1
|
Pille M, Avila JM, Park SH, Le CQ, Xue H, Haerynck F, Saxena L, Lee C, Shpall EJ, Bao G, Vandekerckhove B, Davis BR. Gene editing-based targeted integration for correction of Wiskott-Aldrich syndrome. Mol Ther Methods Clin Dev 2024; 32:101208. [PMID: 38414825 PMCID: PMC10897892 DOI: 10.1016/j.omtm.2024.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Wiskott-Aldrich syndrome (WAS) is a severe X-linked primary immunodeficiency resulting from a diversity of mutations distributed across all 12 exons of the WAS gene. WAS encodes a hematopoietic-specific and developmentally regulated cytoplasmic protein (WASp). The objective of this study was to develop a gene correction strategy potentially applicable to most WAS patients by employing nuclease-mediated, site-specific integration of a corrective WAS gene sequence into the endogenous WAS chromosomal locus. In this study, we demonstrate the ability to target the integration of WAS2-12-containing constructs into intron 1 of the endogenous WAS gene of primary CD34+ hematopoietic stem and progenitor cells (HSPCs), as well as WASp-deficient B cell lines and WASp-deficient primary T cells. This intron 1 targeted integration (TI) approach proved to be quite efficient and restored WASp expression in treated cells. Furthermore, TI restored WASp-dependent function to WAS patient T cells. Edited CD34+ HSPCs exhibited the capacity for multipotent differentiation to various hematopoietic lineages in vitro and in transplanted immunodeficient mice. This methodology offers a potential editing approach for treatment of WAS using patient's CD34+ cells.
Collapse
Affiliation(s)
- Melissa Pille
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - John M. Avila
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Cuong Q. Le
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Haipeng Xue
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lavanya Saxena
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Ciaran Lee
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Brian R. Davis
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Pille M, Avila J, Sanchez GS, Goetgeluk G, De Munter S, Jansen H, Billiet L, Weening K, Xue H, Bonte S, Ingels J, De Cock L, Pascal E, Deseins L, Kerre T, Taghon T, Leclercq G, Vermijlen D, Davis B, Vandekerckhove B. The Wiskott-Aldrich syndrome protein is required for positive selection during T-cell lineage differentiation. Front Immunol 2023; 14:1188099. [PMID: 37350958 PMCID: PMC10282776 DOI: 10.3389/fimmu.2023.1188099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation. Patients with WAS show reduced numbers of peripheral blood T lymphocytes and an altered T-cell receptor repertoire. In vitro, their peripheral T cells show decreased proliferation and cytokine production upon aCD3/aCD28 stimulation. It is unclear whether these T-cell defects are acquired during peripheral activation or are, in part, generated during thymic development. Here, we assessed the role of WASp during T-cell differentiation using artificial thymic organoid cultures and in the thymus of humanized mice. Although CRISPR/Cas9 WAS knockout hematopoietic stem and progenitor cells (HSPCs) rearranged the T-cell receptor and differentiated to T-cell receptor (TCR)+ CD4+ CD8+ double-positive (DP) cells similar to wild-type HSPCs, a partial defect in the generation of CD8 single-positive (SP) cells was observed, suggesting that WASp is involved in their positive selection. TCR repertoire analysis of the DP and CD8+ SP population, however, showed a polyclonal repertoire with no bias toward autoreactivity. To our knowledge, this is the first study of the role of WASp in human T-cell differentiation and on TCR repertoire generation.
Collapse
Affiliation(s)
- Melissa Pille
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - John Avila
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Glenn Goetgeluk
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stijn De Munter
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanne Jansen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lore Billiet
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Karin Weening
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Haipeng Xue
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurenz De Cock
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva Pascal
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lucas Deseins
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tessa Kerre
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Brian Davis
- Brown Foundation Institute of Molecular Medicine, Mc Govern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat Med 2022; 28:71-80. [PMID: 35075289 PMCID: PMC8799465 DOI: 10.1038/s41591-021-01641-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS. Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Collapse
|
5
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol Ther 2020; 29:489-504. [PMID: 33221437 DOI: 10.1016/j.ymthe.2020.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Collapse
Affiliation(s)
- Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
7
|
Muñoz P, Tristán-Manzano M, Sánchez-Gilabert A, Santilli G, Galy A, Thrasher AJ, Martin F. WAS Promoter-Driven Lentiviral Vectors Mimic Closely the Lopsided WASP Expression during Megakaryocytic Differentiation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:220-235. [PMID: 33102615 PMCID: PMC7558809 DOI: 10.1016/j.omtm.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023]
Abstract
Transplant of gene-modified autologous hematopoietic progenitors cells has emerged as a new therapeutic approach for Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency with microthrombocytopenia and abnormal lymphoid and myeloid functions. Despite the clinical benefits obtained in ongoing clinical trials, platelet restoration is suboptimal. The incomplete restoration of platelets in these patients can be explained either by a low number of corrected cells or by insufficient or inadequate WASP expression during megakaryocyte differentiation and/or in platelets. We therefore used in vitro models to study the endogenous WASP expression pattern during megakaryocytic differentiation and compared it with the expression profiles achieved by different therapeutic lentiviral vectors (LVs) driving WAS cDNA through different regions of the WAS promoter. Our data showed that all WAS promoter-driven LVs mimic very closely the endogenous WAS expression kinetic during megakaryocytic differentiation. However, LVs harboring the full-length (1.6-kb) WAS-proximal promoter (WW1.6) or a combination of the WAS alternative and proximal promoters (named AW) had the best behavior. Finally, all WAS-driven LVs restored the WAS knockout (WASKO) mice phenotype and functional defects of hematopoietic stem and progenitor cells (HSPCs) from a WAS patient with similar efficiency. In summary, our data back up the use of WW1.6 and AW LVs as physiological gene transfer tools for WAS therapy.
Collapse
Affiliation(s)
- Pilar Muñoz
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Ilustracion 114, 18016 Granada, Spain.,University College London (UCL) Great Ormond Street Institute of Child Health (ICH), 30 Guilford Street, WC1N 1EH London, UK
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Ilustracion 114, 18016 Granada, Spain
| | - Almudena Sánchez-Gilabert
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Ilustracion 114, 18016 Granada, Spain
| | - Giorgia Santilli
- University College London (UCL) Great Ormond Street Institute of Child Health (ICH), 30 Guilford Street, WC1N 1EH London, UK
| | - Anne Galy
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000 Evry, France
| | - Adrian J Thrasher
- University College London (UCL) Great Ormond Street Institute of Child Health (ICH), 30 Guilford Street, WC1N 1EH London, UK
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Ilustracion 114, 18016 Granada, Spain
| |
Collapse
|
8
|
Benabdellah K, Sánchez-Hernández S, Aguilar-González A, Maldonado-Pérez N, Gutierrez-Guerrero A, Cortijo-Gutierrez M, Ramos-Hernández I, Tristán-Manzano M, Galindo-Moreno P, Herrera C, Martin F. Genome-edited adult stem cells: Next-generation advanced therapy medicinal products. Stem Cells Transl Med 2020; 9:674-685. [PMID: 32141715 PMCID: PMC7214650 DOI: 10.1002/sctm.19-0338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Over recent decades, gene therapy, which has enabled the treatment of several incurable diseases, has undergone a veritable revolution. Cell therapy has also seen major advances in the treatment of various diseases, particularly through the use of adult stem cells (ASCs). The combination of gene and cell therapy (GCT) has opened up new opportunities to improve advanced therapy medicinal products for the treatment of several diseases. Despite the considerable potential of GCT, the use of retroviral vectors has major limitations with regard to oncogene transactivation and the lack of physiological expression. Recently, gene therapists have focused on genome editing (GE) technologies as an alternative strategy. In this review, we discuss the potential benefits of using GE technologies to improve GCT approaches based on ASCs. We will begin with a brief summary of different GE platforms and techniques and will then focus on key therapeutic approaches that have been successfully used to treat diseases in animal models. Finally, we discuss whether ASC GE could become a real alternative to retroviral vectors in a GCT setting.
Collapse
Affiliation(s)
- Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Araceli Aguilar-González
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain.,Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, Jill Roberts, Inflammatory Bowel Disease Research Institute, New York, New York, USA
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Iris Ramos-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pablo Galindo-Moreno
- Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain
| | - Concha Herrera
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
9
|
Ferrua F, Cicalese MP, Galimberti S, Giannelli S, Dionisio F, Barzaghi F, Migliavacca M, Bernardo ME, Calbi V, Assanelli AA, Facchini M, Fossati C, Albertazzi E, Scaramuzza S, Brigida I, Scala S, Basso-Ricci L, Pajno R, Casiraghi M, Canarutto D, Salerio FA, Albert MH, Bartoli A, Wolf HM, Fiori R, Silvani P, Gattillo S, Villa A, Biasco L, Dott C, Culme-Seymour EJ, van Rossem K, Atkinson G, Valsecchi MG, Roncarolo MG, Ciceri F, Naldini L, Aiuti A. Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. LANCET HAEMATOLOGY 2019; 6:e239-e253. [PMID: 30981783 PMCID: PMC6494976 DOI: 10.1016/s2352-3026(19)30021-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
Background Wiskott-Aldrich syndrome is a rare, life-threatening, X-linked primary immunodeficiency characterised by microthrombocytopenia, infections, eczema, autoimmunity, and malignant disease. Lentiviral vector-mediated haemopoietic stem/progenitor cell (HSPC) gene therapy is a potentially curative treatment that represents an alternative to allogeneic HSPC transplantation. Here, we report safety and efficacy data from an interim analysis of patients with severe Wiskott-Aldrich syndrome who received lentiviral vector-derived gene therapy. Methods We did a non-randomised, open-label, phase 1/2 clinical study in paediatric patients with severe Wiskott-Aldrich syndrome, defined by either WAS gene mutation or absent Wiskott-Aldrich syndrome protein (WASP) expression or a Zhu clinical score of 3 or higher. We included patients who had no HLA-identical sibling donor available or, for children younger than 5 years of age, no suitable 10/10 matched unrelated donor or 6/6 unrelated cord blood donor. After treatment with rituximab and a reduced-intensity conditioning regimen of busulfan and fludarabine, patients received one intravenous infusion of autologous CD34+ cells genetically modified with a lentiviral vector encoding for human WAS cDNA. The primary safety endpoints were safety of the conditioning regimen and safety of lentiviral gene transfer into HSPCs. The primary efficacy endpoints were overall survival, sustained engraftment of genetically corrected HSPCs, expression of vector-derived WASP, improved T-cell function, antigen-specific responses to vaccinations, and improved platelet count and mean platelet volume normalisation. This interim analysis was done when the first six patients treated had completed at least 3 years of follow-up. The planned analyses are presented for the intention-to-treat population. This trial is registered with ClinicalTrials.gov (number NCT01515462) and EudraCT (number 2009-017346-32). Findings Between April 20, 2010, and Feb 26, 2015, nine patients (all male) were enrolled of whom one was excluded after screening; the age range of the eight treated children was 1·1–12·4 years. At the time of the interim analysis (data cutoff April 29, 2016), median follow-up was 3·6 years (range 0·5–5·6). Overall survival was 100%. Engraftment of genetically corrected HSPCs was successful and sustained in all patients. The fraction of WASP-positive lymphocytes increased from a median of 3·9% (range 1·8–35·6) before gene therapy to 66·7% (55·7–98·6) at 12 months after gene therapy, whereas WASP-positive platelets increased from 19·1% (range 4·1–31·0) to 76·6% (53·1–98·4). Improvement of immune function was shown by normalisation of in-vitro T-cell function and successful discontinuation of immunoglobulin supplementation in seven patients with follow-up longer than 1 year, followed by positive antigen-specific response to vaccination. Severe infections fell from 2·38 (95% CI 1·44–3·72) per patient-year of observation (PYO) in the year before gene therapy to 0·31 (0·04–1·11) per PYO in the second year after gene therapy and 0·17 (0·00–0·93) per PYO in the third year after gene therapy. Before gene therapy, platelet counts were lower than 20 × 109 per L in seven of eight patients. At the last follow-up visit, the platelet count had increased to 20–50 × 109 per L in one patient, 50–100 × 109 per L in five patients, and more than 100 × 109 per L in two patients, which resulted in independence from platelet transfusions and absence of severe bleeding events. 27 serious adverse events in six patients occurred after gene therapy, 23 (85%) of which were infectious (pyrexia [five events in three patients], device-related infections, including one case of sepsis [four events in three patients], and gastroenteritis, including one case due to rotavirus [three events in two patients]); these occurred mainly in the first 6 months of follow-up. No adverse reactions to the investigational drug product and no abnormal clonal proliferation or leukaemia were reported after gene therapy. Interpretation Data from this study show that gene therapy provides a valuable treatment option for patients with severe Wiskott-Aldrich syndrome, particularly for those who do not have a suitable HSPC donor available. Funding Italian Telethon Foundation, GlaxoSmithKline, and Orchard Therapeutics.
Collapse
Affiliation(s)
- Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Angelo Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marcella Facchini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Fossati
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Albertazzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Pajno
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Miriam Casiraghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Andrea Salerio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael H Albert
- Department of Pediatric Hematology/Oncology, Dr von Haunersches University Children's Hospital, Munich, Germany
| | | | - Hermann M Wolf
- Immunology Outpatient Clinic, and Sigmund Freud Private University-Medical School, Vienna, Austria
| | - Rossana Fiori
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Salvatore Gattillo
- Blood Transfusion Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; University College London, Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, UK
| | - Christopher Dott
- CSD Pharma Consulting, Redhill, UK; Orchard Therapeutics, London, UK
| | - Emily J Culme-Seymour
- Rare Diseases Unit, GlaxoSmithKline, Brentford, UK; Sangamo Therapeutics, London, UK
| | | | - Gillian Atkinson
- Rare Diseases Unit, GlaxoSmithKline, Brentford, UK; Sangamo Therapeutics, London, UK
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
10
|
Li J, Chen M, Liu Z, Zhang L, Felding BH, Moremen KW, Lauvau G, Abadier M, Ley K, Wu P. A Single-Step Chemoenzymatic Reaction for the Construction of Antibody-Cell Conjugates. ACS CENTRAL SCIENCE 2018; 4:1633-1641. [PMID: 30648147 PMCID: PMC6311947 DOI: 10.1021/acscentsci.8b00552] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 05/02/2023]
Abstract
Employing live cells as therapeutics is a direction of future drug discovery. An easy and robust method to modify the surfaces of cells directly to incorporate novel functionalities is highly desirable. However, genetic methods for cell-surface engineering are laborious and limited by low efficiency for primary cell modification. Here we report a chemoenzymatic approach that exploits a fucosyltransferase to transfer bio-macromolecules, such as an IgG antibody (MW∼ 150 KD), to the glycocalyx on the surfaces of live cells when the antibody is conjugated to the enzyme's natural donor substrate GDP-Fucose. Requiring no genetic modification, this method is fast and biocompatible with little interference to cells' endogenous functions. We applied this method to construct two antibody-cell conjugates (ACCs) using both cell lines and primary cells, and the modified cells exhibited specific tumor targeting and resistance to inhibitory signals produced by tumor cells, respectively. Remarkably, Herceptin-NK-92MI conjugates, a natural killer cell line modified with Herceptin, exhibit enhanced activities to induce the lysis of HER2+ cancer cells both ex vivo and in a human tumor xenograft model. Given the unprecedented substrate tolerance of the fucosyltransferase, this chemoenzymatic method offers a general approach to engineer cells as research tools and for therapeutic applications.
Collapse
Affiliation(s)
- Jie Li
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Mingkuan Chen
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Zilei Liu
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Linda Zhang
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Brunie H. Felding
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Gregoire Lauvau
- Microbiology
and Immunology Department, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| | - Michael Abadier
- Division
of Inflammation Biology, La Jolla Institute
for Allergy and Immunology, La Jolla, California 92037, United States
| | - Klaus Ley
- Division
of Inflammation Biology, La Jolla Institute
for Allergy and Immunology, La Jolla, California 92037, United States
| | - Peng Wu
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
12
|
Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Stockinger H, Bennett KL, Huppa JB, Dupré L, Sanal Ö, Jäger U, Sixt M, Tezcan I, Orange JS, Boztug K. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 2016; 17:1352-1360. [PMID: 27776107 PMCID: PMC6400263 DOI: 10.1038/ni.3575] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Collapse
Affiliation(s)
- Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Miroslav Hons
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Özlem Yüce Petronczki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sol A Ban
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Malini Mukherjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Verena Supper
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hsiang Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Pinaki P Banerjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation and Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Loïc Dupré
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, UMR1043, Toulouse Purpan University Hospital, Toulouse, France
| | - Özden Sanal
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ilhan Tezcan
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Fernández-Rubio P, Torres-Rusillo S, Molina IJ. Regulated expression of murine CD40L by a lentiviral vector transcriptionally targeted through its endogenous promoter. J Gene Med 2016. [PMID: 26223487 DOI: 10.1002/jgm.2837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Targeted lentiviral vectors may contribute to circumventing genotoxicity associated with uncontrolled transcription of therapeutic genes. Some vectors replacing strong viral sequences for gene promoters such as β-globin, CD4, CD19 or Igκ were able to drive tissue-specific expression of the transgene. Gene therapy, however, faces even greater hurdles when the therapeutic transgene is subject to strict regulatory mechanisms. This is the case of the CD40LG gene, which encodes for the CD154 (also known as CD40L) molecule, transiently expressed upon activation on CD4(+) T cells. Mutations in this gene cause the X-linked hyper IgM syndrome (HIGM1) in humans because the interaction of CD40L with its ligand CD40 triggers signals that are critical for the immunobiology of B lymphocytes. METHODS We developed a lentiviral vector containing the murine Cd40lg cDNA under the control of its endogenous promoter. RESULTS The CD4(+) BW5147 T cells transduced with the pCd40lg-Cd40lg lentiviral vector express CD40L only upon stimulation. The intensity of the expression correlates with the number of vector integrations per cell and detected molecules rapidly decay after removing the stimulating agent. The tissue-specific, activation-dependent and reversible expression of CD40L fully mimics the physiological induction and disappearance of the molecule from the surface of murine T lymphocytes. The functional activity of the regulated lentiviral vector is demonstrated by the ability of transduced BW5147 cells to promote the proliferation of purified B cell splenocytes. CONCLUSIONS We have developed a fine-regulated lentiviral vector that can be a model for expressing molecules subject to stringent regulatory mechanisms.
Collapse
Affiliation(s)
- Pablo Fernández-Rubio
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| | - Sara Torres-Rusillo
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| | - Ignacio J Molina
- Institute of Biopathology and Regenerative Medicine, Center for Biomedical Research, University of Granada. Health Sciences Technology Park, Armilla, Granada, Spain
| |
Collapse
|
14
|
Abstract
In the recent past, the gene therapy field has witnessed a remarkable series of
successes, many of which have involved primary immunodeficiency diseases, such
as X-linked severe combined immunodeficiency, adenosine deaminase deficiency,
chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress
has widened the choice of therapeutic options in some specific cases of primary
immunodeficiency, much remains to be done to extend the geographical
availability of such an advanced approach and to increase the number of diseases
that can be targeted. At the same time, emerging technologies are stimulating
intensive investigations that may lead to the application of precise genetic
editing as the next form of gene therapy for these and other human genetic
diseases.
Collapse
Affiliation(s)
- Fabio Candotti
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Cicalese MP, Aiuti A. Clinical applications of gene therapy for primary immunodeficiencies. Hum Gene Ther 2016; 26:210-9. [PMID: 25860576 DOI: 10.1089/hum.2015.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.
Collapse
Affiliation(s)
- Maria Pia Cicalese
- 1 San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute , 20132 Milan, Italy
| | | |
Collapse
|
16
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
17
|
Lentivector Knockdown of CCR5 in Hematopoietic Stem and Progenitor Cells Confers Functional and Persistent HIV-1 Resistance in Humanized Mice. J Virol 2015; 89:6761-72. [PMID: 25903342 DOI: 10.1128/jvi.00277-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Gene-engineered CD34(+) hematopoietic stem and progenitor cells (HSPCs) can be used to generate an HIV-1-resistant immune system. However, a certain threshold of transduced HSPCs might be required for transplantation into mice for creating an HIV-resistant immune system. In this study, we combined CCR5 knockdown by a highly efficient microRNA (miRNA) lentivector with pretransplantation selection of transduced HSPCs to obtain a rather pure population of gene engineered CD34(+) cells. Low-level transduction of HSPCs and subsequent sorting by flow cytometry yielded >70% transduced cells. Mice transplanted with these cells showed functional and persistent resistance to a CCR5-tropic HIV strain: viral load was significantly decreased over months, and human CD4(+) T cells were preserved. In one mouse, viral mutations, resulting presumably in a CXCR4-tropic strain, overcame HIV resistance. Our results suggest that HSPC-based CCR5 knockdown may lead to efficient control of HIV in vivo. We overcame a major limitation of previous HIV gene therapy in humanized mice in which only a proportion of the cells in chimeric mice in vivo are anti-HIV engineered. Our strategy underlines the promising future of gene engineering HIV-resistant CD34(+) cells that produce a constant supply of HIV-resistant progeny. IMPORTANCE Major issues in experimental long-term in vivo HIV gene therapy have been (i) low efficacy of cell transduction at the time of transplantation and (ii) transduction resulting in multiple copies of heterologous DNA in target cells. In this study, we demonstrated the efficacy of a transplantation approach with a selection step for transduced cells that allows transplantation of an enriched population of HSPCs expressing a single (low) copy of a CCR5 miRNA. Efficient maintenance of CD4(+) T cells and a low viral titer resulted only when at least 70% of the HIV target cells were genetically modified. These findings imply that clinical protocols of HIV gene therapy require a selective enrichment of genetically targeted cells because positive selection of modified cells is likely to be insufficient below this threshold. This selection approach may be beneficial not only for HIV patients but also for other patients requiring transplantation of genetically modified cells.
Collapse
|
18
|
Castiello MC, Scaramuzza S, Pala F, Ferrua F, Uva P, Brigida I, Sereni L, van der Burg M, Ottaviano G, Albert MH, Grazia Roncarolo M, Naldini L, Aiuti A, Villa A, Bosticardo M. B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2015; 136:692-702.e2. [PMID: 25792466 PMCID: PMC4559137 DOI: 10.1016/j.jaci.2015.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
Abstract
Background Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency characterized by microthrombocytopenia, eczema, recurrent infections, and susceptibility to autoimmunity and lymphomas. Hematopoietic stem cell transplantation is the treatment of choice; however, administration of WAS gene–corrected autologous hematopoietic stem cells has been demonstrated as a feasible alternative therapeutic approach. Objective Because B-cell homeostasis is perturbed in patients with WAS and restoration of immune competence is one of the main therapeutic goals, we have evaluated reconstitution of the B-cell compartment in 4 patients who received autologous hematopoietic stem cells transduced with lentiviral vector after a reduced-intensity conditioning regimen combined with anti-CD20 administration. Methods We evaluated B-cell counts, B-cell subset distribution, B cell–activating factor and immunoglobulin levels, and autoantibody production before and after gene therapy (GT). WAS gene transfer in B cells was assessed by measuring vector copy numbers and expression of Wiskott-Aldrich syndrome protein. Results After lentiviral vector-mediated GT, the number of transduced B cells progressively increased in the peripheral blood of all patients. Lentiviral vector-transduced progenitor cells were able to repopulate the B-cell compartment with a normal distribution of B-cell subsets both in bone marrow and the periphery, showing a WAS protein expression profile similar to that of healthy donors. In addition, after GT, we observed a normalized frequency of autoimmune-associated CD19+CD21−CD35− and CD21low B cells and a reduction in B cell–activating factor levels. Immunoglobulin serum levels and autoantibody production improved in all treated patients. Conclusions We provide evidence that lentiviral vector-mediated GT induces transgene expression in the B-cell compartment, resulting in ameliorated B-cell development and functionality and contributing to immunologic improvement in patients with WAS.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Pala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Immacolata Brigida
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giorgio Ottaviano
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michael H Albert
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; IRGB CNR, Milan Unit, Milan, Italy.
| | - Marita Bosticardo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
19
|
Cotta-de-Almeida V, Dupré L, Guipouy D, Vasconcelos Z. Signal Integration during T Lymphocyte Activation and Function: Lessons from the Wiskott-Aldrich Syndrome. Front Immunol 2015; 6:47. [PMID: 25709608 PMCID: PMC4321635 DOI: 10.3389/fimmu.2015.00047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Over the last decades, research dedicated to the molecular and cellular mechanisms underlying primary immunodeficiencies (PID) has helped to understand the etiology of many of these diseases and to develop novel therapeutic approaches. Beyond these aspects, PID are also studied because they offer invaluable natural genetic tools to dissect the human immune system. In this review, we highlight the research that has focused over the last 20 years on T lymphocytes from Wiskott–Aldrich syndrome (WAS) patients. WAS T lymphocytes are defective for the WAS protein (WASP), a regulator of actin cytoskeleton remodeling. Therefore, study of WAS T lymphocytes has helped to grasp that many steps of T lymphocyte activation and function depend on the crosstalk between membrane receptors and the actin cytoskeleton. These steps include motility, immunological synapse assembly, and signaling, as well as the implementation of helper, regulatory, or cytotoxic effector functions. The recent concept that WASP also works as a regulator of transcription within the nucleus is an illustration of the complexity of signal integration in T lymphocytes. Finally, this review will discuss how further study of WAS may contribute to solve novel challenges of T lymphocyte biology.
Collapse
Affiliation(s)
| | - Loïc Dupré
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | - Delphine Guipouy
- UMR 1043, Centre de Physiopathologie de Toulouse Purpan, INSERM , Toulouse , France ; Université Toulouse III Paul-Sabatier , Toulouse , France ; UMR 5282, CNRS , Toulouse , France
| | | |
Collapse
|
20
|
Wielgosz MM, Kim YS, Carney GG, Zhan J, Reddivari M, Coop T, Heath RJ, Brown SA, Nienhuis AW. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:14063. [PMID: 26052531 PMCID: PMC4449020 DOI: 10.1038/mtm.2014.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/16/2014] [Accepted: 11/19/2014] [Indexed: 01/28/2023]
Abstract
We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS) protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.
Collapse
Affiliation(s)
- Matthew M Wielgosz
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Yoon-Sang Kim
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Gael G Carney
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Jun Zhan
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Muralidhar Reddivari
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Terry Coop
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Richard J Heath
- Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Scott A Brown
- Immunology Department, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| |
Collapse
|
21
|
Touzot F, Hacein-Bey-Abina S, Fischer A, Cavazzana M. Gene therapy for inherited immunodeficiency. Expert Opin Biol Ther 2014; 14:789-98. [DOI: 10.1517/14712598.2014.895811] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Candotti F. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. Int J Hematol 2014; 99:383-92. [DOI: 10.1007/s12185-014-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
|
23
|
Moratto D, Giliani S, Notarangelo LD, Mazza C, Mazzolari E, Notarangelo LD. The Wiskott–Aldrich syndrome: from genotype–phenotype correlation to treatment. Expert Rev Clin Immunol 2014; 3:813-24. [DOI: 10.1586/1744666x.3.5.813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Matalon O, Reicher B, Barda-Saad M. Wiskott-Aldrich syndrome protein - dynamic regulation of actin homeostasis: from activation through function and signal termination in T lymphocytes. Immunol Rev 2013; 256:10-29. [DOI: 10.1111/imr.12112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Barak Reicher
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan Israel
| |
Collapse
|
25
|
Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341:1233151. [PMID: 23845947 PMCID: PMC4375961 DOI: 10.1126/science.1233151] [Citation(s) in RCA: 803] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) is an inherited immunodeficiency caused by mutations in the gene encoding WASP, a protein regulating the cytoskeleton. Hematopoietic stem/progenitor cell (HSPC) transplants can be curative, but, when matched donors are unavailable, infusion of autologous HSPCs modified ex vivo by gene therapy is an alternative approach. We used a lentiviral vector encoding functional WASP to genetically correct HSPCs from three WAS patients and reinfused the cells after a reduced-intensity conditioning regimen. All three patients showed stable engraftment of WASP-expressing cells and improvements in platelet counts, immune functions, and clinical scores. Vector integration analyses revealed highly polyclonal and multilineage haematopoiesis resulting from the gene-corrected HSPCs. Lentiviral gene therapy did not induce selection of integrations near oncogenes, and no aberrant clonal expansion was observed after 20 to 32 months. Although extended clinical observation is required to establish long-term safety, lentiviral gene therapy represents a promising treatment for WAS.
Collapse
Affiliation(s)
- Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells, and Gene Therapy, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
| | - Christian Joerg Braun
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| | - Kaan Boztug
- Hannover Medical School, Department of Pediatric Hematology/Oncology, Munich, Germany
| | - Christoph Klein
- Ludwig-Maximilians University Munich, Dr von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
27
|
Koldej RM, Carney G, Wielgosz MM, Zhou S, Zhan J, Sorrentino BP, Nienhuis AW. Comparison of insulators and promoters for expression of the Wiskott-Aldrich syndrome protein using lentiviral vectors. HUM GENE THER CL DEV 2013; 24:77-85. [PMID: 23786330 DOI: 10.1089/humc.2012.244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gene therapy for the treatment of Wiskott-Aldrich syndrome (WAS) presents an alternative to the current use of allogeneic bone marrow transplantation. We describe the development of a self-inactivating lentiviral vector containing chromatin insulators for treatment of WAS and compare a gammaretroviral (MND), human cellular (EF1α), and the human WASp gene promoter for expression patterns in vivo during murine hematopoiesis using the green fluorescent protein (GFP) marker. Compared with the EF1α and the WASp promoters, expression from the MND promoter in mouse transplant recipients was much higher in all lineages examined. Importantly, there was sustained expression in the platelets of secondary recipient animals, necessary to correct the thrombocytopenia defect in WAS patients. Analysis of WAS protein expression in transduced human EBV-immortalized B-cells and transduced patient peripheral blood mononuclear cells also demonstrated stronger expression per copy from the MND promoter compared with the other promoters. In addition, when analyzed in an LM02 activation assay, the addition of an insulator to MND-promoter-containing constructs reduced transactivation of the LM02 gene. We propose a clinical trial design in which cytokine-mobilized, autologous, transduced CD34(+) cells are administered after myelosuppression.
Collapse
Affiliation(s)
- Rachel M Koldej
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci 2013; 1285:26-43. [DOI: 10.1111/nyas.12049] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michel J. Massaad
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Narayanaswamy Ramesh
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| | - Raif S. Geha
- Division of Immunology, Boston Children's Hospital, and Department of Pediatrics; Harvard Medical School; Boston; Massachusetts
| |
Collapse
|
29
|
Aiuti A, Bacchetta R, Seger R, Villa A, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies: Part 2. Curr Opin Immunol 2012; 24:585-91. [PMID: 22909900 DOI: 10.1016/j.coi.2012.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
Gene therapy has become an attractive alternative therapeutic strategy to allogeneic transplant for primary immunodeficiencies (PIDs) owing to known genetic defects. Clinical trials using gammaretroviral vectors have demonstrated the proof of principle of gene therapy for Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD), but have also highlighted limitations of the technology. New strategies based on vectors that can achieve more robust correction with less risk of insertional mutagenesis are being developed. In this review we present the status of gene therapy for WAS and CGD, and discuss the emerging application of similar strategies to a broader range of PIDs, such as IPEX syndrome.
Collapse
Affiliation(s)
- Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | |
Collapse
|
30
|
Ubiquitous high-level gene expression in hematopoietic lineages provides effective lentiviral gene therapy of murine Wiskott-Aldrich syndrome. Blood 2012; 119:4395-407. [PMID: 22431569 DOI: 10.1182/blood-2011-03-340711] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunodeficiency disorder Wiskott-Aldrich syndrome (WAS) leads to life-threatening hematopoietic cell dysfunction. We used WAS protein (WASp)-deficient mice to analyze the in vivo efficacy of lentiviral (LV) vectors using either a viral-derived promoter, MND, or the human proximal WAS promoter (WS1.6) for human WASp expression. Transplantation of stem cells transduced with MND-huWASp LV resulted in sustained, endogenous levels of WASp in all hematopoietic lineages, progressive selection for WASp+ T, natural killer T and B cells, rescue of T-cell proliferation and cytokine production, and substantial restoration of marginal zone (MZ) B cells. In contrast, WS1.6-huWASp LV recipients exhibited subendogenous WASp expression in all cell types with only partial selection of WASp+ T cells and limited correction in MZ B-cell numbers. In parallel, WS1.6-huWASp LV recipients exhibited an altered B-cell compartment, including higher numbers of λ-light-chain+ naive B cells, development of self-reactive CD11c+FAS+ B cells, and evidence for spontaneous germinal center (GC) responses. These observations correlated with B-cell hyperactivity and increased titers of immunoglobulin (Ig)G2c autoantibodies, suggesting that partial gene correction may predispose toward autoimmunity. Our findings identify the advantages and disadvantages associated with each vector and suggest further clinical development of the MND-huWASp LV for a future clinical trial for WAS.
Collapse
|
31
|
Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, Hernandez RJ, Benedicenti F, Radrizzani M, Salomoni M, Ranzani M, Bartholomae CC, Vicenzi E, Finocchi A, Bredius R, Bosticardo M, Schmidt M, von Kalle C, Montini E, Biffi A, Roncarolo MG, Naldini L, Villa A, Aiuti A. Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 2012; 21:175-84. [PMID: 22371846 PMCID: PMC3538318 DOI: 10.1038/mt.2012.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34+ cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34+ cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34+ cells gene therapy for the treatment of WAS.
Collapse
|
32
|
Hsu CYM, Uludağ H. Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J Drug Target 2012; 20:301-28. [PMID: 22303844 DOI: 10.3109/1061186x.2012.655247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The delivery of nucleic acid molecules into cells to alter physiological functions at the genetic level is a powerful approach to treat a wide range of inherited and acquired disorders. Biocompatible materials such as cationic polymers, lipids, and peptides are being explored as safer alternatives to viral gene carriers. However, the comparatively low efficiency of nonviral carriers currently hampers their translation into clinical settings. Controlling the size and stability of carrier/nucleic acid complexes is one of the primary hurdles as the physicochemical properties of the complexes can define the uptake pathways, which dictate intracellular routing, endosomal processing, and nucleocytoplasmic transport. In addition to nuclear import, subnuclear trafficking, posttranscriptional events, and immune responses can further limit transfection efficiency. Chemical moieties, reactive linkers or signal peptide have been conjugated to carriers to prevent aggregation, induce membrane destabilization and localize to subcellular compartments. Genetic elements can be inserted into the expression cassette to facilitate nuclear targeting, delimit expression to targeted tissue, and modulate transgene expression. The modular option afforded by both gene carriers and expression cassettes provides a two-tier multicomponent delivery system that can be optimized for targeted gene delivery in a variety of settings.
Collapse
Affiliation(s)
- Charlie Yu Ming Hsu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Cananda
| | | |
Collapse
|
33
|
Dendritic cell functional improvement in a preclinical model of lentiviral-mediated gene therapy for Wiskott-Aldrich syndrome. Gene Ther 2011; 19:1150-8. [PMID: 22189416 PMCID: PMC3378501 DOI: 10.1038/gt.2011.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency caused by the defective expression of the WAS protein (WASP) in hematopoietic cells. It has been shown that dendritic cells (DCs) are functionally impaired in WAS patients and was−/− mice. We have previously demonstrated the efficacy and safety of a murine model of WAS gene therapy (GT), using stem cells transduced with a lentiviral vector. The aim of this study was to investigate whether GT can correct DC defects in was−/− mice. As DCs expressing WASP were detected in the secondary lymphoid organs of the treated mice, we tested the in vitro and in vivo function of bone marrow-derived DCs (BMDCs). The BMDCs showed efficient in vitro uptake of latex beads and Salmonella typhimurium. When BMDCs from the treated mice (GT BMDCs) and the was−/− mice were injected into wild type hosts, we found a higher number of cells that had migrated to the draining lymph nodes compared to mice injected with was−/− BMDCs. Finally, we found that OVA-pulsed GT BMDCs or vaccination with anti-DEC205 OVA fusion protein can efficiently induce antigen-specific T cell activation in vivo. These findings show that WAS GT significantly improves DC function, thus adding new evidence of the preclinical efficacy of lentiviral vector-mediated WAS GT.
Collapse
|
34
|
Bosticardo M, Draghici E, Schena F, Sauer AV, Fontana E, Castiello MC, Catucci M, Locci M, Naldini L, Aiuti A, Roncarolo MG, Poliani PL, Traggiai E, Villa A. Lentiviral-mediated gene therapy leads to improvement of B-cell functionality in a murine model of Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2011; 127:1376-84.e5. [PMID: 21531013 DOI: 10.1016/j.jaci.2011.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency characterized by thrombocytopenia, eczema, infections, autoimmunity, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical donors is curative, but it is not available to all patients. We have developed a gene therapy (GT) approach for WAS by using a lentiviral vector encoding for human WAS promoter/cDNA (w1.6W) and demonstrated its preclinical efficacy and safety. OBJECTIVE To evaluate B-cell reconstitution and correction of B-cell phenotype in GT-treated mice. METHODS We transplanted Was(-/-) mice sublethally irradiated (700 rads) with lineage marker-depleted bone marrow wild-type cells, Was(-/-) cells untransduced or transduced with the w1.6W lentiviral vector and analyzed B-cell reconstitution in bone marrow, spleen, and peritoneum. RESULTS Here we show that WAS protein(+) B cells were present in central and peripheral B-cell compartments from GT-treated mice and displayed the strongest selective advantage in the splenic marginal zone and peritoneal B1 cell subsets. After GT, splenic architecture was improved and B-cell functions were restored, as demonstrated by the improved antibody response to pneumococcal antigens and the reduction of serum IgG autoantibodies. CONCLUSION WAS GT leads to improvement of B-cell functions, even in the presence of a mixed chimerism, further validating the clinical application of the w1.6W lentiviral vector.
Collapse
|
35
|
Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies. Hematol Oncol Clin North Am 2011; 25:89-100. [PMID: 21236392 DOI: 10.1016/j.hoc.2010.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The concept of gene therapy emerged as a way of correcting monogenic inherited diseases by introducing a normal copy of the mutated gene into at least some of the patients' cells. Although this concept has turned out to be quite complicated to implement, it is in the field of primary immunodeficiencies (PIDs) that proof of feasibility has been undoubtedly achieved. There is now a strong rationale in support of gene therapy for at least some PIDs, as discussed in this article.
Collapse
Affiliation(s)
- Alain Fischer
- Developpement Normal et Pathologique du Systeme Immunitaire, INSERM U 768, Hopital Necker, 149 rue de Sevres, Paris, France
| | | | | |
Collapse
|
36
|
Abstract
After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.
Collapse
|
37
|
Frecha C, Lévy C, Cosset FL, Verhoeyen E. Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Mol Ther 2010; 18:1748-57. [PMID: 20736930 PMCID: PMC2951569 DOI: 10.1038/mt.2010.178] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022] Open
Abstract
Efficient gene transfer into quiescent T and B lymphocytes for gene therapy or immunotherapy purposes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as immunodeficiencies, and the development of novel therapeutic strategies for cancers and acquired diseases. Lentiviral vectors (LVs) can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T and B cells. In T cells, completion of reverse transcription (RT), nuclear import, and subsequent integration of the vesicular stomatitis virus G protein pseudotyped LV (VSVG-LV) genome does not occur efficiently unless they are activated via the T-cell receptor (TCR) or by survival-cytokines inducing them to enter into the G(1b) phase of the cell cycle. Lentiviral transduction of B cells is another matter because even B-cell receptor-stimulation inducing proliferation is not sufficient to allow efficient VSVG-LV transduction. Recently, a new LV carrying the glycoproteins of measles virus (MV) at its surface was able to overcome vector restrictions in both quiescent T and B cells. Importantly, naive as well as memory T and B cells were efficiently transduced while no apparent activation, cell-cycle entry, or phenotypic switch were detected, which opens the door to a multitude of gene therapy and immunotherapy applications as reported here.
Collapse
|
38
|
Gilham DE, Lie-A-Ling M, Taylor N, Hawkins RE. Cytokine stimulation and the choice of promoter are critical factors for the efficient transduction of mouse T cells with HIV-1 vectors. J Gene Med 2010; 12:129-36. [PMID: 20033928 DOI: 10.1002/jgm.1421] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND HIV-1 fails to successfully infect mouse T cells as a result of several blocks in the viral replication cycle. We investigated whether this also impacted on the use of HIV-1 derived lentiviral vectors for stable gene transfer into mouse T cells. METHODS Freshly isolated primary mouse T cells were immediately mixed with lentiviral vectors encoding an enhanced green fluorescent protein marker gene and transduction frequency was determined after 5 days of culture. RESULTS Optimal transduction required both mouse T cell activation and cytokine support. Furthermore, transduction was also dependent upon the promoter chosen, with the rank order of potency being PGK > EF1 > SFFV > CMV. HIV-1 lentiviral vectors also efficiently transduced cytokine-stimulated T cells (in the absence of antibody driven T cell activation), albeit with a lower level of transgene expression compared to fully-activated T cells. CONCLUSIONS The present study demonstrates that primary mouse T cells can be efficiently transduced with HIV-1 lentiviral vectors, opening up prospects for their use in mouse models of gene-modified adoptive cellular therapy.
Collapse
Affiliation(s)
- David E Gilham
- Cell Therapy Group, Cancer Research UK Department of Medical Oncology, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | | | | | | |
Collapse
|
39
|
Fischer A, Hacein-Bey-Abina S, Cavazanna-Calvo M. Gene Therapy for Primary Immunodeficiencies. Immunol Allergy Clin North Am 2010; 30:237-48. [DOI: 10.1016/j.iac.2010.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Davis BR, Yan Q, Bui JH, Felix K, Moratto D, Muul LM, Prokopishyn NL, Blaese RM, Candotti F. Somatic mosaicism in the Wiskott–Aldrich syndrome: Molecular and functional characterization of genotypic revertants. Clin Immunol 2010; 135:72-83. [DOI: 10.1016/j.clim.2009.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/22/2022]
|
41
|
Leuci V, Gammaitoni L, Capellero S, Sangiolo D, Mesuraca M, Bond HM, Migliardi G, Cammarata C, Aglietta M, Morrone G, Piacibello W. Efficient transcriptional targeting of human hematopoietic stem cells and blood cell lineages by lentiviral vectors containing the regulatory element of the Wiskott-Aldrich syndrome gene. Stem Cells 2010; 27:2815-23. [PMID: 19785032 DOI: 10.1002/stem.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to effectively transduce human hematopoietic stem cells (HSCs) and to ensure adequate but "physiological" levels of transgene expression in different hematopoietic lineages represents some primary features of a gene-transfer vector. The ability to carry, integrate, and efficiently sustain transgene expression in HSCs strongly depends on the vector. We have constructed lentiviral vectors (LV) containing fragments of different lengths of the hematopoietic-specific regulatory element of the Wiskott-Aldrich syndrome (WAS) gene-spanning approximately 1,600 and 170 bp-that direct enhanced green fluorescent protein (EGFP) expression. The performance of vectors carrying the 1,600 and 170 bp fragments of the WAS gene promoter was compared with that of a vector carrying the UbiquitinC promoter in human cord blood CD34(+) cells and their differentiated progeny both in vitro and in vivo in non-obese diabetic mice with severe combined immunodeficiency. All vectors displayed a similar transduction efficiency in CD34(+) cells and promoted long-term EGFP expression in different hematopoietic lineages, with an efficiency comparable to, and in some instances (for example, the 170-bp promoter) superior to, that of the UbiquitinC promoter. Our results clearly demonstrate that LV containing fragments of the WAS gene promoter/enhancer region can promote long-term transgene expression in different hematopoietic lineages in vitro and in vivo and represent suitable and highly efficient vectors for gene transfer in gene-therapy applications for different hematological diseases and for research purposes. In particular, the 170-bp carrying vector, for its reduced size, could significantly improve the transduction/expression of large-size genes.
Collapse
Affiliation(s)
- Valeria Leuci
- Laboratory of Clinical Oncology, Department of Oncological Sciences, University of Torino Medical School, IRCC, Institute for Cancer Research and Treatment, 10060 Candiolo, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Denard J, Rundwasser S, Laroudie N, Gonnet F, Naldini L, Radrizzani M, Galy A, Merten OW, Danos O, Svinartchouk F. Quantitative proteomic analysis of lentiviral vectors using 2-DE. Proteomics 2009; 9:3666-76. [DOI: 10.1002/pmic.200800747] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Bouma G, Burns SO, Thrasher AJ. Wiskott-Aldrich Syndrome: Immunodeficiency resulting from defective cell migration and impaired immunostimulatory activation. Immunobiology 2009; 214:778-90. [PMID: 19628299 PMCID: PMC2738782 DOI: 10.1016/j.imbio.2009.06.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of the actin cytoskeleton is crucial for many aspects of correct and cooperative functioning of immune cells, such as migration, antigen uptake and cell activation. The Wiskott-Aldrich Syndrome protein (WASp) is an important regulator of actin cytoskeletal rearrangements and lack of this protein results in impaired immune function. This review discusses recent new insights of the role of WASp at molecular and cellular level and evaluates how WASp deficiency affects important immunological features and how defective immune cell function contributes to compromised host defence.
Collapse
Affiliation(s)
- Gerben Bouma
- Centre for Immunodeficiency, UCL Institute of Child Health, London, UK.
| | | | | |
Collapse
|
44
|
Abstract
Abstract
Wiskott-Aldrich syndrome (WAS) is a severe X-linked immunodeficiency caused by mutations in the gene encoding for WASP, a key regulator of signaling and cytoskeletal reorganization in hematopoietic cells. Mutations in WASP result in a wide spectrum of clinical manifestations ranging from the relatively mild X-linked thrombocytopenia to the classic full-blown WAS phenotype characterized by thrombocytopenia, immunodeficiency, eczema, and high susceptibility to developing tumors and autoimmune manifestations. The life expectancy of patients affected by severe WAS is reduced, unless they are successfully cured by bone marrow transplantation from related identical or matched unrelated donors. Because many patients lack a compatible bone marrow donor, the administration of WAS gene–corrected autologous hematopoietic stem cells could represent an alternative therapeutic approach. In the present review, we focus on recent progress in understanding the molecular and cellular mechanisms contributing to the pathophysiology of WAS. Although molecular and cellular studies have extensively analyzed the mechanisms leading to defects in T, B, and dendritic cells, the basis of autoimmunity and thrombocytopenia still remains poorly understood. A full understanding of these mechanisms is still needed to further implement new therapeutic strategies for this peculiar immunodeficiency.
Collapse
|
45
|
Marangoni F, Bosticardo M, Charrier S, Draghici E, Locci M, Scaramuzza S, Panaroni C, Ponzoni M, Sanvito F, Doglioni C, Liabeuf M, Gjata B, Montus M, Siminovitch K, Aiuti A, Naldini L, Dupré L, Roncarolo MG, Galy A, Villa A. Evidence for long-term efficacy and safety of gene therapy for Wiskott-Aldrich syndrome in preclinical models. Mol Ther 2009; 17:1073-82. [PMID: 19259069 DOI: 10.1038/mt.2009.31] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wiskott-Aldrich Syndrome (WAS) is a life-threatening X-linked disease characterized by immunodeficiency, thrombocytopenia, autoimmunity, and malignancies. Gene therapy could represent a therapeutic option for patients lacking a suitable bone marrow (BM) donor. In this study, we analyzed the long-term outcome of WAS gene therapy mediated by a clinically compatible lentiviral vector (LV) in a large cohort of was(null) mice. We demonstrated stable and full donor engraftment and Wiskott-Aldrich Syndrome protein (WASP) expression in various hematopoietic lineages, up to 12 months after gene therapy. Importantly, we observed a selective advantage for T and B lymphocytes expressing transgenic WASP. T-cell receptor (TCR)-driven T-cell activation, as well as B-cell's ability to migrate in response to CXCL13, was fully restored. Safety was evaluated throughout the long-term follow-up of primary and secondary recipients of WAS gene therapy. WAS gene therapy did not affect the lifespan of treated animals. Both hematopoietic and nonhematopoietic tumors arose, but we excluded the association with gene therapy in all cases. Demonstration of long-term efficacy and safety of WAS gene therapy mediated by a clinically applicable LV is a key step toward the implementation of a gene therapy clinical trial for WAS.
Collapse
|
46
|
Abstract
Efficient gene transfer into T lymphocytes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as severe combined immunodeficiency, and the development of novel therapeutic strategies for diseases such as cancers and acquired diseases such as AIDS. Lentiviral vectors can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T cells. Completion of reverse transcription, nuclear import, and subsequent integration of the lentivirus genome do not occur in these cells unless they are activated via the T-cell receptor (TCR) and/or by cytokines inducing resting T cells to enter in G(1b) phase of the cell cycle. In T-cell-based gene therapy trials performed to date, cells have been preactivated via their cognate antigen receptor (TCR). However, TCR stimulation shifts the T cells from naïve to memory phenotype and leads to skewing of the T-cell population. Since, especially the naïve T cells will provide a long-lasting immune reconstitution to patients these are the cells that need to be transduced for effective gene therapy. Now it is clear that use of the survival cytokines, IL-2 or IL-7, allows an efficient lentiviral vector gene transfer and could preserve a functional T-cell repertoire while maintaining an appropriate proportion of naïve and memory T cells. In this protocol we give details on lentiviral transduction of T cells using TCR-stimulation or rIL-7 prestimulation. In addition, we describe the use of a new generation of lentiviral vectors displaying T-cell-activating ligands at their surface for targeted T-cell gene transfer.
Collapse
|
47
|
Aiuti A, Roncarolo MG. Ten years of gene therapy for primary immune deficiencies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:682-689. [PMID: 20008254 DOI: 10.1182/asheducation-2009.1.682] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy with hematopoietic stem cells (HSC) is an attractive therapeutic strategy for several forms of primary immunodeficiencies. Current approaches are based on ex vivo gene transfer of the therapeutic gene into autologous HSC by vector-mediated gene transfer. In the past decade, substantial progress has been achieved in the treatment of severe combined immundeficiencies (SCID)-X1, adenosine deaminase (ADA)-deficient SCID, and chronic granulomatous disease (CGD). Results of the SCID gene therapy trials have shown long-term restoration of immune competence and clinical benefit in over 30 patients. The inclusion of reduced-dose conditioning in the ADA-SCID has allowed the engraftment of multipotent gene-corrected HSC at substantial level. In the CGD trial significant engraftment and transgene expression were observed, but the therapeutic effect was transient. The occurrence of adverse events related to insertional mutagenesis in the SCID-X1 and CGD trial has highlighted the limitations of current retroviral vector technology. For future applications the risk-benefit evaluation should include the type of vector employed, the disease background and the nature of the transgene. The use of self-inactivating lentiviral vectors will provide significant advantages in terms of natural gene regulation and reduction in the potential for adverse mutagenic events. Following recent advances in preclinical studies, lentiviral vectors are now being translated into new clinical approaches, such as Wiskott-Aldrich Syndrome.
Collapse
Affiliation(s)
- Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
48
|
Notarangelo LD, Badolato R. Leukocyte trafficking in primary immunodeficiencies. J Leukoc Biol 2008; 85:335-43. [DOI: 10.1189/jlb.0808474] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Toscano MG, Frecha C, Benabdellah K, Cobo M, Blundell M, Thrasher AJ, García-Olivares E, Molina IJ, Martin F. Hematopoietic-specific lentiviral vectors circumvent cellular toxicity due to ectopic expression of Wiskott-Aldrich syndrome protein. Hum Gene Ther 2008; 19:179-97. [PMID: 18240968 DOI: 10.1089/hum.2007.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Efficient and safe gene modification of hematopoietic stem cells is a requirement for gene therapy of primary immunodeficiencies such as Wiskott-Aldrich syndrome. However, deregulated expression or ectopic expression in the progeny of transduced nonhematopoietic progenitor cells may lead to unwanted toxicity. We therefore analyzed the effect of ectopic expression of Wiskott-Aldrich syndrome protein (WASp) and the potential benefits of hematopoietic-specific lentiviral vectors (driven by the WAS proximal promoter). Overexpression of WASp by constitutive lentiviral vectors is highly toxic in nonhematopoietic cells because it causes dramatic changes in actin localization and polymerization that result in decreased cell viability, as evidenced by a significant growth disadvantage of WASp-overexpressing nonhematopoietic cells and increased cell death. These toxic effects do not affect cells of hematopoietic origin because, remarkably, we found that WASp cannot be readily overexpressed in T cells, even after multiple vector integrations per cell. The adverse cellular effects found after transduction of nonhematopoietic cells with constitutive lentiviral vectors are overcome by the use of transcriptionally targeted lentiviral vectors expressing WASp, which, at the same time, are efficient tools for gene therapy of WAS as demonstrated by their ability to reconstitute cellular defects from WASp-deficient mouse and human cells. We therefore postulate that transcriptionally regulated lentiviral vectors represent a safer and efficient alternative for the development of clinical protocols of WAS gene therapy.
Collapse
Affiliation(s)
- Miguel G Toscano
- Immunology and Cell Biology Department, Institute of Parasitology and Biomedicine López Neyra, CSIC, Parque Tecnológico Ciencias de la Salud, 18100 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pulecio J, Tagliani E, Scholer A, Prete F, Fetler L, Burrone OR, Benvenuti F. Expression of Wiskott-Aldrich syndrome protein in dendritic cells regulates synapse formation and activation of naive CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:1135-42. [PMID: 18606666 DOI: 10.4049/jimmunol.181.2.1135] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8(+) T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8(+) T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.
Collapse
Affiliation(s)
- Julian Pulecio
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|