1
|
Guo RJ, Cao YF, Li EM, Xu LY. Multiple functions and dual characteristics of RAB11A in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188966. [PMID: 37657681 DOI: 10.1016/j.bbcan.2023.188966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/05/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.
Collapse
Affiliation(s)
- Rui-Jian Guo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
2
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
3
|
Rab11a promotes the malignant progression of ovarian cancer by inducing autophagy. Genes Genomics 2022; 44:1375-1384. [PMID: 36125654 DOI: 10.1007/s13258-022-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rab11a is a novel identified tumorigenic factor involved in different cancers. OBJECTIVE This study aimed to assess the biological function of Rab11a in ovarian cancer (OC). METHODS GEPIA database and real-time PCR were used to determine Rab11a expression in OC tissues and normal ovarian tissues. CCK-8, cell cycle, wound healing, transwell, and enzyme linked immunosorbent assay were used to detect the effects of Rab11a knockdown or overexpression on the proliferation, migration, and invasion of OC cells. Western blot analysis of autophagy-related markers and immunofluorescence staining of LC3 were performed to determine autophagy induction in Rab11a-silenced or overexpressed OC cells. Moreover, autophagy inhibitor 3-MA was employed to clarify the effects of Rab11a-regulated autophagy on the malignant phenotypes of OC cells. RESULTS The mRNA level of Rab11a was increased in tumor tissues from OC patients as compared to the normal ovarian tissues. Knockdown of Rab11a in OVCAR-3 cells inhibited the growth of OC cells and led to cell cycle arrest, accompanied by reduced expression of PCNA and Cyclin D1. Rab11a deficiency suppressed migration and invasion of OC cells, accompanied by decreased secretion of MMP-2 and MMP-9. Silence of Rab11a impeded autophagy induction, as evidenced by decreased LC3 puncta formation, reduced abundance of LC3II and Beclin1, and increased p62 protein expression. In contrast, the ectopic expression of Rab11a in A2780 cells exerted opposite effects. Interestingly, autophagy inhibitor 3-MA abolished the effects of Rab11a overexpression on autophagy, proliferation, migration, and invasion. CONCLUSIONS Rab11a promotes the malignant phenotypes of OC cells by inducing autophagy.
Collapse
|
4
|
Li T, Wu D, Liu Q, Wang D, Chen J, Zhao H, Zhang L, Xie C, Zhu W, Chen Z, Zhou Y, Datta S, Qiu F, Yang L, Lu J. Upregulation of long noncoding RNA RAB11B-AS1 promotes tumor metastasis and predicts poor prognosis in lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:582. [PMID: 32566609 PMCID: PMC7290536 DOI: 10.21037/atm.2020.04.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Lung cancer (LC) is one of the leading causes of cancer-related mortality in China and worldwide. Despite the progress in diagnosis and treatment of LC, the prognosis of LC remains poor. Studies have demonstrated that long non-coding RNAs (lncRNAs) play a critical role in carcinogenesis and cancer development. Methods Here we examined the expression and potential function of lnc-RAB11B-AS1 in LC both in vitro and in vivo. All experiments in this study were conducted using A549 and PC-9 cell lines according to protocols described in this paper. The clinic characteristics were analyzed using logistic regression, cox model, log rank test, biochemical analysis using qRT-PCR, transfections, nude mice model, and cell biological analysis using Transwell assay, CCK-8 assay, flow cytometry, and rescue experiments, and immunohistochemistry. Results The results showed that lnc-RAB11B-AS1 was significantly overexpressed in LC tissues compared to the corresponding non-tumor tissues. Patients with a higher level of lnc-RAB11B-AS1 expression showed a poorer overall survival rate. Functionally, overexpression of lnc-RAB11B-AS1 promotes cell proliferation, migration and invasion abilities of LC cell lines, which suggests lnc-RAB11B-AS1 may play an oncogenic role in LC. lnc-RAB11B-AS1 was located in physical contiguity with RAB11B gene and found positively regulates the RAB11B expression, and the protein levels of RAB11B in LC tissues also found to positively correlated with the level of lnc-RAB11B-AS1 expression. RAB11B silencing partially abrogated lnc-RAB11B-AS1-induced proliferation of the LC cell lines used in this study. Conclusions This study provided a novel evidence into the function of lncRNA-driven carcinogenesis. Our findings highlighted the importance of lnc-RAB11B-AS1 and RAB11B in LC progression and indicated that lnc-RAB11B-AS1 may serve as a novel and valuable prognostic biomarker for LC.
Collapse
Affiliation(s)
- Tiegang Li
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Institute of Lung Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Qun Liu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.,Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Dedong Wang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongjun Zhao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lan Zhang
- Department of Medical Genetics and Cell Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510440, China
| | - Chenli Xie
- Fifth People's Hospital of Dongguan, Dongguan 523900, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zhixu Chen
- Puning People's Hospital, Puning 515300, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou 215006, China
| | - Soham Datta
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
5
|
Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T, Guo DH, Shen ZY. Long non-coding RNA highly up-regulated in liver cancer promotes exosome secretion. World J Gastroenterol 2019; 25:5283-5299. [PMID: 31558873 PMCID: PMC6761235 DOI: 10.3748/wjg.v25.i35.5283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Highly upregulated in liver cancer (HULC) is a long non-coding RNA (lncRNA) which has recently been identified as a key regulator in hepatocellular carcinoma (HCC) progression. However, its role in the secretion of exosomes from HCC cells remains unknown.
AIM To explore the mechanism by which HULC promotes the secretion of exosomes from HCC cells.
METHODS Serum and liver tissue samples were collected from 30 patients with HCC who had not received chemotherapy, radiotherapy, or immunotherapy before surgery. HULC expression in serum exosomes and liver cancer tissues of patients was measured, and compared with the data obtained from healthy controls and tumor adjacent tissues. The effect of HULC upregulation in HCC cell lines and the relationship between HULC and other RNAs were studied using qPCR and dual-luciferase reporter assays. Nanoparticle tracking analysis was performed to detect the quantity of exosomes.
RESULTS HULC expression in serum exosomes of patients with HCC was higher than that in serum exosomes of healthy controls, and HULC levels were higher in liver cancer tissues than in tumor adjacent tissues. The expression of HULC in serum exosomes and liver cancer tissues correlated with the tumor-node-metastasis (TNM) classification, and HULC expression in tissues correlated with that in serum exosomes. Upregulation of HULC promoted HCC cell growth and invasion and repressed apoptosis. Notably, it also facilitated the secretion of exosomes from HCC cells. Moreover, qPCR assays showed that HULC repressed microRNA-372-3p (miR-372-3p) expression. We also identified Rab11a as a downstream target of miR-372-3p. Dual-luciferase reporter assays suggested that miR-372-3p could directly bind both HULC and Rab11a.
CONCLUSION Our findings illustrate the importance of the HULC/miR-372-3p/Rab11a axis in HCC and provide new insights into the molecular mechanism regulating the secretion of exosomes from HCC cells.
Collapse
Affiliation(s)
- Shun-Qi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Hong Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| | - Bao-Cun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zheng-Lu Wang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tao Liu
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong-Hui Guo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
6
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
7
|
D'Agostino L, Nie Y, Goswami S, Tong K, Yu S, Bandyopadhyay S, Flores J, Zhang X, Balasubramanian I, Joseph I, Sakamori R, Farrell V, Li Q, Yang CS, Gao B, Ferraris RP, Yehia G, Bonder EM, Goldenring JR, Verzi MP, Zhang L, Ip YT, Gao N. Recycling Endosomes in Mature Epithelia Restrain Tumorigenic Signaling. Cancer Res 2019; 79:4099-4112. [PMID: 31239271 DOI: 10.1158/0008-5472.can-18-4075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/11/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
Abstract
The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored in vivo. A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates. Using genetic models across species, we show that intact recycling endosome function restrains aberrant epithelial growth elicited by APC or RAS mutations. Loss of Rab11 protein led to epithelial dysplasia in early animal development and synergized with oncogenic pathways to accelerate tumor progression initiated by carcinogen, genetic mutation, or aging. Transcriptomic analysis uncovered an immediate expansion of the intestinal stem cell pool along with cell-autonomous Yki/Yap activation following disruption of Rab11a-mediated recycling endosomes. Intestinal tumors lacking Rab11a traffic exhibited marked elevation of nuclear Yap, upd3/IL6-Stat3, and amphiregulin-MAPK signaling, whereas suppression of Yki/Yap or upd3/IL6 reduced gut epithelial dysplasia and hyperplasia. Examination of Rab11a function in enteroids or cultured cell lines suggested that this endosome unit is required for suppression of the Yap pathway by Hippo kinases. Thus, recycling endosomes in mature epithelia constitute key tumor suppressors, loss of which accelerates carcinogenesis. SIGNIFICANCE: Recycling endosome traffic in mature epithelia constitutes a novel tumor suppressing mechanism.
Collapse
Affiliation(s)
- Luca D'Agostino
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sayantani Goswami
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Kevin Tong
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | | - Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Victoria Farrell
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Bin Gao
- Department of Internal Medicine, Taixing Chinese Medicine Hospital, Taixing, Jiangsu, China
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ghassan Yehia
- Rutgers Genome Editing Core Facility, Rutgers University, New Brunswick, New Jersey
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - James R Goldenring
- Department of Surgery, Cell and Developmental Biology, and Epithelial Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.,Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey. .,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
8
|
Gong X, Liu J, Zhang X, Dong F, Liu Y, Wang P. Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-κB) Signaling Pathway in Human Bladder Carcinoma. Med Sci Monit 2018; 24:5093-5101. [PMID: 30032159 PMCID: PMC6067026 DOI: 10.12659/msm.911454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Elevated expression of Rab11 has been reported in different human cancers, including human bladder carcinoma. This study, we investigated the biological effects and mechanism of Rab11 overexpression in human bladder carcinoma for the first time. Material/Methods Rab11 expression in bladder cancer tissues was detected using immunohistochemistry and Western blot analysis. Then, Rab11 expression was inhibited in T24 cells and it was overexpressed in BIU-87 cells. The effects of Rab11 perturbations on cell growth rate and invasion were analyzed by CCK8, cell cycle assay, and matrix gel invasion assay. MMP-9, cyclin E, and cyclin D1 levels were studied using Western blot and qPCR. NF-κB activity was studied by luciferase assay. Results High expression of Rab11 was detected in 41.5% (66/159) of tumor specimens. We found a significant correlation between high Rab11 expression and depth of tumor invasion (P=0.004). Rab11 overexpression was observed to promote the growth rate and invasiveness of cancer cells through upregulation of MMP9, cyclin E, and cyclin D1 levels. Rab11 overexpression further elevated NF-κB reporter activity and enhanced p-IκB expression. Use of BAY 11-7082, a noted NF-κB inhibitor, partially abolished overexpression of MMP9 and cyclin D1 by Rab11. Conclusions Our research proved that high Rab11 expression enhances cellular multiplication and invasiveness of bladder cancer, possibly by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue Gong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jia Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Fengming Dong
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yili Liu
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ping Wang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (mainland)
| |
Collapse
|
9
|
Kumar AP, Lukman S. Allosteric binding sites in Rab11 for potential drug candidates. PLoS One 2018; 13:e0198632. [PMID: 29874286 PMCID: PMC5991966 DOI: 10.1371/journal.pone.0198632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Zhu Y, Liang S, Pan H, Cheng Z, Rui X. Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36. J Biosci 2018; 43:365-373. [PMID: 29872024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, microRNA-1247 (miR-1247) has been reported to function as tumour suppressor in several cancer types, including pancreatic cancer, hepatocellular cancer and lung cancer. However, the biological function of miR-1247 in bladder cancer and the underlying mechanisms have remained largely uncovered. In this study, the expression of miR-1247 was significantly downregulated, while RAB36 protein was remarkably upregulated in bladder cancer tissues and cell lines compared with that in paired adjacent normal tissues or normal cell line (SU-HUC-1). The function of miR-1247 and RAB36 in the cell viability, proliferation and invasion of bladder cancer cells (T24 and J82) was assessed by CCK-8, colony formation and Transwell assay, respectively. Gain of function studies showed that upregulation of miR-1247 significantly inhibited cell proliferation and invasion capacity of bladder cancer cells. Consistently, downregulation of RAB36 mimicked the suppressive effects of miR-1247 overexpression in bladder cancer cells. Importantly, miR-1247 was confirmed to target the 30untranslated region (UTR) of RAB36 and downregulated its expression using luciferase reporter assay and Western blot assays. In conclusion, these results provide the first clues regarding the role of miR-1247 might be a potential therapeutic agent and diagnostic marker of bladder cancer by inhibiting RAB36 expression.
Collapse
Affiliation(s)
- Yudi Zhu
- Department of Urology, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China,
| | | | | | | | | |
Collapse
|
11
|
Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36. J Biosci 2018. [DOI: 10.1007/s12038-018-9755-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Chen Z, Liu Z, Yang Y, Zhu Z, Liang R, Huang B, Wu D, Yang L, Lu H, Jin D, Li Q. Long non-coding RNA RAB11B-AS1 prevents osteosarcoma development and progression via its natural antisense transcript RAB11B. Oncotarget 2018; 9:26770-26786. [PMID: 29928484 PMCID: PMC6003561 DOI: 10.18632/oncotarget.24247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to exert essential roles in development and progression of tumors. Here we discovered a novel lncRNA, RAB11B antisense RNA (RAB11B-AS1), which is markedly down-regulated in human osteosarcoma (OS) and associated with OS metastasis and poor prognosis. We find that reduction of RAB11B-AS1 significantly facilitates proliferation, migration and invasiveness and prevents apoptosis of OS cells and results in lower sensitivity to cisplatin in these cells. In contrast, up-regulation of RAB11B-AS1 suppresses the aggressive behaviors of OS cells. Mechanistically, down-regulation of RAB11B-AS1 elevates its sense-cognate gene RAB11B expression at both mRNA and protein levels. RAB11B-AS1 expression correlates negatively with RAB11B expression in OS tissues. Luciferase reporter assay illuminated that RAB11B-AS1 regulates RAB11B expression through antisense pairing. Most importantly, all the effects of RAB11B-AS1 were abrogated by RAB11B down-regulation. Thus our findings revealed that lnc-RAB11B-AS1 prevents osteosarcoma development and progression via inhibiting RAB11B expression, indicating lnc-RAB11B-AS1 as a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zhixu Chen
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yang Yang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhaoyin Zhu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Ridong Liang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou 510182, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou 510182, China
| | - Hai Lu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
13
|
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin β 1 Recycling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1453-1464. [PMID: 28674181 PMCID: PMC5561736 DOI: 10.4049/jimmunol.1700165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted β1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin β1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage β1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Jingxuan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| |
Collapse
|
14
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
15
|
Cyclin-dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway. Oncogene 2015; 35:1170-9. [PMID: 26028036 PMCID: PMC4666830 DOI: 10.1038/onc.2015.175] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 12/28/2022]
Abstract
Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression dramatically decreases EGF-induced cell transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer.
Collapse
|
16
|
Abstract
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin–extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin–ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled ‘Integrin traffic’. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.
Collapse
Affiliation(s)
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20521, Finland
| |
Collapse
|
17
|
Bhuin T, Roy JK. Rab11 in disease progression. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:1-8. [PMID: 25815277 PMCID: PMC4359700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/24/2014] [Accepted: 12/16/2014] [Indexed: 10/26/2022]
Abstract
Membrane/protein trafficking in the secretory/biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases: the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular signalling pathways. Rab11 (a subfamily of the Ypt/Rab gene family), an evolutionarily conserved ubiquitously expressed subfamily of Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomes. Rabs have been grouped into different subfamilies based on the distinct unambiguous sequence motifs. Three members: Rab11a, Rab11b and Rab25 make up the Rab11 GTPase subfamily. In this review article, we describe an overview over Rab11 subfamily with a brief structural aspect and its roles in implicating different disease progression.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cell and Developmental Biology Unit, Department of Zoology, The University of Burdwan, Golapbag-713104, India.
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.,Corresponding author: Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India.
| |
Collapse
|
18
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
19
|
Song P, Bao H, Yu Y, Xue Y, Yun D, Zhang Y, He Y, Liu Y, Liu Q, Lu H, Fan H, Luo J, Yang P, Chen X. Comprehensive profiling of metastasis-related proteins in paired hepatocellular carcinoma cells with different metastasis potentials. Proteomics Clin Appl 2012; 3:841-52. [PMID: 21136991 DOI: 10.1002/prca.200780131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Precise and comprehensive identifications of the proteins associated with metastasis are critical for early diagnosis and therapeutic intervention of hepatocellular carcinoma (HCC). Therefore, we investigated the proteomic differences between a pair of HCC cell lines, originating from the same progenitor, with different metastasis potential using amino acid-coded mass tagging-based LC-MS/MS quantitative proteomic approach. Totally the relative abundance of 336 proteins in these cell lines were quantified, in which 121 proteins were upregulated by >30%, and 64 proteins were downregulated by >23% in the cells with high metastasis potential. Further validation studies by Western blotting in a series of HCC cell types with progressively increasing trend of metastasis showed that peroxiredoxin 4, HSP90β and HSP27 were positively correlated with increasing metastasis while prohibitin was negatively correlated with metastasis potential. These validation results were also consistent with that obtained from comparative analysis of clinic tissues samples. Function annotations of differentially expressed HCC proteome suggested that the emergence and development of high metastasis involved the dysregulation of cell migration, cell cycle and membrane traffics. Together our results revealed a much more comprehensive profile than that from 2-DE-based method and provided more global insights into the mechanisms of HCC metastasis and potential markers for clinical diagnosis.
Collapse
Affiliation(s)
- Peiming Song
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, P. R. China; Institutes of Biomedical Science, Fudan University, Shanghai, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ho JR, Chapeaublanc E, Kirkwood L, Nicolle R, Benhamou S, Lebret T, Allory Y, Southgate J, Radvanyi F, Goud B. Deregulation of Rab and Rab effector genes in bladder cancer. PLoS One 2012; 7:e39469. [PMID: 22724020 PMCID: PMC3378553 DOI: 10.1371/journal.pone.0039469] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/21/2012] [Indexed: 01/19/2023] Open
Abstract
Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer.
Collapse
Affiliation(s)
- Joel R. Ho
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Lisa Kirkwood
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | - Remy Nicolle
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
- Université d'Evry, iSSB, Evry, France
| | - Simone Benhamou
- CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, Villejuif, France
- INSERM, U946, Paris, France
| | | | - Yves Allory
- AP-HP, Groupe Hospitalier Henri Mondor, Plateforme de Ressources Biologiques, Département de Pathologie, Créteil, France
- INSERM, Unité 955, Créteil, France
| | - Jennifer Southgate
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | - François Radvanyi
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
| | - Bruno Goud
- Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR 144, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Oehlke O, Schlosshardt C, Feuerstein M, Roussa E. Acidosis-induced V-ATPase trafficking in salivary ducts is initiated by cAMP/PKA/CREB pathway via regulation of Rab11b expression. Int J Biochem Cell Biol 2012; 44:1254-65. [PMID: 22561749 DOI: 10.1016/j.biocel.2012.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/23/2012] [Indexed: 01/14/2023]
Abstract
Changes in systemic acid-base homeostasis cause a series of organ-specific cellular responses, among them changes of acid-base transporter activities, and recruitment or retrieval of these transporters from intracellular pools to the plasma membrane and vice versa. The purpose of this study was to investigate the impact of protein phosphorylation in the acidosis-induced translocation of vacuolar-type H(+)-ATPase (V-ATPase) in salivary ducts and to identify molecular targets. Therefore, the human submandibular gland cell line HSG was exposed to acidosis and V-ATPase trafficking was investigated in the presence or absence of inhibitors and activators of sAC/PKA and Src/ERK signaling pathways. Putative target genes have been identified by RT-PCR and immunoblotting, and validated by loss-of-function experiments. Acidosis caused activation of cAMP/PKA and Src signaling and inhibition of either pathway significantly impaired acidosis-induced V-ATPase redistribution and incorporation into the plasma membrane. Activation of ERK1/2 was Src-independent, whereas activation of PKA caused phosphorylation of cAMP response element-binding (CREB) and activation to regulate Rab11b transcription. Loss-of-function of CREB down-regulated Rab11b transcript and protein and significantly impaired acidosis-induced V-ATPase translocation in HSG cells. These data demonstrate that the cAMP/PKA/CREB signaling pathway initiates acidosis-induced V-ATPase trafficking in salivary ducts via regulation of Rab11b expression and provide first evidence for a molecular mechanism underlying cAMP/PKA-dependent transporter trafficking that could account for accumulation and activity of transporters in other cellular systems as well.
Collapse
Affiliation(s)
- Oliver Oehlke
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
22
|
Integrin trafficking and tumor progression. Int J Cell Biol 2011; 2012:516789. [PMID: 22121362 PMCID: PMC3206329 DOI: 10.1155/2012/516789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/12/2011] [Indexed: 01/19/2023] Open
Abstract
Integrins are major mediators of cancer cell adhesion to extracellular matrix. Through this interaction, integrins play critical roles in cell migration, invasion, metastasis, and resistance to apoptosis during tumor progression. Recent studies highlight the importance of integrin trafficking, endocytosis and recycling, for the functions of integrins in cancer cells. Understanding the molecular mechanisms of integrin trafficking is pivotal for understanding tumor progression and for the development of anticancer drugs.
Collapse
|
23
|
Parikh A, Childress C, Deitrick K, Lin Q, Rukstalis D, Yang W. Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cancer PC3 cells. Prostate 2010; 70:971-81. [PMID: 20135644 DOI: 10.1002/pros.21131] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autophagy is a cellular process of degradation of macromolecules and organelles and activated under nutritional stress. Statins are a class of inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key enzyme in synthesis of cholesterol. Epidemiological studies have shown that statin use decreases the incidence of advanced prostate cancer. We explored the idea that treatment of atorvastatin, a commonly prescribed statin for treatment of hypercholesterolemia, induces autophagy in prostate cancer cells. METHODS The atorvastatin-induced autophagic process in prostate cancer PC3 cells was determined by detection of cellular level of LC3-II, an autophagosomal marker, via immunoblotting and immunofluorescent staining. RESULTS Atorvastatin treatment of PC3 cells for 40 hrs increased expression of LC3-II by more than 10 fold in a dose-dependent manner. Treatment of the cells with pepstatin A and E64-d, the autophagic protease inhibitors, dramatically increased atorvastatin-dependent LC3-II expression level, suggesting that atorvastatin induces autophagic flux. In addition, atorvastatin treatment caused rapid death of PC3 cells. Atorvastatin-induced autophagy and rapid cell death were reversed by addition of geranylgeraniol, not farnesol, into culture medium, indicating that atorvastatin-mediated inhibition of geranylgeranyl biosynthesis causes autophagy and cell death. Furthermore, atorvastatin did not induce autophagy or cell death in normal prostate RWPE1 cells, and induced only a minor autophagic response in AR-positive prostate cancer LNCaP cells. CONCLUSIONS Our studies demonstrate that statins induce autophagy and autophagy-associated cell death in PC3 cells, likely through inhibition of geranylgeranylation, and suggest that autophagic response to statins may partially underlie the protective effects of statins on prostate cancer progression. Importantly, these findings highlight additional mechanisms by which statins might be used for prostate cancer therapy.
Collapse
Affiliation(s)
- Ankur Parikh
- Department of Urology, Geisinger Clinic, Danville, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
24
|
McKenna CE, Kashemirov BA, Błazewska KM, Mallard-Favier I, Stewart CA, Rojas J, Lundy MW, Ebetino FH, Baron RA, Dunford JE, Kirsten ML, Seabra MC, Bala JL, Marma MS, Rogers MJ, Coxon FP. Synthesis, chiral high performance liquid chromatographic resolution and enantiospecific activity of a potent new geranylgeranyl transferase inhibitor, 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid. J Med Chem 2010; 53:3454-64. [PMID: 20394422 DOI: 10.1021/jm900232u] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-(3-Pyridyl)-2-hydroxy-2-phosphonopropanoic acid (3-PEHPC, 1) is a phosphonocarboxylate (PC) analogue of 2-(3-pyridyl)-1-hydroxyethylidenebis(phosphonic acid) (risedronic acid, 2), an osteoporosis drug that decreases bone resorption by inhibiting farnesyl pyrophosphate synthase (FPPS) in osteoclasts, preventing protein prenylation. 1 has lower bone affinity than 2 and weakly inhibits Rab geranylgeranyl transferase (RGGT), selectively preventing prenylation of Rab GTPases. We report here the synthesis and biological studies of 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC, 3), the PC analogue of minodronic acid 4. Like 1, 3 selectively inhibited Rab11 vs. Rap 1A prenylation in J774 cells, and decreased cell viability, but was 33-60x more active in these assays. After resolving 3 by chiral HPLC (>98% ee), we found that (+)-3-E1 was much more potent than (-)-3-E2 in an isolated RGGT inhibition assay, approximately 17x more potent (LED 3 microM) than (-)-3-E2 in inhibiting Rab prenylation in J774 cells and >26x more active in the cell viability assay. The enantiomers of 1 exhibited a 4-fold or smaller potency difference in the RGGT and prenylation inhibition assays.
Collapse
Affiliation(s)
- Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang J, Liu X, Datta A, Govindarajan K, Tam WL, Han J, George J, Wong C, Ramnarayanan K, Phua TY, Leong WY, Chan YS, Palanisamy N, Liu ETB, Karuturi KM, Lim B, Miller LD. RCP is a human breast cancer-promoting gene with Ras-activating function. J Clin Invest 2009; 119:2171-83. [PMID: 19620787 DOI: 10.1172/jci37622] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 05/13/2009] [Indexed: 12/31/2022] Open
Abstract
Aggressive forms of cancer are often defined by recurrent chromosomal alterations, yet in most cases, the causal or contributing genetic components remain poorly understood. Here, we utilized microarray informatics to identify candidate oncogenes potentially contributing to aggressive breast cancer behavior. We identified the Rab-coupling protein RCP (also known as RAB11FIP1), which is located at a chromosomal region frequently amplified in breast cancer (8p11-12) as a potential candidate. Overexpression of RCP in MCF10A normal human mammary epithelial cells resulted in acquisition of tumorigenic properties such as loss of contact inhibition, growth-factor independence, and anchorage-independent growth. Conversely, knockdown of RCP in human breast cancer cell lines inhibited colony formation, invasion, and migration in vitro and markedly reduced tumor formation and metastasis in mouse xenograft models. Overexpression of RCP enhanced ERK phosphorylation and increased Ras activation in vitro. As these results indicate that RCP is a multifunctional gene frequently amplified in breast cancer that encodes a protein with Ras-activating function, we suggest it has potential importance as a therapeutic target. Furthermore, these studies provide new insight into the emerging role of the Rab family of small G proteins and their interacting partners in carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhang
- Stem Cell and Developmental Biology Program, Genome Institute of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Carpi D, Korkalainen M, Airoldi L, Fanelli R, Hakansson H, Muhonen V, Tuukkanen J, Viluksela M, Pastorelli R. Dioxin-Sensitive Proteins in Differentiating Osteoblasts: Effects on Bone Formation In Vitro. Toxicol Sci 2009; 108:330-43. [DOI: 10.1093/toxsci/kfp021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
27
|
Fauquier L, Duboé C, Joré C, Trouche D, Vandel L. Dual role of the arginine methyltransferase CARM1 in the regulation of c‐Fos target genes. FASEB J 2008; 22:3337-47. [DOI: 10.1096/fj.07-104604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lucas Fauquier
- Université de Toulouse, Centre de Biologie du Développement, UMR 5547, CNRS, IFR109 Toulouse France
| | - Carine Duboé
- Université de Toulouse, Centre de Biologie du Développement, UMR 5547, CNRS, IFR109 Toulouse France
| | - Cécile Joré
- Université de Toulouse, Centre de Biologie du Développement, UMR 5547, CNRS, IFR109 Toulouse France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, UMR 5088 Toulouse France
| | - Laurence Vandel
- Université de Toulouse, Centre de Biologie du Développement, UMR 5547, CNRS, IFR109 Toulouse France
| |
Collapse
|
28
|
Chamberlain MD, Chan T, Oberg JC, Hawrysh AD, James KM, Saxena A, Xiang J, Anderson DH. Disrupted RabGAP function of the p85 subunit of phosphatidylinositol 3-kinase results in cell transformation. J Biol Chem 2008; 283:15861-8. [PMID: 18387942 DOI: 10.1074/jbc.m800941200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins regulate vesicle fusion events during the endocytosis, recycling, and degradation of activated receptor tyrosine kinases. The p85alpha subunit of phosphatidylinositol 3-kinase has GTPase-activating protein activity toward Rab5 and Rab4, an activity severely reduced by a single point mutation (p85-R274A). Expression of p85-R274A resulted in increased platelet-derived growth factor receptor (PDGFR) activation and downstream signaling (Akt and MAPK) and in decreased PDGFR degradation. We now report that the biological consequences of p85-R274A expression cause cellular transformation as determined by the following: aberrant morphological phenotype, loss of contact inhibition, growth in soft agar, and tumor formation in nude mice. Immunohistochemistry shows that the tumors contain activated PDGFR and high levels of activated Akt. Coexpression of a dominant negative Rab5-S34N mutant attenuated these transformed properties. Our results demonstrate that disruption of the RabGAP function of p85alpha due to a single point mutation (R274A) is sufficient to cause cellular transformation via a phosphatidylinositol 3-kinase-independent mechanism partially reversed by Rab5-S34N expression. This critical new role for p85 in the regulation of Rab function suggests a novel role for p85 in controlling receptor signaling and trafficking through its effects on Rab GTPases.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gebhardt C, Riehl A, Durchdewald M, Németh J, Fürstenberger G, Müller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P. RAGE signaling sustains inflammation and promotes tumor development. ACTA ACUST UNITED AC 2008; 205:275-85. [PMID: 18208974 PMCID: PMC2271015 DOI: 10.1084/jem.20070679] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A broad range of experimental and clinical evidence has highlighted the central role of chronic inflammation in promoting tumor development. However, the molecular mechanisms converting a transient inflammatory tissue reaction into a tumor-promoting microenvironment remain largely elusive. We show that mice deficient for the receptor for advanced glycation end-products (RAGE) are resistant to DMBA/TPA-induced skin carcinogenesis and exhibit a severe defect in sustaining inflammation during the promotion phase. Accordingly, RAGE is required for TPA-induced up-regulation of proinflammatory mediators, maintenance of immune cell infiltration, and epidermal hyperplasia. RAGE-dependent up-regulation of its potential ligands S100a8 and S100a9 supports the existence of an S100/RAGE-driven feed-forward loop in chronic inflammation and tumor promotion. Finally, bone marrow chimera experiments revealed that RAGE expression on immune cells, but not keratinocytes or endothelial cells, is essential for TPA-induced dermal infiltration and epidermal hyperplasia. We show that RAGE signaling drives the strength and maintenance of an inflammatory reaction during tumor promotion and provide direct genetic evidence for a novel role for RAGE in linking chronic inflammation and cancer.
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Division of Signal Transduction and Growth Control, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 2008; 13:496-510. [PMID: 17925226 DOI: 10.1016/j.devcel.2007.08.012] [Citation(s) in RCA: 357] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 06/01/2007] [Accepted: 08/27/2007] [Indexed: 01/13/2023]
Abstract
Here, we report a direct interaction between the beta1 integrin cytoplasmic tail and Rab25, a GTPase that has been linked to tumor aggressiveness and metastasis. Rab25 promotes a mode of migration on 3D matrices that is characterized by the extension of long pseudopodia, and the association of the GTPase with alpha5beta1 promotes localization of vesicles that deliver integrin to the plasma membrane at pseudopodial tips as well as the retention of a pool of cycling alpha5beta1 at the cell front. Furthermore, Rab25-driven tumor-cell invasion into a 3D extracellular matrix environment is strongly dependent on ligation of fibronectin by alpha5beta1 integrin and the capacity of Rab25 to interact with beta1 integrin. These data indicate that Rab25 contributes to tumor progression by directing the localization of integrin-recycling vesicles and thereby enhancing the ability of tumor cells to invade the extracellular matrix.
Collapse
Affiliation(s)
- Patrick T Caswell
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Visone R, Iuliano R, Palmieri D, Server IN, Chiappetta G, De Martino I, Fedele M, Costinean S, Oberyszyn TM, Kusewitt DF, Croce CM, Fusco A. Hmga1 null mice are less susceptible to chemically induced skin carcinogenesis. Eur J Cancer 2008; 44:318-25. [DOI: 10.1016/j.ejca.2007.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/02/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
32
|
Klucky B, Mueller R, Vogt I, Teurich S, Hartenstein B, Breuhahn K, Flechtenmacher C, Angel P, Hess J. Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res 2007; 67:8198-206. [PMID: 17804733 DOI: 10.1158/0008-5472.can-07-0607] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, we described phorbol ester-induced expression of the brain and skin serine proteinase Bssp/kallikrein 6 (Klk6), the mouse orthologue of human KLK6, in mouse back skin and in advanced tumor stages of a well-established multistage tumor model. Here, we show KLK6 up-regulation in squamous skin tumors of human patients and in tumors of other epithelial tissues. Ectopic Klk6 expression in mouse keratinocyte cell lines induces a spindle-like morphology associated with accelerated proliferation, migration, and invasion capacity. We found reduced E-cadherin protein levels in the cell membrane and nuclear translocation of beta-catenin in Klk6-expressing mouse keratinocytes and human HEK293 cells transfected with a KLK6 expression plasmid. Additionally, HEK293 cells exhibited induced T-cell factor-dependent transcription and impaired cell-cell adhesion in the presence of KLK6, which was accompanied by induced E-cadherin ectodomain shedding. Interestingly, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 interfere with KLK6-induced E-cadherin ectodomain shedding and rescue the cell-cell adhesion defect in vitro, suggesting the involvement of matrix metalloproteinase and/or a disintegrin and metalloproteinase (ADAM) proteolytic activity. In line with this assumption, we found increased levels of the mature 62-kDa ADAM10 proteinase in cells expressing ectopic KLK6 compared with mock controls. Finally, enhanced epidermal keratinocyte proliferation and migration in concert with decreased E-cadherin protein levels are confirmed in an in vivo Klk6 transgenic mouse model.
Collapse
Affiliation(s)
- Britta Klucky
- Division of Signal Transduction and Growth Control, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lizundia R, Chaussepied M, Naissant B, Masse GX, Quevillon E, Michel F, Monier S, Weitzman JB, Langsley G. The JNK/AP-1 pathway upregulates expression of the recycling endosome rab11a gene in B cells transformed by Theileria. Cell Microbiol 2007; 9:1936-45. [PMID: 17388783 DOI: 10.1111/j.1462-5822.2007.00925.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lymphocyte transformation induced by Theileria parasites involves constitutive activation of c-Jun N-terminal kinase (JNK) and the AP-1 transcription factor. We found that JNK/AP-1 activation is associated with elevated levels of Rab11 protein in Theileria-transformed B cells. We show that AP-1 regulates rab11a promoter activity in B cells and that the induction of c-Jun activity in mouse fibroblasts also leads to increased transcription of the endogenous rab11a gene, consistent with it being an AP-1 target. Pharmacological inhibition of the JNK pathway reduced Rab11 protein levels and endosome recycling of transferrin receptor (TfR) and siRNA knockdown of JNK1 and Rab11A levels also reduced TfR surface expression. We propose a model, where activation of the JNK/AP-1 pathway during cell transformation might assure that the regulation of recycling endosomes is co-ordinated with cell-cycle progression. This might be achieved via the simultaneous upregulation of the cell cycle machinery (e.g. cyclin D1) and the recycling endosome regulators (e.g. Rab11A).
Collapse
Affiliation(s)
- Regina Lizundia
- Laboratory of Comparative Cell Biology of Apicomplexan Parasites, Département de Maladie Infectieuse, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine René Descartes, Université Paris Descartes, UMR-S 8104, Paris, 75014 France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Swiatecka-Urban A, Talebian L, Kanno E, Moreau-Marquis S, Coutermarsh B, Hansen K, Karlson KH, Barnaby R, Cheney RE, Langford GM, Fukuda M, Stanton BA. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J Biol Chem 2007; 282:23725-36. [PMID: 17462998 DOI: 10.1074/jbc.m608531200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.
Collapse
Affiliation(s)
- Agnieszka Swiatecka-Urban
- Department of Physiology, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jones MC, Caswell PT, Norman JC. Endocytic recycling pathways: emerging regulators of cell migration. Curr Opin Cell Biol 2006; 18:549-57. [PMID: 16904305 DOI: 10.1016/j.ceb.2006.08.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 08/02/2006] [Indexed: 01/09/2023]
Abstract
The past five years have seen a steady accumulation of data reinforcing the view that Rab-regulated recycling pathways contribute to cell migration. In particular, detailed descriptions have emerged of the mechanisms that recruit integrins and growth factor receptors to Rab4- and Rab11-driven pathways. Recent work provides new insight into the importance of particular recycling events in cell migration within a variety of physiological contexts.
Collapse
Affiliation(s)
- Matthew C Jones
- Beatson Institute for Cancer Research, (Cancer Research UK), Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
| | | | | |
Collapse
|
36
|
Chung YJ, Kim TM, Kim DW, Namkoong H, Kim HK, Ha SA, Kim S, Shin SM, Kim JH, Lee YJ, Kang HM, Kim JW. Gene expression signatures associated with the resistance to imatinib. Leukemia 2006; 20:1542-50. [PMID: 16855633 DOI: 10.1038/sj.leu.2404310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Imatinib (imatinib mesylate, STI-571, Gleevec) is a selective BCR-ABL tyrosine kinase inhibitor that has been used as a highly effective chemoagent for treating chronic myelogenous leukemia. However, the initial response to imatinib is often followed by the recurrence of a resistant form of the disease, which is major obstacle to many therapeutic modalities. The aim of this study was to identify the gene expression signatures that confer resistance to imatinib. A series of four resistant K562 sublines was established with different imatinib dosage (200, 400, 600 and 800 nM) and analyzed using microarray technology. The transcripts of the genes showing universal or dose-dependent expression changes across the resistant sublines were identified. The gene sets associated with the imatinib-resistance were also identified using gene set enrichment analysis. In the resistant K562 sublines, the transcription- and apoptosis-related expression signatures were upregulated, whereas those related to the protein and energy metabolism were downregulated. Several genes identified in this study such as IGF1 and RAB11A have the potential to become surrogate markers useful in a clinical evaluation of imatinib-resistant patients without BCR-ABL mutation. The expression signatures identified in this study provide insights into the mechanism of imatinib-resistance and are expected to facilitate the development of an effective diagnostic and therapeutic strategy.
Collapse
Affiliation(s)
- Y-J Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gebhardt C, Németh J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72:1622-31. [PMID: 16846592 DOI: 10.1016/j.bcp.2006.05.017] [Citation(s) in RCA: 523] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 02/06/2023]
Abstract
Calprotectin (S100A8/A9), a heterodimer of the two calcium-binding proteins S100A8 and S100A9, was originally discovered as immunogenic protein expressed and secreted by neutrophils. Subsequently, it has emerged as important pro-inflammatory mediator in acute and chronic inflammation. More recently, increased S100A8 and S100A9 levels were also detected in various human cancers, presenting abundant expression in neoplastic tumor cells as well as infiltrating immune cells. Although, many possible functions have been proposed for S100A8/A9, its biological role still remains to be defined. Altogether, its expression and potential cytokine-like function in inflammation and in cancer suggests that S100A8/A9 may play a key role in inflammation-associated cancer.
Collapse
Affiliation(s)
- Christoffer Gebhardt
- Division of Signal Transduction and Growth Control, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
38
|
Rhiemeier V, Breitenbach U, Richter KH, Gebhardt C, Vogt I, Hartenstein B, Fürstenberger G, Mauch C, Hess J, Angel P. A novel aspartic proteinase-like gene expressed in stratified epithelia and squamous cell carcinoma of the skin. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1354-64. [PMID: 16565508 PMCID: PMC1606566 DOI: 10.2353/ajpath.2006.050871] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeostasis of stratified epithelia, such as the epidermis of the skin, is a sophisticated process that represents a tightly controlled balance between proliferation and differentiation. Alterations of this balance are associated with common human diseases including cancer. Here, we report the cloning of a novel cDNA sequence, from mouse back skin, that is induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and codes for a hitherto unknown aspartic proteinase-like protein (Taps). Taps represents a potential AP-1 target gene because TPA-induced expression in epidermal keratinocytes critically depends on c-Fos, and co-treatment with dexamethasone, a potent inhibitor of AP-1-mediated gene regulation, resulted in impaired activation of Taps expression. Taps mRNA and protein are restricted to stratified epithelia in mouse embryos and adult tissues, implicating a crucial role for this aspartic proteinase-like gene in differentiation and homeostasis of multilayered epithelia. During chemically induced carcinogenesis, transient elevation of Taps mRNA and protein levels was detected in benign skin tumors. However, its expression is negatively associated with dedifferentiation and malignant progression in squamous cell carcinomas of the skin. Similar expression was observed in squamous skin tumors of patients, suggesting that detection of Taps levels represents a novel strategy to discriminate the progression state of squamous skin cancers.
Collapse
Affiliation(s)
- Verena Rhiemeier
- Division of Signal Transduction and Growth Control, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hummerich L, Müller R, Hess J, Kokocinski F, Hahn M, Fürstenberger G, Mauch C, Lichter P, Angel P. Identification of novel tumour-associated genes differentially expressed in the process of squamous cell cancer development. Oncogene 2006; 25:111-21. [PMID: 16247483 DOI: 10.1038/sj.onc.1209016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chemically induced mouse skin carcinogenesis represents the most extensively utilized animal model to unravel the multistage nature of tumour development and to design novel therapeutic concepts of human epithelial neoplasia. We combined this tumour model with comprehensive gene expression analysis and could identify a large set of novel tumour-associated genes that have not been associated with epithelial skin cancer development yet. Expression data of selected genes were confirmed by semiquantitative and quantitative RT-PCR as well as in situ hybridization and immunofluorescence analysis on mouse tumour sections. Enhanced expression of genes identified in our screen was also demonstrated in mouse keratinocyte cell lines that form tumours in vivo. Self-organizing map clustering was performed to identify different kinetics of gene expression and coregulation during skin cancer progression. Detailed analysis of differential expressed genes according to their functional annotation confirmed the involvement of several biological processes, such as regulation of cell cycle, apoptosis, extracellular proteolysis and cell adhesion, during skin malignancy. Finally, we detected high transcript levels of ANXA1, LCN2 and S100A8 as well as reduced levels for NDR2 protein in human skin tumour specimens demonstrating that tumour-associated genes identified in the chemically induced tumour model might be of great relevance for the understanding of human epithelial malignancies as well.
Collapse
Affiliation(s)
- L Hummerich
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|