1
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
2
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
3
|
Zakas PM, Cunningham SC, Doherty A, van Dijk EB, Ibraheim R, Yu S, Mekonnen BD, Lang B, English EJ, Sun G, Duncan MC, Benczkowski MS, Altshuler RC, Singh MJ, Kibbler ES, Tonga GY, Wang ZJ, Wang ZJ, Li G, An D, Rottman JB, Bhavsar Y, Purcell C, Jain R, Alberry R, Roquet N, Fu Y, Citorik RJ, Rubens JR, Holmes MC, Cotta-Ramusino C, Querbes W, Alexander IE, Salomon WE. Sleeping Beauty mRNA-LNP enables stable rAAV transgene expression in mouse and NHP hepatocytes and improves vector potency. Mol Ther 2024; 32:3356-3371. [PMID: 38981468 PMCID: PMC11489535 DOI: 10.1016/j.ymthe.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/05/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene. This combinatorial approach achieved correction of ornithine transcarbamylase deficiency in the neonatal Spfash mouse model following a single delivery to dividing hepatocytes in the newborn liver. Correction remained stable into adulthood, while a conventional rAAV approach resulted in a return to the disease state. In non-human primates, integration by transposition, mediated by this technology, improved gene expression 10-fold over conventional rAAV-mediated gene transfer while requiring 5-fold less vector. Additionally, integration site analysis confirmed a random profile while specifically targeting TA dinucleotides across the genome. Together, these findings demonstrate that transposable elements can improve rAAV-delivered therapies by lowering the vector dose requirement and associated toxicity while expanding target cell types.
Collapse
Affiliation(s)
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Ann Doherty
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Eva B van Dijk
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Raed Ibraheim
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Stephanie Yu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Brendan Lang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Gang Sun
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Gulen Y Tonga
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Zi Jun Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Z Jane Wang
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Guangde Li
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ding An
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | - Rachit Jain
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | - Ryan Alberry
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | - Yanfang Fu
- Tessera Therapeutics, Inc., Somerville, MA 02143, USA
| | | | | | | | | | | | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW 2145, Australia.
| | | |
Collapse
|
4
|
Ellison S, Buckland K, Learmonth Y, Day V, Kalra S, Howe L, Roman-Rodriguez FJ, Bonafont J, Booth L, Holley R, Smythe J, Jones S, Thrasher A, Booth C, Bigger BW. Design and validation of a GMP stem cell manufacturing protocol for MPSII hematopoietic stem cell gene therapy. Mol Ther Methods Clin Dev 2024; 32:101271. [PMID: 38946936 PMCID: PMC11214401 DOI: 10.1016/j.omtm.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024]
Abstract
Hematopoietic stem cell gene therapy (HSCGT) is a promising therapeutic strategy for the treatment of neurodegenerative, metabolic disorders. The approach involves the ex vivo introduction of a missing gene into patients' own stem cells via lentiviral-mediated transduction (TD). Once transplanted back into a fully conditioned patient, these genetically modified HSCs can repopulate the blood system and produce the functional protein, previously absent or non-functional in the patient, which can then cross-correct other affected cells in somatic organs and the central nervous system. We previously developed an HSCGT approach for the treatment of Mucopolysaccharidosis type II (MPSII) (Hunter syndrome), a debilitating pediatric lysosomal disorder caused by mutations in the iduronate-2-sulphatase (IDS) gene, leading to the accumulation of heparan and dermatan sulfate, which causes severe neurodegeneration, skeletal abnormalities, and cardiorespiratory disease. In HSCGT proof-of-concept studies using lentiviral IDS fused to a brain-targeting peptide ApoEII (IDS.ApoEII), we were able to normalize brain pathology and behavior of MPSII mice. Here we present an optimized and validated good manufacturing practice hematopoietic stem cell TD protocol for MPSII in preparation for first-in-man studies. Inclusion of TEs LentiBOOST and protamine sulfate significantly improved TD efficiency by at least 3-fold without causing adverse toxicity, thereby reducing vector quantity required.
Collapse
Affiliation(s)
- Stuart Ellison
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Karen Buckland
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Yuko Learmonth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Victoria Day
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Spandan Kalra
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Lauren Howe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Francisco José Roman-Rodriguez
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Jose Bonafont
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Laura Booth
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Rebecca Holley
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
| | - Jon Smythe
- Cellular and Molecular Therapies, NHSBT Barnsley, Barnsley, UK
| | - Simon Jones
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Adrian Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Brian W. Bigger
- Stem Cell & Neurotherapies Group, University of Manchester, Manchester, UK
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Grunebaum E, Booth C, Cuvelier GDE, Loves R, Aiuti A, Kohn DB. Updated Management Guidelines for Adenosine Deaminase Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1665-1675. [PMID: 36736952 DOI: 10.1016/j.jaip.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023]
Abstract
Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn Loves
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, and the Università Vita-Salute San Raffaele, Milan, Italy
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif
| |
Collapse
|
6
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
7
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Secord E, Hartog NL. Review of Treatment for Adenosine Deaminase Deficiency (ADA) Severe Combined Immunodeficiency (SCID). Ther Clin Risk Manag 2022; 18:939-944. [PMID: 36172599 PMCID: PMC9512634 DOI: 10.2147/tcrm.s350762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Adenosine deaminase deficiency (ADA) is a purine salvage pathway deficiency that results in buildup of toxic metabolites causing death in rapidly dividing cells, especially lymphocytes. The most complete form of ADA leads to severe combined immune deficiency (SCID). Treatment with enzyme replacement therapy (ERT) was developed in the 1970s and became the treatment for ADA SCID by the 1980s. It remains an option for some infants with SCID, and a stopgap measure for others awaiting curative therapy. For some infants with ADA SCID who have matching family donors hematopoietic stem cell transplant (HSCT) is an option for cure. Gene therapy for ADA SCID, approved in some countries and in trials in others, is becoming possible for more infants with this disorder. This review covers the history of ADA SCID, the treatment options to date and particularly the history of the development of gene therapy for ADA SCID and the current state of the risks and benefits of the gene therapy option.
Collapse
Affiliation(s)
- Elizabeth Secord
- Pediatrics, Division of Allergy and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicholas L Hartog
- Pediatrics, Division of Allergy and Immunology, Michigan State University College of Human Medicine, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| |
Collapse
|
9
|
Chetty K, Houghton BC, Booth C. Gene Therapy for Inborn Errors of Immunity. Hematol Oncol Clin North Am 2022; 36:813-827. [DOI: 10.1016/j.hoc.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Houghton BC, Panchal N, Haas SA, Chmielewski KO, Hildenbeutel M, Whittaker T, Mussolino C, Cathomen T, Thrasher AJ, Booth C. Genome Editing With TALEN, CRISPR-Cas9 and CRISPR-Cas12a in Combination With AAV6 Homology Donor Restores T Cell Function for XLP. Front Genome Ed 2022; 4:828489. [PMID: 35677600 PMCID: PMC9168036 DOI: 10.3389/fgeed.2022.828489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/06/2022] [Indexed: 12/27/2022] Open
Abstract
X-linked lymphoproliferative disease is a rare inherited immune disorder, caused by mutations or deletions in the SH2D1A gene that encodes an intracellular adapter protein SAP (Slam-associated protein). SAP is essential for mediating several key immune processes and the immune system - T cells in particular - are dysregulated in its absence. Patients present with a spectrum of clinical manifestations, including haemophagocytic lymphohistiocytosis (HLH), dysgammaglobulinemia, lymphoma and autoimmunity. Treatment options are limited, and patients rarely survive to adulthood without an allogeneic haematopoietic stem cell transplant (HSCT). However, this procedure can have poor outcomes in the mismatched donor setting or in the presence of active HLH, leaving an unmet clinical need. Autologous haematopoeitic stem cell or T cell therapy may offer alternative treatment options, removing the need to find a suitable donor for HSCT and any risk of alloreactivity. SAP has a tightly controlled expression profile that a conventional lentiviral gene delivery platform may not be able to fully replicate. A gene editing approach could preserve more of the endogenous regulatory elements that govern SAP expression, potentially providing a more optimum therapy. Here, we assessed the ability of TALEN, CRISPR-Cas9 and CRISPR-Cas12a nucleases to drive targeted insertion of SAP cDNA at the first exon of the SH2D1A locus using an adeno-associated virus serotype 6 (AAV6)-based vector containing the donor template. All nuclease platforms were capable of high efficiency gene editing, which was optimised using a serum-free AAV6 transduction protocol. We show that T cells from XLP patients corrected by gene editing tools have restored physiological levels of SAP gene expression and restore SAP-dependent immune functions, indicating a new therapeutic opportunity for XLP patients.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Neelam Panchal
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Simone A. Haas
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kay O. Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Markus Hildenbeutel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Whittaker
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center – University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
11
|
Tucci F, Galimberti S, Naldini L, Valsecchi MG, Aiuti A. A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nat Commun 2022; 13:1315. [PMID: 35288539 PMCID: PMC8921234 DOI: 10.1038/s41467-022-28762-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ex-vivo gene therapy (GT) with hematopoietic stem and progenitor cells (HSPCs) engineered with integrating vectors is a promising treatment for monogenic diseases, but lack of centralized databases is hampering an overall outcomes assessment. Here we aim to provide a comprehensive assessment of the short and long term safety of HSPC-GT from trials using different vector platforms. We review systematically the literature on HSPC-GT to describe survival, genotoxicity and engraftment of gene corrected cells. From 1995 to 2020, 55 trials for 14 diseases met inclusion criteria and 406 patients with primary immunodeficiencies (55.2%), metabolic diseases (17.0%), haemoglobinopathies (24.4%) and bone marrow failures (3.4%) were treated with gammaretroviral vector (γRV) (29.1%), self-inactivating γRV (2.2%) or lentiviral vectors (LV) (68.7%). The pooled overall incidence rate of death is 0.9 per 100 person-years of observation (PYO) (95% CI = 0.37-2.17). There are 21 genotoxic events out of 1504.02 PYO, which occurred in γRV trials (0.99 events per 100 PYO, 95% CI = 0.18-5.43) for primary immunodeficiencies. Pooled rate of engraftment is 86.7% (95% CI = 67.1-95.5%) for γRV and 98.7% (95% CI = 94.5-99.7%) for LV HSPC-GT (p = 0.005). Our analyses show stable reconstitution of haematopoiesis in most recipients with superior engraftment and safer profile in patients receiving LV-transduced HSPCs.
Collapse
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Grazia Valsecchi
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
12
|
Unnisa Z, Yoon JK, Schindler JW, Mason C, van Til NP. Gene Therapy Developments for Pompe Disease. Biomedicines 2022; 10:302. [PMID: 35203513 PMCID: PMC8869611 DOI: 10.3390/biomedicines10020302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.
Collapse
Affiliation(s)
- Zeenath Unnisa
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | - John K. Yoon
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
| | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA; (Z.U.); (J.K.Y.); (J.W.S.); (C.M.)
- Child Neurology, Emma Children’s Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Nonconditioned ADA-SCID gene therapy reveals ADA requirement in the hematopoietic system and clonal dominance of vector-marked clones. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:424-433. [PMID: 34786435 PMCID: PMC8566957 DOI: 10.1016/j.omtm.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022]
Abstract
Two patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency (ADA-SCID) received stem cell-based gene therapy (SCGT) using GCsapM-ADA retroviral vectors without preconditioning in 2003 and 2004. The first patient (Pt1) was treated at 4.7 years old, and the second patient (Pt2), who had previously received T cell gene therapy (TCGT), was treated at 13 years old. More than 10 years after SCGT, T cells showed a higher vector copy number (VCN) than other lineages. Moreover, the VCN increased with differentiation toward memory T and B cells. The distribution of vector-marked cells reflected variable levels of ADA requirements in hematopoietic subpopulations. Although neither patient developed leukemia, clonal expansion of SCGT-derived clones was observed in both patients. The use of retroviral vectors yielded clonal dominance of vector-marked clones, irrespective of the lack of leukemic changes. Vector integration sites common to all hematopoietic lineages suggested the engraftment of gene-marked progenitors in Pt1, who showed severe osteoblast (OB) insufficiency compared to Pt2, which might cause a reduction in the stem/progenitor cells in the bone marrow (BM). The impaired BM microenvironment due to metabolic abnormalities may create space for the engraftment of vector-marked cells in ADA-SCID, despite the lack of preconditioning.
Collapse
|
14
|
Reinhardt B, Habib O, Shaw KL, Garabedian E, Carbonaro-Sarracino DA, Terrazas D, Fernandez BC, De Oliveira S, Moore TB, Ikeda AK, Engel BC, Podsakoff GM, Hollis RP, Fernandes A, Jackson C, Shupien S, Mishra S, Davila A, Mottahedeh J, Vitomirov A, Meng W, Rosenfeld AM, Roche AM, Hokama P, Reddy S, Everett J, Wang X, Luning Prak ET, Cornetta K, Hershfield MS, Sokolic R, De Ravin SS, Malech HL, Bushman FD, Candotti F, Kohn DB. Long-term outcomes after gene therapy for adenosine deaminase severe combined immune deficiency. Blood 2021; 138:1304-1316. [PMID: 33974038 PMCID: PMC8525336 DOI: 10.1182/blood.2020010260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Patients lacking functional adenosine deaminase activity have severe combined immunodeficiency (ADA SCID), which can be treated with ADA enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT), or autologous HSCT with gene-corrected cells (gene therapy [GT]). A cohort of 10 ADA SCID patients, aged 3 months to 15 years, underwent GT in a phase 2 clinical trial between 2009 and 2012. Autologous bone marrow CD34+ cells were transduced ex vivo with the MND (myeloproliferative sarcoma virus, negative control region deleted, dl587rev primer binding site)-ADA gammaretroviral vector (gRV) and infused following busulfan reduced-intensity conditioning. These patients were monitored in a long-term follow-up protocol over 8 to 11 years. Nine of 10 patients have sufficient immune reconstitution to protect against serious infections and have not needed to resume ERT or proceed to secondary allogeneic HSCT. ERT was restarted 6 months after GT in the oldest patient who had no evidence of benefit from GT. Four of 9 evaluable patients with the highest gene marking and B-cell numbers remain off immunoglobulin replacement therapy and responded to vaccines. There were broad ranges of responses in normalization of ADA enzyme activity and adenine metabolites in blood cells and levels of cellular and humoral immune reconstitution. Outcomes were generally better in younger patients and those receiving higher doses of gene-marked CD34+ cells. No patient experienced a leukoproliferative event after GT, despite persisting prominent clones with vector integrations adjacent to proto-oncogenes. These long-term findings demonstrate enduring efficacy of GT for ADA SCID but also highlight risks of genotoxicity with gRVs. This trial was registered at www.clinicaltrials.gov as #NCT00794508.
Collapse
Affiliation(s)
- Bryanna Reinhardt
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Omar Habib
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kit L Shaw
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Elizabeth Garabedian
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Denise A Carbonaro-Sarracino
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Dayna Terrazas
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Beatriz Campo Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Satiro De Oliveira
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Theodore B Moore
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Alan K Ikeda
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Barbara C Engel
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Augustine Fernandes
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Connie Jackson
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sally Shupien
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Suparna Mishra
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Alejandra Davila
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jack Mottahedeh
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Andrej Vitomirov
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine and
| | | | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Pascha Hokama
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Everett
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Michael S Hershfield
- Departments of Medicine and Biochemistry, Duke University School of Medicine, Durham, NC
| | - Robert Sokolic
- Department of Medicine, Alpert Medical School, Brown University, Providence, RI
| | - Suk See De Ravin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Harry L Malech
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
15
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Holl NJ, Lee HJ, Huang YW. Evolutionary Timeline of Genetic Delivery and Gene Therapy. Curr Gene Ther 2021; 21:89-111. [PMID: 33292120 DOI: 10.2174/1566523220666201208092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022]
Abstract
There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.
Collapse
Affiliation(s)
- Natalie J Holl
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, College of Environmental Studies, National Dong Hwa University, Hualien 974301, Taiwan
| | - Yue-Wern Huang
- Department of Biological Sciences, College of Arts, Sciences, and Business, Missouri University of Science and Technology, Rolla, MO 65409, United States
| |
Collapse
|
17
|
Abstract
Gene therapy is an innovative treatment for Primary Immune Deficiencies (PIDs) that uses autologous hematopoietic stem cell transplantation to deliver stem cells with added or edited versions of the missing or malfunctioning gene that causes the PID. Initial studies of gene therapy for PIDs in the 1990-2000's used integrating murine gamma-retroviral vectors. While these studies showed clinical efficacy in many cases, especially with the administration of marrow cytoreductive conditioning before cell re-infusion, these vectors caused genotoxicity and development of leukoproliferative disorders in several patients. More recent studies used lentiviral vectors in which the enhancer elements of the long terminal repeats self-inactivate during reverse transcription ("SIN" vectors). These SIN vectors have excellent safety profiles and have not been reported to cause any clinically significant genotoxicity. Gene therapy has successfully treated several PIDs including Adenosine Deaminase Severe Combined Immunodeficiency (SCID), X-linked SCID, Artemis SCID, Wiskott-Aldrich Syndrome, X-linked Chronic Granulomatous Disease and Leukocyte Adhesion Deficiency-I. In all, gene therapy for PIDs has progressed over the recent decades to be equal or better than allogeneic HSCT in terms of efficacy and safety. Further improvements in methods should lead to more consistent and reliable efficacy from gene therapy for a growing list of PIDs.
Collapse
Affiliation(s)
- Lisa A. Kohn
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Donald B. Kohn
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Abstract
Primary immunodeficiencies (PIDs) are a group of rare inherited disorders of the immune system. Many PIDs are devastating and require a definitive therapy to prevent progressive morbidity and premature mortality. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative for many PIDs, and while advances have resulted in improved outcomes, the procedure still carries a risk of mortality and morbidity from graft failure or graft-versus-host disease (GvHD). Autologous haematopoietic stem cell gene therapy (HSC GT) has the potential to correct genetic defects across haematopoietic lineages without the complications of an allogeneic approach. HSC GT for PID has been in development for the last two decades and the first licensed HSC-GT product for adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is now available. New gene editing technologies have the potential to circumvent some of the problems associated with viral gene-addition. HSC GT for PID shows great promise, but requires a unique approach for each disease and carries risks, notably insertional mutagenesis from gamma-retroviral gene addition approaches and possible off-target toxicities from gene-editing techniques. In this review, we discuss the development of HSC GT for PID and outline the current state of clinical development before discussing future developments in the field.
Collapse
Affiliation(s)
- Thomas A Fox
- University College London (UCL) Institute of Immunity and Transplantation, UCL, London, UK.,Department of Clinical Haematology, UCL Hospitals NHS Foundation Trust, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street (GOS) Institute of Child Health, London, UK.,Department of Paediatric Immunology, GOS Hospital for Sick Children NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Abstract
INTRODUCTION Primary immunodeficiencies (PIDs) are monogenic disorders of the immune system associated with increased susceptibility to life-threatening infection. Curative treatment has been limited to hematopoietic stem cell transplant (HSCT), however toxic immunosuppression, graft failure, and graft versus host disease greatly reduce overall survival rates. Gene therapy is a targeted curative therapy that reduces these risks by utilizing autologous hematopoietic stem cells. The treatment has found significant success and is anticipated to become the standard of care in a number of PIDs. AREAS COVERED This review is a summary of the developments in gene therapy, gene editing, and current gene therapy approaches in specific PIDs. EXPERT OPINION The field of gene therapy has rapidly developed over the last three decades, with the first licensed pharmaceutical gene therapy product now available. After initial clinical trials discovered serious adverse events in the form of insertional oncogenesis, significant improvements in vector design have made the treatment a viable curative therapy. Cryopreservation has expanded the scope of gene therapy by increasing accessibility of the product to wider geographic locations. Targeted gene editing using engineered nucleases, while still in early stages of development, will further add to the repertoire of potential treatments available for PIDs.
Collapse
Affiliation(s)
- Kritika Chetty
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Claire Booth
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Piras G, Montiel-Equihua C, Chan YKA, Wantuch S, Stuckey D, Burke D, Prunty H, Phadke R, Chambers D, Partida-Gaytan A, Leon-Rico D, Panchal N, Whitmore K, Calero M, Benedetti S, Santilli G, Thrasher AJ, Gaspar HB. Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Mol Ther Methods Clin Dev 2020; 18:558-570. [PMID: 32775491 PMCID: PMC7396971 DOI: 10.1016/j.omtm.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by malfunctions of the acid alpha-glucosidase (GAA) enzyme with a consequent toxic accumulation of glycogen in cells. Muscle wasting and hypertrophic cardiomyopathy are the most common clinical signs that can lead to cardiac and respiratory failure within the first year of age in the more severe infantile forms. Currently available treatments have significant limitations and are not curative, highlighting a need for the development of alternative therapies. In this study, we investigated the use of a clinically relevant lentiviral vector to deliver systemically GAA through genetic modification of hematopoietic stem and progenitor cells (HSPCs). The overexpression of GAA in human HSPCs did not exert any toxic effect on this cell population, which conserved its stem cell capacity in xenograft experiments. In a murine model of Pompe disease treated at young age, we observed phenotypic correction of heart and muscle function with a significant reduction of glycogen accumulation in tissues after 6 months of treatment. These findings suggest that lentiviral-mediated HSPC gene therapy can be a safe alternative therapy for Pompe disease.
Collapse
Affiliation(s)
- Giuseppa Piras
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claudia Montiel-Equihua
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yee-Ka Agnes Chan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Slawomir Wantuch
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniel Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Derek Burke
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Helen Prunty
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Darren Chambers
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Armando Partida-Gaytan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Diego Leon-Rico
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neelam Panchal
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kathryn Whitmore
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Miguel Calero
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - H. Bobby Gaspar
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Orchard Therapeutics Ltd., London EC4N 6EU, UK
| |
Collapse
|
21
|
Panchal N, Ghosh S, Booth C. T cell gene therapy to treat immunodeficiency. Br J Haematol 2020; 192:433-443. [PMID: 33280098 DOI: 10.1111/bjh.17070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
The application of therapeutic T cells for a number of conditions has been developed over the past few decades with notable successes including donor lymphocyte infusions, virus-specific T cells and more recently CAR-T cell therapy. Primary immunodeficiencies are monogenetic disorders leading to abnormal development or function of the immune system. Haematopoietic stem cell transplantation and, in specific candidate diseases, haematopoietic stem cell gene therapy has been the only definitive treatment option so far. However, autologous gene-modified T cell therapy may offer a potential cure in conditions primarily affecting the lymphoid compartment. In this review we will highlight several T cell gene addition or gene-editing approaches in different target diseases with a focus on what we have learnt from clinical experience and promising preclinical studies in primary immunodeficiencies. Functional T cells are required not only for normal immune responses to infection (affected in CD40 ligand deficiency), but also for immune regulation [disrupted in IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-Linked) due to dysfunctional FOXP3 and CTLA4 deficiency] or cytotoxicity [defective in X-lymphoproliferative disease and familial haemophagocytic lymphohistiocytosis (HLH) syndromes]. In all these candidate diseases, restoration of T cell function by gene therapy could be of great value.
Collapse
Affiliation(s)
- Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
22
|
Kury P, Führer M, Fuchs S, Lorenz MR, Giorgetti OB, Bakhtiar S, Frei AP, Fisch P, Boehm T, Schwarz K, Speckmann C, Ehl S. Long-term robustness of a T-cell system emerging from somatic rescue of a genetic block in T-cell development. EBioMedicine 2020; 59:102961. [PMID: 32841837 PMCID: PMC7452388 DOI: 10.1016/j.ebiom.2020.102961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGOUND The potential of a single progenitor cell to establish and maintain long-term protective T-cell immunity in humans is unknown. For genetic disorders disabling T-cell immunity, somatic reversion was shown to support limited T-cell development attenuating the clinical phenotype. However, the cases reported so far deteriorated over time leaving unanswered the important question of long-term activity of revertant precursors and the robustness of the resulting T-cell system. METHODS We applied TCRβ-CDR3 sequencing and mass cytometry on serial samples of a now 18 year-old SCIDX1 patient with somatic reversion to analyse the longitudinal diversification and stability of a T-cell system emerging from somatic gene rescue. FINDINGS We detected close to 105 individual CDR3β sequences in the patient. Blood samples of equal size contained about 10-fold fewer unique CDR3β sequences compared to healthy donors, indicating a surprisingly broad repertoire. Despite dramatic expansions and contractions of individual clonotypes representing up to 30% of the repertoire, stable diversity indices revealed that these transient clonal distortions did not cause long-term repertoire imbalance. Phenotypically, the T-cell system did not show evidence for progressive exhaustion. Combined with immunoglobulin substitution, the limited T-cell system in this patient supported an unremarkable clinical course over 18 years. INTERPRETATION Genetic correction in the appropriate cell type, in our patient most likely in a T-cell biased self-renewing hematopoietic progenitor, can yield a diverse T-cell system that provides long-term repertoire stability, does not show evidence for progressive exhaustion and is capable of providing protective and regulated T-cell immunity for at least two decades. FUNDING DFG EH 145/9-1, DFG SCHW 432/4-1 and the German Research Foundation under Germany's Excellence Strategy-EXC-2189-Project ID: 390939984.
Collapse
Affiliation(s)
- Patrick Kury
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Marita Führer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg - Hessen, Ulm, Germany
| | - Sebastian Fuchs
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Myriam R Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Orlando Bruno Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics Freiburg, Freiburg, Germany
| | - Shahrzad Bakhtiar
- Division for Pediatric Stem-Cell Transplantation, Immunology and Intensive Medicine, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Paul Fisch
- Department of Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics Freiburg, Freiburg, Germany
| | - Klaus Schwarz
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Wuerttemberg - Hessen, Ulm, Germany; Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; Center for Pediatrics, Department of Pediatric Hematology and Oncology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 115, 79106 Freiburg, Germany; CIBBS -Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
24
|
Ferrua F, Aiuti A. Twenty-Five Years of Gene Therapy for ADA-SCID: From Bubble Babies to an Approved Drug. Hum Gene Ther 2018; 28:972-981. [PMID: 28847159 DOI: 10.1089/hum.2017.175] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Twenty-five years have passed since first attempts of gene therapy (GT) in children affected by severe combined immunodeficiency (SCID) due to adenosine deaminase (ADA) defect, also known by the general public as bubble babies. ADA-SCID is fatal early in life if untreated. Unconditioned hematopoietic stem cell (HSC) transplant from matched sibling donor represents a curative treatment but is available for few patients. Enzyme replacement therapy can be life-saving, but its chronic use has many drawbacks. This review summarizes the history of ADA-SCID GT over the last 25 years, starting from first pioneering studies in the early 1990s using gamma-retroviral vectors, based on multiple infusions of genetically corrected autologous peripheral blood lymphocytes. HSC represented the ideal target for gene correction to guarantee production of engineered multi-lineage progeny, but it required a decade to achieve therapeutic benefit with this approach. Introduction of low-intensity conditioning represented a crucial step in achieving stable gene-corrected HSC engraftment and therapeutic levels of ADA-expressing cells. Recent clinical trials demonstrated that gamma-retroviral GT for ADA-SCID has a favorable safety profile and is effective in restoring normal purine metabolism and immune functions in patients >13 years after treatment. No abnormal clonal proliferation or leukemia development have been observed in >40 patients treated experimentally in five different centers worldwide. In 2016, the medicinal product Strimvelis™ received marketing approval in Europe for patients affected by ADA-SCID without a suitable human leukocyte antigen-matched related donor. Positive safety and efficacy results have been obtained in GT clinical trials using lentiviral vectors encoding ADA. The results obtained in last 25 years in ADA-SCID GT development fundamentally contributed to improve patients' prognosis, together with earlier diagnosis thanks to newborn screening. These advances open the way to further clinical development of GT as treatment for broader applications, from inherited diseases to cancer.
Collapse
Affiliation(s)
- Francesca Ferrua
- 1 San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute , Milan, Italy.,2 Vita-Salute San Raffaele University , Milan, Italy
| | - Alessandro Aiuti
- 1 San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute , Milan, Italy.,2 Vita-Salute San Raffaele University , Milan, Italy
| |
Collapse
|
25
|
Stirnadel-Farrant H, Kudari M, Garman N, Imrie J, Chopra B, Giannelli S, Gabaldo M, Corti A, Zancan S, Aiuti A, Cicalese MP, Batta R, Appleby J, Davinelli M, Ng P. Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J Rare Dis 2018; 13:49. [PMID: 29625577 PMCID: PMC5889583 DOI: 10.1186/s13023-018-0791-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Strimvelis (autologous CD34+ cells transduced to express adenosine deaminase [ADA]) is the first ex vivo stem cell gene therapy approved by the European Medicines Agency (EMA), indicated as a single treatment for patients with ADA-severe combined immunodeficiency (ADA-SCID) who lack a suitable matched related bone marrow donor. Existing primary immunodeficiency registries are tailored to transplantation outcomes and do not capture the breadth of safety and efficacy endpoints required by the EMA for the long-term monitoring of gene therapies. Furthermore, for extended monitoring of Strimvelis, the young age of children treated, small patient numbers, and broad geographic distribution of patients all increase the risk of loss to follow-up before sufficient data have been collected. Establishing individual investigator sites would be impractical and uneconomical owing to the small number of patients from each location receiving Strimvelis. Results An observational registry has been established to monitor the safety and effectiveness of Strimvelis in up to 50 patients over a minimum of 15 years. To address the potential challenges highlighted above, data will be collected by a single investigator site at Ospedale San Raffaele (OSR), Milan, Italy, and entered into the registry via a central electronic platform. Patients/families and the patient’s local physician will also be able to submit healthcare information directly to the registry using a uniquely designed electronic platform. Data entry will be monitored by a Gene Therapy Registry Centre (funded by GlaxoSmithKline) who will ensure that necessary information is collected and flows between OSR, the patient/family and the patient’s local healthcare provider. Conclusion The Strimvelis registry sets a precedent for the safety monitoring of future gene therapies. A unique, patient-focused design has been implemented to address the challenges of long-term follow-up of patients treated with gene therapy for a rare disease. Strategies to ensure data completeness and patient retention in the registry will help fulfil pharmacovigilance requirements. Collaboration with partners is being sought to expand from a treatment registry into a disease registry. Using practical and cost-efficient approaches, the Strimvelis registry is hoped to encourage further innovation in registry design within orphan drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Michela Gabaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Pauline Ng
- GlaxoSmithKline, Brentford, Middlesex, UK
| |
Collapse
|
26
|
|
27
|
Galy A. Major Advances in the Development of Vectors for Clinical Gene Therapy of Hematopoietic Stem Cells from European Groups over the Last 25 Years. Hum Gene Ther 2017; 28:964-971. [DOI: 10.1089/hum.2017.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anne Galy
- Integrare Research Unit UMR_S951, Genethon, Inserm, Univ Evry, EPHE, Evry, France
| |
Collapse
|
28
|
Kohn DB, Kuo CY. New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing. J Allergy Clin Immunol 2017; 139:726-732. [PMID: 28270364 DOI: 10.1016/j.jaci.2017.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
The most severe primary immune deficiency diseases (PIDs) have been successfully treated with allogeneic hematopoietic stem cell transplantation for more than 4 decades. However, such transplantations have the best outcomes when there is a well-matched donor available because immune complications, such as graft-versus-host disease, are greater without a matched sibling donor. Gene therapy has been developed as a method to perform autologous transplantations of a patient's own stem cells that are genetically corrected. Through an iterative bench-to-bedside-and-back process, methods to efficiently add new copies of the relevant gene to hematopoietic stem cells have led to safe and effective treatments for several PIDs, including forms of severe combined immune deficiency, Wiskott-Aldrich syndrome, and chronic granulomatous disease. New methods for gene editing might allow additional PIDs to be treated by gene therapy because they will allow the endogenous gene to be repaired and expressed under its native regulatory elements, which are essential for genes involved in cell processes of signaling, activation, and proliferation. Gene therapy is providing exciting new treatment options for patients with PIDs, and advances are sure to continue.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Calif; Eli & Edythe Broad Center of Stem Cell Research & Regenerative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Calif; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Calif.
| | - Caroline Y Kuo
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Calif
| |
Collapse
|
29
|
Sokolic R, Candotti F. Gene therapy for the treatment of adenosine deaminase-deficient severe combined immune deficiency. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1325360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Robert Sokolic
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States of America
- Division of Hematology/Oncology, University Medicine Foundation, Providence, RI
| | - Fabio Candotti
- Immunology and Allergy Service, Department of Medicine Centre Hospitalier, Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
30
|
Igarashi Y, Uchiyama T, Minegishi T, Takahashi S, Watanabe N, Kawai T, Yamada M, Ariga T, Onodera M. Single Cell-Based Vector Tracing in Patients with ADA-SCID Treated with Stem Cell Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017. [PMID: 28626778 PMCID: PMC5466583 DOI: 10.1016/j.omtm.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clinical improvement in stem cell gene therapy (SCGT) for primary immunodeficiencies depends on the engraftment levels of genetically corrected cells, and tracing the transgene in each hematopoietic lineage is therefore extremely important in evaluating the efficacy of SCGT. We established a single cell-based droplet digital PCR (sc-ddPCR) method consisting of the encapsulation of a single cell into each droplet, followed by emulsion PCR with primers and probes specific for the transgene. A fluorescent signal in a droplet indicates the presence of a single cell carrying the target gene in its genome, and this system can clearly determine the ratio of transgene-positive cells in the entire population at the genomic level. Using sc-ddPCR, we analyzed the engraftment of vector-transduced cells in two patients with severe combined immunodeficiency (SCID) who were treated with SCGT. Sufficient engraftment of the transduced cells was limited to the T cell lineage in peripheral blood (PB), and a small percentage of CD34+ cells exhibited vector integration in bone marrow, indicating that the transgene-positive cells in PB might have differentiated from a small population of stem cells or lineage-restricted precursor cells. sc-ddPCR is a simplified and powerful tool for the detailed assessment of transgene-positive cell distribution in patients treated with SCGT.
Collapse
Affiliation(s)
- Yuka Igarashi
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Tomoko Minegishi
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Sirirat Takahashi
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Toshinao Kawai
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
31
|
Thrasher AJ, Williams DA. Evolving Gene Therapy in Primary Immunodeficiency. Mol Ther 2017; 25:1132-1141. [PMID: 28366768 DOI: 10.1016/j.ymthe.2017.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/29/2022] Open
Abstract
Prior to the first successful bone marrow transplant in 1968, patients born with severe combined immunodeficiency (SCID) invariably died. Today, with a widening availability of newborn screening, major improvements in the application of allogeneic procedures, and the emergence of successful hematopoietic stem and progenitor cell (HSC/P) gene therapy, the majority of these children can be identified and cured. Here, we trace key steps in the development of clinical gene therapy for SCID and other primary immunodeficiencies (PIDs), and review the prospects for adoption of new targets and technologies.
Collapse
Affiliation(s)
- Adrian J Thrasher
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - David A Williams
- Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School and Harvard Stem Cell Institute, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Shaw KL, Garabedian E, Mishra S, Barman P, Davila A, Carbonaro D, Shupien S, Silvin C, Geiger S, Nowicki B, Smogorzewska EM, Brown B, Wang X, de Oliveira S, Choi Y, Ikeda A, Terrazas D, Fu PY, Yu A, Fernandez BC, Cooper AR, Engel B, Podsakoff G, Balamurugan A, Anderson S, Muul L, Jagadeesh GJ, Kapoor N, Tse J, Moore TB, Purdy K, Rishi R, Mohan K, Skoda-Smith S, Buchbinder D, Abraham RS, Scharenberg A, Yang OO, Cornetta K, Gjertson D, Hershfield M, Sokolic R, Candotti F, Kohn DB. Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency. J Clin Invest 2017; 127:1689-1699. [PMID: 28346229 DOI: 10.1172/jci90367] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (HSCT) of gene-modified cells is an alternative to enzyme replacement therapy (ERT) and allogeneic HSCT that has shown clinical benefit for adenosine deaminase-deficient (ADA-deficient) SCID when combined with reduced intensity conditioning (RIC) and ERT cessation. Clinical safety and therapeutic efficacy were evaluated in a phase II study. METHODS Ten subjects with confirmed ADA-deficient SCID and no available matched sibling or family donor were enrolled between 2009 and 2012 and received transplantation with autologous hematopoietic CD34+ cells that were modified with the human ADA cDNA (MND-ADA) γ-retroviral vector after conditioning with busulfan (90 mg/m2) and ERT cessation. Subjects were followed from 33 to 84 months at the time of data analysis. Safety of the procedure was assessed by recording the number of adverse events. Efficacy was assessed by measuring engraftment of gene-modified hematopoietic stem/progenitor cells, ADA gene expression, and immune reconstitution. RESULTS With the exception of the oldest subject (15 years old at enrollment), all subjects remained off ERT with normalized peripheral blood mononuclear cell (PBMC) ADA activity, improved lymphocyte numbers, and normal proliferative responses to mitogens. Three of nine subjects were able to discontinue intravenous immunoglobulin replacement therapy. The MND-ADA vector was persistently detected in PBMCs (vector copy number [VCN] = 0.1-2.6) and granulocytes (VCN = 0.01-0.3) through the most recent visits at the time of this writing. No patient has developed a leukoproliferative disorder or other vector-related clinical complication since transplant. CONCLUSION These results demonstrate clinical therapeutic efficacy from gene therapy for ADA-deficient SCID, with an excellent clinical safety profile. TRIAL REGISTRATION ClinicalTrials.gov NCT00794508. FUNDING Food and Drug Administration Office of Orphan Product Development award, RO1 FD003005; NHLBI awards, PO1 HL73104 and Z01 HG000122; UCLA Clinical and Translational Science Institute awards, UL1RR033176 and UL1TR000124.
Collapse
|
33
|
Wang X, Rivière I. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:96-105. [PMID: 28480310 PMCID: PMC5415326 DOI: 10.1016/j.omtm.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The marketing approval of genetically engineered hematopoietic stem cells (HSCs) as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs) and other monogenic disorders.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
34
|
Mohamed H, Chernajovsky Y, Gould D. Assembly PCR synthesis of optimally designed, compact, multi-responsive promoters suited to gene therapy application. Sci Rep 2016; 6:29388. [PMID: 27387837 PMCID: PMC4937410 DOI: 10.1038/srep29388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/20/2016] [Indexed: 12/28/2022] Open
Abstract
Gene therapy has the potential to provide innovative treatments for genetic and non-genetic diseases, with the ability to auto-regulate expression levels of therapeutic molecules so that they are produced locally and in direct response to disease activity. Generating disease responsive gene therapy vectors requires knowledge of the activation profile of transcription factors (TFs) during active disease, in order to assemble binding sites for these TFs into synthetic promoters, which can be appropriately activated by the disease process. In this study, we optimised a PCR random assembly approach to generate promoters with optimal spacing between TF binding sites (TFBSs) and their distance from the TATA box. In promoters with optimal spacing, it was possible to demonstrate activation by individual transcription pathways and either additive or synergistic promoter activation when transfected cells were treated with combined stimuli. The kinetics and sensitivity of promoter activation was further explored in transduced cells and when lentivirus was directly delivered to mouse paws a synthetic promoter demonstrated excellent activation by real-time imaging in response to local inflammation.
Collapse
Affiliation(s)
- H Mohamed
- Queen Mary University of London, William Harvey Research Institute, Bone &Joint Research Unit, United Kingdom
| | - Y Chernajovsky
- Queen Mary University of London, William Harvey Research Institute, Bone &Joint Research Unit, United Kingdom
| | - D Gould
- Queen Mary University of London, William Harvey Research Institute, Bone &Joint Research Unit, United Kingdom
| |
Collapse
|
35
|
Booth C, Gaspar HB, Thrasher AJ. Treating Immunodeficiency through HSC Gene Therapy. Trends Mol Med 2016; 22:317-327. [PMID: 26993219 DOI: 10.1016/j.molmed.2016.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022]
Abstract
Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future.
Collapse
Affiliation(s)
- Claire Booth
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK; Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - H Bobby Gaspar
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK; Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK; Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
36
|
Abstract
In the recent past, the gene therapy field has witnessed a remarkable series of
successes, many of which have involved primary immunodeficiency diseases, such
as X-linked severe combined immunodeficiency, adenosine deaminase deficiency,
chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress
has widened the choice of therapeutic options in some specific cases of primary
immunodeficiency, much remains to be done to extend the geographical
availability of such an advanced approach and to increase the number of diseases
that can be targeted. At the same time, emerging technologies are stimulating
intensive investigations that may lead to the application of precise genetic
editing as the next form of gene therapy for these and other human genetic
diseases.
Collapse
Affiliation(s)
- Fabio Candotti
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Cirillo E, Giardino G, Gallo V, D'Assante R, Grasso F, Romano R, Di Lillo C, Galasso G, Pignata C. Severe combined immunodeficiency--an update. Ann N Y Acad Sci 2015; 1356:90-106. [PMID: 26235889 DOI: 10.1111/nyas.12849] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 12/22/2022]
Abstract
Severe combined immunodeficiencies (SCIDs) are a group of inherited disorders responsible for severe dysfunctions of the immune system. These diseases are life-threatening when the diagnosis is made too late; they are the most severe forms of primary immunodeficiency. SCID patients often die during the first two years of life if appropriate treatments to reconstitute their immune system are not undertaken. Conventionally, SCIDs are classified according either to the main pathway affected by the molecular defect or on the basis of the specific immunologic phenotype that reflects the stage where the blockage occurs during the differentiation process. However, during the last few years many new causative gene alterations have been associated with unusual clinical and immunological phenotypes. Many of these novel forms of SCID also show extra-hematopoietic alterations, leading to complex phenotypes characterized by a functional impairment of several organs, which may lead to a considerable delay in the diagnosis. Here we review the biological and clinical features of SCIDs paying particular attention to the most recently identified forms and to their unusual or extra-immunological clinical features.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Fiorentino Grasso
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Cristina Di Lillo
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Giovanni Galasso
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatrics Section, Federico II University, Naples, Italy
| |
Collapse
|
38
|
Otsu M, Yamada M, Nakajima S, Kida M, Maeyama Y, Hatano N, Toita N, Takezaki S, Okura Y, Kobayashi R, Matsumoto Y, Tatsuzawa O, Tsuchida F, Kato S, Kitagawa M, Mineno J, Hershfield MS, Bali P, Candotti F, Onodera M, Kawamura N, Sakiyama Y, Ariga T. Outcomes in two Japanese adenosine deaminase-deficiency patients treated by stem cell gene therapy with no cytoreductive conditioning. J Clin Immunol 2015; 35:384-98. [PMID: 25875699 DOI: 10.1007/s10875-015-0157-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/30/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We here describe treatment outcomes in two adenosine deaminase (ADA)-deficiency patients (pt) who received stem cell gene therapy (SCGT) with no cytoreductive conditioning. As this protocol has features distinct from those of other clinical trials, its results provide insights into SCGT for ADA deficiency. PATIENTS AND METHODS Pt 1 was treated at age 4.7 years, whereas pt 2, who had previously received T-cell gene therapy, was treated at age 13 years. Bone marrow CD34(+) cells were harvested after enzyme replacement therapy (ERT) was withdrawn; following transduction of ADA cDNA by the γ-retroviral vector GCsapM-ADA, they were administered intravenously. No cytoreductive conditioning, at present considered critical for therapeutic benefit, was given before cell infusion. Hematological/immunological reconstitution kinetics, levels of systemic detoxification, gene-marking levels, and proviral insertion sites in hematopoietic cells were assessed. RESULTS Treatment was well tolerated, and no serious adverse events were observed. Engraftment of gene-modified repopulating cells was evidenced by the appearance and maintenance of peripheral lymphocytes expressing functional ADA. Systemic detoxification was moderately achieved, allowing temporary discontinuation of ERT for 6 and 10 years in pt 1 and pt 2, respectively. Recovery of immunity remained partial, with lymphocyte counts in pts 1 and 2, peaked at 408/mm(3) and 1248/mm(3), approximately 2 and 5 years after SCGT. Vector integration site analyses confirmed that hematopoiesis was reconstituted with a limited number of clones, some of which were shown to have myelo-lymphoid potential. CONCLUSIONS Outcomes in SCGT for ADA-SCID are described in the context of a unique protocol, which used neither ERT nor cytoreductive conditioning. Although proven safe, immune reconstitution was partial and temporary. Our results reiterate the importance of cytoreductive conditioning to ensure greater benefits from SCGT.
Collapse
Affiliation(s)
- Makoto Otsu
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Calero-Garcia M, Gaspar HB. Gene Therapy for SCID. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-014-0069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
|
42
|
Balasubramaniam S, Duley JA, Christodoulou J. Inborn errors of purine metabolism: clinical update and therapies. J Inherit Metab Dis 2014; 37:669-86. [PMID: 24972650 DOI: 10.1007/s10545-014-9731-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised treatment options.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Princess Margaret Hospital, Roberts Road, Subiaco, Perth, WA, 6008, Australia
| | | | | |
Collapse
|
43
|
Stryjewska A, Kiepura K, Librowski T, Lochyński S. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy. Pharmacol Rep 2014; 65:1086-101. [PMID: 24399705 DOI: 10.1016/s1734-1140(13)71467-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 05/13/2013] [Indexed: 12/01/2022]
Abstract
Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.
Collapse
Affiliation(s)
- Agnieszka Stryjewska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wyb. Wyspiańskiego 27, PL 50-370 Wrocław, Poland. ;
| | | | | | | |
Collapse
|
44
|
Li L, Torres-Coronado M, Gu A, Rao A, Gardner AM, Epps EW, Gonzalez N, Tran CA, Wu X, Wang JH, DiGiusto DL. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin. Stem Cells Transl Med 2014; 3:1199-208. [PMID: 25107584 DOI: 10.5966/sctm.2014-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.
Collapse
Affiliation(s)
- Lijing Li
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Mónica Torres-Coronado
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Angel Gu
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Anitha Rao
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Agnes M Gardner
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Elizabeth W Epps
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Nancy Gonzalez
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Chy-Anh Tran
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Xiwei Wu
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - Jin-Hui Wang
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| | - David L DiGiusto
- Shared Resources-Cellular Process, City of Hope, Duarte, California, USA; Center for Blood Cell Therapies at Peter McCallum Center, Melbourne, Australia; Departments of Molecular and Cellular Biology and Virology, City of Hope, Duarte, California, USA
| |
Collapse
|
45
|
Williams DA, Thrasher AJ. Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Transl Med 2014; 3:636-42. [PMID: 24682287 DOI: 10.5966/sctm.2013-0206] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thirty years ago, retroviral transfer of genetic material into hematopoietic stem and progenitor cells (HSC/Ps) led to predictions that this technology would transform modern medicine [Nature 1983;305:556-558; Nature 1984;310:476-480]. Studies in several immunodeficiency diseases in the past 15 years have demonstrated clear proof of principle that gene therapy can have long-lasting, potentially curative effects without the need to search for allogeneic donors and without risk of graft-versus-host disease. Improvement in gene transfer efficiency for target HSC/Ps brought to light issues of insertional mutagenesis caused by transfer vectors, resulting in oncogene transactivation and leukemias. Lessons from these adverse events have now led to a new generation of vectors, refinements in conditioning regimens, and manufacturing, which are paving the way for expanded applications of the current technology and recent emphasis on gene targeting/genome editing as the next advancements in the field.
Collapse
Affiliation(s)
- David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA; Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
46
|
Larochelle A, Dunbar CE. Hematopoietic stem cell gene therapy:assessing the relevance of preclinical models. Semin Hematol 2014; 50:101-30. [PMID: 24014892 DOI: 10.1053/j.seminhematol.2013.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Candotti F. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases. Int J Hematol 2014; 99:383-92. [DOI: 10.1007/s12185-014-1524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
|
48
|
Abi-Nader KN, Rodeck CH, David AL. Prenatal gene therapy for the early treatment of genetic disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency. Mol Ther 2013; 22:607-622. [PMID: 24256635 DOI: 10.1038/mt.2013.265] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.
Collapse
|
50
|
Gould D. Gene doping: gene delivery for olympic victory. Br J Clin Pharmacol 2013; 76:292-8. [PMID: 23082866 DOI: 10.1111/bcp.12010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called 'gene doping'. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place.
Collapse
Affiliation(s)
- David Gould
- Barts & The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|