1
|
Secci D, Sanna E, Distinto S, Onali A, Lupia A, Demuru L, Atzeni G, Meleddu R, Cottiglia F, Angeli A, Supuran CT, Maccioni E. Privileged Scaffold Hybridization in the Design of Carbonic Anhydrase Inhibitors. Molecules 2024; 29:4444. [PMID: 39339439 PMCID: PMC11433937 DOI: 10.3390/molecules29184444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Human Carbonic Anhydrases (hCA) are enzymes that contribute to cancer's development and progression. Isoforms IX and XII have been identified as potential anticancer targets, and, more specifically, hCA IX is overexpressed in hypoxic tumor cells, where it plays an important role in reprogramming the metabolism. With the aim to find new inhibitors towards IX and XII isoforms, the hybridization of the privileged scaffolds isatin, dihydrothiazole, and benzenesulfonamide was investigated in order to explore how it may affect the activity and selectivity of the hCA isoforms. In this respect, a series of isatin thiazolidinone hybrids have been designed and synthesized and their biological activity and selectivity on hCA I, hCA II, hCA IX, and hCA XII explored. The new compounds exhibited promising inhibitory activity results on isoforms IX and XII in the nanomolar range, which has highlighted the importance of substituents in the isatin ring and in position 3 and 5 of thiazolidinone. In particular, compound 5g was the most active toward hCA IX, while 5f was the most potent inhibitor of hCA XII within the series. When both potency and selectivity were considered, compound 5f appeared as one of the most promising. Additionally, our investigations were supported by molecular docking experiments, which have highlighted the putative binding poses of the most promising compound.
Collapse
Affiliation(s)
- Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
- Net4Science S.r.l, Università Degli Studi "Magna Græcia" di Catanzaro, 88100 Catanzaro, Italy
| | - Laura Demuru
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Giulia Atzeni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
2
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
3
|
Debnath J, Keshamasetthy D, Combs J, Leon K, Vullo D, Chatterjee A, McKenna R, Supuran CT. A comparative study of diaryl urea molecules with and without sulfonamide group on Carbonic anhydrase IX and XII inhibition and its consequence on breast cancer cells. Bioorg Chem 2024; 145:107192. [PMID: 38382393 DOI: 10.1016/j.bioorg.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
To investigate the intrinsic relation between carbonic anhydrase inhibition and anticancer activity, we have prepared four sets of diaryl urea molecules and tested for the inhibition of hCA-IX and XII on two breast cancer cell lines. Among 21 compounds, compound J2 (with -SO2NH2 group) and J16 (without -SO2NH2 group) showed the best activity under normoxic and hypoxic conditions. The IC50 values of J16 for MDA-MB-231 and MCF-7 cells, under normoxic condition were 6.3 and 3.7 µM respectively, which are 1.9/3.3 and 15.8 times better than U-4-Nitro and SLC-0111 respectively. Whereas, under the hypoxic condition the corresponding values were 12.4 and 1.1 µM (MDA-MB-231 and MCF-7 cells respectively), which are equal/8 times better than U-4-Nitro. Whereas, J2 showed better IC50 value than U-4-Nitro (6.3 µM) under normoxic condition for both MDA-MB-231 and MCF-7 cells (1.9/2.7 times). Compound J2 inhibits the activity of hCA-IX and XII in nanomolar concentration [Ki values 4.09 and 9.10 nM respectively with selectivity ratio of 1.8 and 0.8 with hCA-II]. The crystal structure and modelling studies demonstrates that the inhibition of CAs arises due to the blocking of the CO2 coordination site of zinc in its catalytic domain. However, J16 was found to be unable to inhibit the activity of hCAs (Ki > 89000 nM). qPCR and western blot analysis showed a significant reduction (1.5 to 20 fold) of the transcription and expression of HIF1A, CA9 and CA12 genes in presence of J2 and J16. Both J2 and J16 found to reduce accumulation of HIF-1α protein by inhibiting the chaperone activity of hHSP70 with IC50 values of 19.4 and 15.3 µM respectively. Perturbation of the hCA-IX and XII activity by binding at active site or by reduced expression or by both leads to the decrease of intracellular pH, which resulted in concomitant increase of reactive oxygen species by 2.6/2.0 (MCF-7) and 2.9/1.8 (MDA-MB-231) fold for J2/J16. Increased cyclin D1 expression in presence of J2 and J16 was presumed to be indirectly responsible for the apoptosis of the cancer cells. Expression of the other apoptosis markers Bcl-2, Bim, caspase 9 and caspase 3 substantiated the apoptosis mechanism. However, decreased transcription/expression of HIF1A/HIF-1α and hCA-IX/XII also implies the inhibition of the extracellular signal-regulated kinase pathway by J2 and J16.
Collapse
Affiliation(s)
- Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tamilnadu 613401, India.
| | - Dhananjaya Keshamasetthy
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Tamilnadu 613401, India
| | - Jacob Combs
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville 32610 EL, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville 32610 EL, USA
| | - Daniela Vullo
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Sesto Fiorentino (Florence) 50019 Italy
| | - Abhijit Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research - Pune, Maharashtra 411008, India
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville 32610 EL, USA
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, Sesto Fiorentino (Florence) 50019 Italy
| |
Collapse
|
4
|
Bhise K, Gavande NS, Iyer AK. Leveraging hypoxia in triple-negative breast cancer as a promising treatment strategy. Drug Discov Today 2023; 28:103761. [PMID: 37660983 DOI: 10.1016/j.drudis.2023.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Current treatment strategies for triple-negative breast cancer (TNBC) are based upon conventional chemotherapy, immunotherapy, or a combination of both. The treatment regimen for chemotherapy is often a combination of two or more drugs, either dose dense or low dose for synergy. Anthracyclines, alkylating agents, antimicrotubule agents, and antimetabolites for early-stage TNBC; and antimetabolites, non-taxane microtubule inhibitors, and cross-linker platinums for late-stage TNBC are usually administered in the clinical setting. Newer options for patients with advanced TNBC, such as poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, have recently emerged for cases where surgery is not a viable option and the disease has metastasized. This review outlines the current trends in hypoxia-inspired treatment strategies for TNBC with a focus on clinical trials.
Collapse
Affiliation(s)
- Ketki Bhise
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
5
|
Shamis SAK, Edwards J, McMillan DC. The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis. Diagn Pathol 2023; 18:46. [PMID: 37061698 PMCID: PMC10105416 DOI: 10.1186/s13000-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 04/17/2023] Open
Abstract
PURPOSE Hypoxia is a characteristic of many solid tumours and an adverse prognostic factor for cancer therapy. Hypoxia results in upregulation of carbonic anhydrase IX (CAIX) expression, a pH-regulating enzyme. Many human tissue studies have examined the prognostic value of CAIX expression in breast cancer but have yielded inconsistent results. Therefore, a systematic review and meta-analysis was undertaken to assess the prognostic value of CAIX expression for breast cancer patients. METHODS The electronic databases were systematically searched to identify relevant papers. The clinical outcomes included disease-free survival (DFS), recurrence-free survival (RFS) and overall survival (OS) in breast cancer patients. Review Manager version 5.4 was employed to analysis data from 23 eligible studies (containing 8390 patients). RESULTS High CAIX expression was associated with poorer RFS [HR = 1.42, 95% CI (1.32-1.51), p < 0.00001], DFS [HR = 1.64, 95% CI (1.34-2.00), p < 0.00001], and OS [HR = 1.48, 95% CI (1.22-1.80), p < 0.0001]. Heterogeneity was observed across the studies. There was an effect of the CAIX antibody employed, scoring methods, and tumour localisation on CAIX expression. CONCLUSION CAIX overexpression was significantly associated with poorer RFS, DFS, and OS in breast cancer patients. However, further work in high quantity tissue cohorts is required to define the optimal methodological approach.
Collapse
Affiliation(s)
- Suad A K Shamis
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK.
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - Joanne Edwards
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK
| |
Collapse
|
6
|
Rotermund A, Brandt S, Staege MS, Luetzkendorf J, Mueller LP, Mueller T. Differential CMS-Related Expression of Cell Surface Carbonic Anhydrases IX and XII in Colorectal Cancer Models-Implications for Therapy. Int J Mol Sci 2023; 24:ijms24065797. [PMID: 36982873 PMCID: PMC10056265 DOI: 10.3390/ijms24065797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor-associated carbonic anhydrases IX (CAIX) and XII (CAXII) have long been in the spotlight as potential new targets for anti-cancer therapy. Recently, CAIX/CAXII specific inhibitor SLC-0111 has passed clinical phase I study and showed differential response among patients with colorectal cancer (CRC). CRC can be classified into four different consensus molecular subgroups (CMS) showing unique expression patterns and molecular traits. We questioned whether there is a CMS-related CAIX/CAXII expression pattern in CRC predicting response. As such, we analyzed transcriptomic data of tumor samples for CA9/CA12 expression using Cancertool. Protein expression pattern was examined in preclinical models comprising cell lines, spheroids and xenograft tumors representing the CMS groups. Impact of CAIX/CAXII knockdown and SLC-0111 treatment was investigated in 2D and 3D cell culture. The transcriptomic data revealed a characteristic CMS-related CA9/CA12 expression pattern with pronounced co-expression of both CAs as a typical feature of CMS3 tumors. Protein expression in spheroid- and xenograft tumor tissue clearly differed, ranging from close to none (CMS1) to strong CAIX/CAXII co-expression in CMS3 models (HT29, LS174T). Accordingly, response to SLC-0111 analyzed in the spheroid model ranged from no (CMS1) to clear (CMS3), with moderate in CMS2 and mixed in CMS4. Furthermore, SLC-0111 positively affected impact of single and combined chemotherapeutic treatment of CMS3 spheroids. In addition, combined CAIX/CAXII knockdown and more effective treatment with SLC-0111 reduced clonogenic survival of CMS3 modelling single cells. In conclusion, the preclinical data support the clinical approach of targeted CAIX/CAXII inhibition by showing linkage of expression with response and suggest that patients with CMS3-classified tumors would most benefit from such treatment.
Collapse
Affiliation(s)
- Arne Rotermund
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Sarah Brandt
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lutz P Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
7
|
Numprasit W, Yangngam S, Prasopsiri J, Quinn JA, Edwards J, Thuwajit C. Carbonic anhydrase IX-related tumoral hypoxia predicts worse prognosis in breast cancer: A systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1087270. [PMID: 37007798 PMCID: PMC10063856 DOI: 10.3389/fmed.2023.1087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundTumoral hypoxia is associated with aggressiveness in many cancers including breast cancer. However, measuring hypoxia is complicated. Carbonic anhydrase IX (CAIX) is a reliable endogenous marker of hypoxia under the control of the master regulator hypoxia-inducible factor-1α (HIF-1α). The expression of CAIX is associated with poor prognosis in many solid malignancies; however, its role in breast cancer remains controversial.MethodsThe present study performed a meta-analysis to evaluate the correlation between CAIX expression and disease-free survival (DFS) and overall survival (OS) in breast cancer.ResultsA total of 2,120 publications from EMBASE, PubMed, Cochrane, and Scopus were screened. Of these 2,120 publications, 272 full texts were reviewed, and 27 articles were included in the meta-analysis. High CAIX was significantly associated with poor DFS (HR = 1.70, 95% CI = 1.39–2.07, p < 0.00001) and OS (HR = 2.02, 95% CI 1.40–2.91, p = 0.0002) in patients with breast cancer. When stratified by subtype, the high CAIX group was clearly associated with shorter DFS (HR = 2.09, 95% CI =1.11–3.92, p = 0.02) and OS (HR = 2.50, 95% CI =1.53–4.07, p = 0.0002) in TNBC and shorter DFS in ER+ breast cancer (HR = 1.81 95% CI =1.38–2.36, p < 0.0001).ConclusionHigh CAIX expression is a negative prognostic marker of breast cancer regardless of the subtypes.
Collapse
Affiliation(s)
- Warapan Numprasit
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Supaporn Yangngam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Chanitra Thuwajit,
| |
Collapse
|
8
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
9
|
Sobhani F, Muralidhar S, Hamidinekoo A, Hall AH, King LM, Marks JR, Maley C, Horlings HM, Hwang ES, Yuan Y. Spatial interplay of tissue hypoxia and T-cell regulation in ductal carcinoma in situ. NPJ Breast Cancer 2022; 8:105. [PMID: 36109587 PMCID: PMC9477879 DOI: 10.1038/s41523-022-00419-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Hypoxia promotes aggressive tumor phenotypes and mediates the recruitment of suppressive T cells in invasive breast carcinomas. We investigated the role of hypoxia in relation to T-cell regulation in ductal carcinoma in situ (DCIS). We designed a deep learning system tailored for the tissue architecture complexity of DCIS, and compared pure DCIS cases with the synchronous DCIS and invasive components within invasive ductal carcinoma cases. Single-cell classification was applied in tandem with a new method for DCIS ductal segmentation in dual-stained CA9 and FOXP3, whole-tumor section digital pathology images. Pure DCIS typically has an intermediate level of colocalization of FOXP3+ and CA9+ cells, but in invasive carcinoma cases, the FOXP3+ (T-regulatory) cells may have relocated from the DCIS and into the invasive parts of the tumor, leading to high levels of colocalization in the invasive parts but low levels in the synchronous DCIS component. This may be due to invasive, hypoxic tumors evolving to recruit T-regulatory cells in order to evade immune predation. Our data support the notion that hypoxia promotes immune tolerance through recruitment of T-regulatory cells, and furthermore indicate a spatial pattern of relocalization of T-regulatory cells from DCIS to hypoxic tumor cells. Spatial colocalization of hypoxic and T-regulatory cells may be a key event and useful marker of DCIS progression.
Collapse
Affiliation(s)
- Faranak Sobhani
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Sathya Muralidhar
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Azam Hamidinekoo
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Allison H Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Carlo Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan, 121 1066CX, Amsterdam, The Netherlands
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Yinyin Yuan
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK.
- Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| |
Collapse
|
10
|
A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022; 126:105920. [DOI: 10.1016/j.bioorg.2022.105920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
|
11
|
Ryniawec JM, Coope MR, Loertscher E, Bageerathan V, de Oliveira Pessoa D, Warfel NA, Cress AE, Padi M, Rogers GC. GLUT3/SLC2A3 Is an Endogenous Marker of Hypoxia in Prostate Cancer Cell Lines and Patient-Derived Xenograft Tumors. Diagnostics (Basel) 2022; 12:diagnostics12030676. [PMID: 35328229 PMCID: PMC8946944 DOI: 10.3390/diagnostics12030676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
The microenvironment of solid tumors is dynamic and frequently contains pockets of low oxygen levels (hypoxia) surrounded by oxygenated tissue. Indeed, a compromised vasculature is a hallmark of the tumor microenvironment, creating both spatial gradients and temporal variability in oxygen availability. Notably, hypoxia associates with increased metastasis and poor survival in patients. Therefore, to aid therapeutic decisions and better understand hypoxia’s role in cancer progression, it is critical to identify endogenous biomarkers of hypoxia to spatially phenotype oncogenic lesions in human tissue, whether precancerous, benign, or malignant. Here, we characterize the glucose transporter GLUT3/SLC2A3 as a biomarker of hypoxic prostate epithelial cells and prostate tumors. Transcriptomic analyses of non-tumorigenic, immortalized prostate epithelial cells revealed a highly significant increase in GLUT3 expression under hypoxia. Additionally, GLUT3 protein increased 2.4-fold in cultured hypoxic prostate cell lines and was upregulated within hypoxic regions of xenograft tumors, including two patient-derived xenografts (PDX). Finally, GLUT3 out-performs other established hypoxia markers; GLUT3 staining in PDX specimens detects 2.6–8.3 times more tumor area compared to a mixture of GLUT1 and CA9 antibodies. Therefore, given the heterogeneous nature of tumors, we propose adding GLUT3 to immunostaining panels when trying to detect hypoxic regions in prostate samples.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Matthew R. Coope
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Emily Loertscher
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Vignesh Bageerathan
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Diogo de Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| |
Collapse
|
12
|
Shen M, Yang L, Lei T, Zhang P, Xiao L, Cao S, Chen F, Li L, Ye F, Bu H. Correlation between CA12 and TFF3 and their prediction value of neoadjuvant chemotherapy response in breast cancer. J Clin Pharm Ther 2022; 47:609-618. [PMID: 35229335 DOI: 10.1111/jcpt.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Compared with other molecular subtypes, hormone receptor-positive breast cancer often shows worse neoadjuvant chemotherapy efficacy. This study aims to explore the relationship between the oestrogen receptor (ER)-related genes carbonic anhydrase 12 (CA12) and trefoil factor 3 (TFF3) and their predictive value of neoadjuvant chemotherapy for breast cancer. METHODS We investigated the relationships between CA12, TFF3 and ER status and their predictive value of anthracycline-taxane neoadjuvant chemotherapy in 115 female breast cancer patients via real-time polymerase chain reaction (RT-PCR) and 4 GEO datasets: GSE41998, GSE25065, GSE20194 and GSE20271. Then, the effects of CA12 and TFF3 on the chemotherapy drugs doxorubicin and docetaxel were verified in vitro in the breast cancer cell lines MCF-7 and BT474. RESULTS AND DISCUSSION The GEO datasets and RT-PCR results showed that the relative expression of both CA12 and TFF3 was higher in oestrogen receptor-positive samples compared with the other samples (p < 0.05). CA12 was significantly correlated with TFF3 (p < 0.05). In MCF-7 cells, inhibition of TFF3 induced downregulation of CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 also downregulated TFF3 and ESR1 (p < 0.05). In BT474 cells, inhibition of TFF3 downregulated CA12 and ESR1 (p < 0.05) at both the mRNA and the protein levels, while inhibition of CA12 led to slight upregulation of TFF3 and ESR1 (p > 0.05). Moreover, GEO datasets and RT-PCR results showed that CA12 and TFF3 were more highly expressed in nonpathological complete response (non-pCR) samples than in pCR samples (p < 0.05). Cell viability assays of MCF-7 and BT474 cells showed that inhibiting CA12 and TFF3 could enhance sensitivity to doxorubicin and docetaxel (p < 0.05). WHAT IS NEW AND CONCLUSION CA12 and TFF3 were correlated with each other, and their high expression might explain the worse efficacy of neoadjuvant chemotherapy in oestrogen receptor-positive breast cancer patients.
Collapse
Affiliation(s)
- Mengjia Shen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Libo Yang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peichuan Zhang
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Bu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Westbrook RL, Bridges E, Roberts J, Escribano-Gonzalez C, Eales KL, Vettore LA, Walker PD, Vera-Siguenza E, Rana H, Cuozzo F, Eskla KL, Vellama H, Shaaban A, Nixon C, Luuk H, Lavery GG, Hodson DJ, Harris AL, Tennant DA. Proline synthesis through PYCR1 is required to support cancer cell proliferation and survival in oxygen-limiting conditions. Cell Rep 2022; 38:110320. [PMID: 35108535 PMCID: PMC8822494 DOI: 10.1016/j.celrep.2022.110320] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
The demands of cancer cell proliferation alongside an inadequate angiogenic response lead to insufficient oxygen availability in the tumor microenvironment. Within the mitochondria, oxygen is the major electron acceptor for NADH, with the result that the reducing potential produced through tricarboxylic acid (TCA) cycle activity and mitochondrial respiration are functionally linked. As the oxidizing activity of the TCA cycle is required for efficient synthesis of anabolic precursors, tumoral hypoxia could lead to a cessation of proliferation without another means of correcting the redox imbalance. We show that in hypoxic conditions, mitochondrial pyrroline 5-carboxylate reductase 1 (PYCR1) activity is increased, oxidizing NADH with the synthesis of proline as a by-product. We further show that PYCR1 activity is required for the successful maintenance of hypoxic regions by permitting continued TCA cycle activity, and that its loss leads to significantly increased hypoxia in vivo and in 3D culture, resulting in widespread cell death.
Collapse
Affiliation(s)
- Rebecca L Westbrook
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Esther Bridges
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Katherine L Eales
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Lisa A Vettore
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Elias Vera-Siguenza
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Himani Rana
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Abeer Shaaban
- University Hospital Birmingham NHS Foundation Trust and Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Colin Nixon
- Beatson Institute for Cancer Research, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Adrian L Harris
- Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
14
|
Lama-Sherpa TD, Das S, Hinshaw DC, Kammerud SC, Song PN, Alsheikh HA, Sorace AG, Samant RS, Shevde LA. Quantitative Longitudinal Imaging Reveals that Inhibiting Hedgehog Activity Alleviates the Hypoxic Tumor Landscape. Mol Cancer Res 2021; 20:150-160. [PMID: 34593607 DOI: 10.1158/1541-7786.mcr-21-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. IMPLICATIONS: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Shamik Das
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Dominique C Hinshaw
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah C Kammerud
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A Alsheikh
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S Samant
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama
| | - Lalita A Shevde
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama. .,O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids 2021; 54:543-558. [PMID: 34436666 DOI: 10.1007/s00726-021-03063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Human carbonic anhydrases IX (hCA IX) and XII (hCA XII) are two proteins associated with tumor formation and development. These enzymes have been largely investigated both from a biochemical and a functional point of view. However, limited data are currently available on the characterization of their post-translational modifications (PTMs) and the functional implication of these structural changes in the tumor environment. In this review, we summarize existing literature data on PTMs of hCA IX and hCA XII, such as disulphide bond formation, phosphorylation, O-/N-linked glycosylation, acetylation and ubiquitination, highlighting, when possible, their specific role in cancer pathological processes.
Collapse
|
16
|
Chafe SC, Vizeacoumar FS, Venkateswaran G, Nemirovsky O, Awrey S, Brown WS, McDonald PC, Carta F, Metcalfe A, Karasinska JM, Huang L, Muthuswamy SK, Schaeffer DF, Renouf DJ, Supuran CT, Vizeacoumar FJ, Dedhar S. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. SCIENCE ADVANCES 2021; 7:7/35/eabj0364. [PMID: 34452919 PMCID: PMC8397268 DOI: 10.1126/sciadv.abj0364] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 05/23/2023]
Abstract
The metabolic mechanisms involved in the survival of tumor cells within the hypoxic niche remain unclear. We carried out a synthetic lethal CRISPR screen to identify survival mechanisms governed by the tumor hypoxia-induced pH regulator carbonic anhydrase IX (CAIX). We identified a redox homeostasis network containing the iron-sulfur cluster enzyme, NFS1. Depletion of NFS1 or blocking cyst(e)ine availability by inhibiting xCT, while targeting CAIX, enhanced ferroptosis and significantly inhibited tumor growth. Suppression of CAIX activity acidified intracellular pH, increased cellular reactive oxygen species accumulation, and induced susceptibility to alterations in iron homeostasis. Mechanistically, inhibiting bicarbonate production by CAIX or sodium-driven bicarbonate transport, while targeting xCT, decreased adenosine 5'-monophosphate-activated protein kinase activation and increased acetyl-coenzyme A carboxylase 1 activation. Thus, an alkaline intracellular pH plays a critical role in suppressing ferroptosis, a finding that may lead to the development of innovative therapeutic strategies for solid tumors to overcome hypoxia- and acidosis-mediated tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Shawn C Chafe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Wells S Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Fabrizio Carta
- NEUROFARBA Department, University of Florence, Via U. Schiff 6, Florence 50019, Italy
| | | | | | - Ling Huang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Senthil K Muthuswamy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC V3Z 1M9, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC V3Z 1M9, Canada
- Medical Oncology, BC Cancer, Vancouver, BC V5Z 4E67, Canada
| | - Claudiu T Supuran
- NEUROFARBA Department, University of Florence, Via U. Schiff 6, Florence 50019, Italy
| | - Franco J Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
- Cancer Research Department, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4E5, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Wang Z, Liu Z, Mei J, Xu S, Liu Y. The next generation therapy for lung cancer: taking medicine by inhalation. NANOTECHNOLOGY 2021; 32:392002. [PMID: 34167099 DOI: 10.1088/1361-6528/ac0e68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The inhalation administration method which has been applied to treat respiratory diseases has the characteristics of painlessness high efficiency and non-invasiveness, and the drug can also be targeted at the organ level first to reduce the loss of drug during circulation. Therefore, delivering medicine by inhalation administration has brought a new turnaround for lung cancer treatment. Herein from the perspective of combining traditional drug delivery design strategies with new drug delivery methods how to improve lung targeting efficiency and treatment efficacy is discussed. We also discuss the comparative advantages of inhaled drug delivery and traditional administration in the treatment of lung cancer such as intravenous injection. And the researches are divided into different forms of inhalation administration studied in the treatment of lung cancer in recent years, such as single-component loaded and multi-component loaded systems and their advantages. Finally, the obstacles of the application of carrier materials for inhalation administration and the prospects for improvement of lung cancer treatment methods are presented.
Collapse
Affiliation(s)
- Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zifan Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- GBA National Institute for Nanotechnology Innovation, Guangdong 510700, People's Republic of China
| |
Collapse
|
18
|
Pastornická A, Rybárová S, Drahošová S, Mihalik J, Kreheľová A, Pavliuk-Karachevtseva A, Hodorová I. Influence of Paclitaxel and Doxorubicin Therapy of ßIII-Tubulin, Carbonic Anhydrase IX, and Survivin in Chemically Induced Breast Cancer in Female Rat. Int J Mol Sci 2021; 22:6363. [PMID: 34198613 PMCID: PMC8232094 DOI: 10.3390/ijms22126363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer in females. The aim of this study was to determine the effect of paclitaxel (PTX) and doxorubicin (DOX) therapy on the βIII-tubulin, carbonic anhydrase IX (CA IX), and survivin expression in chemically-induced rat mammary tumors. Animals with induced mammary carcinogenesis were randomly divided into treatment groups and an untreated group. The total proportion of tumors, the proportion of carcinoma in situ (CIS), and invasive carcinoma (IC) were evaluated. Protein expression in tumor tissue was determined using IHC. Statistical analysis of the data, evaluated by Fisher-exact test and unpaired t-test. Significantly increased levels of proteins in the tumor cells were confirmed using the IHC method for all studied proteins. The expression of βIII-tubulin, CA IX, and survivin increased significantly after treatment with both cytostatics (PTX and DOX). Depending on the type of tumor, a significant increase in all proteins was observed in IC samples after PTX treatment, and CA IX expression after DOX treatment. In CIS samples, a significant increase of βIII-tubulin and survivin expression was observed after a DOX treatment. The results suggest that βIII-tubulin, survivin, and CA IX may be significant drug resistance markers and the clinical regulation of their activity may be an effective means of reversing this resistance.
Collapse
Affiliation(s)
- Alena Pastornická
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Silvia Rybárová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Slávka Drahošová
- Department of Pathological Anatomy, Jessenius Faculty of Medicine, Comenius University, Kollárova 2, 036 59 Martin, Slovakia;
| | - Jozef Mihalik
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Andrea Kreheľová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Andriana Pavliuk-Karachevtseva
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| | - Ingrid Hodorová
- Department of Anatomy, Medical Faculty, Šafárik University, Šrobárova 2, 041 83 Košice, Slovakia; (A.P.); (S.R.); (J.M.); (A.K.); (A.P.-K.)
| |
Collapse
|
19
|
Abstract
Glucose is converted to energy through “fermentation” or “oxidation.” Generally, if oxygen is available, cells will oxidize glucose to CO2 because it is more efficient than fermentation, which produces lactic acid. But Warburg noted that cancers ferment glucose at a “remarkable” rate even if O2 is available! This “Warburg Effect” is still misunderstood because it doesn’t make sense that a cell would ferment glucose when it could get much more energy by oxidizing it. The current paper goes to the heart of this problem by defining the microenvironmental conditions that exist in early cancers that would select for a Warburg Effect. This is important because such cells are much more aggressive and like to lead to cancers that are lethal. The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.
Collapse
|
20
|
Mboge MY, Coombs J, Singh S, Andring J, Wolff A, Tu C, Zhang Z, McKenna R, Frost SC. Inhibition of Carbonic Anhydrase Using SLC-149: Support for a Noncatalytic Function of CAIX in Breast Cancer. J Med Chem 2021; 64:1713-1724. [PMID: 33523653 PMCID: PMC9945910 DOI: 10.1021/acs.jmedchem.0c02077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrase IX (CAIX) is considered a target for therapeutic intervention in solid tumors. In this study, the efficacy of the inhibitor, 4-(3-(2,4-difluorophenyl)-oxoimidazolidin-1-yl)benzenesulfonamide (SLC-149), is evaluated on CAIX and a CAIX-mimic. We show that SLC-149 is a better inhibitor than acetazolamide against CAIX. Binding of SLC-149 thermally stabilizes CAIX-mimic at lower concentrations compared to that of CAII. Structural examinations of SLC-149 bound to CAIX-mimic and CAII explain binding preferences. In cell culture, SLC-149 is a more effective inhibitor of CAIX activity in a triple-negative breast cancer cell line than previously studied sulfonamide inhibitors. SLC-149 is also a better inhibitor of activity in cells expressing CAIX versus CAXII. However, SLC-149 has little effect on cytotoxicity, and high concentrations are required to inhibit cell growth, migration, and invasion. These data support the hypothesis that CAIX activity, shown to be important in regulating extracellular pH, does not underlie its ability to control cell growth.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Coombs
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Alyssa Wolff
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zaihui Zhang
- SignalChem Lifesciences Corp 13120 Vanier Place, Richmond, British Columbia V6V 2J2
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Du Y, Xin Z, Liu T, Xu P, Mao F, Yao J. Overexpressed CA12 has prognostic value in pancreatic cancer and promotes tumor cell apoptosis via NF-κB signaling. J Cancer Res Clin Oncol 2021; 147:1557-1564. [PMID: 33387040 DOI: 10.1007/s00432-020-03447-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Pancreatic adenocarcinoma (PAAD) is among the deadliest forms of cancer globally. Carbonic anhydrase 12 (CA12) is known to play central roles in regulating many cancers, but its function in the context of PAAD is rarely discussed. This study was, therefore, designed to assess the expression of CA12 in PAAD and to explore its underlying mechanistic role in this cancer type. METHODS Immunohistochemical staining was used to measure CA12 expression in PAAD samples. The functionality of pancreatic cancer cells expressing varying levels of CA12 was assessed through wound healing, Transwell, and CCK-8 assays. In addition, flow cytometry was used to measure apoptosis and cell cycle progression in these same cells, while Western blotting was used to analyze the expression of proteins associated with the NF-κB signaling pathway. RESULTS PAAD tissue samples exhibited significant CA12 downregulation (P < 0.001), and lower CA12 expression was, in turn, associated with poorer overall survival (P < 0.001). CA12 overexpression significantly impaired the proliferation of PAAD cell lines, instead inducing their apoptotic death and G0/G1 phase cell cycle arrest (P < 0.05). We additionally found that CA12 may exert its tumor suppressive roles via modulating the NF-κB signaling pathway. CONCLUSION These results indicate that CA12 functions as a tumor suppressor in PAAD and may thus be a novel therapeutic target that can be used to guide PAAD patient treatment.
Collapse
Affiliation(s)
- Yan Du
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zechang Xin
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Tongtai Liu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Nantong Western Road, Guangling Qu, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Nantong Western Road, Guangling Qu, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Feiyu Mao
- Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, People's Republic of China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Nantong Western Road, Guangling Qu, Yangzhou, Jiangsu, 225001, People's Republic of China.
- Medical College of Yangzhou University, Yangzhou, Jiangsu, 225001, People's Republic of China.
| |
Collapse
|
22
|
Supuran CT. Experimental Carbonic Anhydrase Inhibitors for the Treatment of Hypoxic Tumors. J Exp Pharmacol 2020; 12:603-617. [PMID: 33364855 DOI: 10.2147/jep.s265620] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrase (CA, EC 4.2.1.1) isoforms IX and XII are overexpressed in many hypoxic tumors as a consequence of the hypoxia inducible factor (HIF) activation cascade, being present in limited amounts in normal tissues. These enzymes together with many others are involved in the pH regulation and metabolism of hypoxic cancer cells, and were validated as antitumor targets recently. A multitude of targeting strategies against these enzymes have been proposed and are reviewed in this article. The small molecule inhibitors, small molecule drug conjugates (SMDCs), antibody-drug conjugates (ADACs) or cytokine-drug conjugates but not the monoclonal antibodies against CA IX/XII will be discussed. Relevant synthetic chemistry efforts, coupled with a multitude of preclinical studies, demonstrated that CA IX/XII inhibition leads to the inhibition of growth of primary tumors and metastases and depletes cancer stem cell populations, all factors highly relevant in clinical settings. One small molecule inhibitor, sulfonamide SLC-0111, is the most advanced candidate, having completed Phase I and being now in Phase Ib/II clinical trials for the treatment of advanced hypoxic solid tumors.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence 50019, Italy
| |
Collapse
|
23
|
Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites 2020; 10:metabo10100412. [PMID: 33066524 PMCID: PMC7602163 DOI: 10.3390/metabo10100412] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
| | - Jean-Yves Winum
- IBMM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France;
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia, Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, 3/7 Paula Valdena Str., 1048 Riga, Latvia;
| | - Atilla Akdemir
- Computer-aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey;
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato, Cagliari, Italy;
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Clemente Capasso
- Institute of Biosciences and Bioresources—National Research Council, via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages—National Research Council, 80131 Napoli, Italy; (G.D.S.); (S.M.M.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - William A. Donald
- School of Chemistry, University of New South Wales, 1466 Sydney, Australia;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver Vancouver, BC V5Z 1L3, Canada;
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (F.C.); (A.N.)
- Correspondence:
| |
Collapse
|
24
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
The Anticancer Activity for the Bumetanide-Based Analogs via Targeting the Tumor-Associated Membrane-Bound Human Carbonic Anhydrase-IX Enzyme. Pharmaceuticals (Basel) 2020; 13:ph13090252. [PMID: 32961906 PMCID: PMC7558282 DOI: 10.3390/ph13090252] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-bound human carbonic anhydrase (hCA) IX is widely recognized as a marker of tumor hypoxia and a prognostic factor within several human cancers. Being undetected in most normal tissues, hCA-IX implies the pharmacotherapeutic advent of reduced off-target adverse effects. We assessed the potential anticancer activity of bumetanide-based analogues to inhibit the hCA-IX enzymatic activity and cell proliferation of two solid cancer cell lines, namely kidney carcinoma (A-498) and bladder squamous cell carcinoma (SCaBER). Bumetanide analogues efficiently inhibit the target hCA-IX in low nanomolar activity (IC50 = 4.4–23.7 nM) and have an excellent selectivity profile (SI = 14.5–804) relative to the ubiquitous hCA-II isoform. Additionally, molecular docking studies provided insights into the compounds’ structure–activity relationship and preferential binding of small-sized as well as selective bulky ligands towards the hCA-IX pocket. In particular, 2,4-dihydro-1,2,4-triazole-3-thione derivative 9c displayed pronounced hCA-IX inhibitory activity and impressive antiproliferative activity on oncogenic A-498 kidney carcinoma cells and is being considered as a promising anticancer candidate. Future studies will aim to optimize this compound to fine-tune its anticancer activity as well as explore its potential through in-vivo preclinical studies.
Collapse
|
27
|
Mikulová MB, Kružlicová D, Pecher D, Supuran CT, Mikuš P. Synthetic Strategies and Computational Inhibition Activity Study for Triazinyl-Substituted Benzenesulfonamide Conjugates with Polar and Hydrophobic Amino Acids as Inhibitors of Carbonic Anhydrases. Int J Mol Sci 2020; 21:E3661. [PMID: 32456080 PMCID: PMC7279466 DOI: 10.3390/ijms21103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Various sulfonamide derivatives are intensively studied as anticancer agents owing to their inhibitory activity against human tumor-associated carbonic anhydrase isoforms. In this work, different synthetic procedures for the series of 1,3,5-triazinyl-aminobenzenesulfonamide conjugates with amino acids, possessing polar uncharged, negatively charged, and hydrophobic side chain, were studied and optimized with respect to the yield/purity of the synthesis/product as well as the time of synthetic reaction. These procedures were compared to each other via characteristic HPLC-ESI-DAD/QTOF/MS analytical product profiles, and their benefits as well as limitations were discussed. For new sulfonamide derivatives, incorporating s-triazine with a symmetric pair of polar and some less-polar proteinogenic amino acids, inhibition constants (KIs) against four human carboanhydrases (hCAs), namely cytosolic hCA I, II, transmembrane hCA IV, and the tumor-associated, membrane-bound hCA IX isoforms, were computationally predicted applying various methods of the advanced statistical analysis. Quantitative structure-activity relationship (QSAR) analysis indicated an impressive KI ratio (hCA II/hCA IX) 139.1 and hCA IX inhibition constant very similar to acetazolamide (KI = 29.6 nM) for the sulfonamide derivative disubstituted with Gln. The derivatives disubstituted with Ser, Thr, and Ala showed even lower KIs (8.7, 13.1, and 8.4 nM, respectively).
Collapse
Affiliation(s)
- Mária Bodnár Mikulová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Dáša Kružlicová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, University of Florence, 50139 Florence, Italy;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (M.B.M.); (D.K.); (D.P.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| |
Collapse
|
28
|
Yorulmaz N, Eroğlu E. DFT based QSARs for inhibitory activity of coumarins towards tumor-associated isoform (CA XII) of carbonic anhydrases. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Pharmacological Inhibition of CA-IX Impairs Tumor Cell Proliferation, Migration and Invasiveness. Int J Mol Sci 2020; 21:ijms21082983. [PMID: 32340282 PMCID: PMC7215745 DOI: 10.3390/ijms21082983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Carbonic anhydrase IX (CA-IX) plays a pivotal role in regulation of pH in tumor milieu catalyzing carbonic acid formation by hydrating CO2. An acidification of tumor microenvironment contributes to tumor progression via multiple processes, including reduced cell-cell adhesion, increased migration and matrix invasion. We aimed to assess whether the pharmacological inhibition of CA-IX could impair tumor cell proliferation and invasion. Tumor epithelial cells from breast (MDA-MB-231) and lung (A549) cancer were used to evaluate the cytotoxic effect of sulfonamide CA-IX inhibitors. Two CA-IX enzyme blockers were tested, SLC-0111 (at present in phase Ib clinical trial) and AA-06-05. In these cells, the drugs inhibited cell proliferation, migration and invasion through shifting of the mesenchymal phenotype toward an epithelial one and by impairing matrix metalloprotease-2 (MMP-2) activity. The antitumor activity was elicited via apoptosis pathway activation. An upregulation of p53 was observed, which in turn regulated the activation of caspase-3. Inhibition of proteolytic activity was accompanied by upregulation of the endogenous tissue inhibitor TIMP-2. Collectively, these data confirm the potential use of CA-IX inhibitors, and in particular SLC-0111 and AA-06-05, as agents to be further developed, alone or in combination with other conventional anticancer drugs.
Collapse
|
30
|
Gosling S, Scott R, Greenwood C, Bouzy P, Nallala J, Lyburn ID, Stone N, Rogers K. Calcification Microstructure Reflects Breast Tissue Microenvironment. J Mammary Gland Biol Neoplasia 2019; 24:333-342. [PMID: 31807966 PMCID: PMC6908550 DOI: 10.1007/s10911-019-09441-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/27/2019] [Indexed: 10/27/2022] Open
Abstract
Microcalcifications are important diagnostic indicators of disease in breast tissue. Tissue microenvironments differ in many aspects between normal and cancerous cells, notably extracellular pH and glycolytic respiration. Hydroxyapatite microcalcification microstructure is also found to differ between tissue pathologies, including differential ion substitutions and the presence of additional crystallographic phases. Distinguishing between tissue pathologies at an early stage is essential to improve patient experience and diagnostic accuracy, leading to better disease outcome. This study explores the hypothesis that microenvironment features may become immortalised within calcification crystallite characteristics thus becoming indicators of tissue pathology. In total, 55 breast calcifications incorporating 3 tissue pathologies (benign - B2, ductal carcinoma in-situ - B5a and invasive malignancy - B5b) from archive formalin-fixed paraffin-embedded core needle breast biopsies were analysed using X-ray diffraction. Crystallite size and strain were determined from 548 diffractograms using Williamson-Hall analysis. There was an increased crystallinity of hydroxyapatite with tissue malignancy compared to benign tissue. Coherence length was significantly correlated with pathology grade in all basis crystallographic directions (P < 0.01), with a greater difference between benign and in situ disease compared to in-situ disease and invasive malignancy. Crystallite size and non-uniform strain contributed to peak broadening in all three pathologies. Furthermore, crystallite size and non-uniform strain normal to the basal planes increased significantly with malignancy (P < 0.05). Our findings support the view that tissue microenvironments can influence differing formation mechanisms of hydroxyapatite through acidic precursors, leading to differential substitution of carbonate into the hydroxide and phosphate sites, causing significant changes in crystallite size and non-uniform strain.
Collapse
Affiliation(s)
- Sarah Gosling
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK.
| | - Robert Scott
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, UK
| | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Iain D Lyburn
- Thirlestaine Breast Centre, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, Gloucestershire, UK
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Shrivenham, UK
| |
Collapse
|
31
|
Alterio V, Kellner M, Esposito D, Liesche-Starnecker F, Bua S, Supuran CT, Monti SM, Zeidler R, De Simone G. Biochemical and Structural Insights into Carbonic Anhydrase XII/Fab6A10 Complex. J Mol Biol 2019; 431:4910-4921. [DOI: 10.1016/j.jmb.2019.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
32
|
TFAP2C regulates carbonic anhydrase XII in human breast cancer. Oncogene 2019; 39:1290-1301. [PMID: 31636386 DOI: 10.1038/s41388-019-1062-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/16/2023]
Abstract
The expression of carbonic anhydrase XII (CA12) is associated with the expression of estrogen receptor alpha (ERα) in breast cancer and is linked to a good prognosis with a lower risk of metastasis. Transcription Factor Activator Protein 2γ (TFAP2C, AP-2γ) governs luminal breast cancer phenotype through direct and indirect regulation of ERα and ERα-associated genes, GATA3, FOXA1, EGFR, CDH1, DSP, KRT7, FBP1, MYB, RET, KRT8, MUC1, and ERBB2-genes which are responsible for the luminal signature in breast cancer. Herein, utilizing chromatin immunoprecipitation and direct sequencing (ChIP-seq), we show that CA12 is regulated by AP-2γ through binding with its promoter region in luminal breast cancer cell lines and indirectly through a distal estrogen-responsive region in ERα-positive cell lines by upregulation of ERα. CA12 is transcriptionally silenced in basal breast cancer cell lines through histone deacetylation and CpG methylation of the promoter region and can be re-activated with Trichostatin A (histone deacetylase inhibitor) and/or 5-aza-dC (an inhibitor of DNA methylation). Strong concordance in co-expression of CA12 and ESR1 (R2 = 0.1128, p = 0486) and TFAP2C (R2 = 0.1823, p = 0.0105) was found using a panel of primary breast tumor samples (n = 35), supporting a synergetic role of AP-2γ and ERα in activation of CA12. Our results highlight the essential role of AP-2γ in maintaining the luminal breast cancer phenotype and provide evidence that epigenetic mechanisms silence luminal gene expression in the basal phenotype. Additional studies to decipher mechanisms that drive epigenetic silencing of AP-2γ target genes are a critical area for further research.
Collapse
|
33
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
34
|
Liskova V, Hudecova S, Lencesova L, Iuliano F, Sirova M, Ondrias K, Pastorekova S, Krizanova O. Type 1 Sodium Calcium Exchanger Forms a Complex with Carbonic Anhydrase IX and Via Reverse Mode Activity Contributes to pH Control in Hypoxic Tumors. Cancers (Basel) 2019; 11:cancers11081139. [PMID: 31395807 PMCID: PMC6721473 DOI: 10.3390/cancers11081139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
Hypoxia and acidosis are among the key microenvironmental factors that contribute to cancer progression. We have explored a possibility that the type 1Na+/Ca2+ exchanger (NCX1) is involved in pH control in hypoxic tumors. We focused on changes in intracellular pH, co-localization of NCX1, carbonic anhydrase IX (CA IX), and sodium proton exchanger type 1 (NHE1) by proximity ligation assay, immunoprecipitation, spheroid formation assay and migration of cells due to treatment with KB-R7943, a selective inhibitor of the reverse-mode NCX1. In cancer cells exposed to hypoxia, reverse-mode NCX1 forms a membrane complex primarily with CA IX and also with NHE1. NCX1/CA IX/NHE1 assembly operates as a metabolon with a potent ability to extrude protons to the extracellular space and thereby facilitate acidosis. KB-R7943 prevents formation of this metabolon and reduces cell migration. Thus, we have shown that in hypoxic cancer cells, NCX1 operates in a reverse mode and participates in pH regulation in hypoxic tumors via cooperation with CAIX and NHE1.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Sona Hudecova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Lubomira Lencesova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Filippo Iuliano
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Marta Sirova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta, 84505 Bratislava, Slovakia.
- Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Námestie J. Herdu 2, Trnava, 91701 Slovakia.
| |
Collapse
|
35
|
Abstract
The extracellular pH of solid tumors is unequivocally acidic due to a combination of high rates of lactic acid production (a consequence of fermentative glycolytic metabolism) and poor perfusion. This has been documented by us and others in a wide variety of solid tumor models, primarily using magnetic resonance spectroscopic imaging (MRSI). This acidity contributes to tumor progression by inducing genome instability, promoting local invasion and metastases, inhibiting anti-tumor immunity, and conferring resistance to chemo- and radio-therapies. Systemic buffer therapies can neutralize tumor acidity and has been shown to inhibit local invasion and metastasis and improve immune surveillance in a variety of cancer model systems. This review will revisit the causes and consequences of acidosis by summarizing strategies used by cancer cells to adapt to acidosis, and how this acidity associated with carcinogenesis, metastasis, and immune function. Finally, this review will discuss how neutralization of acidity can be used to inhibit carcinogenesis and metastasis and improve anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, University of South Florida, Tampa, FL, USA.
| | - Veronica Estrella
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, FL, 33612, USA
| |
Collapse
|
36
|
Abstract
Cancer development is a complex process that follows an intricate scenario with a dynamic interplay of selective and adaptive steps and an extensive cast of molecules and signaling pathways. Solid tumor initially grows as an avascular bulk of cells carrying oncogenic mutations until diffusion distances from the nearest functional blood vessels limit delivery of nutrients and oxygen on the one hand and removal of metabolic waste on the other one. These restrictions result in regional hypoxia and acidosis that select for adaptable tumor cells able to promote aberrant angiogenesis, remodel metabolism, acquire invasiveness and metastatic propensity, and gain therapeutic resistance. Tumor cells are thereby endowed with capability to survive and proliferate in hostile microenvironment, communicate with stroma, enter circulation, colonize secondary sites, and generate metastases. While the role of oncogenic mutations initializing and driving these processes is well established, a key contribution of non-genomic, landscaping molecular players is still less appreciated despite they can equally serve as viable targets of anticancer therapies. Carbonic anhydrase IX (CA IX) is one of these players: it is induced by hypoxia, functionally linked to acidosis, implicated in invasiveness, and correlated with therapeutic resistance. Here, we summarize the available experimental evidence supported by accumulating preclinical and clinical data that CA IX can contribute virtually to each step of cancer progression path via its enzyme activity and/or non-catalytic mechanisms. We also propose that targeting tumor cells that express CA IX may provide therapeutic benefits in various settings and combinations with both conventional and newly developed treatments.
Collapse
Affiliation(s)
- Silvia Pastorekova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, 12902 Magnolia Avenue, Tampa, FL, 33612, USA
| |
Collapse
|
37
|
Bernardino RL, Dias TR, Moreira BP, Cunha M, Barros A, Oliveira E, Sousa M, Alves MG, Oliveira PF. Carbonic anhydrases are involved in mitochondrial biogenesis and control the production of lactate by human Sertoli cells. FEBS J 2019; 286:1393-1406. [PMID: 30724485 DOI: 10.1111/febs.14779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 01/04/2023]
Abstract
The process that allows cells to control their pH and bicarbonate levels is essential for ionic and metabolic equilibrium. Carbonic anhydrases (CAs) catalyse the conversion of CO2 to HCO 3 - and H+ and are thus essential for this process. Herein, we inhibited CAs with acetazolamide - ACT and SLC-0111 - to study their involvement in the metabolism, mitochondrial potential, mitochondrial biogenesis and lipid metabolism of human Sertoli cells (hSCs), obtained from biopsies from men with conserved spermatogenesis. We were able to identify three isoforms of CAs, one mitochondrial isoform (CA VB) and two cell membrane-bound isoforms (CA IX and CA XII) in hSCs. When assessing the expression of markers for mitochondrial biogenesis, we observed a decrease in HIF-1α, SIRT1, PGC1α and NRF-1 mRNAs after all CAs were inhibited, resulting in decreased mitochondrial DNA copy numbers. This was followed by an increased production of lactate and alanine in the same conditions. In addition, consumption of glucose was maintained after inhibition of all CAs in hSCs. These results indicate a reduced conversion of pyruvate to acetyl-coA, possibly due to decreased mitochondrial function, caused by CA inhibition in hSCs. Inhibition of CAs also caused alterations in lipid metabolism, since we detected an increased expression of hormone-sensitive lipase (HSL) in hSCs. Our results suggest that CAs are essential for mitochondrial biogenesis, glucose and lipid metabolism in hSCs. This is the first report showing that CAs play an essential role in hSC metabolic dynamics, being involved in mitochondrial biogenesis and controlling lactate production.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Tânia R Dias
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,University of Beira Interior, Covilhã, Portugal.,LAQV/REQUINTE - Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Portugal
| | - Bruno P Moreira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Elsa Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences, Abel Salazar (ICBAS) and Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Portugal.,i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
38
|
Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018; 27:963-970. [PMID: 30426805 DOI: 10.1080/13543784.2018.1548608] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hypoxic tumors overexpress two carbonic anhydrases (CA, EC 4.2.1.1), CA IX and XII, involved in complex processes connected to tumorigenesis (pH regulation, metabolism, invasion, and dissemination of the tumor). The biochemical rationale behind these processes is orchestrated by the transcription factor hypoxia inducible factor 1 (HIF-1). AREAS COVERED CA IX and XII have been validated as antitumor/antimetastatic drug targets and may be used for imaging hypoxic tumors. Many CA inhibitors (CAIs) belonging to the sulfonamide, coumarin and sulfocoumarin classes selectively inhibit these two isoforms. CA IX/XII inhibitors inhibit the growth of primary tumors and the formation of metastases and deplete the cancer stem cell population, alone or in combination with other agents. These are three beneficial antitumor mechanisms that make them unique among anticancer drugs available. EXPERT OPINION Indisulam entered clinical trials as an antitumor sulfonamide; it progressed to Phase II trials but was terminated in 2016. However, SLC-0111, a sulfonamide CA IX/XII inhibitor 1, recently completed a successful Phase I clinical trial for the treatment of advanced, metastatic solid tumors. This compound is now in Phase Ib/II clinical trials and is being assessed as a monotherapy or in combination with other agents such as gemcitabine. CA IX/XII inhibitors are synergistic with other anticancer agents (cisplatin, proton pump inhibitors, doxorubicin, temozolamide) and are a versatile, emerging class of antitumor drugs.
Collapse
Affiliation(s)
- Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Firenze) , Italy
| |
Collapse
|
39
|
von Neubeck B, Gondi G, Riganti C, Pan C, Parra Damas A, Scherb H, Ertürk A, Zeidler R. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int J Cancer 2018; 143:2065-2075. [PMID: 29786141 DOI: 10.1002/ijc.31607] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Carbonic anhydrase XII (CAXII) is a membrane-tethered ectoenzyme involved in intracellular pH regulation and overexpressed across various types of human cancer. Because CAXII inhibition shows antitumor activity in vitro, it is thought that the enzyme is mandatory for maximum tumor growth, above all under hypoxic conditions. Recently, it has been shown that CAXII is co-expressed along with the P-glycoprotein (P-GP) on many tumor cells and that both proteins physically interact. Of interest, blocking CAXII activity also decreases P-GP activity in cancer cells both in vitro and in vivo. Previously, we have reported on the development of a monoclonal antibody, termed 6A10, which specifically and efficiently blocks human CAXII activity. Here, we demonstrate that 6A10 also indirectly reduces P-GP activity in CAXII/P-GP double-positive chemoresistant cancer cells, resulting in enhanced chemosensitivity as revealed by enhanced accumulation of anthracyclines and increased cell death in vitro. Even more important, we show that mice carrying human triple-negative breast cancer xenografts co-treated with doxorubicin (DOX) and 6A10 show a significantly reduced number of metastases. Collectively, our data provide evidence that the inhibition of CAXII with 6A10 is an attractive way to reduce chemoresistance of cancer cells and to interfere with the metastatic process in a clinical setting.
Collapse
Affiliation(s)
- Bettina von Neubeck
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany
| | - Gabor Gondi
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Arnaldo Parra Damas
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Hagen Scherb
- Institute of Computational Biology (ICB), Helmholtz Center for Environmental Health, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Reinhard Zeidler
- Department of Gene Vectors, Helmholtz Center for Environmental Health, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
40
|
Lin C, Zhang X, Chen H, Bian Z, Zhang G, Riaz MK, Tyagi D, Lin G, Zhang Y, Wang J, Lu A, Yang Z. Dual-ligand modified liposomes provide effective local targeted delivery of lung-cancer drug by antibody and tumor lineage-homing cell-penetrating peptide. Drug Deliv 2018; 25:256-266. [PMID: 29334814 PMCID: PMC6058720 DOI: 10.1080/10717544.2018.1425777] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The abilities of a drug delivery system to target and penetrate tumor masses are key factors in determining the system’s chemotherapeutic efficacy. Here, we explored the utility of an anti-carbonic anhydrase IX (anti-CA IX) antibody and CPP33 dual-ligand modified triptolide-loaded liposomes (dl-TPL-lip) to simultaneously enhance the tumor-specific targeting and increase tumor cell penetration of TPL. In vitro, the dl-TPL-lip increased the cytotoxicity of TPL in CA IX-positive lung cancer cells, which showed tunable size (137.6 ± 0.8 nm), high-encapsulation efficiency (86.3 ± 2.6%) and sustained release. Dl-TPL-lip significantly improved the ability of liposomes to penetrate 3 D tumor spheroids and exhibited a superior inhibiting effect. Furthermore, pharmacokinetic studies in rats that received TPL liposomal formulations by endotracheal administration showed a reduced concentration of TPL (17.3%–30.6% compared to free TPL) in systemic circulation. After pulmonary administration in orthotopic lung tumor-bearing mice, dl-TPL-lip significantly enhanced TPL anti-cancer efficacy without apparent systemic toxicity. This dual-ligand modified liposomal vehicle presents a potential system for localized and targeted delivery of anti-cancer drugs to improve their efficacy.
Collapse
Affiliation(s)
- Congcong Lin
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Xue Zhang
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Hubiao Chen
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Zhaoxiang Bian
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Ge Zhang
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | | | - Deependra Tyagi
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Ge Lin
- b School of Biomedical Sciences , Chinese University of Hong Kong , Hong Kong , China
| | - Yanbo Zhang
- c School of Chinese Medicine, Li Ka Shing Faculty of Medicine , The University of Hong Kong , Hong Kong , China
| | - Jinjin Wang
- d Changshu Research Institute , Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone , Changshu , China
| | - Aiping Lu
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China.,d Changshu Research Institute , Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone , Changshu , China
| | - Zhijun Yang
- a School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China.,d Changshu Research Institute , Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone , Changshu , China
| |
Collapse
|
41
|
Chen Z, Ai L, Mboge MY, Tu C, McKenna R, Brown KD, Heldermon CD, Frost SC. Differential expression and function of CAIX and CAXII in breast cancer: A comparison between tumorgraft models and cells. PLoS One 2018; 13:e0199476. [PMID: 29965974 PMCID: PMC6028082 DOI: 10.1371/journal.pone.0199476] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) and XII (CAXII) are transmembrane proteins that are associated with cancer progression. We have previously described the catalytic properties of CAIX in MDA-MB-231 breast cancer cells, a line of cells that were derived from a patient with triple negative breast cancer. We chose this line because CAIX expression in breast cancer is a marker of hypoxia and a prognosticator for reduced survival. However, CAXII expression is associated with better survival statistics than those patients with low CAXII expression. Yet CAIX and CAXII have similar catalytic activities. Here we compare the potential roles of CAIX and CAXII in the context of TNBC and estrogen receptor (ER)-positive breast cancer. In tumor graft models, we show that CAIX and CAXII exhibit distinct expression patterns and non-overlapping. We find the same pattern across a panel of TNBC and luminal breast cancer cell lines. This affords an opportunity to compare directly CAIX and CAXII function. Our data suggest that CAIX expression is associated with growth potentiation in the tumor graft model and in a TNBC line using knockdown strategies and blocking activity with an impermeant sulfonamide inhibitor, N-3500. CAXII was not associated with growth potentiation. The catalytic activities of both CAIX and CAXII were sensitive to inhibition by N-3500 and activated at low pH. However, pH titration of activity in membrane ghosts revealed significant differences in the catalytic efficiency and pKa values. These features provide evidence that CAIX is a more efficient enzyme than CAXII at low pH and that CAIX shifts the equilibrium between CO2 and bicarbonate in favor of CO2 production by consuming protons. This suggests that in the acidic microenvironment of tumors, CAIX plays a role in stabilizing pH at a value that favors cancer cell survival.
Collapse
Affiliation(s)
- Zhijuan Chen
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Lingbao Ai
- The Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mam Y Mboge
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Chingkuang Tu
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Robert McKenna
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Kevin D Brown
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Coy D Heldermon
- The Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Susan C Frost
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
42
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
43
|
Horie K, Kawakami K, Fujita Y, Sugaya M, Kameyama K, Mizutani K, Deguchi T, Ito M. Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochem Biophys Res Commun 2017; 492:356-361. [PMID: 28851650 DOI: 10.1016/j.bbrc.2017.08.107] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 10/19/2022]
Abstract
Exosomes or microvesicles that are secreted from cells are considered to play important roles in tumor microenvironment. Carbonic anhydrase 9 (CA9), which is induced by hypoxia-inducible factor 1 (HIF1) in response to hypoxia, is overexpressed in many types of cancer including renal cell carcinoma (RCC). We examined the expression level of CA9 in several RCC cell lines and found that the basal level of CA9 was much higher in OSRC-2 cells than in Caki-1, KMRC-1 and 786-O cells. Consistent with the intracellular expression levels, CA9 was abundantly detected in exosomes isolated by ultracentrifugation from OSRC-2 cells. Density gradient centrifugation of OSRC-2 and 786-O exosomes confirmed the co-presence of CA9 with exosomal markers. Upon hypoxia and treatment with CoCl2, a hypoxia mimic agent, the CA9 level in exosomes was increased for all cell lines. In order to examine the effects of CA9 exosomes on angiogenesis, we generated stably transfected HEK293 cells expressing CA9. Immunocytochemical staining demonstrated the uptake of CA9 exosomes by human umbilical vein endothelial cells (HUVEC). In vitro angiogenesis assays using HUVEC revealed that CA9 exosomes promoted migration and tube formation. Lastly, MMP2 expression was increased by treatment with CA9 exosomes in HUVEC. Taken together, our results suggest the possibility that CA9 exosomes released from hypoxic RCC may enhance angiogenesis in microenvironment, thereby contributing to cancer progression.
Collapse
Affiliation(s)
- Kengo Horie
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yasunori Fujita
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Maki Sugaya
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Koji Kameyama
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Kosuke Mizutani
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| | - Takashi Deguchi
- Department of Urology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
44
|
Waheed A, Sly WS. Carbonic anhydrase XII functions in health and disease. Gene 2017; 623:33-40. [PMID: 28433659 PMCID: PMC5851007 DOI: 10.1016/j.gene.2017.04.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Human CAXII was initially identified as a cancer marker in different cancers and tumors. Expression of CAXII is regulated by hypoxia and estrogen receptors. CAXII expression has been also detected in several tissues, whereas in cancer and tumor tissues its expression is several fold higher. In brain tumors, an alternatively spliced form of CAXII is expressed. Higher expression of CAXII in breast cancer is indicative of lower grade disease. CAXII plays a key role in several physiological functions. Mutation in the CAXII gene causes cystic fibrosis-like syndrome and salt wasting disease. CAXII is also seen in nuclear pulposus cells of the vertebrae. Aging dependent stiffness or degeneration of backbone correlates with CAXII expression level. This finding suggests a possible implication of CAXII as a biomarker for chronic back pain and a pharmacological target for possible treatment of chronic back pain.
Collapse
Affiliation(s)
- Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
45
|
Lau I, Potluri A, Ibeh CL, Redman RS, Paal E, Bandyopadhyay BC. Microcalcifications in stone-obstructed human submandibular gland are associated with apoptosis and cell proliferation. Arch Oral Biol 2017. [PMID: 28623687 DOI: 10.1016/j.archoralbio.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Human submandibular gland (SMG) stones are associated with inflammation, fibrosis and microcalcifications in the surrounding tissues. However, there is little information about the accompanying cell injury-repair process, apoptosis, and cell proliferation. The purpose of this study was to investigate such an association and its clinical significance. DESIGN OF STUDY Mid-gland paraffin sections of human SMGs ("stone glands") and normal SMGs ("non-stone glands") were subjected to stains for general histology (hematoxylin and eosin), fibrosis (Masson's trichrome), and calcification (alizarin red) and to immunohistochemistry for proliferative activity (Ki-67), and apoptosis (Caspase-3). Tissues were assessed for areas of inflammation, calcium deposition, and fibrosis, and for cycling and apoptotic cells. RESULTS Acini were atrophic and proportionately fewer in lobules with fibrosis in stone glands. Additionally, stone glands had intraluminal calcifications (microliths) in scattered excretory and striated ducts and blood vessel walls. Areas of inflammation and fibrosis were small and uncommon, and calcifications were not seen in non-stone glands. Proliferating and apoptotic cells were common in the main duct of stone glands where ciliated and mucous cell hyperplasia and stratified squamous metaplasia had occurred, uncommon in the main duct of non-stone glands, and uncommon in all other parenchymal elements of both stone and non-stone glands. CONCLUSION Stone obstruction in the main excretory ducts of SMG resulted in progressive depletion of acini from proximal to distal lobules via calcification, inflammation, fibrosis, and parenchymal cell atrophy, apoptosis and proliferation. Interlobular duct microliths contributed to this depletion by further provoking intralobular inflammation, fibrosis, and acinar atrophy.
Collapse
Affiliation(s)
- Ivan Lau
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Ajay Potluri
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Cliff-Lawrence Ibeh
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Robert S Redman
- Oral Pathology Research Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Edina Paal
- Pathology and Laboratory Service, Veterans Affairs Medical Center, Washington DC, United States
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington DC, United States; Department of Pharmacology and Physiology, Georgetown University, Washington DC, United States.
| |
Collapse
|
46
|
Lin C, Wong BCK, Chen H, Bian Z, Zhang G, Zhang X, Kashif Riaz M, Tyagi D, Lin G, Zhang Y, Wang J, Lu A, Yang Z. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 2017; 7:1097. [PMID: 28428618 PMCID: PMC5430522 DOI: 10.1038/s41598-017-00957-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022] Open
Abstract
Antibody-decorated liposomes can facilitate the precise delivery of chemotherapeutic drugs to the lung by targeting a recognition factor present on the surface of lung tumor cells. Carbonic anhydrase IX (CA IX) is an enzyme expressed on the surface of lung cancer cells with a restricted expression in normal lungs. Here, we explored the utility of anti-carbonic anhydrase IX (CA IX) antibody, conjugated to the surface of triptolide (TPL)-loaded liposomes (CA IX-TPL-Lips), to promote the therapeutic effects for lung cancer via pulmonary administration. It was found that the CA IX-TPL-Lips significantly improved the cellular uptake efficiency in both CA IX-positive human non-small cell lung cancer cells (A549) and A549 tumor spheroids, resulting in the efficient cell killing compared with free TPL and non-targeted TPL-Lips. In vivo, CA IX-Lips via pulmonary delivery showed specificity and a sustained release property resided up to 96 h in the lung, both of which improved the efficiency of TPL formulations in restraining tumor growth and significantly prolonged the lifespan of mice with orthotopic lung tumors. The results suggest that CA IX-decorated liposomes can potentially be used as an effective therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Blenda Chi Kwan Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Deependra Tyagi
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Ge Lin
- School of Biomedical Sciences, Chinese University of Hong Kong, Area 39, CUHK, Shatin, NT, Hong Kong, China
| | - Yanbo Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jinjin Wang
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China. .,Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China. .,Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China.
| |
Collapse
|
47
|
Wang Y, Liu M, Jin ML. Blood Oxygenation Level-dependent Magnetic Resonance Imaging of Breast Cancer: Correlation with Carbonic Anhydrase IX and Vascular Endothelial Growth Factor. Chin Med J (Engl) 2017; 130:71-76. [PMID: 28051026 PMCID: PMC5221115 DOI: 10.4103/0366-6999.196570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) is a functional MRI technique which involves using the paramagnetic properties of deoxyhemoglobin to image the local tissue oxygen concentration. The purpose of this study was to investigate whether BOLD-MRI could evaluate hypoxia and angiogenesis of breast invasive ductal carcinoma (IDC). Methods: Ninety-eight female patients with IDC were retrospectively included in this research. All patients underwent breast BOLD-MRI at 3.0 T before surgery. R2* values of BOLD-MRI were measured. The expression of carbonic anhydrase IX (CA IX) and vascular endothelial growth factor (VEGF) was analyzed by immunohistochemistry. Spearman's correlation analysis was used to correlate R2* value with CA IX and VEGF levels. Results: Heterogeneous intensity on BOLD-MRI images was the main finding of IDCs. The mean R2* value was 52.8 ± 18.6 Hz. The R2* values in patients with axillary lymph node metastasis were significantly higher than the R2* values in patients without axillary lymph node metastasis (t = 2.882, P = 0.005). R2* values increased with CA IX level and positively correlated with the level of CA IX (r = 0.616, P < 0.001); however, R2* value had no significantly correlation with the level of VEGF (r = 0.110, P = 0.281). Conclusion: BOLD-MRI could noninvasively evaluate chronic hypoxia of IDC, but not angiogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mu-Lan Jin
- Department of Pathology, Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China
| |
Collapse
|
48
|
Abstract
Frequently observed phenotypes of tumours include high metabolic activity, hypoxia and poor perfusion; these act to produce an acidic microenvironment. Cellular function depends on pH homoeostasis, and thus, tumours become dependent on pH regulatory mechanisms. Many of the proteins involved in pH regulation are highly expressed in tumours, and their expression is often of prognostic significance. The more acidic tumour microenvironment also has important implications with regard to chemotherapeutic and radiotherapeutic interventions. In addition, we review pH-sensing mechanisms, the role of pH regulation in tumour phenotype and the use of pH regulatory mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Granja S, Tavares-Valente D, Queirós O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol 2017; 43:17-34. [PMID: 28065864 DOI: 10.1016/j.semcancer.2016.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Altered metabolism, associated with acidification of the extracellular milieu, is one of the major features of cancer. As pH regulation is crucial for the maintenance of all biological functions, cancer cells rely on the activity of lactate exporters and proton transporters to regulate their intracellular pH. The major players in cancer pH regulation are proton pump ATPases, sodium-proton exchangers (NHEs), monocarboxylate transporters (MCTs), carbonic anhydrases (CAs) and anion exchangers (AEs), which have been shown to be upregulated in several human malignancies. Thanks to the activity of the proton pumps and transporters, tumours acidify their microenvironment, becoming more aggressive and resistant to therapy. Thus, targeting tumour pH may contribute to more effective anticancer strategies for controlling tumour progression and therapeutic resistance. In the present study, we review the role of the main pH regulators expressed in human cancer cells, including their diagnostic and prognostic value, as well as their usefulness as therapeutic targets.
Collapse
Affiliation(s)
- Sara Granja
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center of Molecular and Environmental Biology/Department of Biology/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
D11-Mediated Inhibition of Protein Kinase CK2 Impairs HIF-1α-Mediated Signaling in Human Glioblastoma Cells. Pharmaceuticals (Basel) 2017; 10:ph10010005. [PMID: 28045438 PMCID: PMC5374409 DOI: 10.3390/ph10010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022] Open
Abstract
Compelling evidence indicates that protein kinase CK2 plays an important role in many steps of cancer initiation and progression, therefore, the development of effective and cell-permeable inhibitors targeting this kinase has become an important objective for the treatment of a variety of cancer types including glioblastoma. We have recently identified 1,3-dichloro-6-[(E)-((4-methoxyphenyl)imino)methyl]dibenzo(b,d)furan-2,7-diol (D11) as a potent and selective inhibitor of protein kinase CK2. In this study, we have further characterized this compound and demonstrated that it suppresses CK2 kinase activity by mixed type inhibition (KI 7.7 nM, KI′ 42 nM). Incubation of glioblastoma cells with D11 induces cell death and upon hypoxia the compound leads to HIF-1α destabilization. The analysis of differential mRNA expression related to human hypoxia signaling pathway revealed that D11-mediated inhibition of CK2 caused strong down-regulation of genes associated with the hypoxia response including ANGPTL4, CA9, IGFBP3, MMP9, SLC2A1 and VEGFA. Taken together, the results reported here support the notion that including D11 in future treatment regimens might turn out to be a promising strategy to target tumor hypoxia to overcome resistance to radio- and chemotherapy.
Collapse
|