both vectors can reduce brain disease in MPS I mice, with the LTR vector achieving higher serum IDUA levels and better correction. Vestibular abnormalities may contribute to mobility problems in patients with MPS I, and gene therapy may reduce symptoms.
Collapse
Affiliation(s)
- Guilherme Baldo
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil
| | - David F. Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis MO, USA
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis MO, USA
| | - Yanming Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, RS, Brazil
| | - Katherine P. Ponder
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
33
|
Schuster DJ, Dykstra JA, Riedl MS, Kitto KF, Honda CN, McIvor RS, Fairbanks CA, Vulchanova L. Visualization of spinal afferent innervation in the mouse colon by AAV8-mediated GFP expression. Neurogastroenterol Motil 2013; 25:e89-100. [PMID: 23252426 PMCID: PMC3552078 DOI: 10.1111/nmo.12057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Primary afferent neurons whose cell bodies reside in thoracolumbar and lumbosacral dorsal root ganglia (DRG) innervate colon and transmit sensory signals from colon to spinal cord under normal conditions and conditions of visceral hypersensitivity. Histologically, these extrinsic afferents cannot be differentiated from intrinsic fibers of enteric neurons because all known markers label neurons of both populations. Adeno-associated virus (AAV) vectors are capable of transducing DRG neurons after intrathecal administration. We hypothesized that AAV-driven overexpression of green fluorescent protein (GFP) in DRG would enable visualization of extrinsic spinal afferents in colon separately from enteric neurons. METHODS Recombinant AAV serotype 8 (rAAV8) vector carrying the GFP gene was delivered via direct lumbar puncture. Green fluorescent protein labeling in DRG and colon was examined using immunohistochemistry. KEY RESULTS Analysis of colon from rAAV8-GFP-treated mice demonstrated GFP-immunoreactivity (GFP-ir) within mesenteric nerves, smooth muscle layers, myenteric plexus, submucosa, and mucosa, but not in cell bodies of enteric neurons. Notably, GFP-ir colocalized with CGRP and TRPV1 in mucosa, myenteric plexus, and globular-like clusters surrounding nuclei within myenteric ganglia. In addition, GFP-positive fibers were observed in close association with blood vessels of mucosa and submucosa. Analysis of GFP-ir in thoracolumbar and lumbosacral DRG revealed that levels of expression in colon and L6 DRG appeared to be related. CONCLUSIONS & INFERENCES These results demonstrate the feasibility of gene transfer to mouse colonic spinal sensory neurons using intrathecal delivery of AAV vectors and the utility of this approach for histological analysis of spinal afferent nerve fibers within colon.
Collapse
Affiliation(s)
- Daniel J. Schuster
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455
| | - Jaclyn A. Dykstra
- Comparative and Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108
| | - Maureen S. Riedl
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455
| | - Kelley F. Kitto
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | | | - R. Scott McIvor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Carolyn A. Fairbanks
- Department of Neuroscience University of Minnesota, Minneapolis, MN 55455,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Lucy Vulchanova
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN55108
| |
Collapse
|
34
|
Baldo G, Mayer FQ, Martinelli B, Dilda A, Meyer F, Ponder KP, Giugliani R, Matte U. Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice. Behav Brain Res 2012; 233:169-75. [PMID: 22580166 DOI: 10.1016/j.bbr.2012.04.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
Mucopolysaccharidosis (MPS) type I (Hurler syndrome) is a lysosomal storage disorder characterized by deficiency of alpha-L-iduronidase (IDUA), intracellular storage of glycosaminoglycans (GAGs) and progressive neurological pathology. The MPS I mouse model provides an opportunity to study the pathophysiology of this disorder and to determine the efficacy of novel therapies. Previous work has demonstrated a series of abnormalities in MPS I mice behavior, but so far some important brain functions have not been addressed. Therefore, in the present study we aimed to determine if MPS I mice have motor abnormalities, and at what age they become detectable. MPS I and normal male mice from 2 to 8 months of age were tested in open-field for locomotor activity, hindlimb gait analysis and hang wire performance. We were able to detect a progressive reduction in the crossings and rearings in the open field test and in the hang wire test in MPS I mice from 4 months, as well as a reduction in the gait length at 8 months. Histological examination of 8-month old mice cortex and cerebellum revealed storage of GAGs in Purkinje cells and neuroinflammation, evidenced by GFAP immunostaining. However TUNEL staining was negative, suggesting that death does not occur. Our findings suggest that MPS I mice have a progressive motor dysfunction, which is not caused by loss of neuron cells but might be related to a neuroinflammatory process.
Collapse
Affiliation(s)
- Guilherme Baldo
- Gene Therapy Center - Research Center - Hospital de Clinicas de Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Treatment of adult MPSI mouse brains with IDUA-expressing mesenchymal stem cells decreases GAG deposition and improves exploratory behavior. GENETIC VACCINES AND THERAPY 2012; 10:2. [PMID: 22520214 PMCID: PMC3404940 DOI: 10.1186/1479-0556-10-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Background Mucopolysaccharidosis type I (MPSI) is caused by a deficiency in alpha-L iduronidase (IDUA), which leads to lysosomal accumulation of the glycosaminoglycans (GAGs) dermatan and heparan sulfate. While the currently available therapies have good systemic effects, they only minimally affect the neurodegenerative process. Based on the neuroprotective and tissue regenerative properties of mesenchymal stem cells (MSCs), we hypothesized that the administration of MSCs transduced with a murine leukemia virus (MLV) vector expressing IDUA to IDUA KO mouse brains could reduce GAG deposition in the brain and, as a result, improve neurofunctionality, as measured by exploratory activity. Methods MSCs infected with an MLV vector encoding IDUA were injected into the left ventricle of the brain of 12- or 25-month-old IDUA KO mice. The behavior of the treated mice in the elevated plus maze and open field tests was observed for 1 to 2 months. Following these observations, the brains were removed for biochemical and histological analyses. Results After 1 or 2 months of observation, the presence of the transgene in the brain tissue of almost all of the treated mice was confirmed using PCR, and a significant reduction in GAG deposition was observed. This reduction was directly reflected in an improvement in exploratory activity in the open field and the elevated plus maze tests. Despite these behavioral improvements and the reduction in GAG deposition, IDUA activity was undetectable in these samples. Overall, these results indicate that while the initial level of IDUA was not sustainable for a month, it was enough to reduce and maintain low GAG deposition and improve the exploratory activity for months. Conclusions These data show that gene therapy, via the direct injection of IDUA-expressing MSCs into the brain, is an effective way to treat neurodegeneration in MPSI mice.
Collapse
|
36
|
Hawkins-Salsbury JA, Reddy AS, Sands MS. Combination therapies for lysosomal storage disease: is the whole greater than the sum of its parts? Hum Mol Genet 2011; 20:R54-60. [PMID: 21421999 DOI: 10.1093/hmg/ddr112] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Lysosomal storage diseases (LSDs), as a group, are among the most common inherited diseases affecting children. The primary defect is typically a genetic deficiency of one of the lysosomal enzymes, often causing accumulation of undegraded substrates within the lysosome. This accumulation causes numerous secondary effects that contribute to the disease phenotype. Viral-mediated gene therapy (GT) can supply a persistent source of the deficient enzyme. However, with some notable exceptions, GT has been only modestly successful as a single approach. Recently, various therapies have been combined in order to more effectively target the diverse pathogenic mechanisms at work in LSDs. One strategy that has shown promise involves providing a persistent source of the deficient enzyme (GT, stem cell transplantation) while targeting a secondary consequence of disease with a more transient approach (substrate reduction, anti-inflammatories, pharmacological mimetic, etc.). This general strategy has resulted in both additive and synergistic effects. Interestingly, some therapeutic approaches by themselves provide essentially no clinical benefit but contribute greatly to the overall efficacy when used in combination with other treatments. Unfortunately, no therapeutic combination is universally effective. This adds to the difficulty in predicting and identifying combinations that will be most effective for individual LSDs. A better understanding of both pathogenic and therapeutic mechanisms is necessary in order to identify potentially successful combinations. While a single treatment would be ideal, the complex nature of these diseases may unavoidably limit the efficacy of single therapies. In order to more successfully treat LSDs, a shift in focus towards a combination therapy may be necessary.
Collapse
Affiliation(s)
- Jacqueline A Hawkins-Salsbury
- Department of Internal Medicine, Washington University, Campus PO Box 8007, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Wolf DA, Lenander AW, Nan Z, Belur LR, Whitley CB, Gupta P, Low WC, McIvor RS. Direct gene transfer to the CNS prevents emergence of neurologic disease in a murine model of mucopolysaccharidosis type I. Neurobiol Dis 2011; 43:123-33. [PMID: 21397026 DOI: 10.1016/j.nbd.2011.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 12/31/2022] Open
Abstract
The mucopolysaccharidoses (MPSs) are a group of 11 storage diseases caused by disruptions in glycosaminoglycan (GAG) catabolism, leading to their accumulation in lysosomes. Resultant multisystemic disease is manifested by growth delay, hepatosplenomegaly, skeletal dysplasias, cardiopulmonary obstruction, and, in severe MPS I, II, III, and VII, progressive neurocognitive decline. Some MPSs are treated by allogeneic hematopoietic stem cell transplantation (HSCT) and/or recombinant enzyme replacement therapy (ERT), but effectiveness is limited by central nervous system (CNS) access across the blood-brain barrier. To provide a high level of gene product to the CNS, we tested neonatal intracerebroventricular (ICV) infusion of an adeno-associated virus (AAV) serotype 8 vector transducing the human α-L-iduronidase gene in MPS I mice. Supranormal levels of iduronidase activity in the brain (including 40× normal levels in the hippocampus) were associated with transduction of neurons in motor and limbic areas identifiable by immunofluorescence staining. The treatment prevented accumulation of GAG and GM3 ganglioside storage materials and emergence of neurocognitive dysfunction in a modified Morris water maze test. The results suggest the potential of improved outcome for MPSs and other neurological diseases when a high level of gene expression can be achieved by direct, early administration of vector to the CNS.
Collapse
Affiliation(s)
- Daniel A Wolf
- Department of Genetics, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dierenfeld AD, McEntee MF, Vogler CA, Vite CH, Chen AH, Passage M, Le S, Shah S, Jens JK, Snella EM, Kline KL, Parkes JD, Ware WA, Moran LE, Fales-Williams AJ, Wengert JA, Whitley RD, Betts DM, Boal AM, Riedesel EA, Gross W, Ellinwood NM, Dickson PI. Replacing the enzyme alpha-L-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med 2011; 2:60ra89. [PMID: 21123810 DOI: 10.1126/scitranslmed.3001380] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by loss of activity of α-l-iduronidase and attendant accumulation of the glycosaminoglycans dermatan sulfate and heparan sulfate. Current treatments are suboptimal and do not address residual disease including corneal clouding, skeletal deformities, valvular heart disease, and cognitive impairment. We treated neonatal dogs with MPS I with intravenous recombinant α-l-iduronidase replacement therapy at the conventional 0.58 mg/kg or a higher 1.57 mg/kg weekly dose for 56 to 81 weeks. In contrast to previous results in animals and patients treated at a later age, the dogs failed to mount an antibody response to enzyme therapy, consistent with the induction of immune tolerance in neonates. The higher dose of enzyme led to complete normalization of lysosomal storage in the liver, spleen, lung, kidney, synovium, and myocardium, as well as in the hard-to-treat mitral valve. Cardiac biochemistry and function were restored, and there were improvements in skeletal disease as shown by clinical and radiographic assessments. Glycosaminoglycan levels in the brain were normalized after intravenous enzyme therapy, in the presence or absence of intrathecal administration of recombinant α-l-iduronidase. Histopathological evidence of glycosaminoglycan storage in the brain was ameliorated with the higher-dose intravenous therapy and was further improved by combining intravenous and intrathecal therapy. These findings argue that neonatal testing and early treatment of patients with MPS I may more effectively treat this disease.
Collapse
Affiliation(s)
- Ashley D Dierenfeld
- Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011-3150, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Heinecke KA, Peacock BN, Blazar BR, Tolar J, Seyfried TN. Lipid composition of whole brain and cerebellum in Hurler syndrome (MPS IH) mice. Neurochem Res 2011; 36:1669-76. [PMID: 21253856 DOI: 10.1007/s11064-011-0400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
Hurler syndrome (MPS IH) is caused by a mutation in the gene encoding alpha-L-iduronidase (IDUA) and leads to the accumulation of partially degraded glycosaminoglycans (GAGs). Ganglioside content is known to increase secondary to GAG accumulation. Most studies in organisms with MPS IH have focused on changes in gangliosides GM3 and GM2, without the study of other lipids. We evaluated the total lipid distribution in the whole brain and cerebellum of MPS IH (Idua⁻/⁻) and control (Idua(+/?)) mice at 6 months and at 12 months of age. The content of total sialic acid and levels of gangliosides GM3, GM2, and GD3 were greater in the whole brains of Idua⁻/⁻ mice then in Idua (+/?) mice at 12 months of age. No other significant lipid differences were found in either whole brain or in cerebellum at either age. The accumulation of ganglioside GD3 suggests that neurodegeneration occurs in the Idua⁻/⁻) mouse brain, but not to the extent seen in human MPS IH brain.
Collapse
Affiliation(s)
- Karie A Heinecke
- Department of Biology, Boston College, 140 Commonwealth Ave, Chestnut Hill, Boston, MA 02467, USA
| | | | | | | | | |
Collapse
|
40
|
McKay TR, Rahim AA, Buckley SM, Ward NJ, Chan JK, Howe SJ, Waddington SN. Perinatal gene transfer to the liver. Curr Pharm Des 2011; 17:2528-41. [PMID: 21774770 PMCID: PMC3182410 DOI: 10.2174/138161211797247541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer.
Collapse
Affiliation(s)
- Tristan R McKay
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ahad A Rahim
- Institute for Women’s Health, University College London, London, UK
| | | | - Natalie J Ward
- Institute for Women’s Health, University College London, London, UK
| | - Jerry K.Y Chan
- Experimental Fetal Medicine Group, National University of Singapore, Singapore
| | - Steven J Howe
- Institute of Child Health, University College London, London, UK
| | | |
Collapse
|
41
|
Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood 2010; 117:839-47. [PMID: 21037085 DOI: 10.1182/blood-2010-05-287607] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS IH; Hurler syndrome) is a congenital deficiency of α-L-iduronidase, leading to lysosomal storage of glycosaminoglycans that is ultimately fatal following an insidious onset after birth. Hematopoietic cell transplantation (HCT) is a life-saving measure in MPS IH. However, because a suitable hematopoietic donor is not found for everyone, because HCT is associated with significant morbidity and mortality, and because there is no known benefit of immune reaction between the host and the donor cells in MPS IH, gene-corrected autologous stem cells may be the ideal graft for HCT. Thus, we generated induced pluripotent stem cells from 2 patients with MPS IH (MPS-iPS cells). We found that α-L-iduronidase was not required for stem cell renewal, and that MPS-iPS cells showed lysosomal storage characteristic of MPS IH and could be differentiated to both hematopoietic and nonhematopoietic cells. The specific epigenetic profile associated with de-differentiation of MPS IH fibroblasts into MPS-iPS cells was maintained when MPS-iPS cells are gene-corrected with virally delivered α-L-iduronidase. These data underscore the potential of MPS-iPS cells to generate autologous hematopoietic grafts devoid of immunologic complications of allogeneic transplantation, as well as generating nonhematopoietic cells with the potential to treat anatomical sites not fully corrected with HCT.
Collapse
|
42
|
Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood 2010; 116:5130-9. [PMID: 20847202 DOI: 10.1182/blood-2010-04-278234] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Type I mucopolysaccharidosis (MPS I) is a lysosomal storage disorder caused by the deficiency of α-L-iduronidase, which results in glycosaminoglycan accumulation in tissues. Clinical manifestations include skeletal dysplasia, joint stiffness, visual and auditory defects, cardiac insufficiency, hepatosplenomegaly, and mental retardation (the last being present exclusively in the severe Hurler variant). The available treatments, enzyme-replacement therapy and hematopoietic stem cell (HSC) transplantation, can ameliorate most disease manifestations, but their outcome on skeletal and brain disease could be further improved. We demonstrate here that HSC gene therapy, based on lentiviral vectors, completely corrects disease manifestations in the mouse model. Of note, the therapeutic benefit provided by gene therapy on critical MPS I manifestations, such as neurologic and skeletal disease, greatly exceeds that exerted by HSC transplantation, the standard of care treatment for Hurler patients. Interestingly, therapeutic efficacy of HSC gene therapy is strictly dependent on the achievement of supranormal enzyme activity in the hematopoietic system of transplanted mice, which allows enzyme delivery to the brain and skeleton for disease correction. Overall, our data provide evidence of an efficacious treatment for MPS I Hurler patients, warranting future development toward clinical testing.
Collapse
|
43
|
Wang D, Shukla C, Liu X, Schoeb TR, Clarke LA, Bedwell DM, Keeling KM. Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol Genet Metab 2010; 99:62-71. [PMID: 19751987 PMCID: PMC2795040 DOI: 10.1016/j.ymgme.2009.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 02/01/2023]
Abstract
Here we report the characterization of a knock-in mouse model for the autosomal recessive disorder mucopolysaccharidosis type I-Hurler (MPS I-H), also known as Hurler syndrome. MPS I-H is the most severe form of alpha-l-iduronidase deficiency. alpha-l-iduronidase (encoded by the IDUA gene) is a lysosomal enzyme that participates in the degradation of dermatan sulfate and heparan sulfate. Using gene replacement methodology, a nucleotide change was introduced into the mouse Idua locus that resulted in a nonsense mutation at codon W392. The Idua-W392X mutation is analogous to the human IDUA-W402X mutation commonly found in MPS I-H patients. We found that the phenotype in homozygous Idua-W392X mice closely correlated with the human MPS I-H disease. Homozygous W392X mice showed no detectable alpha-l-iduronidase activity. We observed a defect in GAG degradation as evidenced by an increase in sulfated GAGs excreted in the urine and stored in multiple tissues. Histology and electron microscopy also revealed evidence of GAG storage in all tissues examined. Additional assessment revealed bone abnormalities and altered metabolism within the Idua-W392X mouse. This new mouse will provide an important tool to investigate therapeutic approaches for MPS I-H that cannot be addressed using current MPS I-H animal models.
Collapse
Affiliation(s)
- Dan Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charu Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiaoli Liu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lorne A. Clarke
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, CA
| | - David M. Bedwell
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kim M. Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
A self-inactivating gamma-retroviral vector reduces manifestations of mucopolysaccharidosis I in mice. Mol Ther 2009; 18:334-42. [PMID: 19844196 DOI: 10.1038/mt.2009.236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to deficiency in alpha-L-iduronidase (IDUA) that results in accumulation of glycosaminoglycans (GAGs) throughout the body, causing numerous clinical defects. Intravenous administration of a gamma-retroviral vector (gamma-RV) with an intact long terminal repeat (LTR) reduced the clinical manifestations of MPS I, but could cause insertional mutagenesis. Although self-inactivating (SIN) gamma-RVs in which the enhancer and promoter elements in the viral LTR are absent after transduction reduces this risk, such vectors could be less effective. This report demonstrates that intravenous (i.v.) injection of a SIN gamma-RV expressing canine IDUA from the liver-specific human alpha(1)-antitrypsin promoter into adult or newborn MPS I mice completely prevents biochemical abnormalities in several organs, and improved bone disease, vision, hearing, and aorta to a similar extent as was seen with administration of the LTR-intact vector to adults. Improvements were less profound than when using an LTR-intact gamma-RV in newborns, which likely reflects a lower level of transduction and expression for the SIN vector-transduced mice, and might be overcome by using a higher dose of SIN vector. A SIN gamma-RV vector ameliorates clinical manifestations of MPS I in mice and should be safer than an LTR-intact gamma-RV.
Collapse
|
45
|
Martins AM, Dualibi AP, Norato D, Takata ET, Santos ES, Valadares ER, Porta G, de Luca G, Moreira G, Pimentel H, Coelho J, Brum JM, Semionato Filho J, Kerstenetzky MS, Guimarães MR, Rojas MVM, Aranda PC, Pires RF, Faria RGC, Mota RMV, Matte U, Guedes ZCF. Guidelines for the management of mucopolysaccharidosis type I. J Pediatr 2009; 155:S32-46. [PMID: 19765409 DOI: 10.1016/j.jpeds.2009.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ana Maria Martins
- Centro de Referência em Erros Inatos do Metabolismo, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McCarty DM, DiRosario J, Gulaid K, Muenzer J, Fu H. Mannitol-facilitated CNS entry of rAAV2 vector significantly delayed the neurological disease progression in MPS IIIB mice. Gene Ther 2009; 16:1340-52. [PMID: 19587708 PMCID: PMC4289609 DOI: 10.1038/gt.2009.85] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- D M McCarty
- The Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|
47
|
Aronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B, Schachern PA, Parker JB, Carlson CS, Whitley CB, McIvor RS, Gupta P, Hackett PB. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 2009; 17:1136-44. [PMID: 19384290 DOI: 10.1038/mt.2009.87] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system is a nonviral vector that directs transgene integration into vertebrate genomes. We hydrodynamically delivered SB transposon plasmids encoding human alpha-L-iduronidase (hIDUA) at two DNA doses, with and without an SB transposase gene, to NOD.129(B6)-Prkdc(scid) IDUA(tm1Clk)/J mice. In transposon-treated, nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with mucopolysaccharidosis type I (MPS I), plasma IDUA persisted for 18 weeks at levels up to several hundred-fold wild-type (WT) activity, depending on DNA dose and gender. IDUA activity was present in all examined somatic organs, as well as in the brain, and correlated with both glycosaminoglycan (GAG) reduction in these organs and level of expression in the liver, the target of transposon delivery. IDUA activity was higher in the treated males than in females. In females, omission of transposase source resulted in significantly lower IDUA levels and incomplete GAG reduction in some organs, confirming the positive effect of transposition on long-term IDUA expression and correction of the disease. The SB transposon system proved efficacious in correcting several clinical manifestations of MPS I in mice, including thickening of the zygomatic arch, hepatomegaly, and accumulation of foamy macrophages in bone marrow and synovium, implying potential effectiveness of this approach in treatment of human MPS I.
Collapse
Affiliation(s)
- Elena L Aronovich
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Herati RS, Ma X, Tittiger M, Ohlemiller KK, Kovacs A, Ponder KP. Improved retroviral vector design results in sustained expression after adult gene therapy in mucopolysaccharidosis I mice. J Gene Med 2009; 10:972-82. [PMID: 18613275 DOI: 10.1002/jgm.1229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease due to alpha-L-iduronidase (IDUA) deficiency that results in the accumulation of glycosaminoglycans (GAG). Gene therapy can reduce most clinical manifestations, but mice that receive transfer as adults lose expression unless they receive immunosuppression. Increasing liver specificity of transgene expression has reduced immune responses to other genes. METHODS A gamma retroviral vector was generated with a liver-specific human alpha1-antitrypsin promoter and the canine IDUA cDNA inverted relative to the retroviral long-terminal repeat. Adult MPS I mice received the vector intravenously at 6 weeks of age and were assessed for expression via serial serum IDUA assays. Functional testing and organ analysis were performed at 8 months. RESULTS This vector resulted in high specificity of expression in liver, and serum IDUA activity was stable in 90% of animals. Although the average serum IDUA activity was relatively low at 12.6 +/- 8.1 units/ml in mice with stable expression, a relatively high percentage of enzyme contained the mannose 6-phosphorylation necessary for uptake by other cells. At 6.5 months after transduction, most organs had high IDUA activity and normalized GAG levels. There was complete correction of hearing and vision abnormalities and significant improvements in bone, although the aorta was refractory to treatment. CONCLUSIONS Stable expression of IDUA in adult MPS I mice can be achieved without immunosuppression by modifying the vector to reduce expression in the spleen. This approach may be effective in patients with MPS I or other lysosomal storage diseases.
Collapse
Affiliation(s)
- Ramin Sedaghat Herati
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
More than 500 patients with mucopolysaccharidosis type IH (MPS IH; Hurler syndrome) have been treated with hematopoietic cell transplantation (HCT) throughout the world since the introduction of transplantation as therapy almost 30 years ago. More recently, the availability of recombinant alpha-L-iduronidase (IDUA) has resulted in the widespread treatment of less severe forms of MPS I with enzyme replacement therapy (ERT). In addition, over 50 MPS IH patients have been treated with a combination of ERT and HCT. The rationale for both ERT and HCT stems from the pivotal experiments performed 4 decades ago that showed alpha-L-iduronidase supplied in the environment can correct the accumulation of substrate in MPS I cells. Our purpose is to address the multiple applications associated with the therapeutic delivery of IDUA: intermittent delivery of recombinant protein (ERT), continuous administration through cellular therapy (HCT), the use of other stem cells or, potentially, correction of the enzyme defect itself through gene therapy approaches. Even though gene therapy and non-hematopoietic stem cell approaches, have yet to be tested in a clinical setting, it is possible that all these approaches will in the near future be a part of a paradigm shift from unimodal to multimodal therapy for MPS I.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Orchard
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Inagaki K, Piao C, Kotchey NM, Wu X, Nakai H. Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol 2008; 82:9513-24. [PMID: 18614641 PMCID: PMC2546949 DOI: 10.1128/jvi.01001-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/02/2008] [Indexed: 12/13/2022] Open
Abstract
Neonatal injection of recombinant adeno-associated virus serotype 8 (rAAV8) vectors results in widespread transduction in multiple organs and therefore holds promise in neonatal gene therapy. On the other hand, insertional mutagenesis causing liver cancer has been implicated in rAAV-mediated neonatal gene transfer. Here, to better understand rAAV integration in neonatal livers, we investigated the frequency and spectrum of genomic integration of rAAV8 vectors in the liver following intraperitoneal injection of 2.0 x 10(11) vector genomes at birth. This dose was sufficient to transduce a majority of hepatocytes in the neonatal period. In the first approach, we injected mice with a beta-galactosidase-expressing vector at birth and quantified rAAV integration events by taking advantage of liver regeneration in a chronic hepatitis animal model and following partial hepatectomy. In the second approach, we performed a new, quantitative rAAV vector genome rescue assay by which we identified rAAV integration sites and quantified integrations. As a result, we find that at least approximately 0.05% of hepatocytes contained rAAV integration, while the average copy number of integrated double-stranded vector genome per cell in the liver was approximately 0.2, suggesting concatemer integration. Twenty-three of 34 integrations (68%) occurred in genes, but none of them were near the mir-341 locus, the common rAAV integration site found in mouse hepatocellular carcinoma. Thus, rAAV8 vector integration occurs preferentially in genes at a frequency of 1 in approximately 10(3) hepatocytes when a majority of hepatocytes are once transduced in the neonatal period. Further studies are warranted to elucidate the relationship between vector dose and integration frequency or spectrum.
Collapse
Affiliation(s)
- Katsuya Inagaki
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, W1244 BSTWR, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|