1
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
2
|
Tripathi S, Sharma Y, Rane R, Kumar D. CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1405-1424. [PMID: 38716549 DOI: 10.2174/0118715273283786240408034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 10/22/2024]
Abstract
In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a doublestranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing in vitro and in vivo models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early- onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Yashika Sharma
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Rajesh Rane
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| | - Dileep Kumar
- Department of Pharm Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra 411038, India
| |
Collapse
|
3
|
Freire-Regatillo A, Diaz-Pacheco S, Frago LM, Arévalo MÁ, Argente J, Garcia-Segura LM, de Ceballos ML, Chowen JA. Sex Differences in Hypothalamic Changes and the Metabolic Response of TgAPP Mice to a High Fat Diet. Front Neuroanat 2022; 16:910477. [PMID: 35958733 PMCID: PMC9361789 DOI: 10.3389/fnana.2022.910477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The propensity to develop neurodegenerative diseases is influenced by diverse factors including genetic background, sex, lifestyle, including dietary habits and being overweight, and age. Indeed, with aging, there is an increased incidence of obesity and neurodegenerative processes, both of which are associated with inflammatory responses, in a sex-specific manner. High fat diet (HFD) commonly leads to obesity and markedly affects metabolism, both peripherally and centrally. Here we analyzed the metabolic and inflammatory responses of middle-aged (11–12 months old) transgenic amyloid precursor protein (TgAPP) mice of both sexes to HFD for 18 weeks (starting at 7–8 months of age). We found clear sex differences with females gaining significantly more weight and fat mass than males, with a larger increase in circulating leptin levels and expression of inflammatory markers in visceral adipose tissue. Glycemia and insulin levels increased in HFD fed mice of both sexes, with TgAPP mice being more affected than wild type (WT) mice. In the hypothalamus, murine amyloid β (Aβ) levels were increased by HFD intake exclusively in males, reaching statistical significance in TgAPP males. On a low fat diet (LFD), TgAPP males had significantly lower mRNA levels of the anorexigenic neuropeptide proopiomelanocortin (POMC) than WT males, with HFD intake decreasing the expression of the orexigenic neuropeptides Agouti-related peptide (AgRP) and neuropeptide Y (NPY), especially in TgAPP mice. In females, HFD increased POMC mRNA levels but had no effect on AgRP or NPY mRNA levels, and with no effect on genotype. There was no effect of diet or genotype on the hypothalamic inflammatory markers analyzed or the astrogliosis marker glial acidic protein (GFAP); however, levels of the microglial marker Iba-1 increased selectively in male TgAPP mice. In summary, the response to HFD intake was significantly affected by sex, with fewer effects due to genotype. Hypothalamic inflammatory cytokine expression and astrogliosis were little affected by HFD in middle-aged mice, although in TgAPP males, which showed increased Aβ, there was microglial activation. Thus, excess intake of diets high in fat should be avoided because of its possible detrimental consequences.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
| | | | - Laura M. Frago
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - María-Ángeles Arévalo
- Cajal Institute, CSIC, Madrid, Spain
- Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Department of Pediatrics, Universidad Aútonoma de Madrid, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Luis M. Garcia-Segura
- Cajal Institute, CSIC, Madrid, Spain
- Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Julie A. Chowen
- Department of Endocrinology, Instituto de Investigación la Princesa, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
- *Correspondence: Julie A. Chowen
| |
Collapse
|
4
|
Sun YY, Wang Z, Zhou HY, Huang HC. Sleep-Wake Disorders in Alzheimer's Disease: A Review. ACS Chem Neurosci 2022; 13:1467-1478. [PMID: 35507669 DOI: 10.1021/acschemneuro.2c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease, and it has become a serious health problem in the world. Senile plaques (SPs) and neurofibrillary tangles (NFTs) are two main pathological characters of AD. SP mainly consists of aggregated β-amyloid (Aβ), and NFT is formed by hyperphosphorylated tau protein. Sleep-wake disorders are prevalent in AD patients; however, the links and mechanisms of sleep-wake disorders on the AD pathogenesis remain to be investigated. Here, we referred to the sleep-wake disorders and reviewed some evidence to demonstrate the relationship between sleep-wake disorders and the pathogenesis of AD. On one hand, the sleep-wake disorders may lead to the increase of Aβ production and the decrease of Aβ clearance, the spreading of tau pathology, as well as oxidative stress and inflammation. On the other hand, the ApoE4 allele, a risk gene for AD, was reported to participate in sleep-wake disorders. Furthermore, some neurotransmitters, such as acetylcholine, glutamate, serotonin, melatonin, and orexins, and their receptors were suggested to be involved in AD development and sleep-wake disorders. We discussed and suggested some possible therapeutic strategies for AD treatment based on the view of sleep regulation. In general, this review explored different views to find novel targets of diagnosis and therapy for AD.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| |
Collapse
|
5
|
Microglial VPS35 deficiency impairs Aβ phagocytosis and Aβ-induced disease-associated microglia, and enhances Aβ associated pathology. J Neuroinflammation 2022; 19:61. [PMID: 35236374 PMCID: PMC8892702 DOI: 10.1186/s12974-022-02422-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Background Vacuolar sorting protein 35 (VPS35), a key component of the retromer, plays an essential role in selectively retrieval of transmembrane proteins from endosomes to trans-Golgi networks. Dysfunctional retromer is a risk factor for neurodegenerative disorders, including Alzheimer’s disease (AD). Microglial VPS35 deficiency is found in AD patients’ brain; however, it remains unclear if and how microglial VPS35-loss contributes to AD development. Methods We used mice with VPS35 cKO (conditional knockout) in microglial cells in 5XFAD, an AD mouse model. The AD related brain pathology (Aβ and glial activation), behavior, and phagocytosis of Aβ were accessed by a combination of immunofluorescence staining analyses and neurological behavior tests. Results A decrease in learning and memory function, but increases in insoluble, fibrillar, and plaques of β-amyloids (Aβ), dystrophic neurites, and reactive astrocytes are observed in microglial VPS35 deficient 5XFAD mice. Further examining microglial phenotype demonstrates necessity of microglial VPS35 in disease-associated microglia (DAM) development and microglial uptake of Aβ, revealing a tight association of microglial Aβ uptake with DAM development. Conclusions Together, these results uncovered a mechanism by which microglial VPS35-deficiency precipitates AD pathology in 5XFAD mice likely by impairing DAM development and DAM mediated Aβ uptake and clearance, and thus accelerating the cognition decline. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02422-0.
Collapse
|
6
|
Hubbard EE, Heil LR, Merrihew GE, Chhatwal JP, Farlow MR, McLean CA, Ghetti B, Newell KL, Frosch MP, Bateman RJ, Larson EB, Keene CD, Perrin RJ, Montine TJ, MacCoss MJ, Julian RR. Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. J Proteome Res 2022; 21:118-131. [PMID: 34818016 PMCID: PMC8741752 DOI: 10.1021/acs.jproteome.1c00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein, we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer's disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.
Collapse
Affiliation(s)
- Evan E. Hubbard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lilian R. Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Jasmeer P. Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, 15 Parkman St, Suite 835, Boston MA 02114
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, and Massachusetts Alzheimer Disease Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, 63110, Missouri, USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute and Department of Medicine, University of Washington, Seattle WA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, United States
| | - Richard J. Perrin
- Department of Pathology and Immunology, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States,corresponding author:
| |
Collapse
|
7
|
Yanguas-Casás N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, Chowen JA, Garcia-Segura LM, Arevalo MA, Cryan JF, de Ceballos ML. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis 2021; 159:105495. [PMID: 34478848 DOI: 10.1016/j.nbd.2021.105495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1β, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12β, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain; Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Madrid, Spain
| | - Cristina Torres
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, 43007 Tarragona, Spain
| | | | | | - Kiera Healy
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain; Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; The Madrid Institute for the advanced study of Food (IMDEA de Alimentación), Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - John F Cryan
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
8
|
Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021; 26:3696. [PMID: 34204308 PMCID: PMC8234716 DOI: 10.3390/molecules26123696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aβ) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | | |
Collapse
|
9
|
Mani I. CRISPR-Cas9 for treating hereditary diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:165-183. [PMID: 34127193 DOI: 10.1016/bs.pmbts.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This chapter analyzes to use of the genome editing tool to the treatment of various genetic diseases. The genome editing method could be used to change the DNA in cells or organisms to understand their physiological response. Therefore, a key objective is to present general information about the use of the genome editing tool in a pertinent way. An emerging genome editing technology like a clustered regularly short palindromic repeats (CRISPR) is an extensively expended in biological sciences. CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) technique is being utilized to edit any DNA mutations associated with hereditary diseases to study in cells (in vitro) and animals (in vivo). Interestingly, CRISPR-Cas9 could be used to the investigation of treatments of various human hereditary diseases such as hemophila, β-thalassemia, cystic fibrosis, Alzheimer's, Huntington's, Parkinson's, tyrosinemia, Duchnene muscular dystrophy, Tay-Sachs, and fragile X syndrome disorders. Furthermore, CRISPR-Cas9 could also be used in other diseases to the improvement of human health. Finally, this chapter discuss current progress to treatment for hereditary diseases using CRISPR-Cas9 technology and highlights associated challenges and future prospects.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
10
|
Lennol MP, Canelles S, Guerra-Cantera S, Argente J, García-Segura LM, de Ceballos ML, Chowen JA, Frago LM. Amyloid-β 1-40 differentially stimulates proliferation, activation of oxidative stress and inflammatory responses in male and female hippocampal astrocyte cultures. Mech Ageing Dev 2021; 195:111462. [PMID: 33609535 DOI: 10.1016/j.mad.2021.111462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has a higher incidence in women. The main component of the senile plaques characteristic of AD is amyloid-beta (Aβ), with surrounding astrocytes contributing to the degenerative process. We hypothesized that the sex difference in the incidence of AD could be partially due to differential astrocytic responses to Aβ. Thus, the effect of Aβ1-40 on cell viability, the inflammatory response, and oxidative status was studied in cultures of hippocampal astrocytes from male and female rats. Aβ1-40 increased astrocyte viability in both female and male cultures by activating proliferation and survival pathways. Pro-inflammatory and anti-inflammatory responses were induced in astrocytes from both sexes. Aβ1-40 did not affect endoplasmic reticulum stress although it induced oxidative stress in male and female astrocytes. Interestingly, male astrocytes had an increase in cell number and significantly lower cell death in response to Aβ1-40. Conversely, astrocytes from females displayed a greater inflammatory response after the Aβ1-40 challenge. These results suggest that the inflammatory and oxidative environment induced by Aβ1-40 in female astrocytes may contribute to enhance the vulnerability to AD and warrants further studies to unveil the mechanisms underlying sex differences in astrocytic responses.
Collapse
Affiliation(s)
- Matthew P Lennol
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Santiago Guerra-Cantera
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Jesús Argente
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - María L de Ceballos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Laura M Frago
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
11
|
Barman NC, Khan NM, Islam M, Nain Z, Roy RK, Haque A, Barman SK. CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease-A Narrative Review. Neurol Ther 2020; 9:419-434. [PMID: 33089409 PMCID: PMC7606404 DOI: 10.1007/s40120-020-00218-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder characterized by cognitive deficiency and development of amyloid-β (Aβ) plaques and neurofibrillary tangles, comprising hyperphosphorylated tau. The number of patients with AD is alarmingly increasing worldwide; currently, at least 50 million people are thought to be living with AD. The mutations or alterations in amyloid-β precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes are known to be associated with the pathophysiology of AD. Effective medication for AD is still elusive and many gene-targeted clinical trials have failed to meet the expected efficiency standards. The genome editing tool clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 has been emerging as a powerful technology to correct anomalous genetic functions and is now widely applied to the study of AD. This simple yet powerful tool for editing genes showed the huge potential to correct the unwanted mutations in AD-associated genes such as APP, PSEN1, and PSEN2. So, it has opened a new door for the development of empirical AD models, diagnostic approaches, and therapeutic lines in studying the complexity of the nervous system ranging from different cell types (in vitro) to animals (in vivo). This review was undertaken to study the related mechanisms and likely applications of CRISPR-Cas9 as an effective therapeutic tool in treating AD.
Collapse
Affiliation(s)
- Nirmal Chandra Barman
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh.
| | - Niuz Morshed Khan
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Maidul Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Zulkar Nain
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Rajib Kanti Roy
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Anwarul Haque
- Department Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Shital Kumar Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
12
|
Di Resta C, Ferrari M. New molecular approaches to Alzheimer's disease. Clin Biochem 2019; 72:81-86. [PMID: 31018113 DOI: 10.1016/j.clinbiochem.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder and the most common and devastating form of dementia. It affects mainly older people, accounting for 50-80% of dementia cases. The age is the main associated risk factor and based on the onset age, early-onset (EOAD) or late-onset (LOAD) forms are distinguished. AD has a strong impact both on the life-style of patients and their families and on the society, due to the high costs related to social and medical care. So far, despite the great advances in understanding of the AD pathogenesis, there is no a cure for this form of dementia and current available treatments are limited to temporarily relieve symptoms. In this review, firstly we give an overview of the current knowledge of the genetic basis of both forms of AD with a particular emphasis on the insights in the understanding of the pathogenic mechanisms of this disorder. Then we discuss the promising relevance of "omics sciences" and the open challenges of the application of Big Data in promoting precision medicine for AD.
Collapse
Affiliation(s)
- Chiara Di Resta
- Vita-Salute San Raffaele University, Milan, Italy; Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Maurizio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; IRCCS San Raffaele Hospital, Clinical Molecular Biology Laboratory, Milan, Italy.
| |
Collapse
|
13
|
Jin P, Pan Y, Pan Z, Xu J, Lin M, Sun Z, Chen M, Xu M. Alzheimer-like brain metabolic and structural features in cholesterol-fed rabbit detected by magnetic resonance imaging. Lipids Health Dis 2018; 17:61. [PMID: 29587752 PMCID: PMC5870103 DOI: 10.1186/s12944-018-0705-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/09/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypercholesterolemia is known to increase the risk of AD in later life, the purpose of this study is to illustrate brain metabolic and structural changes in a cholesterol-fed rabbit model of Alzheimer's Disease (AD) by using clinical 3 T Magnetic Resonance Imaging (MRI). METHODS The Institutional Animal Care and Use Committee of Zhejiang Chinese Medical University approved the study. Totally 16 Japanese White Rabbits (JWR) were randomly divided into 2 groups including normal control group fed with routine diet (group NC) and high cholesterol diet group (group CD) fed a 2% cholesterol diet with 0.24 ppm copper in the drinking water for 12 weeks. Magnetic resonance spectroscopy (MRS) and structural image of rabbit brain were performed by using a 3 Tesla (T) MRI scanner with an 8 channel Rabbit coil. The chemical metabolites were identified by LC Model including N-acetylaspartate (NAA), creatine (Cr), glutamate (Glu), glutamine (Gln), Glycerophosphatidylcholine (GPC), phosphorylcholine (PCH), and myoinositol (MI). The relative concentrations (/Cr) were analyzed. Additionally, Amyloid-β (Aβ) accumulation in the brain was measured postmortem. For comparisons of MR and Aβ data between groups, two-tailed t-tests were performed. RESULTS The ratio of NAA/Cr (0.76 ± 0.10) and Glu/Cr (0.90 ± 0.14) in group CD were lower than those in the group NC (0.87 ± 0.06, 1.13 ± 0.22, respectively, P < 0.05). Compared to the group NC (2.88 ± 0.09 cm3, 0.63 ± 0.08 cm3, respectively), the cortical and hippocampal volumes (2.60 ± 0.14 cm3 and 0.47 ± 0.07 cm3, respectively) of rabbits brain decreased in the group CD while the third and lateral ventricular volumes enlarged (44.56 ± 6.01 mm3 vs 31.40 ± 6.14 mm3, 261.40 ± 30.98 mm3 vs 153.81 ± 30.08 mm3, P < 0.05). These metabolic and structural changes were additionally accompanied by the significant increase of Aβ1-42 in the cortex and hippocampus (163.60 ± 16.26 pg/mg and 215.20 ± 69.86 pg/mg, respectively, P < 0.05). CONCLUSION High cholesterol diet can induce the brain metabolic and structural changes of the rabbit including lowered level of NAA and Glu and the atrophy of the brain which were similar to those of human AD.
Collapse
Affiliation(s)
- Ping Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310006 People’s Republic of China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang China
| | - Yongming Pan
- Laboratory Animal Research Center/Comparative Medical Research Institute, Zhejiang Chinese Medical University, No 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Zhiyong Pan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310006 People’s Republic of China
| | - Jianqin Xu
- Laboratory Animal Research Center/Comparative Medical Research Institute, Zhejiang Chinese Medical University, No 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Min Lin
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang China
| | - Zhichao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310006 People’s Republic of China
| | - Minli Chen
- Laboratory Animal Research Center/Comparative Medical Research Institute, Zhejiang Chinese Medical University, No 548 Binwen Road, Binjiang District, Hangzhou, 310053 China
| | - Maosheng Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310006 People’s Republic of China
| |
Collapse
|
14
|
Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer's disease. Clin Interv Aging 2018; 13:221-233. [PMID: 29445268 PMCID: PMC5808714 DOI: 10.2147/cia.s155145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic variations play an important role in the clinical presentation and progression of Alzheimer’s disease (AD), especially early-onset Alzheimer’s disease. Hundreds of mutations have been reported with the majority resulting from alterations in β-amyloid precursor protein (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes. The roles of these mutations in the pathogenesis of AD have been classically confirmed or refuted through functional studies, where the mutations are cloned, inserted into cell lines, and monitored for changes in various properties including cell survival, amyloid production, or Aβ42/40 ratio. However, these verification studies tend to be expensive, time consuming, and inconsistent. Recently, the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR–Cas9) system was developed, which improves sequence-specific gene editing in cell lines, organs, and animals. CRISPR–Cas9 is a promising tool for the generation of models of human genetic diseases and could facilitate the establishment of new animal AD models and the observation of dynamic bioprocesses in AD. Here, we recapitulated the history of CRISPR technology, recent progress, and, especially, its potential applications in AD-related genetic, animal modeling, and functional studies.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Hyon Lee
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
15
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
16
|
Asemani D, Morsheddost H, Shalchy MA. Effects of ageing and Alzheimer disease on haemodynamic response function: a challenge for event-related fMRI. Healthc Technol Lett 2017; 4:109-114. [PMID: 28706728 PMCID: PMC5496466 DOI: 10.1049/htl.2017.0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/18/2017] [Indexed: 12/01/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) can generate brain images that show neuronal activity due to sensory, cognitive or motor tasks. Haemodynamic response function (HRF) may be considered as a biomarker to discriminate the Alzheimer disease (AD) from healthy ageing. As blood-oxygenation-level-dependent fMRI signal is much weak and noisy, particularly for the elderly subjects, a robust method is necessary for HRF estimation to efficiently differentiate the AD. After applying minimum description length wavelet as an extra denoising step, deconvolution algorithm is here employed for HRF estimation, substituting the averaging method used in the previous works. The HRF amplitude peaks are compared for three groups HRF of young, non-demented and demented elderly groups for both vision and motor regions. Prior works often reported significant differences in the HRF peak amplitude between the young and the elderly. The authors’ experimentations show that the HRF peaks are not significantly different comparing the young adults with the elderly (either demented or non-demented). It is here demonstrated that the contradictory findings of the previous studies on the HRF peaks for the elderly compared with the young are originated from the noise contribution in fMRI data.
Collapse
Affiliation(s)
- Davud Asemani
- Division of Radiology, Medical University of South Carolina, Charleston, SC 29407, USA.,Biomedical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran
| | - Hassan Morsheddost
- Biomedical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
17
|
Shankarappa BM, Kota LN, Purushottam M, Nagpal K, Mukherjee O, Viswanath B, Varghese M, Bharath S, Jain S. Effect of CLU and PICALM polymorphisms on AD risk: A study from south India. Asian J Psychiatr 2017; 27:7-11. [PMID: 28558900 DOI: 10.1016/j.ajp.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 11/21/2016] [Accepted: 12/27/2016] [Indexed: 01/29/2023]
Abstract
OBJECTIVES To study the association of apolipoprotein E (APOE), Clusterin (CLU) and phosphatidylinositol binding clathrin assembly protein (PICALM) polymorphisms in Alzheimer's disease (AD) subjects compared to cognitively normal control subjects in an Indian population. METHODS The study subjects included persons with AD (N=243) and age group matched healthy controls (N=164). All the AD subjects were evaluated using a standard protocol. DNA was isolated from whole blood. APOE (rs7412, rs429358), CLU (rs11136000) and PICALM (rs3851179) were genotyped. General linear model was used to test the association between the individual risk genotypes and AD. RESULTS The presence of APOE ε4 was associated with AD after adjusting for age and gender (p<0.0001). There was no association observed with AD at both rs11136000 CLU (p=0.25) and rs3851179 PICALM (p=0.54). CONCLUSION Our results confirmed a significant association of APOE ε4 carrier status with AD. No association was observed for CLU and PICALM with AD. This might be due to a different genetic background. There are no previous reports of these polymorphisms in an Indian cohort. Future Indian AD studies should investigate additional SNPs in a larger sample size in these genes.
Collapse
Affiliation(s)
| | - Lakshmi Narayanan Kota
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India.
| | - Kavita Nagpal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Odity Mukherjee
- Instem, National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Mathew Varghese
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Srikala Bharath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| |
Collapse
|
18
|
Chen D. NEUROPROTECTIVE EFFECT OF AMORPHOPHALLUS CAMPANULATUS IN STZ INDUCED ALZHEIMER RAT MODEL. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 13:47-54. [PMID: 28480351 PMCID: PMC5413588 DOI: 10.21010/ajtcam.v13i4.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: The present investigation deals with the assessment of neuroprotective effect Amorphophallus campanulatus (AC) tuber in alzheimer diseased (AD) rat and also postulates its possible mechanism of action. Material and Methods: AD was induced by administering streptozotocin i.e. STZ (3 mg/kg, ICV) day one and 3rd day after surgery. Surgery was performed on anesthetized rats by the help of stereotaxic apparatus. STZ induced AD rats were treated with petroleum ether extract of AC (100, 200 and 500 mg/kg, p.o.) for 14 days. Effect of AC tuber in AD rats were assessed by estimating the alteration in the behavior (Y maze apparatus and single trail passive avoidance), biochemical parameter in the brain tissue {Oxidative stress parameters (SOD, CAT and LPO), amyloid β peptide (Aβ) and acetylcholinesterase (AchE)} and histopathological study of brain tissue. Result: Treatment with AC shows significant (p<0.01) increased in the % of alteration in the behavior and step through latency in Y maze task and single trial passive avoidance test compared to AD rats. AC significantly (p<0.01) decreases the Aβ1-40, Aβ1-42 peptides and AchE in the brain tissue compared to AD rats. Whereas, treatment with AC significantly reduces the oxidative stress level in AD rats. Histopathological study reveals that treatment with AC extract reduces the amyloid plaque formation in the brain tissue of AD rat. Conclusion: The present study concludes the neuroprotective effect of AC extract in AD rats by reducing oxidative stress, Aβ and AchE in the brain tissue.
Collapse
Affiliation(s)
- Dong Chen
- Department of Neurosurgery Tian Jin Huan Hu Hospital, No.122 QiXiang Tai Road, He Xi District, Tian Jin 300060, P.R. China
| |
Collapse
|
19
|
Cacace R, Sleegers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer's disease revisited. Alzheimers Dement 2016; 12:733-48. [DOI: 10.1016/j.jalz.2016.01.012] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group; Department of Molecular Genetics; VIB; Antwerp Belgium
- Laboratory of Neurogenetics; Institute Born-Bunge, University of Antwerp; Antwerp Belgium
| |
Collapse
|
20
|
Abstract
Background It has been known that ginseng can be applied as a potential nutraceutical for memory impairment; however, experiments with animals of old age are few. Methods To determine the memory enhancing effect of red ginseng, C57BL/6 mice (21 mo old) were given experimental diet pellets containing 0.12% red ginseng extract (approximately 200 mg/kg/d) for 3 mo. Young and old mice (4 mo and 21 mo old, respectively) were used as the control group. The effect of red ginseng, which ameliorated memory impairment in aged mice, was quantified using Y-maze test, novel objective test, and Morris water maze. Red ginseng ameliorated age-related declines in learning and memory in older mice. In addition, red ginseng's effect on the induction of inducible nitric oxide synthase and proinflammatory cytokines was investigated in the hippocampus of aged mice. Results Red ginseng treatment suppressed the production of age-processed inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-1β expressions. Moreover, it was observed that red ginseng had an antioxidative effect on aged mice. The suppressed glutathione level in aged mice was restored with red ginseng treatment. The antioxidative-related enzymes Nrf2 and HO-1 were increased with red ginseng treatment. Conclusion The results revealed that when red ginseng is administered over long periods, age-related decline of learning and memory is ameliorated through anti-inflammatory activity.
Collapse
|
21
|
Kim HK, Kim M, Kim S, Kim M, Chung JH. Effects of Green Tea Polyphenol on Cognitive and Acetylcholinesterase Activities. Biosci Biotechnol Biochem 2014; 68:1977-9. [PMID: 15388975 DOI: 10.1271/bbb.68.1977] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of tea polyphenol (TP) on cognitive and anti-cholinesterase activity was examined in scopolamine-treated mice. Chronic administration of TP significantly reversed scopolamine-induced retention deficits in both step-through passive avoidance and spontaneous alternation behavior tasks. Furthermore, TP exhibited a dramatic inhibitory effect on acetylcholinesterase activity. This finding suggests that TP might be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hye Kyung Kim
- Department of Food and Biotechnology, Hanseo University, Seosan, Korea.
| | | | | | | | | |
Collapse
|
22
|
Ohsawa K, Uchida N, Ohki K, Nakamura Y, Yokogoshi H. Lactobacillus helveticus–fermented milk improves learning and memory in mice. Nutr Neurosci 2014; 18:232-40. [DOI: 10.1179/1476830514y.0000000122] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
24
|
Catricala S, Torti M, Ricevuti G. Alzheimer disease and platelets: how's that relevant. IMMUNITY & AGEING 2012; 9:20. [PMID: 22985434 PMCID: PMC3545835 DOI: 10.1186/1742-4933-9-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
Alzheimer Disease (AD) is the most common neurodegenerative disorder worldwide, and account for 60% to 70% of all cases of progressive cognitive impairment in elderly patients. At the microscopic level distinctive features of AD are neurons and synapses degeneration, together with extensive amounts of senile plaques and neurofibrillars tangles. The degenerative process probably starts 20-30 years before the clinical onset of the disease. Senile plaques are composed of a central core of amyloid β peptide, Aβ, derived from the metabolism of the larger amyloid precursor protein, APP, which is expressed not only in the brain, but even in non neuronal tissues. More than 30 years ago, some studies reported that human platelets express APP and all the enzymatic activities necessary to process this protein through the same pathways described in the brain. Since then a large number of evidence has been accumulated to suggest that platelets may be a good peripheral model to study the metabolism of APP, and the pathophysiology of the onset of AD. In this review, we will summarize the current knowledge on the involvement of platelets in Alzheimer Disease. Although platelets are generally accepted as a suitable model for AD, the current scientific interest on this model is very high, because many concepts still remain debated and controversial. At the same time, however, these still unsolved divergences mirror a difficulty to establish constant parameters to better defined the role of platelets in AD.
Collapse
Affiliation(s)
- Silvia Catricala
- Department of Internal Medicine and Therapeutics, Section of Geriatrics, University of Pavia, ASP-IDR S,Margherita, Via Emilia 12, Pavia, 27100, Italy.
| | | | | |
Collapse
|
25
|
A supervised method to assist the diagnosis and monitor progression of Alzheimer's disease using data from an fMRI experiment. Artif Intell Med 2011; 53:35-45. [DOI: 10.1016/j.artmed.2011.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 11/18/2022]
|
26
|
Kumar A, Dogra S, Prakash A. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J Med Food 2010; 13:976-84. [PMID: 20673063 DOI: 10.1089/jmf.2009.1251] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder. Central administration of colchicine is well known to cause cognitive impairment and oxidative damage, which simulates sporadic dementia of the Alzheimer type in humans. The present study has been designed to investigate the protective effects of naringin against the colchicine-induced cognitive impairment and oxidative damage in rats. Colchicine (15 microg/5 microL), administered intracerebroventricularly, resulted in poor memory retention in both the Morris water maze and elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant decrease in acetylcholinesterase activity. Naringin (40 and 80 mg/kg, p.o.) treatment was given daily for a period of 25 days beginning 4 days prior to colchicine administration. Chronic treatment with naringin caused significant improvement in the cognitive performance and attenuated oxidative damage, as evidenced by lowering of malondialdehyde level and nitrite concentration and restoration of superoxide dismutase, catalase, glutathione S-transferase, and reduced glutathione levels, and acetylcholinesterase activity compared to control. The present study highlights the therapeutic potential of naringin against colchicine-induced cognitive impairment and associated oxidative damage.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | | | | |
Collapse
|
27
|
An Analysis of Changes in Cerebral Blood Flood Velocities in Depressive Pseudo-Dementia and Alzheimer Disease Patients. Neurologist 2010; 16:358-63. [DOI: 10.1097/nrl.0b013e3181a2eace] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Park EJ, Lyra KP, Lee HW, Caramelli P, Otaduy MCG, Leite CC. Correlation between hippocampal volumes and proton magnetic resonance spectroscopy of the posterior cingulate gyrus and hippocampi in Alzheimer's disease. Dement Neuropsychol 2010; 4:109-113. [PMID: 29213672 PMCID: PMC5619168 DOI: 10.1590/s1980-57642010dn40200006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prior studies have reported hippocampal volume loss, decrease in
N-Acetylaspartate (NAA) concentration and increased myo-inositol (mI)
concentration in patients with Alzheimer’s disease (AD). The purpose of this
study was to evaluate hippocampal volumes of AD patients and their correlation
with metabolic changes detected by proton spectroscopy (1H MRS) of hippocampal
formations and the posterior cingulate region.
Collapse
Affiliation(s)
- Eun Joo Park
- Department of Radiology, School of Medicine of the University of São Paulo, São Paulo SP, Brazil
| | - Katarina P Lyra
- Department of Radiology, School of Medicine of the University of São Paulo, São Paulo SP, Brazil
| | - Hae Won Lee
- Department of Radiology, School of Medicine of the University of São Paulo, São Paulo SP, Brazil
| | - Paulo Caramelli
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte MG, Brazil
| | - Maria C G Otaduy
- Department of Radiology, School of Medicine of the University of São Paulo, São Paulo SP, Brazil
| | - Claudia Costa Leite
- Department of Radiology, School of Medicine of the University of São Paulo, São Paulo SP, Brazil
| |
Collapse
|
29
|
Tripoliti EE, Fotiadis DI, Argyropoulou M, Manis G. A six stage approach for the diagnosis of the Alzheimer's disease based on fMRI data. J Biomed Inform 2009; 43:307-20. [PMID: 19883796 DOI: 10.1016/j.jbi.2009.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/30/2009] [Accepted: 10/26/2009] [Indexed: 11/26/2022]
Abstract
The aim of this work is to present an automated method that assists in the diagnosis of Alzheimer's disease and also supports the monitoring of the progression of the disease. The method is based on features extracted from the data acquired during an fMRI experiment. It consists of six stages: (a) preprocessing of fMRI data, (b) modeling of fMRI voxel time series using a Generalized Linear Model, (c) feature extraction from the fMRI data, (d) feature selection, (e) classification using classical and improved variations of the Random Forests algorithm and Support Vector Machines, and (f) conversion of the trees, of the Random Forest, to rules which have physical meaning. The method is evaluated using a dataset of 41 subjects. The results of the proposed method indicate the validity of the method in the diagnosis (accuracy 94%) and monitoring of the Alzheimer's disease (accuracy 97% and 99%).
Collapse
Affiliation(s)
- Evanthia E Tripoliti
- Department of Computer Science, University of Ioannina, GR45110 Ioannina, Greece
| | | | | | | |
Collapse
|
30
|
Smith CCT, Prichard BNC, Cooper MB. Platelet α- and β-secretase activities: A preliminary study in normal human subjects. Platelets 2009; 20:29-34. [DOI: 10.1080/09537100802334434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis and classification of the status of Alzheimer's disease using data from an fMRI experiment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:4419-22. [PMID: 19163694 DOI: 10.1109/iembs.2008.4650191] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this work is the development of a method to assist the diagnosis and classification of the status of Alzheimer's Disease (AD) using information that can be extracted from fMRI. The method consists of five stages: a) preprocessing of fMRI data to remove non-task related variability, b) modeling BOLD response depending on stimulus, c) feature extraction from fMRI data, d) feature selection and e) classification using the Random Forests (RF) algorithm. The proposed method is evaluated using data from 41 subjects (14 young adults, 14 non demented older adults and 13 demented older adults.
Collapse
Affiliation(s)
- Evanthia E Tripoliti
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Computer Science, University of Ioannina and Biomedical Research Institute - FORTH, GR 451 10, Greece
| | | | | |
Collapse
|
32
|
Ronald JA, Chen Y, Bernas L, Kitzler HH, Rogers KA, Hegele RA, Rutt BK. Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits. ACTA ACUST UNITED AC 2009; 132:1346-54. [PMID: 19293239 PMCID: PMC2677794 DOI: 10.1093/brain/awp031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease.
Collapse
Affiliation(s)
- John A Ronald
- Robarts Research Institute, University of Western Ontario, 100 Perth Drive, 1st Floor, London, ON, Canada N6A 5K8.
| | | | | | | | | | | | | |
Collapse
|
33
|
Fillit H, Nash DT, Rundek T, Zuckerman A. Cardiovascular risk factors and dementia. ACTA ACUST UNITED AC 2008; 6:100-18. [DOI: 10.1016/j.amjopharm.2008.06.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2008] [Indexed: 12/19/2022]
|
34
|
Goodman IJ. Practical utility of urinary assay in the diagnosis of Alzheimer's disease: AlzheimAlert. Expert Rev Mol Diagn 2008; 8:21-8. [PMID: 18088227 DOI: 10.1586/14737159.8.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urinary assay (Alzheimer's disease reaction titer [ADRT]) adds significant information in the diagnosis of Alzheimer's disease (AD), particularly for the nonspecialist. Clinical studies of ADRT in series of AD and non-AD patients have found sensitivity of 89-92.3%, specificity of 90-96.8%, positive predictive value (PPV) of 94.8-97.4% and negative predictive value (NPV) of 78.9-91.8%. The added information from the improvements of PPV and NPV are particularly helpful for the nonspecialist in the community. As a laboratory assay that requires a first-morning noncontaminated sample, ADRT is noninvasive, convenient and safe. ADRT is based on reagents derived from human AD brain cDNA. The pathophysiological roles of these genetic fragments and reagents are still under investigation. ADRT should have a positive impact on primary-care AD clinical practice.
Collapse
Affiliation(s)
- Ira J Goodman
- Department of Neurology, University of Florida School of Medicine, FL, USA.
| |
Collapse
|
35
|
Abstract
Alzheimer’s disease is a devastating chronic disease that significantly increases healthcare costs and affects the quality of life (QoL) of the afflicted patients and their caregivers. Population aging and other demographic changes may further increase the already staggering costs of this devastating disease. While few pharmacoeconomic studies have used a prospective health economics design to assess resource utilization, most studies showed beneficial treatment effects and suggested potential savings in healthcare costs and reductions in caregiver burden. Various degrees of cost savings have been reported depending on the type of economic model, treatment evaluated, and region used in the studies. Direct comparisons of the results are difficult because different methods have been used in these evaluations. The preference of patients and families for home care for as long as possible suggests that promoting noninstitutional care for these patients should become a priority. Continued home care for patients under pharmacological treatment may reduce caregiver burden, healthcare costs, and ultimately improve patients’ and caregivers’ QoL.
Collapse
Affiliation(s)
- Carolyn W Zhu
- Geriatric Research, Education, and Clinical Center (GRECC) and Program of Research on Serious Physical and Mental Illness,Targeted Research Enhancement Program (TREP), Bronx VA Medical Center, Bronx, NY 10468. USA.
| | | |
Collapse
|
36
|
Nguyen PTH, Kimura T, Ho SA, Tran AH, Ono T, Nishijo H. Ameliorative effects of a neuroprotective agent, T-817MA, on place learning deficits induced by continuous infusion of amyloid-beta peptide (1-40) in rats. Hippocampus 2007; 17:443-55. [PMID: 17397046 DOI: 10.1002/hipo.20281] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline due to neuronal loss and neural network dysfunction. It has been postulated that progressive neuronal loss in AD is consequence of the neurotoxic properties of the amyloid-beta peptide (Abeta). In the present study, we investigated the effect of T-817MA (1-{3-[2-(1-benzothiophen-5-yl)ethoxy] propyl}-3-azetidinol maleate), a newly synthesized neurotrophic compound, on place learning deficits in rats with hippocampal damages. To induce granule cell loss in the dentate gyrus (DG) of the hippocampus, Abeta (1-40) was continuously infused (300 pmol/day) into the cerebral ventricle using a mini-osmotic pump for 5 weeks. Three weeks after the Abeta infusion, the rats were tested in a place learning task, which required them to alternatively visit two diametrically opposed areas in an open field to obtain intracranial self-stimulation reward. The results indicated that the Abeta-infused rats without treatment of T-817MA displayed learning impairment in the task; their performance level was significantly inferior to that of the vehicle rats. Treatment of T-817MA (8.4 mg/kg/day, p.o.) significantly improved the task performance of the Abeta-infused rats. Furthermore, T-817MA prevented granule cell loss due to Abeta-infusion, which was correlated to task performance of the rats. However, other cognitive enhancer, an acetylcholinesterase inhibitor, had no such effects. The results demonstrated that T-817MA ameliorated learning deficits induced by Abeta infusion, which might be attributed to neuroprotection in the hippocampus.
Collapse
Affiliation(s)
- Phuong Thi Hong Nguyen
- System Emotional Science, Graduate School of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Tripoliti EE, Fotiadis DI, Argyropoulou M. A supervised method to assist the diagnosis of Alzheimer's Disease based on functional Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2007; 2007:3426-9. [DOI: 10.1109/iembs.2007.4353067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Jin H, Kim M, Suh Y, Choi S, Mun N, Kim H, Kim E, Shin DH. Protective Effects of Daidzein on Oxidative Stress-Induced Neurotoxicity and Scopolamine-Mediated Cognitive Defect. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2005.tb07122.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Heo HJ, Suh YM, Kim MJ, Choi SJ, Mun NS, Kim HK, Kim E, Kim CJ, Cho HY, Kim YJ, Shin DH. Daidzein activates choline acetyltransferase from MC-IXC cells and improves drug-induced amnesia. Biosci Biotechnol Biochem 2006; 70:107-11. [PMID: 16428827 DOI: 10.1271/bbb.70.107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The choline acetyltransferase (ChAT) activator, which enhances cholinergic transmission via an augmentation of the enzymatic production of acetylcholine (ACh), is an important factor in the treatment of Alzheimer's disease (AD). Methanolic extracts from Pueraria thunbergiana exhibited an activation effect (46%) on ChAT in vitro. Via the sequential isolation of Pueraria thunbergiana, the active component was ultimately identified as daidzein (4',7-dihydroxy-isoflavone). In order to investigate the effects of daidzein from Pueraria thunbergiana on scopolamine-induced impairments of learning and memory, we conducted a series of in vivo tests. Administration of daidzein (4.5 mg/kg body weight) to mice was shown significantly to reverse scopolamine-induced amnesia, according to the results of a Y-maze test. Injections of scopolamine into mice resulted in impaired performance on Y-maze tests (a 37% decreases in alternation behavior). By way of contrast, mice treated with daidzein prior to the scopolamine injections were noticeably protected from this performance impairment (an approximately 12%-21% decrease in alternation behavior). These results indicate that daidzein might play a role in acetylcholine biosynthesis as a ChAT activator, and that it also ameliorates scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Ho Jin Heo
- Jeonnam Innovation Agency, Jeonnam, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are potent inhibitors of cholesterol biosynthesis. Cholesterol-lowering therapy using statins significantly reduces the risk of coronary heart disease. However, extensive use of statins leads to increases of other undesirable as well as beneficial effects, so-called pleiotropic effects. With respect to these effects, statins augment the expression of bone morphogenetic protein-2, a potent simulator of osteoblast differentiation and its activity, and promote mineralization by cultured osteoblasts, indicating that statins have an anabolic effect on bone. Chronic administration of statins in ovariectomized (OVX) rats modestly increases bone mineral density (BMD) of cancellous bone but not of compact bone. In clinical studies, there are conflicting results regarding the clinical benefits of this therapy for the treatment of osteoporosis. Observational studies suggest an association between statin use and reduction in fracture risk. Clinical trials reported no effect of statin treatment on BMD in hip and spine, and on bone turnover. Statins also may influence oral osseous tissues. Administration of statins in combination with osteoporosis therapy appears to improve alveolar bone architecture in the mandibles of OVX rats with maxillary molar extraction. Statins continue to be considered as potential therapeutic agents for patients with osteoporosis and possibly with periodontal disease. Development of new statins that are more specific and potent for bone metabolism will greatly increase the usefulness of these drugs for the treatment of bone diseases.
Collapse
Affiliation(s)
- N Horiuchi
- Section of Biochemistry, Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Japan.
| | | |
Collapse
|
41
|
Baluchnejadmojarad T, Roghani M. Effect of Naringenin on Intracerebroventricular Streptozotocin-Induced Cognitive Deficits in Rat: A Behavioral Analysis. Pharmacology 2006; 78:193-7. [PMID: 17065836 DOI: 10.1159/000096585] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/04/2006] [Indexed: 11/19/2022]
Abstract
Intracerebroventricular (ICV) injection of streptozotocin (STZ) causes cognitive impairment in rats. The beneficial effect of naringenin (NAR) was investigated on ICV STZ-induced learning, memory, and cognitive impairment in male rats. For this purpose, rats were injected with ICV STZ bilaterally, on days 1 and 3 (3 mg/kg). The STZ-injected rats received NAR (50 mg/kg/day p.o.) starting 1 day pre-surgery for 3 weeks. The learning and memory performance was assessed using passive avoidance paradigm, and for spatial cognition evaluation, radial eight-arm maze (RAM) task was used. It was found out that NAR-treated STZ-injected rats show higher correct choices and lower errors in RAM than vehicle-treated STZ-injected rats. In addition, NAR administration significantly attenuated learning and memory impairment in treated STZ-injected group in passive avoidance test. Therefore, these results demonstrate the effectiveness of NAR in preventing the cognitive deficits caused by ICV STZ in rats and its potential in the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
42
|
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disorder that is manifested by cognitive decline, neuropsychiatric symptoms, and diffuse structural abnormalities in the brain. Its prevalence is predicted to rise 4-fold in the next 50 years. AD is characterized pathologically by deposition of extracellular beta-amyloid and accumulation of neurofibrillary tangles. Neuronal death and specific neurotransmitter deficits also are part of the pathologic picture. Strategies to delay symptom progression have focused on addressing the neurotransmitter deficits. Strategies to delay the onset or biologic progression of AD largely have targeted the plaques formed by the deposition of beta-amyloid. AD and cardiovascular disease share common risk factors, notably hypercholesterolemia, and occur together more often than expected by chance. Therapy with the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) is the first-line treatment option for hypercholesterolemia, and observational studies have suggested that the risk of AD is reduced in patients who receive statin therapy in midlife. This reduction in risk of AD observed with statin therapy may be due to statins reducing beta-amyloid formation and deposition or to their known anti-inflammatory effects. Two randomized double-blind statin trials in patients with AD to assess the potential for statins to slow disease progression are currently under way. If successful, statin AD primary prevention trials may be developed.
Collapse
Affiliation(s)
- Steven T DeKosky
- Department of Neurology and Alzheimer Disease Research Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania 15213-2582, USA.
| |
Collapse
|
43
|
Abstract
The number of elderly people is increasing rapidly and, therefore, an increase in neurodegenerative and cerebrovascular disorders causing dementia is expected. Alzheimer disease (AD) is the most common cause of dementia. Vascular dementia, dementia with Lewy bodies, and frontotemporal dementia are the most frequent causes after AD, but a large proportion of patients have a combination of degenerative and vascular brain pathology. Characteristic magnetic resonance (MR) imaging findings can contribute to the identification of different diseases causing dementia. The MR imaging protocol should include axial T2-weighted images (T2-WI), axial fluid-attenuated inversion recovery (FLAIR) or proton density-weighted images, and axial gradient-echo T2*-weighted images, for the detection of cerebrovascular pathology. Structural neuroimaging in dementia is focused on detection of brain atrophy, especially in the medial temporal lobe, for which coronal high resolution T1-weighted images perpendicular to the long axis of the temporal lobe are extremely important. Single photon emission computed tomography and positron emission tomography may have added value in the diagnosis of dementia and may become more important in the future, due to the development of radioligands for in vivo detection of AD pathology. New functional MR techniques and serial volumetric imaging studies to identify subtle brain abnormalities may also provide surrogate markers for pathologic processes that occur in diseases causing dementia and, in conjunction with clinical evaluation, may enable a more rigorous and early diagnosis, approaching the accuracy of neuropathology.
Collapse
Affiliation(s)
- António J Bastos Leite
- Department of Radiology, Vrije Universiteit (VU) Medical Center, Amsterdam, the Netherlands.
| | | | | |
Collapse
|
44
|
del Mar Hernandez M, Esteban M, Szabo P, Boada M, Unzeta M. Human plasma semicarbazide sensitive amine oxidase (SSAO), β-amyloid protein and aging. Neurosci Lett 2005; 384:183-7. [PMID: 15894424 DOI: 10.1016/j.neulet.2005.04.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 11/19/2022]
Abstract
Semicarbazide sensitive amine oxidase (SSAO) metabolizes oxidative deamination of primary aromatic and aliphatic amines. The final products of its catalysis, ammonia, hydrogen peroxide (H2O2) and the corresponding aldehyde, may contribute to diseases involving vascular degeneration. SSAO is selectively expressed in blood vessels in the brain, but is also present in blood plasma. We have previously reported that membrane-bound SSAO is overexpressed in the cerebrovascular tissue of Alzheimer's disease (AD) patients. The aim of the present work is to study whether the circulating SSAO is also altered in this neurodegenerative disease. SSAO activity was determined in plasma of control cases (n = 23) and patients suffering sporadic Alzheimer dementia, distributed according to the Global Deterioration Scale (GDS): mild (n = 33), moderate (n = 14), moderate-severe (n = 15) and severe dementia (n = 19). Results show a clear increase of plasma SSAO activity (p < 0.001) in moderate-severe and severe AD patients, with patient age being an independent correlative factor. However, plasma SSAO activity was not altered in AD patients with mild or moderate dementia compared to controls. beta-Amyloid (Abeta) (40-42) immunoreactivity in plasma samples was also determined, and no correlation was observed between Abeta 40-42 levels and the severity of the dementia or the plasma SSAO activity. Our results suggest that an increase in circulating SSAO activity could contribute to oxidative stress and vascular damage in advanced Alzheimer's disease.
Collapse
Affiliation(s)
- Maria del Mar Hernandez
- Departament de Bioquímica i Biología Molecular, Institut de Neurociencies, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Nanetti L, Vignini A, Moroni C, Bartolini M, Luzzi S, Provinciali L, Mazzanti L. Peroxynitrite production and NOS expression in astrocytes U373MG incubated with lipoproteins from Alzheimer patients. Brain Res 2005; 1054:38-44. [PMID: 16054114 DOI: 10.1016/j.brainres.2005.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 06/08/2005] [Accepted: 06/10/2005] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apo E), a plasma protein involved both in the metabolism of cholesterol and triglycerides, particularly in nervous tissue, has been associated with a higher risk of Alzheimer's disease. It has been shown that apo E increased the production of nitric oxide (NO) from human monocyte-derived macrophages (MDM); this effect could represent an important link between tissue redox balance and inflammation, since inflammation and oxidative stress are involved in chronic neurodegenerative disorders. Moreover, it has been evidenced that an overproduction of NO in the central nervous system (CNS) may play a key role in aging and that the glial cells (microglials cells and probably astrocytes) are able to form consistent amounts of NO through the induction of a nitric oxide synthase (iNOS) isoform so-called inducible or inflammatory. This report was performed in order to elucidate the effects produced by lipoproteins from control subjects, AD patients and first degree relatives (offspring) on human astrocyte cells after a short incubation. Peroxynitrite and NO production and NOS expression in cultured astrocytes were measured. We observed a decreased NO production after incubation with both LDL and HDL and an increased peroxynitrite production. As it concerns NOS expression, densitometric analysis of bands indicated that iNOS protein levels were significantly higher in the cells incubated with both AD lipoproteins and offspring lipoproteins compared to cells incubated with control lipoproteins. These findings suggest the possibility to identify in NO pathway a precocious marker of AD.
Collapse
Affiliation(s)
- L Nanetti
- Institute of Biochemistry, Polytechnic Marche University, Via P. Ranieri 65, 60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Clarke G, Lumsden CJ. Heterogeneous cellular environments modulate one-hit neuronal death kinetics. Brain Res Bull 2005; 65:59-67. [PMID: 15680545 DOI: 10.1016/j.brainresbull.2004.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that cell loss kinetics in diverse forms of neurodegeneration (ND) suggests a universal death switch mechanism in which each cell is at a constant risk to initiate apoptosis. We proposed that mutant and injured neurons exist in a viable state typified by an increased risk of initiating death processes [Clarke, Collins, Leavitt, Andrews, Hayden, Lumsden, McInnes, A one-hit model of cell death in inherited neuronal degenerations, Nature 406 (2000) 195-199]. To date, however, measurements of cell death risk have been available only as averages across the affected cell population. Here we develop and apply a method of death kinetic analysis in which the risk factors vary across the neuronal population, as for example due to regional heterogeneities in the cellular microenvironment. We find that most cases of ND for which cell loss data has been obtained are better explained by death risks that vary from cell to cell, compared to death risk that is constant across the neuronal population. Strikingly, a common form of the frequency distribution defining the death risk heterogeneity is shared across most of these cases. This first characterization of the kinetic heterogeneity in one-hit neuronal death, therefore, suggests that the wide variety of ND now known may share mechanisms through which regional differences in the cellular microenvironment modulate the kinetics of cell loss.
Collapse
Affiliation(s)
- Geoff Clarke
- Department of Medicine, Institute of Medical Science, University of Toronto, Ont., Canada M5S 1A8
| | | |
Collapse
|
47
|
Clarke G, Lumsden CJ. Scale-free neurodegeneration: cellular heterogeneity and the stretched exponential kinetics of cell death. J Theor Biol 2005; 233:515-25. [PMID: 15748912 DOI: 10.1016/j.jtbi.2004.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 10/25/2004] [Accepted: 10/28/2004] [Indexed: 11/29/2022]
Abstract
Neurodegenerative disorders are an insidious group of diseases characterized by severe physical and cognitive effects that often have devastating consequences for the lives of affected individuals and their families. One feature common to a significant proportion of these diseases is that affected neurons commit to undergoing an active form of degeneration known as programmed cell death, or apoptosis. Although intense effort over the past several years has resulted is a remarkable increase in our understanding of the molecular events involved in neurodegeneration, our knowledge regarding the cellular and tissue properties that determine the temporal patterns of neuronal attrition is limited. We recently demonstrated that neurodegenerative kinetics in various diseases fit well to exponential decay functions, and proposed a universal one-hit switch mechanism in which mutant and injured neurons exist in a viable state characterized by an increased but constant risk of initiating apoptosis (Nature, 406, p. 195). Here we show that a heavy-tailed stretched exponential function is better able to account for neurodegenerative kinetic data. Moreover, normalization of all available data according to their corresponding best-fit stretched exponential parameters suggest that the generalized model is consistent with a universal mechanism of neuronal cell death that is greatly improved over the constant risk model. In contrast to the original model in which all cells exhibit an identical risk of initiating apoptosis, the stretched exponential model is consistent with each neuron experiencing a constant risk that is different from that experienced by other cells in the degenerating population, perhaps due to spatial differences in the cellular microenvironment. Intriguingly, the predicted distribution of risk across the cell population can be fit by a power-law function, further suggesting that scale-free properties of degenerating neuronal tissues might act as potent regulators of the kinetics of cell death in neural tissue.
Collapse
Affiliation(s)
- Geoff Clarke
- Department of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Room 7313, Toronto, Canada M5S 1A8.
| | | |
Collapse
|
48
|
Silverman DHS, Alavi A. PET imaging in the assessment of normal and impaired cognitive function. Radiol Clin North Am 2005; 43:67-77, x. [PMID: 15693648 DOI: 10.1016/j.rcl.2004.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PET has been used to directly quantify several processes relevant to the status of cerebral health and function, including cerebral blood flow, cerebral blood volume, cerebral rate of oxygen metabolism, and cerebral glucose use. Clinically, the most commonly performed PET studies of the brain are performed with fluorine-18-fluorodeoxyglucose as the imaged radiopharmaceutical. Such scans have demonstrated diagnostic and prognostic use in evaluating patients who have cognitive impairment, and in distinguishing among primary neurodegenerative dementias and other causes of cognitive decline. In certain pathologic circumstances, the normal coupling between blood flow and metabolic needs may be disturbed, and changes in oxygen extraction fraction can have significant prognostic value.
Collapse
Affiliation(s)
- Daniel H S Silverman
- Neuroimaging Section, Nuclear Medicine Clinic, David Geffen School of Medicine, University of California at Los Angeles Medical Center, Los Angeles, CA 90095-6942, USA.
| | | |
Collapse
|
49
|
Smith CCT, Betteridge DJ. Plasma beta-amyloid (A beta) 40 concentration, lipid status and age in humans. Neurosci Lett 2004; 367:48-50. [PMID: 15308295 DOI: 10.1016/j.neulet.2004.05.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 05/24/2004] [Accepted: 05/24/2004] [Indexed: 11/20/2022]
Abstract
The circulation constitutes a potential source of the beta-amyloid (A beta) protein deposited cerebrally in Alzheimer's disease (AD). Cardiovascular risk factors, including hyperlipidaemia, may be involved in the pathogenesis of AD. Plasma A beta 40 was measured by radioimmunoassay in normal and hyperlipidaemic subjects with the aim of determining if plasma lipid content and/or age correlated with circulating A beta 40 concentration. Plasma A beta 40 levels in hyperlipidaemics were elevated by 20.3% compared to normal subjects. A beta 40 did not correlate with plasma lipids in normal subjects. Age, however, correlated positively with A beta 40 in these individuals and with total cholesterol, low-density lipoprotein (LDL) and triglycerides. No correlations were observed in hyperlipidaemic patients or when the data for the two groups were combined. These data are consistent with ageing, the primary risk factor for AD, but not hyperlipidaemia influencing circulating A beta 40 levels.
Collapse
Affiliation(s)
- Christopher C T Smith
- Department of Medicine, Royal Free and University College Medical School, Sir Jules Thorn Institute, The Middlesex Hospital, Mortimer Street, London WIN 8AA, UK.
| | | |
Collapse
|
50
|
Abstract
Alzheimer's disease (AD) appears to resemble other chronic diseases, whereby a myriad of interconnected factors, including those associated with lifestyle, are involved in disease development. In this paper, we examine accepted and proposed risk factors for AD and explore health behaviors, including diet, exercise, prevention of injury, and cognitive stimulation, that may help prevent AD. Adherence to a healthy lifestyle may directly protect against AD or may prevent diseases associated with AD, such as vascular disease and diabetes. A healthy lifestyle to prevent AD may be important throughout life rather than after disease manifestation and may be particularly relevant if other factors, such as genetic predisposition, also increase risk of AD. If changes in lifestyle can help prevent AD by reducing modifiable risk factors, this knowledge can aid individuals who wish to take action to protect themselves and their families from the disease.
Collapse
Affiliation(s)
- Sandra K Pope
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|