1
|
Li D, Kok CYL, Wang C, Ray D, Osterburg S, Dötsch V, Ghosh S, Sabapathy K. Dichotomous transactivation domains contribute to growth inhibitory and promotion functions of TAp73. Proc Natl Acad Sci U S A 2024; 121:e2318591121. [PMID: 38739802 PMCID: PMC11127001 DOI: 10.1073/pnas.2318591121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73β, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73β's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73β's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73β isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73β to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.
Collapse
Affiliation(s)
- Dan Li
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Catherine Yen Li Kok
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Chao Wang
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
| | - Debleena Ray
- Programme in Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt am Main60438, Germany
| | - Sujoy Ghosh
- Centre for Computational Biology & Programme in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore169857, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore637551, Singapore
| |
Collapse
|
2
|
Porter T, del Valle MM, Kucheryavykh L. Ethnicity-Based Variations in Focal Adhesion Kinase Signaling in Glioblastoma Gene Expression: A Study of the Puerto Rican Hispanic Population. Int J Mol Sci 2024; 25:4947. [PMID: 38732165 PMCID: PMC11084467 DOI: 10.3390/ijms25094947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM), an aggressive form of brain cancer, has a higher incidence in non-Hispanics when compared to the US Hispanic population. Using data from RT-PCR analysis of 21 GBM tissue from Hispanic patients in Puerto Rico, we identified significant correlations in the gene expression of focal adhesion kinase and proline-rich tyrosine kinase (PTK2 and PTK2B) with NGFR (nerve growth factor receptor), PDGFRB (platelet-derived growth factor receptor B), EGFR (epithelial growth factor receptor), and CXCR1 (C-X-C motif chemokine receptor 1). This study further explores these correlations found in gene expression while accounting for sex and ethnicity. Statistically significant (p < 0.05) correlations with an r value > ±0.7 were subsequently contrasted with mRNA expression data acquired from cBioPortal for 323 GBM specimens. Significant correlations in Puerto Rican male patients were found between PTK2 and PTK2B, NGFR, PDGFRB, EGFR, and CXCR1, which did not arise in non-Hispanic male patient data. The data for Puerto Rican female patients showed correlations in PTK2 with PTK2B, NGFR, PDGFRB, and EGFR, all of which did not appear in the data for non-Hispanic female patients. The data acquired from cBioPortal for non-Puerto Rican Hispanic patients supported the correlations found in the Puerto Rican population for both sexes. Our findings reveal distinct correlations in gene expression patterns, particularly involving PTK2, PTK2B, NGFR, PDGFRB, and EGFR among Puerto Rican Hispanic patients when compared to non-Hispanic counterparts.
Collapse
Affiliation(s)
- Tyrel Porter
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | - Miguel Mayol del Valle
- Department of Surgery, Neurosurgery Section, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00921, USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| |
Collapse
|
3
|
Luu N, Zhang S, Lam RHW, Chen W. Mechanical Constraints in Tumor Guide Emergent Spatial Patterns of Glioblastoma Cancer Stem Cells. MECHANOBIOLOGY IN MEDICINE 2024; 2:100027. [PMID: 38770108 PMCID: PMC11105673 DOI: 10.1016/j.mbm.2023.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mechanical constraints in the overcrowding glioblastoma (GBM) microenvironment have been implicated in the regulation of tumor heterogeneity and disease progression. Especially, such mechanical cues can alter cellular DNA transcription and give rise to a subpopulation of tumor cells called cancer stem cells (CSCs). These CSCs with stem-like properties are critical drivers of tumorigenesis, metastasis, and treatment resistance. Yet, the biophysical and molecular machinery underlying the emergence of CSCs in tumor remained unexplored. This work employed a two-dimensional micropatterned multicellular model to examine the impact of mechanical constraints arisen from geometric confinement on the emergence and spatial patterning of CSCs in GBM tumor. Our study identified distinct spatial distributions of GBM CSCs in different geometric patterns, where CSCs mostly emerged in the peripheral regions. The spatial pattern of CSCs was found to correspond to the gradients of mechanical stresses resulted from the interplay between the cell-ECM and cell-cell interactions within the confined environment. Further mechanistic study highlighted a Piezo1-RhoA-focal adhesion signaling axis in regulating GBM cell mechanosensing and the subsequent CSC phenotypic transformation. These findings provide new insights into the biophysical origin of the unique spatial pattern of CSCs in GBM tumor and offer potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ngoc Luu
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
| | - Shuhao Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
4
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
5
|
Machine Learning-Based Integration Develops a Pyroptosis-Related lncRNA Model to Enhance the Predicted Value of Low-Grade Glioma Patients. JOURNAL OF ONCOLOGY 2022; 2022:8164756. [PMID: 35646114 PMCID: PMC9135526 DOI: 10.1155/2022/8164756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022]
Abstract
Background Molecular features have been included in the categorization of gliomas because they may be excellent predictors of tumor prognosis. Lower-grade glioma (LGGs, which comprise grade 2 and grade 3 gliomas) patients have a wide variety of outcomes. The goal of this research is to investigate a pyroptosis-based long noncoding RNA (lncRNA) profile and see whether it can be used to predict LGG prognosis. Methods The Genotype-Tissue Expression (GTEx) and Cancer Genome Atlas (TCGA) datasets were utilized to get RNA data and clinical information for this research. Six considerably related lncRNAs (AL355574.1, AL355974.2, Z97989.1, SNAI3-AS1, LINC02593, and CYTOR) were selected using Cox regression (univariate and multivariate) and LASSO Cox regression. A variety of statistical techniques, including ROC curves, nomogram, and Kaplan-Meier curves, were utilized to verify the risk score's accuracy. Following that, bioinformatics studies were carried out to investigate the possible molecular processes that influence LGG prognosis. The variations in pathway enrichment were investigated using GSEA. The immune microenvironment inconsistencies were investigated using CIBERSORT, ESTIMATE, MCPcounter, TIMER algorithms, and ssGSEA. Results We discovered six lncRNAs with distinct expression patterns that are linked to LGG prognosis. Kaplan-Meier studies showed a signature of high-risk lncRNAs associated with a poor prognosis for LGG. Furthermore, the AUC of the lncRNA signature was 0.763, indicating that they may be used to predict LGG prognosis. In predicting LGG prognosis, our risk assessment approach outperformed conventional clinicopathological characteristics. In the high-risk group of people, GSEA identified tumor-related pathways and immune-related pathways. Furthermore, T cell-related activities such as T cell coinhibition and costimulation, check point, APC coinhibition and costimulation, CCR, and inflammatory promoting were shown to be substantially different between the two groups in TCGA analysis. Immune checkpoints including PD-1, CTLA4, and PD-L1 were expressed differentially in the two groups as well. Conclusion This study found that pyroptosis-based lncRNAs were useful in predicting LGG patients' survival, suggesting that they may be used as a therapeutic target in the future.
Collapse
|
6
|
Echavidre W, Picco V, Faraggi M, Montemagno C. Integrin-αvβ3 as a Therapeutic Target in Glioblastoma: Back to the Future? Pharmaceutics 2022; 14:pharmaceutics14051053. [PMID: 35631639 PMCID: PMC9144720 DOI: 10.3390/pharmaceutics14051053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is associated with a dismal prognosis. Standard therapies including maximal surgical resection, radiotherapy, and temozolomide chemotherapy remain poorly efficient. Improving GBM treatment modalities is, therefore, a paramount challenge for researchers and clinicians. GBMs exhibit the hallmark feature of aggressive invasion into the surrounding tissue. Among cell surface receptors involved in this process, members of the integrin family are known to be key actors of GBM invasion. Upregulation of integrins was reported in both tumor and stromal cells, making them a suitable target for innovative therapies targeting integrins in GBM patients, as their impairment disrupts tumor cell proliferation and invasive capacities. Among them, integrin-αvβ3 expression correlates with high-grade GBM. Driven by a plethora of preclinical biological studies, antagonists of αvβ3 rapidly became attractive therapeutic candidates to impair GBM tumorigenesis. In this perspective, the advent of nuclear medicine is currently one of the greatest components of the theranostic concept in both preclinical and clinical research fields. In this review, we provided an overview of αvβ3 expression in GBM to emphasize the therapeutic agents developed. Advanced current and future developments in the theranostic field targeting αvβ3 are finally discussed.
Collapse
Affiliation(s)
- William Echavidre
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
| | - Vincent Picco
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Correspondence: ; Tel.: +377-97-77-44-15
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (C.M.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284, INSERM U1081, Université Cote d’Azur, 06200 Nice, France
| |
Collapse
|
7
|
Expression Analysis of α5 Integrin Subunit Reveals Its Upregulation as a Negative Prognostic Biomarker for Glioblastoma. Pharmaceuticals (Basel) 2021; 14:ph14090882. [PMID: 34577582 PMCID: PMC8465081 DOI: 10.3390/ph14090882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Integrin α5β1 was suggested to be involved in glioblastoma (GBM) aggressiveness and treatment resistance through preclinical studies and genomic analysis in patients. However, further protein expression data are still required to confirm this hypothesis. In the present study, we investigated by immunofluorescence the expression of integrin α5 and its prognostic impact in a glioblastoma series of patients scheduled to undergo the Stupp protocol as first-line treatment for GBM. The integrin α5 protein expression level was estimated in each tumor by the mean fluorescence intensity (MFI) and allowed us to identify two subpopulations showing either a high or low expression level. The distribution of patients in both subpopulations was not significantly different according to age, gender, recursive partitioning analysis (RPA) prognostic score, molecular markers or surgical and medical treatment. A high integrin α5 protein expression level was associated with a high risk of recurrence (HR = 1.696, 95% CI 1.031-2.792, p = 0.0377) and reduced overall survival (OS), even more significant in patients who completed the Stupp protocol (median OS: 15.6 vs. 22.8 months; HR = 2.324; 95% CI 1.168-4.621, p = 0.0162). In multivariate analysis, a high integrin α5 protein expression level was confirmed as an independent prognostic factor in the subpopulation of patients who completed the temozolomide-based first-line treatment for predicting OS over age, extent of surgery, RPA score and O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation (p = 0.029). In summary, for the first time, our study validates that a high integrin α5 protein expression level is associated with poor prognosis in GBM and confirms its potential as a therapeutic target implicated in the Stupp protocol resistance.
Collapse
|
8
|
P4HA2 Promotes Epithelial-to-Mesenchymal Transition and Glioma Malignancy through the Collagen-Dependent PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:1406853. [PMID: 34434233 PMCID: PMC8382519 DOI: 10.1155/2021/1406853] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Prolyl-4-hydroxylase subunit 2 (P4HA2) is a member of collagen modification enzymes involved in the remodeling of the extracellular matrix (ECM). Mounting evidence has suggested that deregulation of P4HA2 is common in cancer. However, the role of P4HA2 in glioma remains unknown. The present study aimed to elucidate the expression pattern, oncogenic functions, and molecular mechanisms of P4HA2 in glioblastoma cells. The TCGA datasets and paraffin samples were used for examining the expressions of P4HA2. P4HA2-specific lentivirus was generated to assess its oncogenic functions. A P4HA2 enzyme inhibitor (DHB) and an AKT agonist (SC79) were utilized to study the mechanisms. As a result, we demonstrated that P4HA2 is overexpressed in glioma and inversely correlates with patient survival. Knockdown of P4HA2 inhibited proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) like phenotype of glioma cells in vitro and suppressed tumor xenograft growth in vivo. Mechanistically, expressions of a series of collagen genes and of phosphorylated PI3K/AKT were downregulated by either P4HA2 silencing or inhibition of its prolyl hydroxylase. Finally, the inhibitory effects on the migration, invasion, and EMT-related molecules by P4HA2 knockdown were reversed by AKT activation with SC79. Our findings for the first time reveal that P4HA2 acts as an oncogenic molecule in glioma malignancy by regulating the expressions of collagens and the downstream PI3K/AKT signaling pathway.
Collapse
|
9
|
Masoumi KC, Huang X, Sime W, Mirkov A, Munksgaard Thorén M, Massoumi R, Lundgren-Åkerlund E. Integrin α10-Antibodies Reduce Glioblastoma Tumor Growth and Cell Migration. Cancers (Basel) 2021; 13:cancers13051184. [PMID: 33803359 PMCID: PMC7980568 DOI: 10.3390/cancers13051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Glioblastoma (GB) is the most common and most deadly form of brain tumor in adults which currently lacks effective treatments. Thus, there is a high need to identify new and effective ways to target the aggressive GB cells and treat the GB patients. In this study, we investigated the treatment effect of two antibodies that have been developed to target the protein integrin α10β1, which is present on the surface of GB cells. Our results show that the growth of GB tumor cells is reduced in the presence of the α10β1 antibodies. The treatment effect is demonstrated both in cell experiments and in an animal model. In addition, we found that the antibodies reduce the migration of the GB cells. We suggest that function-blocking antibodies targeting the integrin α10β1 is a promising new approach to treat glioblastoma patients. Abstract Glioblastoma (GB) is the most common and the most aggressive form of brain tumor in adults, which currently lacks efficient treatment strategies. In this study, we investigated the therapeutic effect of function-blocking antibodies targeting integrin α10β1 on patient-derived-GB cell lines in vitro and in vivo. The in vitro studies demonstrated significant inhibiting effects of the integrin α10 antibodies on the adhesion, migration, proliferation, and sphere formation of GB cells. In a xenograft mouse model, the effect of the antibodies on tumor growth was investigated in luciferase-labeled and subcutaneously implanted GB cells. As demonstrated by in vivo imaging analysis and caliper measurements, the integrin α10-antibodies significantly suppressed GB tumor growth compared to control antibodies. Immunohistochemical analysis of the GB tumors showed lower expression of the proliferation marker Ki67 and an increased expression of cleaved caspase-3 after treatment with integrin α10 antibodies, further supporting a therapeutic effect. Our results suggest that function-blocking antibody targeting integrin α10β1 is a promising therapeutic strategy for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Xiaoli Huang
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Wondossen Sime
- IVRS AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (W.S.); (R.M.)
| | - Anna Mirkov
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Matilda Munksgaard Thorén
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
| | - Ramin Massoumi
- IVRS AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (W.S.); (R.M.)
| | - Evy Lundgren-Åkerlund
- Xintela AB, Medicon Village, Scheeletorget 1, SE-223 81 Lund, Sweden; (K.C.M.); (X.H.); (A.M.); (M.M.T.)
- Correspondence: ; Tel.: +46-46-275-6500
| |
Collapse
|
10
|
Che P, Yu L, Friedman GK, Wang M, Ke X, Wang H, Zhang W, Nabors B, Ding Q, Han X. Integrin αvβ3 Engagement Regulates Glucose Metabolism and Migration through Focal Adhesion Kinase (FAK) and Protein Arginine Methyltransferase 5 (PRMT5) in Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13051111. [PMID: 33807786 PMCID: PMC7961489 DOI: 10.3390/cancers13051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming promotes glioblastoma cell migration and invasion. Integrin αvβ3 is one of the major integrin family members in glioblastoma multiforme cell surface mediating interactions with extracellular matrix proteins that are important for glioblastoma progression. The role of αvβ3 integrin in regulating metabolic reprogramming and its mechanism of action have not been determined in glioblastoma cells. Integrin αvβ3 engagement with osteopontin promotes glucose uptake and aerobic glycolysis, while inhibiting mitochondrial oxidative phosphorylation. Blocking or downregulation of integrin αvβ3 inhibits glucose uptake and aerobic glycolysis and promotes mitochondrial oxidative phosphorylation, resulting in decreased migration and growth in glioblastoma cells. Pharmacological inhibition of focal adhesion kinase (FAK) or downregulation of protein arginine methyltransferase 5 (PRMT5) blocks metabolic shift toward glycolysis and inhibits glioblastoma cell migration and invasion. These results support that integrin αvβ3 and osteopontin engagement plays an important role in promoting the metabolic shift toward glycolysis and inhibiting mitochondria oxidative phosphorylation in glioblastoma cells. The metabolic shift in cell energy metabolism is coupled to changes in migration, invasion, and growth, which are mediated by downstream FAK and PRMT5 in glioblastoma cells.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Lei Yu
- Guiyang Maternal and Child Health Hospital, Guiyang 550001, China;
| | - Gregory K. Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China;
| | - Huafeng Wang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- School of Life Science, Shanxi Normal University, Linfen City 041004, China
| | - Wenbin Zhang
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (P.C.); (M.W.)
- Correspondence: (Q.D.); (X.H.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (H.W.); (W.Z.); (B.N.)
- Correspondence: (Q.D.); (X.H.)
| |
Collapse
|
11
|
Communication of Glioma cells with neuronal plasticity: What is the underlying mechanism? Neurochem Int 2020; 141:104879. [PMID: 33068685 DOI: 10.1016/j.neuint.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
There has been a significantly rising discussion on how neuronal plasticity communicates with the glioma growth and invasion. This literature review aims to determine which neurotransmitters, ion channels and signaling pathways are involved in this context, how information is transferred from synaptic sites to the glioma cells and how glioma cells apply established mechanics of synaptic plasticity for their own increment. This work is a compilation of some outstanding findings related to the influence of the glutamate, calcium, potassium, chloride and sodium channels and other important brain plasticity molecules over the glioma progression. These topics also include the relevant molecular signaling data which could prove to be helpful for an effective clinical management of brain tumors in the future.
Collapse
|
12
|
Ahmad V. Prospective of extracellular matrix and drug correlations in disease management. Asian J Pharm Sci 2020; 16:147-160. [PMID: 33995610 PMCID: PMC8105415 DOI: 10.1016/j.ajps.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) comprises of many structural molecules that constitute the extracellular environment. ECM molecules are characterized by specific features like diversity, complexity and signaling, which are also results of improvement or development of disease mediated by some physiological changes. Several drugs have also been used to manage diseases and they have been reported to modulate ECM assembly, including physiological changes, beyond their primary targets and ECM metabolism. This review highlights the alteration of ECM environment for diseases and effect of different classes of drugs like nonsteroidal anti-inflammatory drugs, immune suppressant drug, steroids on ECM or its components. Thus, it is summarized from previously conducted researches that diseases can be managed by targeting specific components of ECM which are involved in the pathophysiology of diseases. Moreover, the drug delivery focused on targeting the ECM components also has the potential for the discovery of targeted and site specific release of drugs. Therefore, ECM or its components could be future targets for the development of new drugs for controlling various disease conditions including neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Brown NF, Williams M, Arkenau HT, Fleming RA, Tolson J, Yan L, Zhang J, Singh R, Auger KR, Lenox L, Cox D, Lewis Y, Plisson C, Searle G, Saleem A, Blagden S, Mulholland P. A study of the focal adhesion kinase inhibitor GSK2256098 in patients with recurrent glioblastoma with evaluation of tumor penetration of [11C]GSK2256098. Neuro Oncol 2019; 20:1634-1642. [PMID: 29788497 DOI: 10.1093/neuonc/noy078] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background GSK2256098 is a novel oral focal adhesion kinase (FAK) inhibitor. Preclinical studies demonstrate growth inhibition in glioblastoma cell lines. However, rodent studies indicate limited blood-brain barrier (BBB) penetration. In this expansion cohort within a phase I study, the safety, tolerability, pharmacokinetics (PK), and clinical activity of GSK2256098 were evaluated in patients with recurrent glioblastoma. Biodistribution and kinetics of [11C]GSK2256098 were assessed in a substudy using positron-emission tomography (PET). Methods Patients were treated with GSK2256098 until disease progression or withdrawal due to adverse events (AEs). Serial PK samples were collected on day 1. On a single day between days 9 and 20, patients received a microdose of intravenous [11C]GSK2256098 and were scanned with PET over 90 minutes with parallel PK sample collection. Response was assessed by MRI every 6 weeks. Results Thirteen patients were treated in 3 dose cohorts (1000 mg, 750 mg, 500 mg; all dosed twice daily). The maximum tolerated dose was 1000 mg twice daily. Dose-limiting toxicities were related to cerebral edema. Treatment-related AEs (>25%) were diarrhea, fatigue, and nausea. Eight patients participated in the PET substudy, with [11C]GSK2256098 VT (volume of distribution) estimates of 0.9 in tumor tissue, 0.5 in surrounding T2 enhancing areas, and 0.4 in normal brain. Best response of stable disease was observed in 3 patients, including 1 patient on treatment for 11.3 months. Conclusions GSK2256098 was tolerable in patients with relapsed glioblastoma. GSK2256098 crossed the BBB at low levels into normal brain, but at markedly higher levels into tumor, consistent with tumor-associated BBB disruption. Additional clinical trials of GSK2256098 are ongoing.
Collapse
Affiliation(s)
- Nicholas F Brown
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Oncology, UCL Cancer Institute, London, UK
| | - Matthew Williams
- Computational Oncology Lab, Institute of Global Health Innovation, South Kensington Campus, Imperial College, London, UK.,Radiotherapy Department, Charing Cross Hospital, London, UK
| | - Hendrik-Tobias Arkenau
- Department of Oncology, UCL Cancer Institute, London, UK.,Sarah Cannon Research Institute UK, London, UK
| | - Ronald A Fleming
- GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, USA
| | - Jerry Tolson
- GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, USA
| | | | | | | | - Kurt R Auger
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laurie Lenox
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David Cox
- GlaxoSmithKline Research & Development Ltd, Uxbridge, UK
| | - Yvonne Lewis
- GlaxoSmithKline, Collegeville, Pennsylvania, USA.,Imanova Ltd, Centre for Imaging Sciences, London, UK
| | | | - Graham Searle
- Imanova Ltd, Centre for Imaging Sciences, London, UK
| | - Azeem Saleem
- Imanova Ltd, Centre for Imaging Sciences, London, UK
| | - Sarah Blagden
- NIHR/Wellcome Trust Imperial CRF, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, UK
| | - Paul Mulholland
- NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK.,Department of Oncology, UCL Cancer Institute, London, UK
| |
Collapse
|
14
|
Fechter P, Cruz Da Silva E, Mercier MC, Noulet F, Etienne-Seloum N, Guenot D, Lehmann M, Vauchelles R, Martin S, Lelong-Rebel I, Ray AM, Seguin C, Dontenwill M, Choulier L. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:63-77. [PMID: 31226519 PMCID: PMC6586995 DOI: 10.1016/j.omtn.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Nucleic acid aptamers are often referred to as chemical antibodies. Because they possess several advantages, like their smaller size, temperature stability, ease of chemical modification, lack of immunogenicity and toxicity, and lower cost of production, aptamers are promising tools for clinical applications. Aptamers against cell surface protein biomarkers are of particular interest for cancer diagnosis and targeted therapy. In this study, we identified and characterized RNA aptamers targeting cells expressing integrin α5β1. This αβ heterodimeric cell surface receptor is implicated in tumor angiogenesis and solid tumor aggressiveness. In glioblastoma, integrin α5β1 expression is associated with an aggressive phenotype and a decrease in patient survival. We used a complex and original hybrid SELEX (selective evolution of ligands by exponential enrichment) strategy combining protein-SELEX cycles on the recombinant α5β1 protein, surrounded by cell-SELEX cycles using two different cell lines. We identified aptamer H02, able to differentiate, in cyto- and histofluorescence assays, glioblastoma cell lines, and tissues from patient-derived tumor xenografts according to their α5 expression levels. Aptamer H02 is therefore an interesting tool for glioblastoma tumor characterization.
Collapse
Affiliation(s)
- Pierre Fechter
- CNRS, UMR 7242, Biotechnologie et Signalisation Cellulaire, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| | - Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Fanny Noulet
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Nelly Etienne-Seloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; Département de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67000 Strasbourg, France
| | - Dominique Guenot
- EA 3430, Progression Tumorale et Micro-environnement, Approches Translationnelles et Épidémiologie, Université de Strasbourg, 67000 Strasbourg, France
| | - Maxime Lehmann
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Romain Vauchelles
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Sophie Martin
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Isabelle Lelong-Rebel
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Anne-Marie Ray
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Cendrine Seguin
- CNRS, UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France.
| |
Collapse
|
15
|
Hughes JH, Ewy JM, Chen J, Wong SY, Tharp KM, Stahl A, Kumar S. Transcriptomic analysis reveals that BMP4 sensitizes glioblastoma tumor-initiating cells to mechanical cues. Matrix Biol 2019; 85-86:112-127. [PMID: 31189077 DOI: 10.1016/j.matbio.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
The poor prognosis of glioblastoma (GBM) is associated with a highly invasive stem-like subpopulation of tumor-initiating cells (TICs), which drive recurrence and contribute to intra-tumoral heterogeneity through differentiation. These TICs are better able to escape extracellular matrix-imposed mechanical restrictions on invasion than their more differentiated progeny, and sensitization of TICs to extracellular matrix mechanics extends survival in preclinical models of GBM. However, little is known about the molecular basis of the relationship between TIC differentiation and mechanotransduction. Here we explore this relationship through a combination of transcriptomic analysis and studies with defined-stiffness matrices. We show that TIC differentiation induced by bone morphogenetic protein 4 (BMP4) suppresses expression of proteins relevant to extracellular matrix signaling and sensitizes TIC spreading to matrix stiffness. Moreover, our findings point towards a previously unappreciated connection between BMP4-induced differentiation, mechanotransduction, and metabolism. Notably, stiffness and differentiation modulate oxygen consumption, and inhibition of oxidative phosphorylation influences cell spreading in a stiffness- and differentiation-dependent manner. Our work integrates bioinformatic analysis with targeted molecular measurements and perturbations to yield new insight into how morphogen-induced differentiation influences how GBM TICs process mechanical inputs.
Collapse
Affiliation(s)
- Jasmine H Hughes
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeanette M Ewy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie Y Wong
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94720, USA
| | - Andreas Stahl
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- UC Berkeley - UCSF Graduate Program in Bioengineering; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Cemeli T, Guasch-Vallés M, Nàger M, Felip I, Cambray S, Santacana M, Gatius S, Pedraza N, Dolcet X, Ferrezuelo F, Schuhmacher AJ, Herreros J, Garí E. Cytoplasmic cyclin D1 regulates glioblastoma dissemination. J Pathol 2019; 248:501-513. [PMID: 30957234 DOI: 10.1002/path.5277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is a highly invasive brain neoplasia with an elevated recurrence rate after surgical resection. The cyclin D1 (Ccnd1)/Cdk4-retinoblastoma 1 (RB1) axis is frequently altered in GBM, leading to overproliferation by RB1 deletion or by Ccnd1-Cdk4 overactivation. High levels of Ccnd1-Cdk4 also promote GBM cell invasion by mechanisms that are not so well understood. The purpose of this work is to elucidate the in vivo role of cytoplasmic Ccnd1-Cdk4 activity in the dissemination of GBM. We show that Ccnd1 activates the invasion of primary human GBM cells through cytoplasmic RB1-independent mechanisms. By using GBM mouse models, we observed that evaded GBM cells showed cytoplasmic Ccnd1 colocalizing with regulators of cell invasion such as RalA and paxillin. Our genetic data strongly suggest that, in GBM cells, the Ccnd1-Cdk4 complex is acting upstream of those regulators. Accordingly, expression of Ccnd1 induces focal adhesion kinase, RalA and Rac1 activities. Finally, in vivo experiments demonstrated increased GBM dissemination after expression of membrane-targeted Ccnd1. We conclude that Ccnd1-Cdk4 activity promotes GBM dissemination through cytoplasmic and RB1-independent mechanisms. Therefore, inhibition of Ccnd1-Cdk4 activity may be useful to hinder the dissemination of recurrent GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tània Cemeli
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Marta Guasch-Vallés
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Mireia Nàger
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Isidre Felip
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Serafí Cambray
- Vascular and Renal Translational Group, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Xavier Dolcet
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Francisco Ferrezuelo
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Alberto J Schuhmacher
- Biomedical Research Center of Aragon, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Judit Herreros
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| |
Collapse
|
17
|
You E, Huh YH, Lee J, Ko P, Jeong J, Keum S, Kim J, Kwon A, Song WK, Rhee S. Downregulation of SPIN90 promotes fibroblast activation via periostin-FAK-ROCK signaling module. J Cell Physiol 2018; 234:9216-9224. [PMID: 30341913 DOI: 10.1002/jcp.27600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Alterations in mechanical properties in the extracellular matrix are modulated by myofibroblasts and are required for progressive fibrotic diseases. Recently, we reported that fibroblasts depleted of SPIN90 showed enhanced differentiation into myofibroblasts via increased acetylation of microtubules in the soft matrix; the mechanisms of the underlying signaling network, however, remain unclear. In this study, we determine the effect of depletion of SPIN90 on FAK/ROCK signaling modules. Transcriptome analysis of Spin90 KO mouse embryonic fibroblasts (MEF) and fibroblasts activated by TGF-β revealed that Postn is the most significantly upregulated gene. Knockdown of Postn by small interfering RNA suppressed cell adhesion and myofibroblastic differentiation and downregulated FAK activity in Spin90 KO MEF. Our results indicate that SPIN90 depletion activates FAK/ROCK signaling, induced by Postn expression, which is critical for myofibroblastic differentiation on soft matrices mimicking the mechanical environment of a normal tissue.
Collapse
Affiliation(s)
- Eunae You
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yun-Hyun Huh
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Panseon Ko
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jaegu Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ahreum Kwon
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Woo Keun Song
- Bio Imaging and Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Malric L, Monferran S, Delmas C, Arnauduc F, Dahan P, Boyrie S, Deshors P, Lubrano V, Da Mota DF, Gilhodes J, Filleron T, Siegfried A, Evrard S, Kowalski-Chauvel A, Moyal ECJ, Toulas C, Lemarié A. Inhibiting Integrin β8 to Differentiate and Radiosensitize Glioblastoma-Initiating Cells. Mol Cancer Res 2018; 17:384-397. [PMID: 30266751 DOI: 10.1158/1541-7786.mcr-18-0386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Glioblastomas (GB) are malignant brain tumors with poor prognosis despite treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a subpopulation of GB-initiating cells (GIC), which contribute to tumor aggressiveness, resistance, and recurrence. Some integrins are specifically expressed by GICs and could be actionable targets to improve GB treatment. Here, integrin β8 (ITGB8) was identified as a potential selective target in this highly tumorigenic GIC subpopulation. Using several patient-derived primocultures, it was demonstrated that ITGB8 is overexpressed in GICs compared with their differentiated progeny. Furthermore, ITGB8 is also overexpressed in GB, and its overexpression is correlated with poor prognosis and with the expression of several other classic stem cell markers. Moreover, inhibiting ITGB8 diminished several main GIC characteristics and features, including self-renewal ability, stemness, migration potential, and tumor formation capacity. Blockade of ITGB8 significantly impaired GIC cell viability via apoptosis induction. Finally, the combination of radiotherapy and ITGB8 targeting radiosensitized GICs through postmitotic cell death. IMPLICATIONS: This study identifies ITGB8 as a new selective marker for GICs and as a promising therapeutic target in combination with chemo/radiotherapy for the treatment of highly aggressive brain tumors.
Collapse
Affiliation(s)
- Laure Malric
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Caroline Delmas
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Florent Arnauduc
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Perrine Dahan
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sabrina Boyrie
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Pauline Deshors
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Vincent Lubrano
- Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,INSERM UMR 1214 - ToNIC, Toulouse, France
| | - Dina Ferreira Da Mota
- Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France
| | | | | | - Aurore Siegfried
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Solène Evrard
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Medicine of Rangueil, University of Toulouse III Paul Sabatier, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM UMR 1037, Center for Cancer Research of Toulouse, Toulouse, France. .,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2018; 58:130-141. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the more frequent and malignant brain tumour. In spite of all efforts, the median overall survival of GB patients remains approximately 15 months under therapy. The molecular biology underlying GB is complex, which highlight the need of specific treatment strategies. In fact, the deregulation of several molecular signalling pathways, the existence of the blood-brain barrier (BBB), that makes almost all the chemotherapeutic agents inaccessible to the tumour site, and the existence of a population of stem-like cells known to be responsible for tumour recurrence after therapy, can contribute to GB chemoresistance. In the present review, we summarize the reliable factors responsible for the failure of the most important chemotherapeutic agents in GB. Specifically, we describe the utmost important characteristics of the BBB, as well as the genetic, molecular and transcription factors alterations that lead to tumour malignancy, and ultimately their impact on stem-like cell plasticity modulation. Recently, nanocarriers have attracted increasing attention in brain- and tumour-targeted drug-delivery systems, owing to their potential ability to target cell surface specific molecules and to cross the BBB delivering the drug specifically to the tumour cells, improving efficacy and thus reducing non-specific toxicity. In this sense, we will lastly highlight the therapeutic challenges and improvements regarding GB treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| | - Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil; Instituto de Ciências Biomédicas da Universidade Federal do Rio de Janeiro (ICB-UFRJ), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Clinical Pathology Department, Coimbra Hospital and Universitary Center (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology, Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra (FMUC) and Coimbra Institute for Clinical and Biomedical Research (iCBR), group of Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra (FFUC); Coimbra, Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN) - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Schulze M, Violonchi C, Swoboda S, Welz T, Kerkhoff E, Hoja S, Brüggemann S, Simbürger J, Reinders J, Riemenschneider MJ. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 2018; 28:695-709. [PMID: 29222813 DOI: 10.1111/bpa.12584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and most malignant type of primary brain tumor and significantly contributes to cancer morbidity and mortality. Invasion into the healthy brain parenchyma is a major feature of glioblastoma aggressiveness. Reelin (RELN) is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain and sustains functionality in the adult brain. We here show that both RELN and its main downstream effector DAB1 are silenced in glioblastoma as compared to non-neoplastic tissue and mRNA expression is inversely correlated with malignancy grade. Furthermore, RELN expression is positively correlated with patient survival in two large, independent clinically annotated datasets. RELN silencing occurs via promoter hypermethylation as shown by both database mining and bisulfite sequencing of the RELN promoter. Consequently, treatment with 5'-Azacytidine and trichostatin A induced RELN expression in vitro. On the functional level, we found RELN to regulate glioblastoma cell migration both in a DAB1 (tyrosine phosphorylation)-dependent and -independent fashion, depending on the substrate provided. Moreover, stimulation of RELN signaling strongly reduced proliferation in glioblastoma cells. This phenotype depends on DAB1 stimulation by RELN, as a mutant that lacks all RELN induced tyrosine phosphorylation sites (DAB1-5F) failed to induce a growth arrest. Proteomic analyzes revealed that these effects are mediated by a reduction in E2F targets and dephosphorylation of ERK1/2. Taken together, our data establish a relevance of RELN signaling in glioblastoma pathology and thereby might unearth novel, yet unrecognized treatment options.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Christ Violonchi
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany
| | - Stefan Swoboda
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Susanne Brüggemann
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Johann Simbürger
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jörg Reinders
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
21
|
Weller M, Nabors LB, Gorlia T, Leske H, Rushing E, Bady P, Hicking C, Perry J, Hong YK, Roth P, Wick W, Goodman SL, Hegi ME, Picard M, Moch H, Straub J, Stupp R. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 2017; 7:15018-32. [PMID: 26918452 PMCID: PMC4924768 DOI: 10.18632/oncotarget.7588] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins αvβ3 and αvβ5 regulate angiogenesis and invasiveness in cancer, potentially by modulating activation of the transforming growth factor (TGF)-β pathway. The randomized phase III CENTRIC and phase II CORE trials explored the integrin inhibitor cilengitide in patients with newly diagnosed glioblastoma with versus without O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. These trials failed to meet their primary endpoints. Immunohistochemistry was used to assess the levels of the target integrins of cilengitide, αvβ3 and αvβ5 integrins, of αvβ8 and of their putative target, phosphorylation of SMAD2, in tumor tissues from CENTRIC (n=274) and CORE (n=224). αvβ3 and αvβ5 expression correlated well in tumor and endothelial cells, but showed little association with αvβ8 or pSMAD2 levels. In CENTRIC, there was no interaction between the biomarkers and treatment for prediction of outcome. In CORE, higher αvβ3 levels in tumor cells were associated with improved progression-free survival by central review and with improved overall survival in patients treated with cilengitide. Integrins αvβ3, αvβ5 and αvβ8 are differentially expressed in glioblastoma. Integrin levels do not correlate with the activation level of the canonical TGF-β pathway. αvβ3 integrin expression may predict benefit from integrin inhibition in patients with glioblastoma lacking MGMT promoter methylation.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Henning Leske
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Elisabeth Rushing
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre Bady
- Department of Education and Research, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Christine Hicking
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - James Perry
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Yong-Kil Hong
- The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon L Goodman
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Martin Picard
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Josef Straub
- Department of Translational and Biomarkers Research, Oncology, Merck KGaA, Darmstadt, Germany
| | - Roger Stupp
- Department of Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Malric L, Monferran S, Gilhodes J, Boyrie S, Dahan P, Skuli N, Sesen J, Filleron T, Kowalski-Chauvel A, Cohen-Jonathan Moyal E, Toulas C, Lemarié A. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update. Oncotarget 2017; 8:86947-86968. [PMID: 29156849 PMCID: PMC5689739 DOI: 10.18632/oncotarget.20372] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are malignant brain tumors with dismal prognosis despite standard treatment with surgery and radio/chemotherapy. These tumors are defined by an important cellular heterogeneity and notably contain a particular subpopulation of Glioblastoma-initiating cells, which recapitulate the heterogeneity of the original Glioblastoma. In order to classify these heterogeneous tumors, genomic profiling has also been undertaken to classify these heterogeneous tumors into several subtypes. Current research focuses on developing therapies, which could take into account this cellular and genomic heterogeneity. Among these targets, integrins are the subject of numerous studies since these extracellular matrix transmembrane receptors notably controls tumor invasion and progression. Moreover, some of these integrins are considered as membrane markers for the Glioblastoma-initiating cells subpopulation. We reviewed here integrin expression according to glioblastoma molecular subtypes and cell heterogeneity. We discussed their roles in glioblastoma invasion, angiogenesis, therapeutic resistance, stemness and microenvironment modulations, and provide an overview of clinical trials investigating integrins in glioblastomas. This review highlights that specific integrins could be identified as selective glioblastoma cells markers and that their targeting represents new diagnostic and/or therapeutic strategies.
Collapse
Affiliation(s)
- Laure Malric
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Sylvie Monferran
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | - Sabrina Boyrie
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Perrine Dahan
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Nicolas Skuli
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Julie Sesen
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France
| | - Thomas Filleron
- Department of Biostatistics, IUCT-Oncopole, Toulouse, France
| | | | - Elizabeth Cohen-Jonathan Moyal
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Department of Radiotherapy, IUCT-Oncopole, Toulouse, France
| | - Christine Toulas
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Laboratory of Oncogenetic, IUCT-Oncopole, Toulouse, France
| | - Anthony Lemarié
- INSERM U1037, Center for Cancer Research of Toulouse, Toulouse, France.,Faculty of Pharmaceutical Sciences, University of Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
23
|
Jaraíz-Rodríguez M, Tabernero MD, González-Tablas M, Otero A, Orfao A, Medina JM, Tabernero A. A Short Region of Connexin43 Reduces Human Glioma Stem Cell Migration, Invasion, and Survival through Src, PTEN, and FAK. Stem Cell Reports 2017; 9:451-463. [PMID: 28712848 PMCID: PMC5549880 DOI: 10.1016/j.stemcr.2017.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Connexin43 (CX43), a protein that forms gap junction channels and hemichannels in astrocytes, is downregulated in high-grade gliomas. Its relevance for glioma therapy has been thoroughly explored; however, its positive effects on proliferation are counterbalanced by its effects on migration and invasion. Here, we show that a cell-penetrating peptide based on CX43 (TAT-Cx43266-283) inhibited c-Src and focal adhesion kinase (FAK) and upregulated phosphatase and tensin homolog in glioma stem cells (GSCs) derived from patients. Consequently, TAT-Cx43266-283 reduced GSC motility, as analyzed by time-lapse microscopy, and strongly reduced their invasive ability. Interestingly, we investigated the effects of TAT-Cx43266-283 on freshly removed surgical specimens as undissociated glioblastoma blocks, which revealed a dramatic reduction in the growth, migration, and survival of these cells. In conclusion, a region of CX43 (amino acids 266–283) exerts an important anti-tumor effect in patient-derived glioblastoma models that includes impairment of GSC migration and invasion. TAT-Cx43266-283 exerts anti-tumor effects in patient-derived glioblastoma models TAT-Cx43266-283 targets Src, PTEN, and FAK TAT-Cx43266-283 inhibits glioma stem cell migration and invasion
Collapse
Affiliation(s)
- Myriam Jaraíz-Rodríguez
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Ma Dolores Tabernero
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - María González-Tablas
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alvaro Otero
- Neurosurgery Service, Hospital Universitario de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL), Departamento de Medicina Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jose M Medina
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Arantxa Tabernero
- Instituto de Neurociencias de Castilla y León (INCYL), Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, C/ Pintor Fernando Gallego 1, 37007 Salamanca, Spain.
| |
Collapse
|
24
|
Kumar V, Soni UK, Maurya VK, Singh K, Jha RK. Integrin beta8 (ITGB8) activates VAV-RAC1 signaling via FAK in the acquisition of endometrial epithelial cell receptivity for blastocyst implantation. Sci Rep 2017; 7:1885. [PMID: 28507287 PMCID: PMC5432530 DOI: 10.1038/s41598-017-01764-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/06/2017] [Indexed: 12/02/2022] Open
Abstract
Integrin beta8 (ITGB8) is involved in the endometrial receptivity. The blastocyst first interacts with the luminal endometrial epithelial cells during its implantation; therefore, we have investigated the signaling of ITGB8 via FAK and VAV-RAC1 in the endometrial epithelial cells. Integrin beta8 was found elevated in epithelial cells at late-pre-receptive (day4, 1600 h) and receptive (day5, 0500 h) stages of endometrial receptivity period in the mouse. Integrins downstream molecule FAK has demonstrated an increased expression and phosphorylation (Y397) in the endometrium as well as in the isolated endometrial epithelial cells during receptive and post-receptive stages. Integrin beta8 can functionally interact with FAK, VAV and RAC1 as the levels of phosphorylated-FAK, and VAV along with the RAC-GTP form was reduced after ITGB8 knockdown in the endometrial epithelial cells and uterus. Further, VAV and RAC1 were seen poorly active in the absence of FAK activity, suggesting a crosstalk of ITGB8 and FAK for VAV and RAC1 activation in the endometrial epithelial cells. Silencing of ITGB8 expression and inhibition of FAK activity in the Ishikawa cells rendered poor attachment of JAr spheroids. In conclusion, ITGB8 activates VAV-RAC1 signaling axis via FAK to facilitate the endometrial epithelial cell receptivity for the attachment of blastocyst.
Collapse
Affiliation(s)
- Vijay Kumar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Upendra Kumar Soni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Vineet Kumar Maurya
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University (BHU), Varanasi, UP, India
| | - Rajesh Kumar Jha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India.
| |
Collapse
|
25
|
Sim W, Cha J, Choi C, Choi K. Rapid and quantitative measurement of cell adhesion and migration activity by time-series analysis on biomimetic topography. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Tan AC, Vyse S, Huang PH. Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discov Today 2017; 22:72-84. [PMID: 27452454 PMCID: PMC5346155 DOI: 10.1016/j.drudis.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/15/2016] [Accepted: 07/15/2016] [Indexed: 01/04/2023]
Abstract
Studies over the past decade have shown that many cancers have evolved receptor tyrosine kinase (RTK) co-activation as a mechanism to drive tumour progression and limit the lethal effects of therapy. This review summarises the general principles of RTK co-activation and discusses approaches to exploit this phenomenon in cancer therapy and drug discovery. Computational strategies to predict kinase co-dependencies by integrating drug screening data and kinase inhibitor selectivity profiles will also be described. We offer a perspective on the implications of RTK co-activation on tumour heterogeneity and cancer evolution and conclude by surveying emerging computational and experimental approaches that will provide insights into RTK co-activation biology and deliver new developments in effective cancer therapies.
Collapse
Affiliation(s)
- Aik-Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
27
|
Overexpression of PDGFRA cooperates with loss of NF1 and p53 to accelerate the molecular pathogenesis of malignant peripheral nerve sheath tumors. Oncogene 2016; 36:1058-1068. [PMID: 27477693 PMCID: PMC5332555 DOI: 10.1038/onc.2016.269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, frequently metastatic sarcomas that are associated with neurofibromatosis type 1 (NF1), a prominent inherited genetic disease in humans. Although loss of the NF1 gene predisposes to MPNST induction, relatively long tumor latency in NF1 patients suggests that additional genetic or epigenetic abnormalities are needed for the development of these nerve sheath malignancies. To study the molecular pathways contributing to the formation of MPNSTs in NF1 patients, we used a zebrafish tumor model defined by nf1 loss in a p53-deficient background together with the overexpression of either wild-type or constitutively activated PDGFRA (platelet-derived growth factor receptor-α) under control of the sox10 neural crest-specific promoter. Here we demonstrate the accelerated onset and increased penetrance of MPNST formation in fish overexpressing both the wild-type and the mutant PDGFRA transgenes in cells of neural crest origin. Interestingly, overexpression of the wild-type PDGFRA was even more potent in promoting transformation than the mutant PDGFRA, which is important because ~78% of human MPNSTs have expression of wild-type PDGFRA, whereas only 5% harbor activating mutations of the gene encoding this receptor. Further analysis revealed the induction of cellular senescence in zebrafish embryos overexpressing mutant, but not wild-type, PDGFRA, suggesting a mechanism through which the oncogenic activity of the mutant receptor is tempered by the activation of premature cellular senescence in an NF1-deficient background. Taken together, our study suggests a model in which overexpression of wild-type PDGFRA associated with NF1 deficiency leads to aberrant activation of downstream RAS signaling and thus contributes importantly to MPNST development-a prediction supported by the ability of the kinase inhibitor sunitinib alone and in combination with the MEK inhibitor trametinib to retard MPNST progression in transgenic fish overexpressing the wild-type receptor.
Collapse
|
28
|
Hwang IH, Kwon YK, Cho CK, Lee YW, Sung JS, Joo JC, Lee KB, Yoo HS, Jang IS. Modified Panax ginseng Extract Inhibits uPAR-Mediated α5β1-Integrin Signaling by Modulating Caveolin-1 to Induce Early Apoptosis in Lung Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1081-97. [PMID: 27430913 DOI: 10.1142/s0192415x16500609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urokinase receptor (uPAR) is enhanced in many human cancer cells and is frequently an indicator of poor prognosis. Activation of [Formula: see text]1-integrin requires caveolin-1 and is regulated by uPAR. However, the underlying molecular mechanism responsible for the interaction between uPAR and [Formula: see text]1-integrin remains obscure. We found that modified regular Panax ginseng extract (MRGX) had a negative modulating effect on the uPAR/[Formula: see text]1-integrin interaction, disrupted the uPAR/integrin interaction by modulating caveoline-1, and caused early apoptosis in cancer cells. Additionally, we found that siRNA-mediated caveoline-1 downregulation inhibited uPAR-mediated [Formula: see text]1-integrin signaling, whereas caveoline-1 up-regulation stimulated the signaling, which suppressed p53 expression, thereby indicating negative crosstalk exists between the integrin [Formula: see text]1 and the p53 pathways. Thus, these findings identify a novel mechanism whereby the inhibition of [Formula: see text]1 integrin and the activation of p53 modulate the expression of the anti-apoptotic proteins that are crucially involved in inducing apoptosis in A549 lung cancer cells. Furthermore, MRGX causes changes in the expressions of members of the Bcl-2 family (Bax and Bcl-2) in a pro-apoptotic manner. In addition, MGRX-mediated inhibition of [Formula: see text]1 integrin attenuates ERK phosphorylation (p-ERK), which up-regulates caspase-8 and Bax. Therefore, ERK may affect mitochondria through a negative regulation of caspase-8 and Bax. Taken together, these findings reveal that MRGX is involved in uPAR-[Formula: see text]1-integrin signaling by modulating caveolin-1 signaling to induce early apoptosis in A549 lung-cancer cells and strongly indicate that MRGX might be useful as a herbal medicine and may lead to the development of new herbal medicine that would suppress the growth of lung-cancer cells.
Collapse
Affiliation(s)
- In-Hu Hwang
- Department of Physiology, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Yong-Kyun Kwon
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Yeon-Weol Lee
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jong-Cheon Joo
- Department of Sasang Constitutional Medicine, Wonkwang University Oriental Medical Hospital, Jeonju 54887, Republic of Korea
| | - Kyung-Bok Lee
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| |
Collapse
|
29
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
30
|
Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells. PLoS One 2015; 10:e0135951. [PMID: 26284619 PMCID: PMC4540426 DOI: 10.1371/journal.pone.0135951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022] Open
Abstract
Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our results describe a new role for Dex as a suppressor of GBM dispersal and growth.
Collapse
|
31
|
Rooj AK, Liu Z, McNicholas CM, Fuller CM. Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin. Am J Physiol Cell Physiol 2015; 309:C308-19. [PMID: 26108662 DOI: 10.1152/ajpcell.00036.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022]
Abstract
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiyong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmel M McNicholas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Catherine M Fuller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Cai Y, Dai X, Zhang Q, Dai Z. Gene expression of OCT4, SOX2, KLF4 and MYC (OSKM) induced pluripotent stem cells: identification for potential mechanisms. Diagn Pathol 2015; 10:35. [PMID: 25907774 PMCID: PMC4414430 DOI: 10.1186/s13000-015-0263-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/06/2015] [Indexed: 02/09/2023] Open
Abstract
Background Somatic cells could be reprogrammed to induced pluripotent stem cells (iPS) by ectopic expression of OCT4, SOX2, KLF4 and MYC (OSKM). We aimed to gain insights into the early mechanisms underlying the induction of pluripotency. Methods GSE28688 containing 14 gene expression profiles were downloaded from GEO, including untreated human neonatal foreskin fibroblasts (HFF1) as control, OSKM-induced HFF1 (at 24, 48, 72 h post-transduction of OSKM encoding viruses), two iPS cell lines, and two embryonic stem (ES) cell lines. Differentially expressed genes (DEGs) were screened between different cell lines and the control by Limma package in Bioconductor. KEGG pathway enrichment analysis was performed by DAVID. The STRING database was used to construct protein-protein interaction (PPI) network. Activities and regulatory networks of transcription factors (TFs) were calculated and constructed by Fast Network Component Analysis (FastNCA). Results Compared with untreated HFF1, 117, 347, 557, 2263 and 2307 DEGs were obtained from three point post-transduction HFF1, iPS and ES cells. Meanwhile, up-regulated DEGs in first two days of HFF1 were mainly enriched in RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling pathways. Down-regulated DEGs at 72 h were significantly enriched in focal adhesion pathway which was similar to iPS cells. Moreover, ISG15, IRF7, STAT1 and DDX58 were with higher degree in PPI networks during time series. Furthermore, the targets of six selected TFs were mainly enriched in screened DEGs. Conclusion In this study, screened DEGs including ISG15, IRF7 and CCL5 participated in OSKM-induced pluripotency might attenuate immune response post-transduction through RLR and TLR signaling pathways. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2503890341543007.
Collapse
Affiliation(s)
- Yanning Cai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Xianhua Dai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Qianhua Zhang
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| | - Zhiming Dai
- School of Information Science and Technology, Sun Yat-sen University, Higher Education Mega Center, No.132 East Outer Ring Road, Guangzhou, China. .,SYSU-CMU Shunde International Joint Research Institute (JRI), Shunde, Guangdong, China.
| |
Collapse
|
33
|
Kegelman TP, Hu B, Emdad L, Das SK, Sarkar D, Fisher PB. In vivo modeling of malignant glioma: the road to effective therapy. Adv Cancer Res 2015; 121:261-330. [PMID: 24889534 DOI: 10.1016/b978-0-12-800249-0.00007-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite an increased emphasis on developing new therapies for malignant gliomas, they remain among the most intractable tumors faced today as they demonstrate a remarkable ability to evade current treatment strategies. Numerous candidate treatments fail at late stages, often after showing promising preclinical results. This disconnect highlights the continued need for improved animal models of glioma, which can be used to both screen potential targets and authentically recapitulate the human condition. This review examines recent developments in the animal modeling of glioma, from more established rat models to intriguing new systems using Drosophila and zebrafish that set the stage for higher throughput studies of potentially useful targets. It also addresses the versatility of mouse modeling using newly developed techniques recreating human protocols and sophisticated genetically engineered approaches that aim to characterize the biology of gliomagenesis. The use of these and future models will elucidate both new targets and effective combination therapies that will impact on disease management.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Bin Hu
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
34
|
Grigore F, Brehar FM, Gorgan MR. Current perspectives concerning the multimodal therapy in Glioblastoma. ROMANIAN NEUROSURGERY 2015. [DOI: 10.1515/romneu-2015-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
GBM (Glioblastoma) is the most common, malignant type of primary brain tumor. It has a dismal prognosis, with an average life expectancy of less than 15 months. A better understanding of the tumor biology of GBM has been achieved in the past decade and set up new directions in the multimodal therapy by targeting the molecular paths involved in tumor initiation and progression. Invasion is a hallmark of GBM, and targeting the complex invasive mechanism of the tumor is mandatory in order to achieve a satisfactory result in GBM therapy. The goal of this review is to describe the tumor biology and key features of GBM and to provide an up-to-date overview of the current identified molecular alterations involved both in tumorigenesis and tumor progression.
Collapse
|
35
|
Greenall SA, Donoghue JF, Van Sinderen M, Dubljevic V, Budiman S, Devlin M, Street I, Adams TE, Johns TG. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene 2015; 34:5277-87. [PMID: 25659577 DOI: 10.1038/onc.2014.448] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/19/2014] [Accepted: 11/08/2014] [Indexed: 12/20/2022]
Abstract
A truncation mutant of the epidermal growth factor receptor, EGFRvIII, is commonly expressed in glioma, an incurable brain cancer. EGFRvIII is tumorigenic, in part, through its transactivation of other receptor tyrosine kinases (RTKs). Preventing the effects of this transactivation could form part of an effective therapy for glioma; however, the mechanism by which the transactivation occurs is unknown. Focusing on the RTK MET, we show that MET transactivation in U87MG human glioma cells in vitro is proportional to EGFRvIII activity and involves MET heterodimerization associated with a focal adhesion kinase (FAK) scaffold. The transactivation of certain other RTKs was, however, independent of FAK. Simultaneously targeting EGFRvIII (with panitumumab) and the transactivated RTKs themselves (with motesanib) in an intracranial mouse model of glioma resulted in significantly greater survival than with either agent alone, indicating that cotargeting these RTKs has potent antitumor efficacy and providing a strategy for treating EGFRvIII-expressing gliomas, which are usually refractory to treatment.
Collapse
Affiliation(s)
- S A Greenall
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia.,Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC, Australia
| | - J F Donoghue
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - M Van Sinderen
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - V Dubljevic
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - S Budiman
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| | - M Devlin
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, Australia
| | - I Street
- CRC for Cancer Therapeutics, Bundoora, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - T E Adams
- Division of Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC, Australia
| | - T G Johns
- Oncogenic Signalling Laboratory and Brain Cancer Discovery Collaborative, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, VIC, Australia.,Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
Santos T, Fang X, Chen MT, Wang W, Ferreira R, Jhaveri N, Gundersen M, Zhou C, Pagnini P, Hofman FM, Chen TC. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol 2014; 4:180. [PMID: 25077069 PMCID: PMC4097104 DOI: 10.3389/fonc.2014.00180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022] Open
Abstract
The objective was to use carbon nanotubes (CNT) coupled with near-infrared radiation (NIR) to induce hyperthermia as a novel non-ionizing radiation treatment for primary brain tumors, glioblastoma multiforme (GBM). In this study, we report the therapeutic potential of hyperthermia-induced thermal ablation using the sequential administration of carbon nanotubes (CNT) and NIR. In vitro studies were performed using glioma tumor cell lines (U251, U87, LN229, T98G). Glioma cells were incubated with CNTs for 24 h followed by exposure to NIR for 10 min. Glioma cells preferentially internalized CNTs, which upon NIR exposure, generated heat, causing necrotic cell death. There were minimal effects to normal cells, which correlate to their minimal uptake of CNTs. Furthermore, this protocol caused cell death to glioma cancer stem cells, and drug-resistant as well as drug-sensitive glioma cells. This sequential hyperthermia therapy was effective in vivo in the rodent tumor model resulting in tumor shrinkage and no recurrence after only one treatment. In conclusion, this sequence of selective CNT administration followed by NIR activation provides a new approach to the treatment of glioma, particularly drug-resistant gliomas.
Collapse
Affiliation(s)
- Tiago Santos
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA ; University of Coimbra , Coimbra , Portugal
| | - Xin Fang
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA ; Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA
| | - Meng-Tse Chen
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA ; Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA
| | - Weijun Wang
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Raquel Ferreira
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Niyati Jhaveri
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Martin Gundersen
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA ; Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA
| | - Chongwu Zhou
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA ; Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California , Los Angeles, CA , USA
| | - Paul Pagnini
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Florence M Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA ; Department of Neurological Surgery, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| | - Thomas C Chen
- Department of Pathology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA ; Department of Neurological Surgery, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
37
|
Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem 2014; 289:17689-98. [PMID: 24790104 DOI: 10.1074/jbc.m113.536227] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rap1 is a Ras family GTPase with a well documented role in ERK/MAP kinase signaling and integrin activation. Stimulation of the G-protein-coupled receptor PAR-1 with thrombin in human 1321N1 glioblastoma cells led to a robust increase in Rap1 activation. This response was sustained for up to 6 h and mediated through RhoA and phospholipase D (PLD). Thrombin treatment also induced a 5-fold increase in cell adhesion to fibronectin, which was blocked by down-regulating PLD or Rap1A or by treatment with a β1 integrin neutralizing antibody. In addition, thrombin treatment led to increases in phospho-focal adhesion kinase (tyrosine 397), ERK1/2 phosphorylation and cell proliferation, which were significantly inhibited in cells treated with β1 integrin antibody or Rap1A siRNA. To assess the role of Rap1A in tumor formation in vivo, we compared growth of 1321N1 cells stably expressing control, Rap1A or Rap1B shRNA in a mouse xenograft model. Deletion of Rap1A, but not of Rap1B, reduced tumor mass by >70% relative to control. Similar observations were made with U373MG glioblastoma cells in which Rap1A was down-regulated. Collectively, these findings implicate a Rap1A/β1 integrin pathway, activated downstream of G-protein-coupled receptor stimulation and RhoA, in glioblastoma cell proliferation. Moreover, our data demonstrate a critical role for Rap1A in glioblastoma tumor growth in vivo.
Collapse
Affiliation(s)
| | - Alena Bartakova
- Pathology, University of California at San Diego, La Jolla, California 92093 and
| | | | - Lawrence A Quilliam
- the Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana 46202
| | - Dwayne G Stupack
- Pathology, University of California at San Diego, La Jolla, California 92093 and
| | | |
Collapse
|
38
|
Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists. Proc Natl Acad Sci U S A 2013; 111:781-6. [PMID: 24379381 DOI: 10.1073/pnas.1322622111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.
Collapse
|
39
|
Abstract
Patients with glioblastoma typically present when tumors are at an advanced stage. Surgical resection, radiotherapy and adjuvant chemotherapy are currently the standard of care for glioblastoma. However, due to the infiltrative and dispersive nature of the tumor, recurrence rate remains high and typically results in very poor prognosis. Efforts to treat the primary tumor are, therefore, palliative rather than curative. From a practical perspective, controlling growth and dispersal of the recurrence may have a greater impact on disease-free survival. In order for cells to disperse, they must first detach from the mass. Preventing detachment may keep tumors that recur more localized and perhaps more amenable to therapy. Here we introduce a new perspective in which a quantifiable mechanical property, namely tissue surface tension, can provide novel information on tumor behavior. The overall theme of the discussion will attempt to integrate how adhesion molecules can alter a tumor's mechanical properties and how, in turn, these properties can be modified to prevent tumor cell detachment and dispersal.
Collapse
Affiliation(s)
- Ramsey A Foty
- Department of Surgery, University of Medicine & Dentistry, New Jersey Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
40
|
Abstract
Malignant gliomas are characterized by a diffuse infiltration into the surrounding brain parenchyma. Infiltrating glioma cells exist in close proximity with components of the tumor microenvironment, including the extracellular matrix (ECM). Whereas levels of collagens in the normal adult brain are low, in glioma, collagen levels are elevated and play a vital role in driving tumor progression. This article provides a comprehensive overview of the nature of collagens found in gliomas and offers unique insight into the mechanisms by which cancer cells interact with this ECM via cellular factors such as integrins, discoidin domain receptors, and mannose receptors. Also discussed are the major remodeling pathways of brain tumor collagen, mediated primarily by matrix metalloproteinases, and the reciprocal relationship between these enzymes and the collagen receptors. Finally, a concluding perspective is offered on how the biophysical properties of the collagen ECM, in particular, mechanical stiffness and compliance, influence malignant outcome. A better understanding of the complex molecular interactions between glioma cells and the collagen ECM will provide new avenues to combat the rampant tumor progression and chemoresistance in brain cancer patients.
Collapse
Affiliation(s)
- Leo S Payne
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom.
| | | |
Collapse
|
41
|
Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2013; 1836:236-44. [PMID: 23891970 DOI: 10.1016/j.bbcan.2013.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/27/2022]
Abstract
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany
| | | |
Collapse
|
42
|
Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach. Acta Neuropathol 2013; 126:21-37. [PMID: 23689616 DOI: 10.1007/s00401-013-1127-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Individualized therapies are popular current concepts in oncology and first steps towards stratified medicine have now been taken in neurooncology through implementation of stratified therapeutic approaches. Knowledge about the molecular basis of brain tumors has expanded greatly in recent years and a few molecular alterations are studied routinely because of their clinical relevance. However, no single targeted agent has yet been fully approved for the treatment of glial brain tumors. In this review, we argue that multidisciplinary and integrated approaches are essential for translational research and the development of new treatments for patients with malignant gliomas, and we present a conceptual framework in which to place the components of such an interdisciplinary approach. We believe that this ambitious goal can be best realized through strong cooperation of brain tumor centers with local hospitals and physicians; such an approach enables close dialogue between expert subspecialty clinicians and local therapists to consider all aspects of this increasingly complex set of diseases.
Collapse
|
43
|
Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol 2013; 72:194-210. [PMID: 23399898 DOI: 10.1097/nen.0b013e3182851019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Integrin inhibitors targeting αv series integrins are being tested for their therapeutic potential in patients with brain tumors, but pathologic studies have been limited by lack of antibodies suitable for immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded specimens. We compared the expression of αv integrins by IHC in brain tumor and normal human brain samples with gene expression data in a public database using new rabbit monoclonal antibodies against αvβ3, αvβ5, αvβ6, and αvβ8 complexes using both manual and automated microscopy analyses. Glial tumors usually shared an αvβ3-positive/αvβ5-positive/αvβ8-positive/αvβ6-negative phenotype. In 94 WHO (World Health Organization) grade II astrocytomas, 85 anaplastic astrocytomas WHO grade III, and 324 glioblastomas from archival sources, expression of integrins generally increased with grade of malignancy. Integrins αvβ3 and αvβ5 were expressed in many glioma vessels; the intensity of vascular expression of αvβ3 increased with grade of malignancy, whereas αvβ8 was absent. Analysis of gene expression in an independent cohort showed a similar increase in integrin expression with tumor grade, particularly of ITGB3 and ITGB8; ITGB6 was not expressed, consistent with the IHC data. Parenchymal αvβ3 expression and ITGB3 gene overexpression in glioblastomas were associated with a poor prognosis, as revealed by survival analysis (Kaplan-Meier logrank, p = 0.016). Together, these data strengthen the rationale for anti-integrin treatment of glial tumors.
Collapse
|
44
|
Jaszberenyi M, Schally AV, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Rick FG. Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol 2013; 8:281-90. [PMID: 23371031 DOI: 10.1007/s11523-013-0264-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
Abstract
Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-β-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFβ, and TGFβ, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.
Collapse
|
45
|
Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel) 2013; 5:27-47. [PMID: 24216697 PMCID: PMC3730317 DOI: 10.3390/cancers5010027] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/11/2022] Open
Abstract
Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.
Collapse
Affiliation(s)
- Florence Schaffner
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | | | | |
Collapse
|
46
|
Reyes SB, Narayanan AS, Lee HS, Tchaicha JH, Aldape KD, Lang FF, Tolias KF, McCarty JH. αvβ8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion. Mol Biol Cell 2013; 24:474-82. [PMID: 23283986 PMCID: PMC3571870 DOI: 10.1091/mbc.e12-07-0521] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experiments with human cancer glioblastoma multiforme cell lines, primary patient samples, and preclinical mouse models are performed to show that αvβ8 integrin and RhoGDI1 are components of a signaling axis that drives brain tumor cell invasion via regulation of Rho GTPase activation. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are regulated by extracellular cues within the neural microenvironment. The adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we use human GBM cell lines, primary patient samples, and preclinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin coimmunoprecipitates with Rho-GDP dissociation inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin–RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, regulates activation of Rho proteins to promote GBM cell invasiveness. Hence targeting the αvβ8 integrin–RhoGDI1 signaling axis might be an effective strategy for blocking GBM cell invasion.
Collapse
Affiliation(s)
- Steve B Reyes
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies. Arch Immunol Ther Exp (Warsz) 2012; 61:25-41. [DOI: 10.1007/s00005-012-0203-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023]
|
48
|
Abstract
Glioblastomas are heterogeneous neoplasms that are driven by complex signalling pathways, and are among the most aggressive and challenging cancers to treat. Despite standard treatment with resection, radiation and chemotherapy, the prognosis of patients with glioblastomas remains poor. An increasing understanding of the molecular pathogenesis of glioblastomas has stimulated the development of novel therapies, including the use of molecular-targeted agents. Identification and validation of diagnostic, prognostic and predictive biomarkers has led to the advancement of clinical trial design, and identification of glioblastoma subgroups with a more-favourable prognosis and response to therapy. In this Review, we discuss common molecular alterations relevant to the biology of glioblastomas, targeted, antiangiogenic and immunotherapies that have impacted on the treatment of this disease, and the challenges and pitfalls associated with these therapies. In addition, we emphasize current biomarkers relevant to the management of patients with glioblastoma.
Collapse
|
49
|
Martin S, Janouskova H, Dontenwill M. Integrins and p53 pathways in glioblastoma resistance to temozolomide. Front Oncol 2012; 2:157. [PMID: 23120745 PMCID: PMC3484330 DOI: 10.3389/fonc.2012.00157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/16/2012] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Surgical resection, postoperative radiotherapy plus concomitant and adjuvant chemotherapy with temozolomide (TMZ) is the standard of care for newly diagnosed glioblastoma. In the past decade, efforts have been made to decipher genomic and core pathway alterations to identify clinically relevant glioblastoma subtypes. Based on these studies and more academic explorations, new potential therapeutic targets were found and several targeting agents were developed. Such molecules should hopefully overcome the resistance of glioblastoma to the current therapy. One of the hallmarks of glioblastoma subtypes was the enrichment of extracellular matrix/invasion-related genes. Integrins, which are cell adhesion molecules important in glioma cell migration/invasion and angiogenesis were one of those genes. Integrins seem to be pertinent therapeutic targets and antagonists recently reached the clinic. Although the p53 pathway appears often altered in glioblastoma, conflicting results can be found in the literature about the clinically relevant impact of the p53 status in the resistance to TMZ. Here, we will summarize the current knowledge on (1) integrin expression, (2) p53 status, and (3) relationship between integrins and p53 to discuss their potential impact on the resistance of glioblastoma to temozolomide.
Collapse
Affiliation(s)
- Sophie Martin
- Laboratory of Biophotonics and Pharmacology, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg Illkirch, France
| | | | | |
Collapse
|
50
|
Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012. [PMID: 22508724 DOI: 10.1101/gad.187922.112.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|