1
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
3
|
Gilani M, Abak N, Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine. Pharmacol Biochem Behav 2024; 245:173897. [PMID: 39424200 DOI: 10.1016/j.pbb.2024.173897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Mood and anxiety disorders are complex psychiatric conditions shaped by the multifactorial interplay of genetic, epigenetic, and neuropeptide factors. This review aims to elucidate the intricate interactions among these factors and their potential in advancing personalized medicine. We examine the genetic underpinnings, emphasizing key heritability studies and specific gene associations. The role of epigenetics is discussed, focusing on how environmental factors can modify gene expression and contribute to these disorders. Neuropeptides, including substance P, CRF, AVP, NPY, galanin, and kisspeptin, are evaluated for their involvement in mood regulation and their potential as therapeutic targets. Additionally, we address the emerging role of the gut microbiome in modulating neuropeptide activity and its connection to mood disorders. This review integrates findings from genetic, epigenetic, and neuropeptide research, offering a comprehensive overview of their collective impact on mood and anxiety disorders. By highlighting novel insights and potential clinical applications, we underscore the importance of a multi-omics approach in developing personalized treatment strategies. Future research directions are proposed to address existing knowledge gaps and translate these findings into clinical practice. Our review provides a fresh perspective on the pathophysiology of mood and anxiety disorders, paving the way for more effective and individualized therapies.
Collapse
Affiliation(s)
- Maryam Gilani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pavlenko D, Todurga-Seven ZG, Sanders K, Markan A, Verpile R, Ishida H, Costo D, Akiyama T. Activation of NPY2R-expressing amygdala neurons inhibits itch behavior in mice without lateralization. Sci Rep 2024; 14:22125. [PMID: 39333236 PMCID: PMC11437048 DOI: 10.1038/s41598-024-73483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The central amygdala (CeA) is a crucial hub in the processing of affective itch, containing a diverse array of neuronal populations. Among these components, Neuropeptide Y (NPY) and its receptors, such as NPY2R, affect various physiological and psychological processes. Despite this broad impact, the precise role of NPY2R+ CeA neurons in itch modulation remains unknown, particularly concerning any potential lateralization effects. To address this, we employed optogenetics to selectively stimulate NPY2R+ CeA neurons in mice, investigating their impact on itch modulation. Optogenetic activation of NPY2R+ CeA neurons reduced scratching behavior elicited by pruritogens without exhibiting any lateralization effects. Electrophysiological recordings confirmed increased neuronal activity upon stimulation. However, this modulation did not affect thermal sensitivity, mechanical sensitivity, or formalin-induced hyperalgesia. Additionally, no alterations in anxiety-like behaviors or locomotion were observed upon stimulation. Projection tracing revealed connections of NPY2R+ CeA neurons to brain regions implicated in itch processing. Overall, this comprehensive study highlights the role of NPY2R+ CeA neurons in itch regulation without any lateralization effects.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Zeynep Gizem Todurga-Seven
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kristen Sanders
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Anika Markan
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Rebecca Verpile
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Hirotake Ishida
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Dylan Costo
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Shaikh M, Doshi G. Epigenetic aging in major depressive disorder: Clocks, mechanisms and therapeutic perspectives. Eur J Pharmacol 2024; 978:176757. [PMID: 38897440 DOI: 10.1016/j.ejphar.2024.176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Depression, a chronic mental disorder characterized by persistent sadness, loss of interest, and difficulty in daily tasks, impacts millions globally with varying treatment options. Antidepressants, despite their long half-life and minimal effectiveness, leave half of patients undertreated, highlighting the need for new therapies to enhance well-being. Epigenetics, which studies genetic changes in gene expression or cellular phenotype without altering the underlying Deoxyribonucleic Acid (DNA) sequence, is explored in this article. This article delves into the intricate relationship between epigenetic mechanisms and depression, shedding light on how environmental stressors, early-life adversity, and genetic predispositions shape gene expression patterns associated with depression. We have also discussed Histone Deacetylase (HDAC) inhibitors, which enhance cognitive function and mood regulation in depression. Non-coding RNAs, (ncRNAs) such as Long Non-Coding RNAs (lncRNAs) and micro RNA (miRNAs), are highlighted as potential biomarkers for detecting and monitoring major depressive disorder (MDD). This article also emphasizes the reversible nature of epigenetic modifications and their influence on neuronal growth processes, underscoring the dynamic interplay between genetics, environment, and epigenetics in depression development. It explores the therapeutic potential of targeting epigenetic pathways in treating clinical depression. Additionally, it examines clinical findings related to epigenetic clocks and their role in studying depression and biological aging.
Collapse
Affiliation(s)
- Muqtada Shaikh
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, 400 056, India.
| |
Collapse
|
6
|
Dumiaty Y, Underwood BM, Phy-Lim J, Chee MJ. Neurocircuitry underlying the actions of glucagon-like peptide 1 and peptide YY 3-36 in the suppression of food, drug-seeking, and anxiogenesis. Neuropeptides 2024; 105:102427. [PMID: 38579490 DOI: 10.1016/j.npep.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.
Collapse
Affiliation(s)
- Yasmina Dumiaty
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Brett M Underwood
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Jenny Phy-Lim
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
7
|
Pavlenko D, Seven ZT, Sanders K, Markan A, Verpile R, Ishida H, Costco D, Akiyama T. Activation of NPY2R-expressing amygdala neurons inhibits itch behavior in mice without lateralization. RESEARCH SQUARE 2024:rs.3.rs-4463812. [PMID: 38826337 PMCID: PMC11142353 DOI: 10.21203/rs.3.rs-4463812/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The central amygdala (CeA) is a crucial hub in the processing of affective itch, containing a diverse array of neuronal populations. Among these components, Neuropeptide Y (NPY) and its receptors, such as NPY2R, affect various physiological and psychological processes. Despite this broad impact, the precise role of NPY2R+ CeA neurons in itch modulation remains unknown, particularly concerning any potential lateralization effects. To address this, we employed optogenetics to selectively stimulate NPY2R+ CeA neurons in mice, investigating their impact on itch modulation. Optogenetic activation of NPY2R+ CeA neurons reduced scratching behavior elicited by pruritogens without exhibiting any lateralization effects. Electrophysiological recordings confirmed increased neuronal activity upon stimulation. However, this modulation did not affect thermal sensitivity, mechanical sensitivity, or inflammatory pain. Additionally, no alterations in anxiety-like behaviors or locomotion were observed upon stimulation. Projection tracing revealed connections of NPY2R+ CeA neurons to brain regions implicated in itch processing. Overall, this comprehensive study highlights the role of NPY2R+ CeA neurons in itch regulation without any lateralization effects.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zeynep Todurga Seven
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kristen Sanders
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anika Markan
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Verpile
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hirotake Ishida
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dylan Costco
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Fernández-Vega L, Meléndez-Rodríguez DE, Ospina-Alejandro M, Casanova K, Vázquez Y, Cunci L. Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements. ACS Sens 2024; 9:2645-2652. [PMID: 38709872 PMCID: PMC11127761 DOI: 10.1021/acssensors.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.
Collapse
Affiliation(s)
- Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | | | - Mónica Ospina-Alejandro
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Karina Casanova
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Yolimar Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
9
|
Ryznar R, Andrews N, Emery K, Snow M, Payton M, Towne F, Gubler D. Specific Salivary Neuropeptides Shift Synchronously during Acute Stress in Fire Recruits. Brain Sci 2024; 14:492. [PMID: 38790470 PMCID: PMC11119501 DOI: 10.3390/brainsci14050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Once thought of as an immune-privileged site, we now know that the nervous system communicates in a bidirectional manner with the immune system via the neuroimmune axis. Neuropeptides constitute a component of this axis, playing critical roles in the brain and periphery. The function of salivary neuropeptides in the acute stress response is not well understood. The purpose of this study is to investigate salivary neuropeptide levels during acute stress. Salivary samples were collected from fire recruits engaged in a stress training exercise previously shown to induce acute stress, at three separate timepoints during the exercise and levels of oxytocin, neurotensin, Substance P, α-MSH, and β-Endorphin were measured using the Human Neuropeptide 5-Plex Custom Assay Eve Technologies. All neuropeptides increased throughout the acute stress simulation and during the recovery phase. Exploratory factor analysis (EFA) identified one factor contributing to baseline values across five neuropeptides and Pairwise Pearson Correlation Coefficient analysis showed positive correlations >0.9 for almost all neuropeptide combinations at the pre-stress timepoint. Further analysis identified negative and positive correlations between past-life trauma and self-assessed hardiness, respectively. Calculated neuropeptide scores showed an overall positive correlation to self-assessed hardiness. Altogether, our results suggest that salivary neuropeptides increase synchronously during acute stress and higher levels correlate with an increase in self-assessed hardiness. Further study is required to determine if interventions designed to enhance neuropeptide activity can increase stress resilience, especially in high-stress occupations such as firefighting.
Collapse
Affiliation(s)
- Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Centennial, CO 80112, USA; (M.P.)
| | - Nathan Andrews
- College of Osteopathic Medicine, Rocky Vista University, Centennial, CO 80112, USA; (N.A.); (K.E.); (M.S.)
| | - Kyle Emery
- College of Osteopathic Medicine, Rocky Vista University, Centennial, CO 80112, USA; (N.A.); (K.E.); (M.S.)
| | - Michaela Snow
- College of Osteopathic Medicine, Rocky Vista University, Centennial, CO 80112, USA; (N.A.); (K.E.); (M.S.)
| | - Mark Payton
- Department of Biomedical Sciences, Rocky Vista University, Centennial, CO 80112, USA; (M.P.)
| | - Francina Towne
- Department of Biomedical Sciences, Rocky Vista University, Centennial, CO 80112, USA; (M.P.)
| | - Dean Gubler
- Department of Military Medicine, Rocky Vista University, Ivins, UT 84738, USA;
| |
Collapse
|
10
|
Bründl E, Proescholdt M, Schödel P, Rosengarth K, Störr EM, Bele S, Kieninger M, Malsy M, Schmidt NO, Schebesch KM. Both coiling and clipping induce the time-dependent release of endogenous neuropeptide Y into serum. Front Neurol 2024; 14:1325950. [PMID: 38425753 PMCID: PMC10902915 DOI: 10.3389/fneur.2023.1325950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Background The vaso- and psychoactive endogenous Neuropeptide Y (NPY) has repeatedly been shown to be excessively released after subarachnoid hemorrhage and in numerous psychiatric disorders. NPY is stored in sympathetic perivascular nerve fibers around the major cerebral arteries. This prospective study was designed to analyze the impact of microsurgical and endovascular manipulation of the cerebral vasculature versus cranio- and durotomy alone on the serum levels of NPY. Methods 58 patients (drop-out n = 3; m:f = 26:29; mean age 52.0 ± 14.1 years) were prospectively enrolled. The vascular group underwent repair for unruptured intracranial aneurysms (UIA) of the anterior circulation [endovascular aneurysm occlusion (EV) n = 13; microsurgical clipping (MS) n = 17]; in the non-vascular group, 14 patients received microsurgical resection of a small-sized convexity meningioma (CM), and 11 patients with surgically treated degenerative lumbar spine disease (LD) served as control. Plasma was drawn (1) before treatment (t0), (2) periprocedurally (t1), (3) 6 h postprocedurally (t2), (4) 72 h postprocedurally (t3), and (5) at the 6-week follow-up (FU; t4) to determine the NPY levels via competitive enzyme immunoassay in duplicate serum samples. We statistically evaluated differences between groups by calculating one-way ANOVA and for changes along the time points using repeated measure ANOVA. Results Except for time point t0, the serum concentrations of NPY ranged significantly higher in the vascular than in the non-vascular group (p < 0.001), with a slight decrease in both vascular subgroups 6 h postprocedurally, followed by a gradual increase above baseline levels until FU. At t3, the EV subgroup showed significantly higher NPY levels (mean ± standard deviation) than the MS subgroup (0.569 ± 0.198 ng/mL vs. 0.415 ± 0.192 ng/mL, p = 0.0217). The highest NPY concentrations were measured in the EV subgroup at t1, t3, and t4, reaching a climax at FU (0.551 ± 0.304 ng/mL). Conclusion Our study reveals a first insight into the short-term dynamics of the serum levels of endogenous NPY in neurosurgical and endovascular procedures, respectively: Direct manipulation within but also next to the major cerebral arteries induces an excessive release of NPY into the serum. Our findings raise the interesting question of the potential capacity of NPY in modulating the psycho-behavioral outcome of neurovascular patients.
Collapse
Affiliation(s)
- Elisabeth Bründl
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Petra Schödel
- Department of Orthopedics, Trauma and Hand Surgery, Section Neurosurgery, Medical Center St. Elisabeth, Straubing, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Eva-Maria Störr
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sylvia Bele
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Kieninger
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Karl-Michael Schebesch
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
- Department of Neurosurgery, Paracelsus Medical Private University, Nuremberg, Germany
| |
Collapse
|
11
|
Kiive E, Kanarik M, Veidebaum T, Harro J. Neuropeptide Y gene variants and Agreeableness: interaction effect with the birth cohort and the serotonin transporter promoter polymorphism. Acta Neuropsychiatr 2024; 36:1-8. [PMID: 37070394 DOI: 10.1017/neu.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
OBJECTIVE Neuropeptide Y (NPY) is a powerful regulator of anxious states, including social anxiety, but evidence from human genetic studies is limited. Associations of common gene variants with behaviour have been described as subject to birth cohort effects, especially if the behaviour is socially motivated. This study aimed to examine the association of NPY rs16147 and rs5574 with personality traits in highly representative samples of two birth cohorts of young adults, the samples having been formed during a period of rapid societal transition. METHODS Both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study (ECPBHS) self-reported personality traits of the five-factor model at 25 years of age. RESULTS A significant interaction effect of the NPY rs16147 and rs5574 and birth cohort on Agreeableness was found. The T/T genotype of NPY rs16147 resulted in low Agreeableness in the older cohort (born 1983) and in high Agreeableness in the younger cohort (born 1989). The C/C genotype of NPY rs5574 was associated with higher Agreeableness in the younger but not in the older cohort. In the NPY rs16147 T/T homozygotes, the deviations from average in Agreeableness within the birth cohort were dependent on the serotonin transporter promoter polymorphism. CONCLUSIONS The association between the NPY gene variants and a personality domain reflecting social desirability is subject to change qualitatively in times of rapid societal changes, serving as an example of the relationship between the plasticity genes and environment. The underlying mechanism may involve the development of the serotonergic system.
Collapse
Affiliation(s)
- Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Jakobi 5, 51005 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Department of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
12
|
Joo MK, Lee JW, Woo JH, Kim HJ, Kim DH, Choi JH. Regulation of colonic neuropeptide Y expression by the gut microbiome in patients with ulcerative colitis and its association with anxiety- and depression-like behavior in mice. Gut Microbes 2024; 16:2319844. [PMID: 38404132 PMCID: PMC10900276 DOI: 10.1080/19490976.2024.2319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC), show an increased incidence of anxiety and depression; however, the association between UC-associated psychiatric disorders and the gut microbiota is unclear. This study aimed to examine whether gut microbiota from patients with UC can alter colonic gene expression, leading to anxiety- and depression-like behavior in mice receiving fecal microbiota transplantation (FMT). RNA sequencing transcriptome analyses revealed a difference in colonic gene expression between mice receiving FMT from patients with UC (UC-FMT mice) and those receiving FMT from healthy controls (HC-FMT mice). Gene ontology analysis revealed the downregulation of neuropeptide signaling pathways, including neuropeptide Y (NPY) expression, in the colons of UC-FMT mice. The protein levels of NPY also decreased in the colon and plasma of UC-FMT mice compared to those in HC-FMT mice. The oral administration of Enterococcus mundtii (EM), a bacterium isolated from the feces of patients with UC, reduced NPY expression in the colons of mice and induced intestinal inflammation, anxiety, and depression-like behavior. Reduced NPY protein levels were also observed in the plasma and hippocampus of EM-treated mice. Intraperitoneal administration of NPY significantly alleviated anxiety- and depressive-like behaviors induced by EM in mice. Capsular polysaccharide in EM was associated with EM-induced NPY downregulation in the colon. Analysis of Gene Expression Omnibus datasets showed markedly reduced NPY expression in the inflamed colons of patients with UC compared with that in the colons of healthy controls. In summary, EM-induced reduction in the colonic expression of NPY may be associated with a decrease in hippocampal NPY and anxiety- and depression-like behavior in mice.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jae-Won Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Hyo-Jong Kim
- Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- College of Pharmacy, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
Sabban EL, Serova L, Nahvi RJ, Liu X. Potential benefits of intranasal neuropeptide Y include sustained extinction of fear memory. J Neuroendocrinol 2023; 35:e13279. [PMID: 37157881 DOI: 10.1111/jne.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile. Rats were administered intranasal NPY (150 μg/rat) or equal volume of vehicle (distilled water), and 7 days later they were tested on the elevated plus maze (EPM) and forced swim test (FST). There was no significant difference in the number of entries or duration in the open or closed arms, or in their anxiety index. Defecation on the EPM and immobility on the FST, measures of anxiety and depressive-like behavior respectively, were similar in both groups. To further characterize potential benefits of intranasal NPY, its effect on fear memory and extinction, important features of PTSD, were examined. Intranasal administration of NPY at the time of the traumatic stress had a profound effect on fear conditioning a week later. It prevented the SPS-triggered impairment in the retention of extinguished behavior, both contextual and cued. The findings support the translation of non-invasive intranasal NPY delivery to the brain for PTSD-behaviors including impairments in sustained extinction of fear memories.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
14
|
Heberden C, Maximin E, Rabot S, Naudon L. Male mice engaging differently in emotional eating present distinct plasmatic and neurological profiles. Nutr Neurosci 2023; 26:1034-1044. [PMID: 36154930 DOI: 10.1080/1028415x.2022.2122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objective: Stressed individuals tend to turn to calorie-rich food, also known as 'comfort food' for the temporary relief it provides. The emotional eating drive is highly variable among subjects. Using a rodent model, we explored the plasmatic and neurobiological differences between 'high and low emotional eaters' (HEE and LEE).Methods: 40 male mice were exposed for 5 weeks to a protocol of unpredictable chronic mild stress. Every 3 or 4 days, they were submitted to a 1-h restraint stress, immediately followed by a 3-h period during which a choice between chow and chocolate sweet cereals was proposed. The dietary intake was measured by weighing. Plasmatic and neurobiological characteristics were compared in mice displaying high vs low intakes.Results: Out of 40 mice, 8 were considered as HEE because of their high post-stress eating score, and 8 as LEE because of their consistent low intake. LEE displayed higher plasma corticosterone and lower levels of NPY than HEE, but acylated and total ghrelin were similar in both groups. In the brain, the abundance of NPY neurons in the arcuate nucleus of the hypothalamus was similar in both groups, but was higher in the ventral hippocampus and the basal lateral amygdala of LEE. The lateral hypothalamus LEE had also more orexin (OX) positive neurons. Both NPY and OX are orexigenic peptides and mood regulators.Discussion: Emotional eating difference was reflected in plasma and brain structures implicated in emotion and eating regulation. These results concur with the psychological side of food consumption.
Collapse
Affiliation(s)
- Christine Heberden
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Elise Maximin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Sylvie Rabot
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| | - Laurent Naudon
- INRAE, AgroParisTech, CNRS, Micalis Institute, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
15
|
Plut E, Calderón JC, Stanojlović V, Gattor AO, Höring C, Humphrys LJ, Konieczny A, Kerres S, Schubert M, Keller M, Cabrele C, Clark T, Reiser O. Stereochemistry-Driven Interactions of α,γ-Peptide Ligands with the Neuropeptide Y Y 4-Receptor. J Med Chem 2023. [PMID: 37440703 DOI: 10.1021/acs.jmedchem.3c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.
Collapse
Affiliation(s)
- Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Jacqueline C Calderón
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Vesna Stanojlović
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Sabine Kerres
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Kim H, Song J, Kim S, Lee S, Park Y, Lee S, Lee S, Kim J. Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. BIOSENSORS 2023; 13:bios13040470. [PMID: 37185545 PMCID: PMC10136450 DOI: 10.3390/bios13040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Researchers are interested in measuring mental stress because it is linked to a variety of diseases. Real-time stress monitoring via wearable sensor systems can aid in the prevention of stress-related diseases by allowing stressors to be controlled immediately. Physical tests, such as heart rate or skin conductance, have recently been used to assess stress; however, these methods are easily influenced by daily life activities. As a result, for more accurate stress monitoring, validations requiring two or more stress-related biomarkers are demanded. In this review, the combinations of various types of sensors (hereafter referred to as multiplexed sensor systems) that can be applied to monitor stress are discussed, referring to physical and chemical biomarkers. Multiplexed sensor systems are classified as multiplexed physical sensors, multiplexed physical-chemical sensors, and multiplexed chemical sensors, with the effect of measuring multiple biomarkers and the ability to measure stress being the most important. The working principles of multiplexed sensor systems are subdivided, with advantages in measuring multiple biomarkers. Furthermore, stress-related chemical biomarkers are still limited to cortisol; however, we believe that by developing multiplexed sensor systems, it will be possible to explore new stress-related chemical biomarkers by confirming their correlations to cortisol. As a result, the potential for further development of multiplexed sensor systems, such as the development of wearable electronics for mental health management, is highlighted in this review.
Collapse
Affiliation(s)
- Heena Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sehyeon Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Suyoung Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Yejin Park
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seungjun Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seunghee Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
17
|
Ching-Ju Huang, Zayabaatar E, Wang SM, Keshari S, Peng WH, Kung HN, Lee YH. Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulate Neuropeptide Y to Relieve Psychological Stress through Mediations of GABAB Receptor and Vagus Nerves. BIOL BULL+ 2023. [DOI: 10.1134/s1062359022700054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
18
|
Kyriakoulis P, Kyrios M. Biological and cognitive theories explaining panic disorder: A narrative review. Front Psychiatry 2023; 14:957515. [PMID: 36793941 PMCID: PMC9924294 DOI: 10.3389/fpsyt.2023.957515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
The current narrative review summarizes and examines several theories of panic disorder (PD) including biological theories, encompassing neurochemical factors, metabolic and genetic theories, respiratory and hyperventilation theories and cognitive theory. Biological theories have informed the development of psychopharmacological treatments; however, they may be limited in their utility given the efficacy of psychological treatments. In particular, behavioral and, more recently, cognitive models have garnered support due to the efficacy of cognitive-behavior therapy (CBT) in treating PD. The role of combination treatments has been found to be superior in the treatment of PD in particular cases, lending support for the need for an integrated approach and model for PD given that the etiology of PD is complex and multifactorial.
Collapse
Affiliation(s)
- Peter Kyriakoulis
- Faculty of Arts, Health and Design, Swinburne University, Hawthorn, VIC, Australia
| | - Michael Kyrios
- College of Education, Psychology and Social Work, Órama Institute for Mental Health and Wellbeing, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
19
|
Karlsson B, Nyberg F, Svärdsudd K, Burell G, Björkegren K, Kristiansson P. Neuropeptide Y and measures of stress in a longitudinal study of women with the fibromyalgia syndrome. Scand J Pain 2023; 23:59-65. [PMID: 35728621 DOI: 10.1515/sjpain-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/03/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Neuropeptide Y is associated with stress in animal and human laboratory studies. However, data from clinical studies are scarce and no clinical longitudinal studies have been published. The aim of this clinical study was to assess the possible association between changes in the levels of pain, depression, and stress measures, on the one hand, and plasma neuropeptide Y levels, on the other. METHODS Forty-four women with the fibromyalgia syndrome were exposed to a Cognitive Behavioral Therapy intervention. Levels of the plasma neuropeptide Y as well as pain, depression, and stress measures were obtained at the start and at the end of the intervention, and after a further six month follow-up. Based on these data, a before-and-after analysis was performed. RESULTS Almost all measures of pain, depression, and stress improved during the study; specifically, variables measuring life control (coping), depression, and stress-related time urgency improved significantly. Moreover, during the same time period, the mean plasma neuropeptide Y level was reduced from 93.2 ± 38.8 fmol/mL before the Cognitive Behavioral Therapy to 75.6 ± 42.9 fmol/mL (p<0.001) at the end of the study. CONCLUSIONS After exposure to a Cognitive Behavioral Therapy intervention, levels of most of the pain, depression, and stress measures improved, half of them significantly, as did the levels of neuropeptide Y. This circumstance indicates a possible functional relationship between pain-depression-stress and neuropeptide Y.
Collapse
Affiliation(s)
- Bo Karlsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kurt Svärdsudd
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Gunilla Burell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Karin Björkegren
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Per Kristiansson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
21
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
22
|
Antidepressant Effect of Neuropeptide Y in Models of Acute and Chronic Stress. Sci Pharm 2022. [DOI: 10.3390/scipharm90030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The search for potential effective antidepressants with minimal side effects is necessary. Peptides are possible applicants for this role. We investigated the antidepressant effect of neuropeptide Y (NY), alone and in combination with clomipramine, in models of acute and chronic stress induced by ultrasound of variable frequencies. Rats were divided into the following groups: the control group, stress group, and stress groups with intranasal administration of NY (100 μg/kg) or clomipramine (7.5 mg/kg), or their combination. Rat behavior was evaluated using a sucrose preference test and forced swimming test in an acute stress model, and a sucrose preference test, forced swimming test, social interaction test, open field test, and Morris water maze test in a chronic stress model. The results of our experiment demonstrated a protective effect of intranasal NY in a model of acute stress, which was comparable to the antidepressant effect of clomipramine. When the same dose was chronically administered, NY also demonstrated an antidepressant action, although expressed in a lesser degree than clomipramine. The combination of NY and clomipramine was much less effective in the chronic stress paradigm compared to the separated drug administration, but was just as effective in the acute stress paradigm. Until now, there was no convincing evidence for the efficacy of the chronic administration of neuropeptide Y; we demonstrated its effectiveness in the animal model of depressive-like behavior. However, our hypothesis that neuropeptide Y can enhance the effect of a classical antidepressant was not confirmed.
Collapse
|
23
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
24
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
25
|
Borroto-Escuela DO, Fores R, Pita M, Barbancho MA, Zamorano‐Gonzalez P, Casares NG, Fuxe K, Narváez M. Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Front Pharmacol 2022; 13:820210. [PMID: 35250569 PMCID: PMC8893223 DOI: 10.3389/fphar.2022.820210] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
A need for new therapeutic approaches are necessary for dementia conditions and memory deficits of different origins, such as Alzheimer's disease. There is complex pathophysiological mechanisms involved, affecting adult hippocampal neurogenesis, in which neuropeptides and its neurogenesis regulation seem to participate. Neuropeptide Y(NPY) Y1 receptor (Y1R) and galanin (GAL) receptor 2 (GALR2) interact in brain regions responsible for learning and memory processes, emphasizing the hippocampus. Moreover, a significant challenge for treatments involving peptide drugs is bypassing the blood-brain barrier. The current study assesses the sustained memory performance induced by GALR2 and NPYY1R agonists intranasal coadministration and their neurochemical hippocampal correlates. Memory retrieval was conducted in the object-in-place task together with in situ proximity ligation assay (PLA) to manifest the formation of GALR2/Y1R heteroreceptor complexes and their dynamics under the different treatments. We evaluated cell proliferation through a 5-Bromo-2’-deoxyuridine (BrdU) expression study within the dentate gyrus of the dorsal hippocampus. The GalR2 agonist M1145 was demonstrated to act with the Y1R agonist to improve memory retrieval at 24 hours in the object-in-place task. Our data show that the intranasal administration is a feasible technique for directly delivering Galanin or Neuropeptide Y compounds into CNS. Moreover, we observed the ability of the co-agonist treatment to enhance the cell proliferation in the DG of the dorsal hippocampus through 5- Bromo-2’-deoxyuridine (BrdU) expression analysis at 24 hours. The understanding of the cellular mechanisms was achieved by analyzing the GALR2/Y1R heteroreceptor complexes upon agonist coactivation of their two types of receptor protomers in Doublecortin-expressing neuroblasts. Our results may provide the basis for developing heterobivalent agonist pharmacophores, targeting GALR2-Y1R heterocomplexes. It involves especially the neuronal precursor cells of the dentate gyrus in the dorsal hippocampus for the novel treatment of neurodegenerative pathologies as in the Alzheimer’s disease.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Ramón Fores
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Mariana Pita
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Neurogenética, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pablo Zamorano‐Gonzalez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Natalia García Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Manuel Narváez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Manuel Narváez,
| |
Collapse
|
26
|
Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: An Update on the Mechanism Underlying Chronic Intermittent Hypoxia-Induced Endothelial Dysfunction. Front Physiol 2021; 12:712281. [PMID: 34512386 PMCID: PMC8430344 DOI: 10.3389/fphys.2021.712281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.
Collapse
Affiliation(s)
- Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
27
|
Zeng X, Xu C, Xu X, Zhang Y, Huang Y, Huo X. Elevated lead levels in relation to low serum neuropeptide Y and adverse behavioral effects in preschool children with e-waste exposure. CHEMOSPHERE 2021; 269:129380. [PMID: 33383249 DOI: 10.1016/j.chemosphere.2020.129380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 02/05/2023]
Abstract
As a neurotoxicant, lead (Pb) primarily affects central nervous system, and particularly impacts developing brain. This study explores the associations of blood Pb level and children's behavioral health. A total of 213 preschool children aged 3-7 years old were recruited from Guiyu (the e-waste-exposed area) and Haojiang (the reference area). The behavioral health of children was assessed using the 'behavioral symptoms' subscale of the Strengths and Difficulties Questionnaire (SDQ). Results showed that there was a significant difference in percent of children categorized as "at risk" between Guiyu (48.2%) and Haojiang (13.9%) (p < 0.001). The blood Pb level of children in Guiyu was significantly higher than those in Haojiang (median: 5.19 μg/dL vs. 3.42 μg/dL, p < 0.001). The serum Neuropeptide Y (NPY) was significantly lower in Guiyu children than those in Haojiang. Spearman correlation analyses demonstrated that blood Pb levels was negatively correlated with NPY (rs = -0.25, p < 0.001), but positively correlated with behavioral symptom scores; while serum NPY levels were negatively associated with behavioral symptom scores. Behavioral symptom scores were higher in children with blood Pb level ≥5.00 μg/dL (high) than those with blood Pb level < 5.00 μg/dL (low). After adjusting for confounding factors, children with lower NPY levels were at higher risk of having behavioral difficulties. In conclusion, Pb exposure in e-waste-exposed areas may lead to decrease in serum NPY and increase in the risk of children's behavioral problems. In addition, NPY may mediate the association between Pb exposure and behavioral difficulties.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713, GZ, the Netherlands
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, And Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
28
|
Womersley JS, Martin L, van der Merwe L, Seedat S, Hemmings SMJ. Genetic variation in neuropeptide Y interacts with childhood trauma to influence anxiety sensitivity. ANXIETY STRESS AND COPING 2021; 34:450-464. [PMID: 33491492 DOI: 10.1080/10615806.2021.1876225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Anxiety sensitivity (AS) refers to a fear of the negative implications of anxiety, and arises due to gene-environment interactions. We investigated whether genetic variation in two neuropeptides implicated in the stress response, neuropeptide Y (NPY) and pituitary adenylate cyclase-activating polypeptide receptor 1, interacted with childhood trauma (CT) to influence AS. DESIGN AND METHODS This cross-sectional study examined the CT x genetic variant effects on AS in 951 adolescents who self-identified as Xhosa or South African Colored (SAC) ethnicity. RESULTS In Xhosa females, the NPY rs5573 A allele and rs3037354 deletion variant were associated with increased (p = 0.035) and decreased (p = 0.034) AS, respectively. The interaction of CT and the NPY rs5574 A allele increased AS in SAC female participants (p = 0.043). The rs3037354 deletion variant protected against AS with increased CT in SAC male participants (p = 0.011). CONCLUSIONS The NPY rs5574 A allele and rs3037354 deletion variant interact with CT to act as risk and protective factors, respectively, for AS in an ethnicity- and sex- differentiated manner. Our results reaffirm the role of NPY and gene-environment interactions in anxiety-related behaviors and reinforce the need for psychiatric genetics studies in diverse populations.
Collapse
Affiliation(s)
- Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lindi Martin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lize van der Merwe
- Department of Statistics and Population Studies, University of the Western Cape, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
29
|
Chen B, Yadav M, Mulkalwar M, Saikrishna L, Verma H, Ye W, Bhaskar LVKS. Meta-Analysis on the Association of Neuropeptide Y rs16139 Variant With the Risk of Alcoholism. Front Psychiatry 2021; 12:737440. [PMID: 34777047 PMCID: PMC8583313 DOI: 10.3389/fpsyt.2021.737440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The neuropeptide-Y (NPY) is involved in the development of alcoholism through NPY receptors. A T>C mutation causes substitution of leucine to proline at codon 7 (L7P; rs16139) in the signal peptide of neuropeptide Y is known to cause a 42% increase in plasma NPY levels. Studies that analyzed the association between NPY rs16139 and alcoholism risk did not demonstrate conclusive evidence for this relationship. The present study aims to evaluate the association between NPY gene rs16139 variant and alcohol dependence. Method: An electronic search of databases including PubMed and Google Scholar was performed to retrieve studies investigating the association between NPY rs16139 and alcoholism. The pooled odds ratio (OR) with 95% confidence interval (CI) was calculated in allelic and dominant genetic models. Sensitivity analyses and publication bias were assessed in our meta-analysis. The meta-analysis was conducted using the MetaGenyo web tool. Result: Significant heterogeneity was observed across studies (p < 0.001). Our results have shown that there is no significant association between NPY rs16139 variant and the risk of alcoholism in allelic (OR = 0.98, 95% CI 0.70-1.38, p = 0.921) and dominant models (OR = 0.98, 95% CI 0.69-1.40, p = 0.919). Begg's funnel plot and Egger's test have not shown publication bias (p = 0.332). Conclusion: To the best of our knowledge, this is the first meta-analysis that evaluates the relationship between the NPY rs16139 polymorphism and the risk of alcoholism. Our large-scale meta-analysis suggests that NPY rs16139 polymorphism is not associated with alcoholism. However, further studies are needed to increase our understanding of the relationship between NPY variants in alcoholism.
Collapse
Affiliation(s)
- Biqing Chen
- Department of Sports Operation and Management, Jinhua Polytechnic, Jinhua, China
| | - Manish Yadav
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Madhubala Mulkalwar
- Department of Pathology, Shri Shankaracharya Institute of Medical Sciences (SSIMS), Bhilai, India
| | | | - Henu Verma
- Department of Immunopathology, Institute of Lungs Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Weibing Ye
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
30
|
Palego L, Giannaccini G, Betti L. Neuroendocrine Response to Psychosocial Stressors, Inflammation Mediators and Brain-periphery Pathways of Adaptation. Cent Nerv Syst Agents Med Chem 2020; 21:2-19. [PMID: 33319677 DOI: 10.2174/1871524920999201214231243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Threats, challenging events, adverse experiences, predictable or unpredictable, namely stressors, characterize life, being unavoidable for humans. The hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic nervous system (SNS) are well-known to underlie adaptation to psychosocial stress in the context of other interacting systems, signals and mediators. However, much more effort is necessary to elucidate these modulatory cues for a better understanding of how and why the "brain-body axis" acts for resilience or, on the contrary, cannot cope with stress from a biochemical and biological point of view. Indeed, failure to adapt increases the risk of developing and/or relapsing mental illnesses such as burnout, post-traumatic stress disorder (PTSD), and at least some types of depression, even favoring/worsening neurodegenerative and somatic comorbidities, especially in the elderly. We will review here the current knowledge on this area, focusing on works presenting the main brain centers responsible for stressor interpretation and processing, together with those underscoring the physiology/biochemistry of endogenous stress responses. Autonomic and HPA patterns, inflammatory cascades and energy/redox metabolic arrays will be presented as allostasis promoters, leading towards adaptation to psychosocial stress and homeostasis, but also as possible vulnerability factors for allostatic overload and non-adaptive reactions. Besides, the existence of allostasis buffering systems will be treated. Finally, we will suggest promising lines of future research, particularly the use of animal and cell culture models together with human studies by means of high-throughput multi-omics technologies, which could entangle the biochemical signature of resilience or stress-related illness, a considerably helpful facet for improving patients' treatment and monitoring.
Collapse
Affiliation(s)
- Lionella Palego
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Betti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| |
Collapse
|
31
|
Bertocchi I, Mele P, Ferrero G, Oberto A, Carulli D, Eva C. NPY-Y1 receptor signaling controls spatial learning and perineuronal net expression. Neuropharmacology 2020; 184:108425. [PMID: 33285203 DOI: 10.1016/j.neuropharm.2020.108425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures that form around some types of neurons at the end of critical periods, limiting neuronal plasticity. In the adult brain, PNNs play a crucial role in the regulation of learning and cognitive processes. Neuropeptide Y (NPY) is involved in the regulation of many physiological functions, including learning and memory abilities, via activation of Y1 receptors (Y1Rs). Here we demonstrated that the conditional depletion of the gene encoding the Y1R for NPY in adult forebrain excitatory neurons (Npy1rrfb mutant mice), induces a significant slowdown in spatial learning, which is associated with a robust intensification of PNN expression and an increase in the number of c-Fos expressing cells in the cornus ammonis 1 (CA1) of the dorsal hippocampus. Importantly, the enzymatic digestion of PNNs in CA1 normalizes c-Fos activity and completely rescues learning abilities of Npy1rrfb mice. These data highlight a previously unknown functional link between NPY-Y1R transmission and PNNs, which may play a role in the control of dorsal hippocampal excitability and related cognitive functions.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy
| | - Giuliano Ferrero
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Daniela Carulli
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy; Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, Netherlands
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy.
| |
Collapse
|
32
|
Kornhuber J, Zoicas I. Neuropeptide Y as Alternative Pharmacotherapy for Antidepressant-Resistant Social Fear. Int J Mol Sci 2020; 21:ijms21218220. [PMID: 33153050 PMCID: PMC7662288 DOI: 10.3390/ijms21218220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
In many social anxiety disorder (SAD) patients, the efficacy of antidepressant therapy is unsatisfactory. Here, we investigated whether mice deficient for the lysosomal glycoprotein acid sphingomyelinase (ASM−/−) represent an appropriate tool to study antidepressant-resistant social fear. We also investigated whether neuropeptide Y (NPY) reduces this antidepressant-resistant social fear in ASM−/− mice, given that NPY reduced social fear in a mouse model of SAD, namely social fear conditioning (SFC). We show that neither chronic paroxetine nor chronic amitriptyline administration via drinking water were successful in reducing SFC-induced social fear in ASM−/− mice, while the same treatment reduced social fear in ASM+/− mice and completely reversed social fear in ASM+/+ mice. This indicates that the antidepressants paroxetine and amitriptyline reduce social fear via the ASM-ceramide system and that ASM−/− mice represent an appropriate tool to study antidepressant-resistant social fear. The intracerebroventricular administration of NPY, on the other hand, reduced social fear in ASM−/− mice, suggesting that NPY might represent an alternative pharmacotherapy for antidepressant-resistant social fear. These results suggest that medication strategies aimed at increasing brain NPY concentrations might improve symptoms of social fear in SAD patients who fail to respond to antidepressant treatments.
Collapse
|
33
|
Ventura F, Muga M, Coelho-Santos V, Fontes-Ribeiro CA, Leitão RA, Silva AP. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol Lett 2020; 334:53-59. [PMID: 32956829 DOI: 10.1016/j.toxlet.2020.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH) consumption is a health problem that leads to neurological and psychiatric disturbances. The cellular alterations behind these conditions have been extensively investigated and it is now well-established that METH causes cerebrovascular alterations being a key feature in drug-induced neuropathology. Although promising advances in understanding the blood-brain barrier (BBB) alterations induced by METH, there is still no available approach to counteract or diminish such effects. Interestingly, several studies show that neuropeptide Y (NPY) has an important protective role against METH-induced neuronal and glial toxicity, as well as behavioral deficits. Despite these beneficial effects of the NPY system, nothing is known about its role in brain endothelial cells under conditions of METH exposure. Thus, our aim was to unravel the effect of NPY and its receptors against METH-induced endothelial cell dysfunction. For that, we used a human brain microvascular endothelial cell line (hCMEC/D3) and our results demonstrate that endothelial cells express both NPY Y1 (Y1R) and Y2 (Y2R) receptors, but only Y2R is upregulated after METH exposure. Moreover, this drug of abuse induced endothelial cell death and elicited the production of reactive oxygen species (ROS) by these cells, which were prevented by the activation of Y2R. Additional, cell death and oxidative stress triggered by METH were dependent on the concentration of the drug. In sum, with the present study we identified for the first time the NPY system, and particularly the Y2R subtype, as a promising target to protect against METH-induced neurovascular dysfunction.
Collapse
Affiliation(s)
- Fabiana Ventura
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Mariana Muga
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ricardo A Leitão
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
34
|
Wen X, Ou Y, Zarick HF, Zhang X, Hmelo AB, Victor QJ, Paul EP, Slocik JM, Naik RR, Bellan LM, Lin EC, Bardhan R. PRADA: Portable Reusable Accurate Diagnostics with nanostar Antennas for multiplexed biomarker screening. Bioeng Transl Med 2020; 5:e10165. [PMID: 33005736 PMCID: PMC7510456 DOI: 10.1002/btm2.10165] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) "antennas" labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface-enhanced Raman spectroscopy (SERS). The peptide-conjugated GNS-SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de-identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low-cost PRADA will have tremendous translational impact and be amenable to resource-limited settings for accurate treatment planning in patients.
Collapse
Affiliation(s)
- Xiaona Wen
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Yu‐Chuan Ou
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Holly F. Zarick
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Xin Zhang
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Anthony B. Hmelo
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTennesseeUSA
| | - Quinton J. Victor
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Eden P. Paul
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Joseph M. Slocik
- Materials and Manufacturing Directorate and 711th Human Performance Wing, Air Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOhioUSA
| | - Rajesh R. Naik
- Materials and Manufacturing Directorate and 711th Human Performance Wing, Air Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOhioUSA
| | - Leon M. Bellan
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Eugene C. Lin
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Rizia Bardhan
- Department of Chemical and Biological EngineeringIowa State UniversityAmesIowaUSA
- Nanovaccine InstituteIowa State UniversityAmesIowaUSA
| |
Collapse
|
35
|
Nahvi RJ, Sabban EL. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020; 10:biom10091248. [PMID: 32867327 PMCID: PMC7564266 DOI: 10.3390/biom10091248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.
Collapse
|
36
|
Yan F, Wang R, Li S, Zhao X, Jiang Y, Liu L, Fang J, Zhen X, Lazarovici P, Zheng W. FoxO3a suppresses neuropeptide W expression in neuronal cells and in rat hypothalamus and its implication in hypothalamic-pituitary-adrenal (HPA) axis. Int J Biol Sci 2020; 16:2775-2787. [PMID: 33061795 PMCID: PMC7545709 DOI: 10.7150/ijbs.45619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
FoxO3a, a forkhead family member of transcription factors, is involved in the regulation of cell metabolism, proliferation, differentiation and apoptosis. However, whether FoxO3a participates in the regulation of glucocorticoids induced-hypothalamic-pituitary-adrenal (HPA) dysfunction is still unknown. Our present results indicate that dexamethasone(DEX) increased FoxO3a expression in PC12 and hypothalamic neuronal cultures in correlation to reduced expression of NPW, a process that could be blocked by GR2 antagonist. DEX restrained the phosphorylation of Akt and FoxO3a, but not ERK1/2 phosphorylation, resulting with FoxO3a nuclear localization. Overexpression of FoxO3a inhibited NPW expression, while FoxO3a knockdown by siRNA had the opposite effect. The regulatory region of NPW promoter contains multiple FoxO3a binding sites, and FoxO3a bonding to these sites inhibited its transcriptional activity. In a rat model, chronic administration of corticosterone reduced animals' body weight and sucrose consumption and caused stress- depression like behavior. Corticosterone treatment induced a marked increase in FoxO3a levels, while decreased the expression of NPW protein in the hypothalamus. Immunofluorescent double labeling demonstrated that FoxO3a and NPW were collocated in the hypothalamus. Taken together, these data indicate that NPW is a new direct downstream target gene of FoxO3a. FoxO3a suppressed the transcription of NPW and modulated glucocorticoids-induced HPA dysfunction by directly regulating the expression of NPW. Thus, present findings suggest that FoxO3a and NPW may be potential therapeutic targets for endocrine and psychiatric disorders.
Collapse
Affiliation(s)
- Fengxia Yan
- School of Medical Science, Jinan University, Guangzhou, China
| | - Rikang Wang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Shuai Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xia Zhao
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yizhou Jiang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Linlin Liu
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jiankang Fang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
37
|
Serova LI, Hansson E, Sabban EL. Effect of intranasal administration of neuropeptide Y and single prolonged stress on food consumption and body weight in male rats. Neuropeptides 2020; 82:102060. [PMID: 32600666 DOI: 10.1016/j.npep.2020.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023]
Abstract
Emerging evidence indicates that intranasal delivery of neuropeptide Y (NPY) to the brain has therapeutic potential for management of stress-triggered neuropsychiatric disorders. Here we aimed to determine how intranasal administration of NPY, either before or immediately after, traumatic stress in single prolonged stress (SPS) rodent model of Post-traumatic stress disorder (PTSD) impacts food consumption and body weight. SPS stressors suppressed food consumption for at least two days in the vehicle-treated animals. When given prior to SPS stressors, intranasal NPY prevented the SPS-elicited reduction in food intake only for several hours afterwards. When given after the SPS stressors, under conditions shown to prevent behavioral and biochemical impairments, intranasal NPY had no effect on food intake. Although all groups showed circadian variation, the SPS-exposed rats ate less than unstressed animals during the dark (active) phase. Seven days after exposure to SPS stressors, there were no differences in food intake, although body weight was still lower than unstressed controls in all the experimental groups. Thus, traumatic stress has pronounced effect on food consumption during the rodent's active phase, and a prolonged effect on body weight. Single intranasal infusion of NPY, which was previously shown to prevent development of several PTSD associated behavioral and neuroendocrine impairments, did not elicit prolonged changes in stress triggered food consumption nor regulation of body weight.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Evelyn Hansson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
38
|
Yang M, Ding Q, Zhang M, Moon C, Wang H. Forebrain overexpression of type 1 adenylyl cyclase promotes molecular stability and behavioral resilience to physical stress. Neurobiol Stress 2020; 13:100237. [PMID: 33344693 PMCID: PMC7739041 DOI: 10.1016/j.ynstr.2020.100237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022] Open
Abstract
The ability to cope with stress is essential for emotional stability and mental health. It is also hypothesized that factors promoting resilience to stress may offer treatment strategies for maladaptive disorders such as anxiety and depression. Here, we find that physical restraint reduces the expression of type 1 adenylyl cyclase (Adcy1), a neurospecific synaptic enzyme that positively regulates the cAMP signaling cascade. Conversely, an increase of forebrain Adcy1 expression in transgenic mouse (i.e., Adcy1 tg mouse) predisposes individuals to molecular stability and behavioral resilience. Transgenic overexpression of Adcy1 prevents the physical restraint-induced down-regulation of brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY). Further, Adcy1 tg mice maintain regular locomotive activity in novelty exploration and voluntary wheel running following physical restraint. Adcy1 tg mice show higher corticosterone and lower basal glucocorticoid receptor (GR) expression, along with a higher MR (mineralocorticoid receptor) to GR ratio in the hippocampus. Further, Adcy1 tg mice show reduced immobility under acute physical stress conditions in the forced swimming test and are more sensitive to the antidepressant desipramine. Our results demonstrate a novel function of Adcy1 in stress coping and suggest Adcy1 as a potential target to antagonize stress vulnerability and promote antidepressant efficacy.
Collapse
Affiliation(s)
- Miyoung Yang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, South Korea
| | - Qi Ding
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ming Zhang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, 500-757, South Korea
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
- Corresponding author. Department of Physiology, East Lansing, MI, 48824, USA.
| |
Collapse
|
39
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory in a brain region- and receptor-specific way in male mice. Neuropharmacology 2020; 175:108199. [PMID: 32535011 DOI: 10.1016/j.neuropharm.2020.108199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are highly expressed in brain regions involved in learning and memory processes. We have previously shown that intracerebroventricular administration of NPY prolongs the retention of non-social memory in the object discrimination test. Here, we aimed to identify the brain regions which mediate these memory-enhancing effects of NPY. We show that NPY (0.1 nmol/0.2 μl/side) prolongs retention of non-social memory when administered into the dorsolateral septum (DLS) and medial amygdala (MeA), but not when administered into the dorsal hippocampus, central amygdala and basolateral amygdala. In the DLS, the effects of NPY were blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side), but not by the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side). In the MeA, on the other hand, BIIE0246, but not BIBO3304 trifluoroacetate blocked the effects of NPY. This study demonstrates that NPY exerts Y1 receptor-mediated memory-enhancing effects in the DLS and Y2 receptor-mediated memory-enhancing effects in the MeA, and suggests that distinct brain regions and receptor subtypes are recruited to mediate the effects of NPY on non-social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
40
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
41
|
Nwokafor C, Serova LI, Nahvi RJ, McCloskey J, Sabban EL. Activation of NPY receptor subtype 1 by [D-His 26]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides 2020; 80:102001. [PMID: 31916978 DOI: 10.1016/j.npep.2019.102001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
The neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His26]NPY, [Leu31Pro34]NPY, Y2R agonist NPY (3-36) or NPY were administered to male Sprague-Dawley rats immediately following the last stressor of the single prolonged stress (SPS) protocol, a widely used PTSD animal model. After 7 or 14 days, effects of the treatments were measured on the elevated plus maze (EPM) for anxiety, in forced swim test (FST) for development of depressive-like or re-experiencing behavior, in social interaction (SI) test for impaired social behavior, and acoustic startle response (ASR) for hyperarousal. [D-His26]NPY, but not [Leu31Pro34]NPY nor NPY (3-36) Y2R, was effective in preventing the SPS-elicited development of anxiety. Y1R, but not Y2R agonists prevented development of depressive- feature on FST, with [D-His26]NPY superior to NPY. The results demonstrate that [D-His26]NPY was sufficient to prevent development of anxiety, social impairment and depressive symptoms, and has promise as an early intervention therapy following traumatic stress.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Jaclyn McCloskey
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
42
|
Xu L, Wang J. Food restriction in adolescence increases emotional disorder-like behaviors in adult rats. J Chem Neuroanat 2019; 104:101731. [PMID: 31862402 DOI: 10.1016/j.jchemneu.2019.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
This study was designed to investigate the neuronal mechanism underlying the influence of early-life food restriction on the central nervous system and subsequent behaviors in adult rats. Several behavioral paradigms were tested in rats, including sucrose negative contrast test, forced swimming test (FST) and elevated plus maze test (EPM). in vivo intracellular electrophysiological recordings were conducted in the lateral nucleus of the amygdala (LAT). Finally, the levels of neuropeptide Y (NPY) were examined using immunohistochemistry. Food restriction during adolescence reduced sucrose preference in adult rats. Adolescent food restriction increased total immobile time in the FST and reduced the latency in rats to the first bout of immobility. In the EPM test, rats that experienced food restriction in adolescence and tested four weeks later spent less time than unrestricted controls in the open arm. In addition, chronic food restriction in adolescence increased in vivo LAT neuronal excitability in adulthood. Finally, NPY immunoreactivity in the LAT was reduced in rats that experienced chronic food restriction in adolescence compared to controls. Our results suggest that food restriction in adolescence increases emotional disorder-like behaviors in adult life, in which NPY production regulates the LAT-dependent behaviors and may underly the vulnerability to emotional disorders.
Collapse
Affiliation(s)
- Li Xu
- Department of Electrophysiological Examination, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China
| | - Jinfeng Wang
- Department of Electrophysiological Examination, Cangzhou Central Hospital, Cangzhou 061001, Hebei Province, China.
| |
Collapse
|
43
|
Kornhuber J, Zoicas I. Neuropeptide Y reduces expression of social fear via simultaneous activation of Y1 and Y2 receptors. J Psychopharmacol 2019; 33:1533-1539. [PMID: 31328614 PMCID: PMC6854880 DOI: 10.1177/0269881119862529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) has anxiolytic effects and facilitates extinction of cued and contextual fear in rodents, thereby acting as a resilience factor against exaggerated fear responses after adverse events. We investigated whether NPY influences acquisition, expression and extinction of social fear in a mouse model of social fear conditioning (SFC). METHODS NPY was administered intracerebroventricularly before SFC or before social fear extinction with or without prior administration of Y1 and/or Y2 receptor antagonists. RESULTS We show that NPY affects SFC-induced social fear in a time point-dependent manner. When administered before SFC, NPY did not affect acquisition, expression and extinction of social fear. However, when administered before social fear extinction, NPY reduced expression of social fear via simultaneous activation of Y1 and Y2 receptors. As such, neither the Y1 receptor antagonist BIBO3304 trifluoroacetate nor the Y2 receptor antagonist BIIE0246 was able to block the effects of NPY completely. However, when administered in combination, they completely blocked the effects of NPY on social fear expression. CONCLUSIONS These findings have important clinical implications, as they suggest that although medication strategies aimed at increasing brain NPY activity are unlikely to prevent the formation of aversive memories after a traumatic social experience, they might improve the recovery from a traumatic social experience by reducing the expression of social fear.
Collapse
Affiliation(s)
| | - Iulia Zoicas
- Iulia Zoicas, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, Erlangen 91054, Germany.
| |
Collapse
|
44
|
Maymon N, Mizrachi Zer-Aviv T, Sabban EL, Akirav I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology 2019; 162:107804. [PMID: 31622603 DOI: 10.1016/j.neuropharm.2019.107804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022]
Abstract
Modulation of cannabinoid and neuropeptide Y (NPY) receptors may offer therapeutic benefits for post-traumatic stress disorder (PTSD). In this study, we aimed to investigate the functional interaction between these systems in the basolateral amygdala (BLA) in a rat model of PTSD. Rats were exposed to the shock and reminders model of PTSD and tested for hyper arousal/PTSD- and depression-like behaviors 3 weeks later. Immediately after shock exposure rats were microinjected into the BLA with URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH) that increases the levels of the endocannabinoid anandamide or with the NPY1 receptor agonist Leu31,Pro34-NPY (Leu). Intra-BLA URB597 prevented the shock/reminders-induced PTSD- behaviors (extinction, startle) and depression-behaviors (despair, social impairments). These preventing effects of URB597 on PTSD- and depression-like behaviors were shown to be mostly mediated by cannabinoid CB1 and NPY1 receptors, as they were blocked when URB597 was co-administered with a low dose of a CB1 or NPY1 receptor antagonist. Similarly, intra-BLA Leu prevented development of all the behaviors. Interestingly, a CB1 antagonist prevented the effects of Leu on despair and social behavior, but not the effects on extinction and startle. Moreover, exposure to shock and reminders upregulated CB1 and NPY1 receptors in the BLA and infralimbic prefrontal cortex and this upregulation was restored to normal with intra-BLA URB597 or Leu. The findings suggest that the functional interaction between the eCB and NPY1 systems is complex and provide a rationale for exploring novel therapeutic strategies that target the cannabinoid and NPY systems for stress-related diseases.
Collapse
Affiliation(s)
- Neta Maymon
- Department of Psychology, University of Haifa, Haifa, 3498838, Israel
| | | | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, New York, 10595, USA
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
45
|
Abstract
Glycosylation is one of the most ubiquitous and complex post-translational modifications (PTMs). It plays pivotal roles in various biological processes. Studies at the glycopeptide level are typically considered as a downstream work resulting from enzymatic digested glycoproteins. Less attention has been focused on glycosylated endogenous signaling peptides due to their low abundance, structural heterogeneity and the lack of enabling analytical tools. Here, protocols are presented to isolate and characterize glycosylated neuropeptides utilizing nanoflow liquid chromatography coupled with mass spectrometry (LC-MS). We first demonstrate how to extract neuropeptides from raw tissues and perform further separation/cleanup before MS analysis. Then we describe hybrid MS methods for glycosylated neuropeptide profiling and site-specific analysis. We also include recommendations for data analysis to identify glycosylated neuropeptides in crustaceans where a complete neuropeptide database is still lacking. Other strategies and future directions are discussed to provide readers with alternative approaches and further unravel biological complexity rendered by glycosylation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
46
|
Nwokafor C, Serova LI, Sabban EL. Preclinical findings on the potential of intranasal neuropeptide Y for treating hyperarousal features of PTSD. Ann N Y Acad Sci 2019; 1455:149-159. [PMID: 31250475 DOI: 10.1111/nyas.14172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/10/2023]
Abstract
Acoustic startle response (ASR) assesses hyperarousal, a core symptom of posttraumatic stress disorder (PTSD). Intranasal neuropeptide Y (NPY) administration was shown to prevent hyperarousal in single prolonged stress (SPS) rodent PTSD model. However, it is unclear how ASR itself alters responses to stress. Rats (A-S-A) were exposed to acoustic startle (AS) 1 day before SPS (ASR1) and 2 weeks afterward (ASR2). Other groups were exposed in parallel to either AS (A-A) or SPS or neither. SPS enhanced ASR2. In relevant brain areas, mRNA levels were determined by qRT-PCR. In mediobasal hypothalamus, AS or SPS each increased CRH mRNA levels without an additive effect. Exposure to AS appeared to dampen some responses to SPS. The SPS-triggered reduction of GR and FKBP5 gene expression was not observed in A-S-A group. In locus coeruleus, SPS increased CRHR1 and reduced Y2R mRNAs, but not in A-S-A group. In both regions, AS altered NPY receptor gene expression, which may mediate dampening responses to SPS. In second experiment, intranasal NPY administered 2 weeks after SPS reversed hyperarousal symptoms for at least 7 days. This study reveals important effects of AS on the NPY system and demonstrates that intranasal NPY elicits long-lasting reversal of traumatic stress-triggered hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York
| |
Collapse
|
47
|
Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019; 75:1-17. [PMID: 30824124 DOI: 10.1016/j.npep.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are drugs of first choice in the therapy of moderate to severe depression and anxiety disorders. Their primary mechanism of action is via influence of the serotonergic (5-HT) system, but a growing amount of data provides evidence for other non-monoaminergic players in SSRI effects. It is assumed that neuropeptides, which play a role as neuromodulators in the CNS, are involved in their mechanism of action. In this review we focus on six neuropeptides: corticotropin-releasing factor - CRF, galanin - GAL, oxytocin - OT, vasopressin - AVP, neuropeptide Y - NPY, and orexins - OXs. First, information about their roles in depression and anxiety disorders are presented. Then, findings describing their interactions with the 5-HT system are summarized. These data provide background for analysis of the results of published preclinical and clinical studies related to SSRI effects on the neuropeptide systems. We also report findings showing how modulation of neuropeptide transmission influences behavioral and neurochemical effects of SSRIs. Finally, future research necessary for enriching our knowledge of SSRI mechanisms of action is proposed. Recognition of new molecular targets for antidepressants will have a significant effect on the development of novel therapeutic strategies for mood-related disorders.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
48
|
Sabban EL, Serova LI. Potential of Intranasal Neuropeptide Y (NPY) and/or Melanocortin 4 Receptor (MC4R) Antagonists for Preventing or Treating PTSD. Mil Med 2019; 183:408-412. [PMID: 29635611 DOI: 10.1093/milmed/usx228] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/18/2018] [Indexed: 02/02/2023] Open
Abstract
There is a great need for effective treatment options for post-traumatic stress disorder (PTSD). Neuropeptide Y (NPY) is associated with resilience to traumatic stress. MC4R antagonists, such as HS014, also reduce response to stress. Both regulate stress-responsive systems - the hypothalamic-pituitary-axis (HPA) and the noradrenergic nervous system and their associated behaviors. Therefore, we examined if their intranasal delivery to brain could attenuate development of PTSD-related symptoms in single prolonged stress (SPS) rodent PTSD model. Three regimens were used: (1) prophylactic treatment 30 min before SPS stressors, (2) early intervention right after SPS stressors, (3) therapeutic treatment when PTSD behaviors are manifested 1 wk or more after the traumatic stress. NPY delivered by regimen 1 or 2 prevented SPS-triggered elevation in anxiety, depressive-like behavior, and hyperarousal and reduced dysregulation of HPA axis. Hypothalamic CRH mRNA and GR in ventral hippocampus were significantly induced in vehicle- but not NPY-treated group. NPY also prevented hypersensitivity of LC/NE system to novel mild stressor and induction of CRH in amygdala. Some of these impairments were also reduced with HS014, alone or together with NPY. When given after symptoms were manifested (regiment 3), NPY attenuated anxiety and depressive behaviors. This demonstrates strong preclinical proof of concept for intranasal NPY, and perhaps MC4R antagonists, for non-invasive early pharmacological interventions for PTSD and comorbid disorders and possibly also as therapeutic strategy.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595
| |
Collapse
|
49
|
Abstract
OBJECTIVE The present study explores the relationship between neuroactive hormones and religious commitment. We hypothesised that religious commitment is mediated by neuropeptide Y and oxytocin. These neurohormones have a well-established role in general well-being, anxiety regulation, stress-resilience, social affiliation and spirituality. METHODS Sixty healthy women (median age 21) participated in the study and completed the Religious Commitment Inventory and other psychometric surveys. Blood was sampled from each participant and serum levels of neuropeptide Y were measured using radioimmunoassay. Oxytocin, stress and sex hormones were measured using enzyme-linked immunosorbent assay. Correlations were tested using non-parametric statistical methods. RESULTS We found a positive correlation between serum neuropeptide Y levels and religious commitment, but not between oxytocin and religious commitment. CONCLUSIONS The present study provides preliminary evidence that neuropeptide Y is a biological correlate of religious commitment.
Collapse
|
50
|
Laird KT, Krause B, Funes C, Lavretsky H. Psychobiological factors of resilience and depression in late life. Transl Psychiatry 2019; 9:88. [PMID: 30765686 PMCID: PMC6375932 DOI: 10.1038/s41398-019-0424-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
In contrast to traditional perspectives of resilience as a stable, trait-like characteristic, resilience is now recognized as a multidimentional, dynamic capacity influenced by life-long interactions between internal and environmental resources. We review psychosocial and neurobiological factors associated with resilience to late-life depression (LLD). Recent research has identified both psychosocial characteristics associated with elevated LLD risk (e.g., insecure attachment, neuroticism) and psychosocial processes that may be useful intervention targets (e.g., self-efficacy, sense of purpose, coping behaviors, social support). Psychobiological factors include a variety of endocrine, genetic, inflammatory, metabolic, neural, and cardiovascular processes that bidirectionally interact to affect risk for LLD onset and course of illness. Several resilience-enhancing intervention modalities show promise for the prevention and treatment of LLD, including cognitive/psychological or mind-body (positive psychology; psychotherapy; heart rate variability biofeedback; meditation), movement-based (aerobic exercise; yoga; tai chi), and biological approaches (pharmacotherapy, electroconvulsive therapy). Additional research is needed to further elucidate psychosocial and biological factors that affect risk and course of LLD. In addition, research to identify psychobiological factors predicting differential treatment response to various interventions will be essential to the development of more individualized and effective approaches to the prevention and treatment of LLD.
Collapse
Affiliation(s)
- Kelsey T Laird
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Beatrix Krause
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Cynthia Funes
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.
| |
Collapse
|