1
|
Le DE, Alkayed NJ, Cao Z, Chattergoon NN, Garcia-Jaramillo M, Thornburg K, Kaul S. Metabolomics of repetitive myocardial stunning in chronic multivessel coronary artery stenosis: Effect of non-selective and selective β1-receptor blockers. J Physiol 2024; 602:3423-3448. [PMID: 38885335 PMCID: PMC11284965 DOI: 10.1113/jp285720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without β-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two β-blockers with their different β-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by β-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that β-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective β-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective β1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both β-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.
Collapse
Affiliation(s)
- D. Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Nabil J. Alkayed
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Zhiping Cao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Natasha N. Chattergoon
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Bae J, Paltzer WG, Mahmoud AI. The Role of Metabolism in Heart Failure and Regeneration. Front Cardiovasc Med 2021; 8:702920. [PMID: 34336958 PMCID: PMC8322239 DOI: 10.3389/fcvm.2021.702920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Heart failure is the leading cause of death worldwide. The inability of the adult mammalian heart to regenerate following injury results in the development of systolic heart failure. Thus, identifying novel approaches toward regenerating the adult heart has enormous therapeutic potential for adult heart failure. Mitochondrial metabolism is an essential homeostatic process for maintaining growth and survival. The emerging role of mitochondrial metabolism in controlling cell fate and function is beginning to be appreciated. Recent evidence suggests that metabolism controls biological processes including cell proliferation and differentiation, which has profound implications during development and regeneration. The regenerative potential of the mammalian heart is lost by the first week of postnatal development when cardiomyocytes exit the cell cycle and become terminally differentiated. This inability to regenerate following injury is correlated with the metabolic shift from glycolysis to fatty acid oxidation that occurs during heart maturation in the postnatal heart. Thus, understanding the mechanisms that regulate cardiac metabolism is key to unlocking metabolic interventions during development, disease, and regeneration. In this review, we will focus on the emerging role of metabolism in cardiac development and regeneration and discuss the potential of targeting metabolism for treatment of heart failure.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Wyatt G Paltzer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
5
|
Abstract
Deficient glucose transport and glucose disposal are key pathologies leading to impaired glucose tolerance and risk of type 2 diabetes. The cloning and identification of the family of facilitative glucose transporters have helped to identify that underlying mechanisms behind impaired glucose disposal, particularly in muscle and adipose tissue. There is much more than just transporter protein concentration that is needed to regulate whole body glucose uptake and disposal. The purpose of this review is to discuss recent findings in whole body glucose disposal. We hypothesize that impaired glucose uptake and disposal is a consequence of mismatched energy input and energy output. Decreasing the former while increasing the latter is key to normalizing glucose homeostasis.
Collapse
Affiliation(s)
- Ann Louise Olson
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kenneth Humphries
- Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Glasenapp A, Derlin K, Wang Y, Bankstahl M, Meier M, Wollert KC, Bengel FM, Thackeray JT. Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure. J Nucl Med 2019; 61:590-596. [PMID: 31653713 DOI: 10.2967/jnumed.119.232488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload-induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 μL vs. 23.8 ± 1.7 μL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = -0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = -0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.
Collapse
Affiliation(s)
- Aylina Glasenapp
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.,Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Marion Bankstahl
- Central Laboratory Animal Facility and Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Central Laboratory Animal Facility and Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Cardioprotection by PEDF: A novel form of GLUT4 membrane translocation to reduce myocardial ischemic injury. Int J Cardiol 2019; 288:119-120. [PMID: 31043322 DOI: 10.1016/j.ijcard.2019.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022]
|
8
|
Mitra A, Datta R, Rana S, Sarkar S. Modulation of NFKB1/p50 by ROS leads to impaired ATP production during MI compared to cardiac hypertrophy. J Cell Biochem 2018; 119:1575-1590. [PMID: 28771799 DOI: 10.1002/jcb.26318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023]
Abstract
Pathological hypertrophy and myocardial infarction (MI) are two etiologically different cardiac disorders having differential molecular mechanisms of disease manifestation. However, no study has been conducted so far to analyze and compare the differential status of energy metabolism in these two disease forms. It was shown recently by our group that production of ATP is significantly impaired during MI along with inhibition of pyruvate dehydrogenase E1-β (PDHE1 B) by pyruvate dehydrogenase kinase 4 (PDK4). However, the ATP levels showed no significant change during pathological hypertrophy compared to control group. To seek a plausible explanation of this phenomenon, the peroxisome proliferator-activated receptor alpha (PPAR) pathway was studied in all the experimental groups which revealed that PGC1α- ERRα axis remains active in MI while the same remained inactive during pathological hypertrophy possibly by NF-κB that plays a significant role in deactivating this pathway during hypertrophy. At the same time, it was observed that reactive oxygen species (ROS) negatively regulates NF-κB activity during MI by oxidation of cysteine residues of p50- the DNA binding subunit of NF-κB. Thus, this study reports for the first time, a possible mechanism for the differential status of energy metabolism during two etiologically different cardiac pathophysiological conditions involving PGC1α-ERRα axis along with p50 subunit of NF-κB.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
- Department of Zoology, City College, Kolkata, West Bengal, India
| | - Ritwik Datta
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Santanu Rana
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Sagartirtha Sarkar
- Genetics and Molecular Cardiology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Olianas MC, Dedoni S, Onali P. Muscarinic Acetylcholine Receptors Potentiate 5'-Adenosine Monophosphate-Activated Protein Kinase Stimulation and Glucose Uptake Triggered by Thapsigargin-Induced Store-Operated Ca 2+ Entry in Human Neuroblastoma Cells. Neurochem Res 2017; 43:245-258. [PMID: 28994003 DOI: 10.1007/s11064-017-2410-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022]
Abstract
The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of the cellular energy metabolism and may induce either cell survival or death. We previously reported that in SH-SY5Y human neuroblastoma cells stimulation of muscarinic acetylcholine receptors (mAChRs) activate AMPK by triggering store-operated Ca2+ entry (SOCE). However, whether mAChRs may control AMPK activity by regulating additional mechanisms beyond SOCE remains to be investigated. In the present study we examined the effects of mAChRs on AMPK when SOCE was induced by the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. We found that in SH-SY5Y cells depleted of Ca2+ by thapsigargin, the re-addition Ca2+ to the medium stimulated AMPK phosphorylation at Thr172, which is required for full kinase activity. This response occurred through SOCE, as it was blocked by either the SOCE modulator 2-aminoethoxydiphephenyl borate, knockdown of the SOCE molecular component STIM1, or inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase β (CaMKKβ). In thapsigargin-pretreated cells, stimulation of pharmacologically defined M3 mAChRs potentiated SOCE-induced AMPK activation. This potentiation did not involve an increased Ca2+ influx, but was associated with CaM mobilization from membrane to cytosol, increased CaM/CaMKKβ interaction, and enhanced CaMKK stimulation by thapsigargin-induced SOCE. In thapsigargin-pretreated cells Ca2+ re-addition stimulated glucose uptake and increased the membrane expression of the glucose transporter GLUT1. Both responses were significantly potentiated by mAChRs. These data indicate that in human neuroblastoma cells mAChRs up-regulate AMPK and the downstream glucose uptake by triggering not only SOCE but also CaM translocation and enhanced formation of active CaM/CaMKKβ complexes.
Collapse
Affiliation(s)
- Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy
| | - Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, CA, Italy.
| |
Collapse
|
10
|
Wang BF, Yoshioka J. The Emerging Role of Thioredoxin-Interacting Protein in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 22:219-229. [PMID: 27807222 DOI: 10.1177/1074248416675731] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myocardial ischemia/reperfusion injury represents a major threat to human health and contributes to adverse cardiovascular outcomes worldwide. Despite the identification of numerous molecular mechanisms, understanding of the complex pathophysiology of this clinical syndrome remains incomplete. Thioredoxin-interacting protein (Txnip) has been of great interest in the past decade since it has been reported to be a critical regulator in human diseases with several important cellular functions. Thioredoxin-interacting protein binds to and inhibits thioredoxin, a redox protein that neutralizes reactive oxygen species (ROS), and through its interaction with thioredoxin, Txnip sensitizes cardiomyocytes to ROS-induced apoptosis. Interestingly, evidence from recent studies also suggests that some of the effects of Txnip may be unrelated to changes in thioredoxin activity. These pleiotropic effects of Txnip are mediated by interactions with other signaling molecules, such as nod-like receptor pyrin domain-containing 3 inflammasome and glucose transporter 1. Indeed, Txnip has been implicated in the regulation of inflammatory response and glucose homeostasis during myocardial ischemia/reperfusion injury. This review attempts to make the case that in addition to interacting with thioredoxin, Txnip contributes to some of the pathological consequences of myocardial ischemia and infarction through endogenous signals in multiple molecular mechanisms.
Collapse
Affiliation(s)
- Bing F Wang
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yoshioka
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Peters A, McEwen BS. Stress habituation, body shape and cardiovascular mortality. Neurosci Biobehav Rev 2015; 56:139-50. [DOI: 10.1016/j.neubiorev.2015.07.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
12
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
| | | | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Wang W, Lopaschuk GD. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Expert Rev Cardiovasc Ther 2014; 5:1123-34. [DOI: 10.1586/14779072.5.6.1123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Abstract
Both clinical and experimental findings at the molecular, cellular, tissue, organ and systematic levels have depicted the presence of a contemporary regulatory machinery namely compensation in various forms of cardiovascular diseases. Compensation is believed to be present and regulated within the scope of a biological entity and represents the initiation of dyshomeostasis. Compensation can be identified in multiple categories and organs in cardiovascular diseases at multiple levels. The capacity to reduce the unfavorable pathological compensation may be a criterion to evaluate the therapeutic effectiveness for cardiovascular diseases. This mini-review tries to take compensation into consideration in the understanding of onset and progression of cardiovascular diseases in particular, and thus, better or optimal therapeutic approaches may be achieved for the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiu-Juan Fan
- China Nepstar Chain Drugstore Ltd., Hangzhou 310003, Zhejiang, China.
| | | |
Collapse
|
15
|
Tappia PS, Guzman C, Dunn L, Aroutiounova N. Adverse cardiac remodeling due to maternal low protein diet is associated with alterations in expression of genes regulating glucose metabolism. Nutr Metab Cardiovasc Dis 2013; 23:130-135. [PMID: 21788123 DOI: 10.1016/j.numecd.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/10/2011] [Accepted: 03/28/2011] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS We have previously shown that a maternal low protein (LP) diet during pregnancy in the rat results in adverse ventricular remodeling and contractile deficiencies of the neonatal rat heart. Since pathological cardiac hypertrophy is associated with increased expression of genes involved in glucose handling, this study was undertaken to examine if maternal LP diet alters the expression of genes encoding for some key components of glucose metabolism and uptake, and of the insulin receptor (IR) signal transduction in the heart of male offspring. METHODS AND RESULTS We determined the effect of maternal LP and normal diet (90 and 180 g/casein/kg respectively) on IR β-subunit, insulin receptor substrate (IRS)-1, phosphotyrosyl protein phosphatase (PTP) 1B, GLUT4 and phosphatidylinositol (PI) 3-kinase in male rat offspring at 24 h and at 1, 4 and 8 wks post-partum. Quantitative real-time RT-PCR revealed significant age-dependent increases in the expression of IR β-subunit, IRS-1, PTP1B, GLUT4 and PI3-kinase in the LP group with concomitant increases in corresponding protein abundance at 4 wks of age. These changes were associated with increases in left ventricular (LV) internal diameters as well as increases in LV wall thickness. CONCLUSION A maternal LP diet can induce increases in the gene expression and protein levels of key components of glucose metabolism and the IR signal transduction pathway in the neonatal rat heart, which may be related to accelerated energy supply, demand and utilization for ventricular remodeling due to compromised contractile performance during early life.
Collapse
Affiliation(s)
- P S Tappia
- I.H. Asper Clinical Research Institute, St. Boniface Hospital Research Centre, Canada.
| | | | | | | |
Collapse
|
16
|
Fan XJ, Yu H, Ren J. Homeostasis and compensatory homeostasis: bridging Western medicine and traditional chinese medicine. Curr Cardiol Rev 2012; 7:43-6. [PMID: 22294974 PMCID: PMC3131715 DOI: 10.2174/157340311795677671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022] Open
Abstract
Compensation is a self-protective mechanism in diseases, which may lead to a unique form of homeostasis deviates from that in physiological conditions. The kind of compensatory homeostasis can be embodied as various degrees accompanying disease progression (denoted as compensatory degree). Compensatory homeostasis provides a window for the transition from disease to healthy state. The causes of compensatory homeostasis themselves may be identified as targets for effective measures to eliminate compensation. Compensatory homeostasis embodies significantly mostly in the developing process of chronic diseases, which may help to explain in theory why intensive therapeutic strategies led to unexpected outcome in clinical practice. In addition, a large body of clinical evidence has valued traditional Chinese medicine (TCM), which is based on shifting compensatory homeostasis to the overall human body homeostasis, complementary to Western medicine in the management of chronic disease. In this review, we will briefly summarize the concept of compensation and attempt to bridge Western and traditional Chinese medicine through homeostasis and compensatory homeostasis based on an ample of evidence obtained from both disciplines
Collapse
Affiliation(s)
- Xiu-Juan Fan
- 1. China Nepstar Chain Drugstore Ltd., Hangzhou 310003 Zhejiang, China; 2. Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
17
|
Mardones L, Zúñiga FA, Villagrán M, Sotomayor K, Mendoza P, Escobar D, González M, Ormazabal V, Maldonado M, Oñate G, Angulo C, Concha II, Reyes AM, Cárcamo JG, Barra V, Vera JC, Rivas CI. Essential role of intracellular glutathione in controlling ascorbic acid transporter expression and function in rat hepatocytes and hepatoma cells. Free Radic Biol Med 2012; 52:1874-87. [PMID: 22348976 DOI: 10.1016/j.freeradbiomed.2012.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 01/21/2023]
Abstract
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.
Collapse
Affiliation(s)
- Lorena Mardones
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160C, Concepción, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Diabetic heart disease contributes to the high mortality in diabetics, although effective clinical management is lacking. The protease inhibitor 5-[5-(2-nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (UCF-101) was reported to protect the hearts against ischemic injury. This study examined the role of UCF-101 on streptozotocin (STZ)-induced diabetic heart defect. Vehicle or UCF-101 was administrated to STZ diabetic mice, and cardiomyocyte mechanical properties were analyzed. UCF-101 reduced STZ-induced hyperglycemia and alleviated STZ-induced aberration in cardiomyocyte contractile mechanics. Diabetes dramatically decreased AMPK phosphorylation at Thr(172) of catalytic alpha-subunit, which was restored by UCF-101. Neither diabetes nor UCF-101 affected the expression of HtrA2/Omi and XIAP or caspase-3 activity. The AMPK activator resveratrol mimicked the UCF-101-induced beneficial effect against diabetic cardiac dysfunction. Mechanical properties in cardiomyocytes from the AMPK-kinase-dead (KD) mice displayed markedly impaired contractile function reminiscent of diabetes. STZ injection in AMPK-KD mice failed to elicit any additional cardiomyocyte contractile defect. UCF-101 significantly downregulated the AMPK-degrading enzymes PP2A and PP2C, the effect of which was mimicked by resveratrol. Taken together, these results indicate that UCF-101 protects against STZ-induced cardiac dysfunction, possibly through AMPK signaling.
Collapse
Affiliation(s)
- Qun Li
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
19
|
Abstract
The function and survival of all organisms is dependent on the dynamic control of energy metabolism, when energy demand is matched to energy supply. The AMP-activated protein kinase (AMPK) alphabetagamma heterotrimer has emerged as an important integrator of signals that control energy balance through the regulation of multiple biochemical pathways in all eukaryotes. In this review, we begin with the discovery of the AMPK family and discuss the recent structural studies that have revealed the molecular basis for AMP binding to the enzyme's gamma subunit. AMPK's regulation involves autoinhibitory features and phosphorylation of both the catalytic alpha subunit and the beta-targeting subunit. We review the role of AMPK at the cellular level through examination of its many substrates and discuss how it controls cellular energy balance. We look at how AMPK integrates stress responses such as exercise as well as nutrient and hormonal signals to control food intake, energy expenditure, and substrate utilization at the whole body level. Lastly, we review the possible role of AMPK in multiple common diseases and the role of the new age of drugs targeting AMPK signaling.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia.
| | | |
Collapse
|
20
|
Davey KAB, Garlick PB, Warley A, Southworth R. Immunogold labeling study of the distribution of GLUT-1 and GLUT-4 in cardiac tissue following stimulation by insulin or ischemia. Am J Physiol Heart Circ Physiol 2006; 292:H2009-19. [PMID: 17189352 DOI: 10.1152/ajpheart.00663.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas glucose transporter 1 (GLUT-1) is thought to be responsible for basal glucose uptake in cardiac myocytes, little is known about its relative distribution between the different plasma membranes and cell types in the heart. GLUT-4 translocates to the myocyte surface to increase glucose uptake in response to a number of stimuli. The mechanisms underlying ischemia- and insulin-mediated GLUT-4 translocation are known to be different, raising the possibility that the intracellular destinations of GLUT-4 following these stimuli also differ. Using immunogold labeling, we describe the cellular localization of these two transporters and investigate whether insulin and ischemia induce differential translocation of GLUT-4 to different cardiac membranes. Immunogold labeling of GLUT-1 and GLUT-4 was performed on left ventricular sections from isolated hearts following 30 min of either insulin, ischemia, or control perfusion. In control tissue, GLUT-1 was predominantly (76%) localized in the capillary endothelial cells, with only 24% of total cardiac GLUT-1 present in myocytes. GLUT-4 was found predominantly in myocytes, distributed between sarcolemmal and T tubule membranes (1.84 +/- 0.49 and 1.54 +/- 0.33 golds/microm, respectively) and intracellular vesicles (127 +/- 18 golds/microm(2)). Insulin increased T tubule membrane GLUT-4 content (2.8 +/- 0.4 golds/microm, P < 0.05) but had less effect on sarcolemmal GLUT-4 (1.72 +/- 0.53 golds/microm). Ischemia induced greater GLUT-4 translocation to both membrane types (4.25 +/- 0.84 and 4.01 +/- 0.27 golds/microm, respectively P < 0.05). The localization of GLUT-1 suggests a significant role in transporting glucose across the capillary wall before myocyte uptake via GLUT-1 and GLUT-4. We demonstrate independent spatial translocation of GLUT-4 under insulin or ischemic stimulation and propose independent roles for T-tubular and sarcolemmal GLUT-4.
Collapse
Affiliation(s)
- Katherine A B Davey
- Division of Imaging Sciences, Guy's, King's, and St. Thomas' School of Medicine, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
21
|
Southworth R, Davey KAB, Warley A, Garlick PB. A reevaluation of the roles of hexokinase I and II in the heart. Am J Physiol Heart Circ Physiol 2006; 292:H378-86. [PMID: 16951044 DOI: 10.1152/ajpheart.00664.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hexokinase is responsible for glucose phosphorylation, a process fundamental to regulating glucose uptake. In some tissues, hexokinase translocates to the mitochondria, thereby increasing its efficiency and decreasing its susceptibility to product inhibition. It may also decrease free radical formation in the mitochondria and prevent apoptosis. Whether hexokinase translocation occurs in the heart is controversial; here, using immunogold labeling for the first time, we provide evidence for this process. Rat hearts (6 groups, n = 6/group), perfused with either glucose- or glucose + oleate (0.4 mmol/l)-containing buffer, were exposed to 30-min insulin stimulation, ischemia, or control perfusion. Hexokinase I (HK I) and hexokinase II (HK II) distributions were then determined. In glucose-perfused hearts, HK I-mitochondrial binding increased from 0.41 +/- 0.04 golds/mm in control hearts to 0.71 +/- 0.10 golds/mm after insulin and to 1.54 +/- 0.38 golds/mm after ischemia (P < 0.05). Similarly, HK II-mitochondrial binding increased from 0.16 +/- 0.02 to 0.53 +/- 0.08 golds/mm with insulin and 0.44 +/- 0.07 golds/mm after ischemia (P < 0.05). Under basal conditions, the fraction of HK I that was mitochondrial bound was five times greater than for HK II; insulin and ischemia caused a fourfold increase in HK II binding but only a doubling in HK I binding. Oleate decreased hexokinase-mitochondrial binding and abolished insulin-mediated translocation of HK I. Our data show that mitochondrial-hexokinase binding increases under insulin or ischemic stimulation and that this translocation is modified by oleate. These events are isoform specific, suggesting that HK I and HK II are independently regulated and implying that they perform different roles in cardiac glucose regulation.
Collapse
Affiliation(s)
- Richard Southworth
- The NMR Laboratory, Division of Imaging Sciences, 5th Floor Thomas Guy House, Guy's Hospital, St. Thomas' St., London SE1 9RT, UK.
| | | | | | | |
Collapse
|
22
|
Young LH, Li J, Baron SJ, Russell RR. AMP-activated protein kinase: a key stress signaling pathway in the heart. Trends Cardiovasc Med 2005; 15:110-8. [PMID: 16039971 DOI: 10.1016/j.tcm.2005.04.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 12/18/2022]
Abstract
AMP-activated protein kinase (AMPK) is activated during exercise and ischemia and is emerging as an important regulatory mechanism in the heart. AMPK promotes adenosine triphosphate-generating pathways, including glucose transport, glycolysis, and fatty acid oxidation, while inhibiting energy-consuming anabolic pathways. After ischemia-reperfusion, AMPK-deficient hearts from transgenic mice have severe left ventricular contractile dysfunction with increased apoptosis and necrosis. Mutations in the AMPKgamma(2) subunit lead to cardiac glycogen overload, Wolff-Parkinson-White syndrome, arrhythmias, and heart failure. This review focuses on the molecular mechanisms of activation and cardiovascular actions of AMPK in the heart.
Collapse
Affiliation(s)
- Lawrence H Young
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Ischemic preconditioning, the most powerful protection against infarction, activates PI3Kinase (PI3K)/AKT and P42/44MAPK. Pioglitazone, a thiazolidinedione and PPARgamma receptor agonist used in Type II diabetes treatment, has been shown to activate these kinase cascades. We therefore hypothesized that pioglitazone could protect the myocardium when given prior to myocardial ischemia/reperfusion injury. Langendorff perfused rat hearts underwent 40 minutes of stabilization then 35 minutes of regional ischemia and 120 minutes of reperfusion (control) or Pioglitazone (1, 2, 5, and 10 microM)-given before ischemia. Additional groups underwent the same protocol but with either PI3K inhibitors (15 microM LY294002 or 100 nM wortmannin) or P42/44MAPK inhibitors (10 microM U0126 or 10 microM PD98059) given either during stabilization or at reperfusion. Infarct size was determined as a percentage of risk zone (I/R%). Pioglitazone (2 microM) significantly reduced I/R% compared with control (25.4 +/- 3.1 versus 47.3 +/- 3.4; P < 0.05). This protection was abolished by PI3K inhibitors (pioglitazone+LY294002 46.5 +/- 5.0, pioglitazone + wortmannin 48.8 +/- 4.6 versus pioglitazone alone 25.4 +/- 3.1; P < or = 0.05) but not by P42/44MAPK inhibitors (pioglitazone+U0126 30.7 +/- 5.7, pioglitazone + PD98059 28.5 +/- 6.3 versus pioglitazone alone 25.4 +/- 3.1; P < or = 0.05) given in stabilization. However when the inhibitors were given at reperfusion, the protection was abrogated by blocking either pathway (pioglitazone+LY294002 49.8 +/- 3.1, pioglitazone+U0126 48.7 +/- 3.7 versus pioglitazone alone 25.4 +/- 3.1; P < or = 0.05). In conclusion pioglitazone induced significant protection against ischemia/reperfusion injury when administered prior to ischemia. This protection appears to involve PI3K and P42/44MAPK.
Collapse
Affiliation(s)
- Abigail M Wynne
- The Hatter Institute and Centre for Cardiology, University College London Hospitals and Medical School, London, United Kingdom
| | | | | |
Collapse
|
24
|
Morel S, Berthonneche C, Tanguy S, Toufektsian MC, Perret P, Ghezzi C, de Leiris J, Boucher F. Early pre-diabetic state alters adaptation of myocardial glucose metabolism during ischemia in rats. Mol Cell Biochem 2005; 272:9-17. [PMID: 16010967 DOI: 10.1007/s11010-005-4778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pre-diabetic subjects with high insulin secretory capacity have double risk of cardiovascular disease compared with subjects who do not develop insulin-resistance. It is well established that the ability of the myocardium to increase its glycolytic ATP production plays a crucial role in determining cell survival under conditions of ischemia. Up to now, whether the pre-diabetic state reduces the tolerance of the heart to ischemia by affecting its ability to increase its energy production through glycolysis remains unknown. The aim of the present study was to assess whether insulin resistance affects the ability of the myocardium to increase glycolysis under ischemic conditions. Male Wistar rats were fed for 8 weeks a fructose-enriched (33%) diet to induce a pre-diabetic state. Hearts were isolated and subjected to ex-vivo low-flow (2%) ischemia for 30 min. The fructose diet increased sarcolemmal GLUT4 localisation in myocardial cells under basal conditions compared with controls. This effect was not accompanied by increased glucose utilisation. Ischemia induced the translocation of GLUT4 to the plasma membrane in controls but did not significantly modify the distribution of these transporters in pre-diabetic hearts. Glycolytic flux under ischemic conditions was significantly lower in fructose-fed rat hearts compared with controls. The reduction of glycolytic flux during ischemia in fructose-fed rat hearts was not due to metabolic inhibition downstream hexokinase II since no cardiac accumulation of glucose-6-phosphate was detected. In conclusion, our results suggest that the pre-diabetic state reduces the tolerance of the myocardium to ischemia by decreasing glycolytic flux adaptation.
Collapse
Affiliation(s)
- Sandrine Morel
- Laboratoire Nutrition, Vieillissement et Maladies Cardiovasculaires, IFRT Ingénierie pour le Vivant, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Agnetti G, Maraldi T, Fiorentini D, Giordano E, Prata C, Hakim G, Muscari C, Guarnieri C, Caldarera CM. Activation of glucose transport during simulated ischemia in H9c2 cardiac myoblasts is mediated by protein kinase C isoforms. Life Sci 2005; 78:264-70. [PMID: 16111715 DOI: 10.1016/j.lfs.2005.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 04/20/2005] [Indexed: 11/25/2022]
Abstract
Glucose transport into cells may be regulated by a variety of conditions, including ischemia. We investigated whether some enzymes frequently involved in the metabolic adaptation to ischemia are also required for glucose transport activation. Ischemia was simulated by incubating during 3 h H9c2 cardiomyoblasts in a serum- and glucose-free medium in hypoxia. Under these conditions 2-deoxy-d-[2,6-(3)H]-glucose uptake was increased (57% above control levels, p<0.0001) consistently with GLUT1 and GLUT4 translocation to sarcolemma. Tyrosine kinases inhibition via tyrphostin had no effect on glucose transport up-regulation induced by simulated ischemia. On the other hand, chelerythrine, a broad range inhibitor of protein kinase C isoforms, and rottlerin, an inhibitor of protein kinase C delta, completely prevented the stimulation of the transport rate. A lower activation of hexose uptake (19%, p<0.001) followed also treatment with Gö6976, an inhibitor of conventional protein kinases C. Finally, PD98059-mediated inhibition of the phosphorylation of ERK 1/2, a downstream mitogen-activated protein kinase (MAPK), only partially reduced the activation of glucose transport induced by simulated ischemia (31%, p<0.01), while SB203580, an inhibitor of p38 MAPK, did not exert any effect. These results indicate that stimulation of protein kinase C delta is strongly related to the up-regulation of glucose transport induced by simulated ischemia in cultured cardiomyoblasts and that conventional protein kinases C and ERK 1/2 are partially involved in the signalling pathways mediating this process.
Collapse
Affiliation(s)
- Giulio Agnetti
- Department of Biochemistry "G. Moruzzi", University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stanley WC. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies. J Cardiovasc Pharmacol Ther 2005; 9 Suppl 1:S31-45. [PMID: 15378130 DOI: 10.1177/107424840400900104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The primary effect of ischemia is reduced aerobic adenosine triphosphate (ATP) formation in mitochondria. This triggers accelerated glycolysis and reduced cell pH, Ca(2+) accumulation, K(+) efflux, adenosine formation, and the clinical signs of ischemia: chest pain and a shift in the ST segment. Traditional therapies for angina are aimed at either decreasing the need for ATP by suppressing heart rate, blood pressure, and cardiac contractility, or at increasing oxygen delivery to the mitochondria, or both. An additional approach to treating angina is to suppress myocardial fatty acid oxidation, increase pyruvate oxidation, and reduce anaerobic glycolysis. High fatty acid levels result in oxygen wasting and inhibit the oxidation of pyruvate in the mitochondria. In experimental models, the partial inhibition of myocardial fatty acid oxidation with agents such as oxfenicine, ranolazine, and trimetazidine stimulates glucose oxidation and reduces lactate production during ischemia. Clinical studies demonstrate that this approach is as effective as traditional hemodynamic therapies at improving exercise tolerance and reducing the frequency of angina. Moreover, because these agents do not suppress heart rate, blood pressure, or contractility, they are effective as add-on therapy to Ca(2+)-channel and beta-adrenergic receptor antagonists.
Collapse
Affiliation(s)
- William C Stanley
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
28
|
Morita K, Katoh C, Yoshinaga K, Noriyasu K, Mabuchi M, Tsukamoto T, Kageyama H, Shiga T, Kuge Y, Tamaki N. Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of 18F-FDG dynamic positron tomography and three-compartment analysis. Eur J Nucl Med Mol Imaging 2005; 32:806-12. [PMID: 15776232 DOI: 10.1007/s00259-004-1743-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE Myocardial glucose utilization (MGU) is altered in various heart diseases. The aim of this study was to quantitatively assess regional myocardial glucose utilization in patients with left ventricular (LV) dysfunction by dynamic( 18)F-fluorodeoxyglucose positron emission tomography (FDG PET). METHODS A total of 18 subjects were studied, including ten with LV dysfunction (seven with idiopathic dilated cardiomyopathy and three with aortic regurgitation; NYHA II in 8 and III in 2) and eight healthy normal volunteers. Patients with diabetes mellitus were excluded. A dynamic PET study was performed for 40 min following the injection of 370 MBq of FDG after 50-g glucose loading. On the basis of a three-compartment model, MGU, K1, k2, and k3 were computed on a pixel by pixel basis to generate LV myocardial parametric maps. FDG standardized uptake value (SUV) was also calculated using static images obtained 40 min after FDG injection. These metabolic values were compared with myocardial flow distribution (%Flow), LVEF, LV volumes, and LV wall thickening (WT) determined by gated myocardial single-photon emission computed tomography using QGS software in eight myocardial segments. RESULTS MGU correlated positively with LV volumes and negatively with LVEF. K(1) was significantly higher in the segments of the patients than in those of the normal volunteers (0.082+/-0.055 vs 0.041+/-0.017 ml min(-1) g(-1), p<0.05), although there was no difference in MGU between the groups. On the other hand, SUV, k2, and k3 did not differ significantly between the groups. Among the patients, the K1 values were significantly higher in the areas with impaired WT (%WT<17%) (0.109+/-0.063 vs 0.069+/-0.062 ml min(-1) g(-1), p<0.05) and in the areas with flow reduction (%Flow<71%) (0.112+/-0.076 vs 0.071+/-0.046 ml min(-1) g(-1), p<0.05). CONCLUSION These results indicate that glucose utilization was preserved in the patients with LV dysfunction, mainly due to an increase in glucose transport, particularly in the regions with severely impaired LV function. Thus, the quantitative assessment of myocardial glucose utilization by FDG dynamic PET may provide useful information for assessing the regional myocardial metabolic status in patients with LV dysfunction.
Collapse
Affiliation(s)
- Koichi Morita
- Department of Nuclear Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou L, Cryan EV, D'Andrea MR, Belkowski S, Conway BR, Demarest KT. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem 2004; 90:339-46. [PMID: 14505350 DOI: 10.1002/jcb.10631] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have quantitatively measured gene expression for the sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2) in 23 human tissues using the method of real time PCR. As predicted, our results revealed that the expression of SGLT1 was very high in the small intestine (1.2E + 6 molecules/microg total RNA) relative to that in the kidney (3E + 4 molecules/microg total RNA). Surprisingly, we observed that the expression of SGLT1 in human heart was unexpectedly high (3.4E + 5 molecules/microg total RNA), approximately 10-fold higher than that observed in kidney tissue. DNA sequencing confirmed that the PCR amplified fragment was indeed the human SGLT1 gene. Moreover, in situ hybridization studies using a digoxigenin (DIG)-labeled antisense cRNA probe corresponding to human SGLT1 cDNA confirm that human cardiomyocytes express SGLT1 mRNA. In contrast, the expression of SGLT2 in human tissues appears to be ubiquitous, with levels ranging from 6.7E + 4 molecules/microg total RNA (in skeletal muscle) to 3.2E + 6 molecules/microg total RNA (in kidney), levels 10-100-fold higher than the expression of SGLT1 in the same tissues. Our finding that human cardiomyocytes express high levels of SGLT1 RNA suggests that SGLT1 may have a functional role in cardiac glucose transport. Since several SGLT inhibitors are currently in development as potential anti-diabetic agents, it may be important to assess the functional consequences of inhibition of SGLT1 in the heart.
Collapse
Affiliation(s)
- Lubing Zhou
- Endocrine Therapeutics and Metabolic Disorders Team, Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, LLC., Raritan, New Jersey 08869, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Hashimoto T, Kambara N, Nohara R, Yazawa M, Taguchi S. Expression of MHC-beta and MCT1 in cardiac muscle after exercise training in myocardial-infarcted rats. J Appl Physiol (1985) 2004; 97:843-51. [PMID: 15133008 DOI: 10.1152/japplphysiol.01193.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To evaluate the hypothesis that increasing the potential for glycolytic metabolism would benefit the functioning of infarcted myocardium, we investigated whether mild exercise training would increase the activities of oxidative enzymes, expression of carbohydrate-related transport proteins (monocarboxylate transporter MCT1 and glucose transporter GLUT4), and myosin heavy chain (MHC) isoforms. Myocardial infarction (MI) was produced by occluding the proximal left coronary artery in rat hearts for 30 min. After the rats performed 6 wk of run training on a treadmill, the wall of the left ventricle was dissected and divided into the anterior wall (AW; infarcted region) and posterior wall (PW; noninfarcted region). MI impaired citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities in the AW (P < 0.01) but not in the noninfarcted PW. No differences in the expression of MCT1 were found in either tissues of AW and PW after MI, whereas exercise training significantly increased the MCT1 expression in all conditions, except AW in the MI rats. Exercise training resulted in an increased expression of GLUT4 protein in the AW in the sham rats and in the PW in the MI rats. The relative amount of MHC-beta was significantly increased in the AW and PW in MI rats compared with sham rats. However, exercise training resulted in a significant increase of MHC-alpha expression in both AW and PW in both sham and MI rats (P < 0.01). These findings suggest that mild exercise training enhanced the potential for glycolytic metabolism and ATPase activity of the myocardium, even in the MI rats, ensuring a beneficial role in the remodeling of the heart.
Collapse
Affiliation(s)
- Takeshi Hashimoto
- Department of Environmental Physiology, Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
A high rate of myocardial metabolism is needed to generate energy to sustain cardiac contractile activity. Typically, energy generation occurs through the metabolism of free fatty acids (FFAs), glucose, and lactate. However, in individuals who are insulin resistant or who have diabetes mellitus, excessive FFA metabolism occurs in the heart. Pharmacologic manipulation of myocardial metabolism may be beneficial in these patients. There is evidence that the thiazolidinediones (TZDs), aside from exerting insulin-sensitizing effects on fat and skeletal muscles, also act on the myocardium as a result of reducing circulating fatty acid concentrations. Animal studies have shown that the TZDs influence the expression and function of glucose transporters in the heart, leading to improved glucose metabolism. Recent experiments have also shown that administration of TZDs may protect against myocardial injury associated with ischemia and may improve recovery of function during the postischemic period. This article provides a review of the potential beneficial effects of the TZDs on myocardial metabolism.
Collapse
Affiliation(s)
- Lawrence H Young
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
32
|
Tian R. Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart. Curr Hypertens Rep 2003; 5:454-8. [PMID: 14594563 DOI: 10.1007/s11906-003-0052-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Impaired myocardial energy metabolism in cardiac hypertrophy and failure is characterized by decreased fatty-acid oxidation and increased glucose utilization. Mechanisms involving deactivation of peroxisome proliferator-activated receptor alpha/relinoid X receptor alpha (PPARalpha/RXRalpha),and activation of chicken ovalbumin upstream promoter transcription factor (COUP-TF), and transcription factors Sp1 and Sp3, lead to decreased capacity for fatty acid utilization in hypertrophied hearts. Furthermore, impaired myocardial energetic status stimulates glucose uptake and glycolysis, which, in combination with the permissive effect due to decreased fatty acid oxidation, promotes increases in glucose utilization in hypertrophied hearts. Finally, shifting substrate utilization toward glucose is likely adaptive and has the potential to delay transition to heart failure.
Collapse
Affiliation(s)
- Rong Tian
- Department of Medicine, NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Taegtmeyer H. Improving Energy Metabolism in the Postischemic Heart-The Story of GIK. Semin Cardiothorac Vasc Anesth 2003. [DOI: 10.1177/108925320300700113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heart muscle is a metabolic omnivore. The normal heart derives its energy for contraction from the oxidation of longchain fatty acids. The stressed heart switches to carbohydrate substrates for greater efficiency of energy production. Here we review the evidence for glucose-insulin-potassium as an effective strategy to treat postischemic contractile dysfunction of the heart. There is a strong rationale for both glucose and insulin to restore efficient energy transfer in the metabolically depleted postischemic heart. In spite ofits long history and abundant opportunities for translational research, the field is still in its infancy. Further progress is tied to two broad areas of research: randomized, multicenter clinical trialsand systematic studies addressing cellular signaling mechanisms, including nutrient sensing of myocardial gene expression.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- The University of Texas Houston Medical School, Department of Internal Medicine, Division of Cardiology, 6431 Fannin, MSB 1.246, Houston, TX 77030
| |
Collapse
|
34
|
Raimondi L, Lodovici M, Guglielmi F, Banchelli G, Ciuffi M, Boldrini E, Pirisino R. The polysaccharide from Tamarindus indica (TS-polysaccharide) protects cultured corneal-derived cells (SIRC cells) from ultraviolet rays. J Pharm Pharmacol 2003; 55:333-8. [PMID: 12724038 DOI: 10.1211/002235702630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The aim of this work was to investigate the possible protective effect of a new viscosising agent, TS-polysaccharide, on corneal-derived cells (SIRC) exposed to ultraviolet-B rays. To verify this, SIRC cells were first exposed, in the absence or in the presence of TS-polysaccharide (1% w/v), for 9 s at the UV-B source and then post-incubated for 45 min at 37 degrees C. After this period the hydrogen peroxide (H(2)O(2)) accumulated in the medium and the concentration of 8-hydroxy-2'-deoxy-guanosine (8-OHdG) in cell DNA was measured. In addition, the amount of (3)H-methyl-thymidine incorporated in cellular DNA was evaluated after 18 h from irradiation. Our results show that cells exposed to UV-B rays accumulate H(2)O(2), and have higher levels of 8OHdG and a lower amount of (3)H-methyl-thymidine incorporated in DNA than control cells. In the presence of TS-polysaccharide, the H(2)O(2) and 8-OHdG accumulation, and the (3)H-methyl-thymidine incorporation were significantly reduced with respect to the values measured in cells exposed in the absence of the polysaccharide. We propose a protective role of the polysaccharide in reducing UV-B derived DNA damage to eye cells. This finding could be of some clinical importance when the polysaccharide is used as a delivery system for ophthalmic preparations.
Collapse
Affiliation(s)
- L Raimondi
- Dept. of Pharmacology, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Tissier C, Bes S, Vandroux D, Fantini E, Rochette L, Athias P. Specific electromechanical responses of cardiomyocytes to individual and combined components of ischemia. Can J Physiol Pharmacol 2002; 80:1145-57. [PMID: 12564640 DOI: 10.1139/y02-143] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The main factors of myocardial ischemia are hypoxia, substrate deprivation, acidosis, and high extracellular potassium concentration ([K+]e), but the influence of each of these factors has not yet been evaluated in a cardiomyocyte (CM) culture system. Electromechanical responses to the individual and combined components of ischemia were studied in CM cultured from newborn rat ventricles. Action potentials (APs) were recorded using glass microelectrodes and contractions were monitored photometrically. Glucose-free hypoxia initially reduced AP duration, amplitude, and rate and altered excitation-contraction coupling, but AP upstroke velocity (Vmax) remained unaffected. Early afterdepolarizations appeared, leading to bursts of high-rate triggered impulses before the complete arrest of electromechanical activity after 120 min. Acidosis reduced Vmax whereas AP amplitude and rate were moderately decreased. Combining acidosis and substrate-free hypoxia also decreased Vmax but attenuated the effects of substrate-free hypoxia on APs and delayed the cessation of the electrical activity (180 min). Raising [K+]e reduced the maximal diastolic potential and Vmax. Total ischemia (substrate deletion, hypoxia, acidosis, and high [K+]e) decreased AP amplitude and Vmax without changing AP duration. Moreover, delayed afterdepolarizations appeared, initiating triggered activity. Ultimately, 120 min of total ischemia blocked APs and contractions. To conclude, glucose-free hypoxia caused severe functional defects, acidosis delayed the changes induced by substrate-free hypoxia, and total ischemia induced specific dysfunctions differing from those caused by the former conditions. Heart-cell cultures thus represent a valuable tool to scrutinize the individual and combined components of ischemia on CMs.
Collapse
Affiliation(s)
- Cindy Tissier
- Laboratory of Experimental Cardiovascular Physiopathology and Pharmacology, Institute for Cardiovascular Research, University Hospital Center, 21034 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Gavete ML, Agote M, Martin MA, Alvarez C, Escriva F. Effects of chronic undernutrition on glucose uptake and glucose transporter proteins in rat heart. Endocrinology 2002; 143:4295-303. [PMID: 12399425 DOI: 10.1210/en.2002-220258] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high energy demands of myocardium are met through the metabolism of lipids and glucose. Importantly, enhanced glucose utilization rates are crucial adaptations of the cardiac cell to some pathological conditions, such as hypertrophy and ischemia, but the effects of undernutrition on heart glucose metabolism are unknown. Our previous studies have shown that undernutrition increases insulin-induced glucose uptake by skeletal muscle. Consequently, we considered the possibility of a similar adaptation in the heart. With this aim, undernourished rats both in the basal state and after euglycemic hyperinsulinemic clamps were used to determine the following parameters in myocardium: glucose uptake, glucose transporter (GLUT) content, and some key components of the insulin signaling cascade. Heart membranes were prepared by subcellular fractionation in sucrose gradients. Although GLUT-4, GLUT-1, and GLUT-3 proteins and GLUT-4/1 mRNAs were reduced by undernutrition, basal and insulin-stimulated 2-deoxyglucose uptake were significantly enhanced. Phosphoinositol 3-kinase activity remained greater than control values in both conditions. The abundance of p85alpha and p85beta regulatory subunits of phosphoinositol 3-kinase was increased as was phospho-Akt during hyperinsulinemia. These changes seem to improve the insulin stimulus of GLUT-1 translocation, as its content was increased at the surface membrane. Such adaptations associated with undernutrition must be crucial to improvement of cardiac glucose uptake.
Collapse
Affiliation(s)
- M Lucia Gavete
- Instituto de Bioquímica, Centro Mixto: Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Facultad de Farmacia, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
37
|
Lankford AR, Byford AM, Ashton KJ, French BA, Lee JK, Headrick JP, Matherne GP. Gene expression profile of mouse myocardium with transgenic overexpression of A1 adenosine receptors. Physiol Genomics 2002; 11:81-9. [PMID: 12388787 DOI: 10.1152/physiolgenomics.00008.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic mice with cardiac-specific overexpression of adenosine A(1) receptors (A(1)AR) have demonstrated metabolic and functional tolerance to myocardial ischemia. We utilized cDNA microarrays to test the hypothesis that the cardioprotective mechanism(s) of A(1) overexpression involves altered gene expression. Total RNA extracted from the left ventricles from A(1) transgenic (n = 4) and wild-type (n = 6) mice was hybridized to Affymetrix mgU74A chips. Comparison of RNA expression levels in transgenic to wild-type myocardium revealed approximately 636 known genes with expression significantly altered by greater than 25%. We observed increased expressions of genes including NADH dehydrogenase, the GLUT4 glucose transporter, Na-K-ATPase, sarcolemmal K(ATP) channels, and Bcl-xl in A(1)AR-overexpressing hearts. We also observed decreased expression of pro-apoptotic genes including a 50% reduction in message level of caspase-8. Protein expression of GLUT4 and caspase-8 was also altered comparable to the differences in gene expression. These data illustrate genes with chronically altered patterns of expression in A(1) transgenic mouse myocardium that may be related to adenosine receptor overexpression-mediated cardioprotection.
Collapse
Affiliation(s)
- Amy R Lankford
- Department of Pediatrics and Cardiovascular Research Center, University of Virginia Health System, Charlottesville Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kim MS, Lee J, Ha J, Kim SS, Kong Y, Cho YH, Baik HH, Kang I. ATP stimulates glucose transport through activation of P2 purinergic receptors in C(2)C(12) skeletal muscle cells. Arch Biochem Biophys 2002; 401:205-14. [PMID: 12054471 DOI: 10.1016/s0003-9861(02)00056-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extracellular ATP acts as a signal that regulates a variety of cellular processes via binding to P2 purinergic receptors (P2 receptors). We herein investigated the effects and signaling pathways of ATP on glucose uptake in C(2)C(12) skeletal muscle cells. ATP as well as P2 receptor agonists (ATP-gamma S) stimulated the rate of glucose uptake, while P2 receptor antagonists (suramin) inhibited the stimulatory effect of ATP, indicating that P2 receptors are involved. This ATP-stimulated glucose transport was blocked by specific inhibitors of Gi protein (pertusiss toxin), phospholipase C (U73122), protein kinase C (GF109203X), and phosphatidylinositol (PI) 3-kinase (LY294002). ATP stimulated PI 3-kinase activity and P2 receptor antagonists blocked this activation. In C(2)C(12) myotubes expressing glucose transporter GLUT4, ATP increased basal and insulin-stimulated glucose transport. Finally, ATP facilitated translocation of GLUT1 and GLUT4 into plasma membrane. These results together suggest that cells respond to extracellular ATP to increase glucose transport through P2 receptors.
Collapse
Affiliation(s)
- Min Suk Kim
- Department of Biochemistry, School of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Alò PL, Visca P, Botti C, Galati GM, Sebastiani V, Andreano T, Di Tondo U, Pizer ES. Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol 2001; 116:129-34. [PMID: 11447743 DOI: 10.1309/5y2l-cdck-yb55-kdk6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
To evaluate the immunohistochemical expression of GLUT1, human erythrocyte glucose transporter 1, and fatty acid synthase (FAS), 66 human breast carcinomas and adjacent peritumoral tissue were studied. GLUT1 and FAS were expressed in 53 and 61 carcinomas, in 17 and 14 typical/atypical hyperplastic tissues, and in 16 and 13 tissues adjacent to tumor normal breast tissue, respectively. Statistical analysis revealed association between invasive carcinomas, invasive carcinomas with in situ component and GLUT1 immunostaining. GLUT1 staining was associated with tumor grade, FAS with tumor stage, and GLUT1 and FAS coexpression with tumor grade. Controls expressed no immunostaining. GLUT1 and FAS are new markers involved in the biologic activities of cancer cells. GLUT1 and FAS coexpression may indicate increased use of energy by the neoplastic cells correlated with poorly differentiated features and aggressive behavior. The innovative finding that GLUT1 and FAS are observed in mammary carcinoma adjacent nonneoplastic tissues may suggest a role in detecting initial phases of breast carcinogenesis.
Collapse
Affiliation(s)
- P L Alò
- Dipartimento di Medicina Sperimentale e Patologia-Anatomia Patologica, Università di Roma La Sapienza, Viale Regina Elena, 324, 00161, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|