1
|
Watany MM, Elhosary MM, El-Horany HE, El-Horany ME. Methylation of Interleukin-1 receptor-associated kinase-3 and the risk of multiple sclerosis relapse/activity. Clin Immunol 2024; 266:110327. [PMID: 39053866 DOI: 10.1016/j.clim.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.
Collapse
Affiliation(s)
- Mona M Watany
- Clinical pathology department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Marwa M Elhosary
- Msc Immunology from Tanta university, Faculty of Science, Tanta 31527, Egypt
| | - Hemat E El-Horany
- Medical biochemistry department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt; Biochemistry Department, College of Medicine, Ha'il University, Ha'il 55211, Saudi Arabia
| | - Mahmoud E El-Horany
- Neurology department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Lei Z, Lin W. Mechanisms Governing Oligodendrocyte Viability in Multiple Sclerosis and Its Animal Models. Cells 2024; 13:116. [PMID: 38247808 PMCID: PMC10814231 DOI: 10.3390/cells13020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory demyelinating disease of the central nervous system (CNS), which is triggered by an autoimmune assault targeting oligodendrocytes and myelin. Recent research indicates that the demise of oligodendrocytes due to an autoimmune attack contributes significantly to the pathogenesis of MS and its animal model experimental autoimmune encephalomyelitis (EAE). A key challenge in MS research lies in comprehending the mechanisms governing oligodendrocyte viability and devising therapeutic approaches to enhance oligodendrocyte survival. Here, we provide an overview of recent findings that highlight the contributions of oligodendrocyte death to the development of MS and EAE and summarize the current literature on the mechanisms governing oligodendrocyte viability in these diseases.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Jin C, Zheng J, Yang Q, Jia Y, Li H, Liu X, Xu Y, Chen Z, He L. Morusin Inhibits RANKL-induced Osteoclastogenesis and Ovariectomized Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1358-1370. [PMID: 37807416 DOI: 10.2174/0113862073252310230925062415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a classic type of osteoporosis that has gradually become a significant health problem worldwide. There is an urgent need for a safe alternative therapeutic agent considering the poor therapeutic strategies currently available for this disease. The roots and bark of the Morus australis tree (Moraceae) are used to make a traditional Chinese medicine known as "Morusin", and accumulating evidence has demonstrated its multiple activities, such as anti-inflammatory and anti-tumor effects. OBJECTIVE In this study, we aim to explore the effect of Morusin on mouse osteoclasts and its mechanism. METHODS In this study, we explored the inhibitory effects of Morusin on murine osteoclasts in vitro and its mechanism, and the protective effect of Morusin on an ovariectomy (OVX)-induced osteoporosis model in vivo. RESULTS The results showed that Morusin prevented OVX-induced bone loss and dramatically decreased RANKL-induced osteoclastogenesis. Morusin interfered with RANKL-activated NF- κB, MAPK, and PI3K/AKT signaling pathways. The expression of three master factors that control osteoclast differentiation, c-Fos, NFATc1, and c-Jun, was reduced by Morusin treatment. Collectively, in vitro results indicated that Morusin has a protective effect on OVX-induced bone loss in a mouse model. CONCLUSION Our data provide encouraging evidence that Morusin may be an effective treatment for PMOP.
Collapse
Affiliation(s)
- Cong Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jiewen Zheng
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Qichang Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Haibo Li
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuewen Liu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China China
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yangjun Xu
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, 312000, China
| | - Zhuolin Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Lei He
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
4
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Alsaad AMS, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alomar HA, Ahmad SF. Histamine H4 Receptor Agonist, 4-Methylhistamine, Aggravates Disease Progression and Promotes Pro-Inflammatory Signaling in B Cells in an Experimental Autoimmune Encephalomyelitis Mouse Model. Int J Mol Sci 2023; 24:12991. [PMID: 37629172 PMCID: PMC10455358 DOI: 10.3390/ijms241612991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
We sought to assess the impact of 4-Methylhistamine (4-MeH), a specific agonist targeting the Histamine H4 Receptor (H4R), on the progression of experimental autoimmune encephalomyelitis (EAE) and gain insight into the underlying mechanism. EAE is a chronic autoimmune, inflammatory, and neurodegenerative disease of the central nervous system (CNS) characterized by demyelination, axonal damage, and neurodegeneration. Over the past decade, pharmacological research into the H4R has gained significance in immune and inflammatory disorders. For this study, Swiss Jim Lambert EAE mice were treated with 4-MeH (30 mg/kg/day) via intraperitoneal administration from days 14 to 42, and the control group was treated with a vehicle. Subsequently, we evaluated the clinical scores. In addition, flow cytometry was employed to estimate the impact of 4-Methylhistamine (4-MeH) on NF-κB p65, GM-CSF, MCP-1, IL-6, and TNF-α within CD19+ and CXCR5+ spleen B cells. Additionally, we investigated the effect of 4-MeH on the mRNA expression levels of Nf-κB p65, Gmcsf, Mcp1, Il6, and Tnfα in the brain of mice using RT-PCR. Notably, the clinical scores of EAE mice treated with 4-MeH showed a significant increase compared with those treated with the vehicle. The percentage of cells expressing CD19+NF-κB p65+, CXCR5+NF-κB p65+, CD19+GM-CSF+, CXCR5+GM-CSF+, CD19+MCP-1+, CXCR5+MCP-1+, CD19+IL-6+, CXCR5+IL-6+, CD19+TNF-α+, and CXCR5+TNF-α+ exhibited was more pronounced in 4-MeH-treated EAE mice when compared to vehicle-treated EAE mice. Moreover, the administration of 4-MeH led to increased expression of NfκB p65, Gmcsf, Mcp1, Il6, and Tnfα mRNA in the brains of EAE mice. This means that the H4R agonist promotes pro-inflammatory mediators aggravating EAE symptoms. Our results indicate the harmful role of H4R agonists in the pathogenesis of MS in an EAE mouse model.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Xu N, Bai Y, Han X, Yuan J, Wang L, He Y, Yang L, Wu H, Shi H, Wu X. Taurochenodeoxycholic acid reduces astrocytic neuroinflammation and alleviates experimental autoimmune encephalomyelitis in mice. Immunobiology 2023; 228:152388. [PMID: 37079985 DOI: 10.1016/j.imbio.2023.152388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an immune regulatory disease that affects the central nervous system (CNS). The main pathological features include demyelination and neurodegeneration, and the pathogenesis is associated with astrocytic neuroinflammation. Taurochenodeoxycholic acid (TCDCA) is one of the conjugated bile acids in animal bile, and it is not clear whether TCDCA could improve MS by inhibiting the activation of astrocytes. This study was aimed to evaluate the effects of TCDCA on experimental autoimmune encephalomyelitis (EAE)-a classical animal model of MS, and to probe its mechanism from the aspect of suppressing astrocytic neuroinflammation. It is expected to prompt the potential application of TCDCA for the treatment of MS. RESULTS TCDCA effectively alleviated the progression of EAE and improved the impaired neurobehavior in mice. It mitigated the hyperactivation of astrocytes and down-regulated the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 in the brain cortex. In the C6 astrocytic cell line induced by lipopolysaccharide (LPS), TCDCA treatment dose-dependently decreased the production of NO and the protein expression of iNOS and glial fibrillary acidic protein (GFAP). TCDCA consistently inhibited the mRNA expressions of COX2, iNOS and other inflammatory mediators. Furthermore, TCDCA decreased the protein expression of phosphorylated serine/threonine kinase (AKT), inhibitor of NFκB α (IκBα) and nuclear factor κB (NFκB). And TCDCA also inhibited the nuclear translocation of NFκB. Conversely, as an inhibitor of the G-protein coupled bile acid receptor Gpbar1 (TGR5), triamterene eliminated the effects of TCDCA in LPS-stimulated C6 cells. CONCLUSION TCDCA improves the progress of EAE by inhibiting the astrocytic neuroinflammation, which might be exerted by the regulation of TGR5 mediated AKT/NFκB signaling pathway. These findings may prompt the potential application of TCDCA for MS therapy by suppressing astrocyte inflammation.
Collapse
Affiliation(s)
- Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Alomar HA, Nadeem A, Ansari MA, Attia SM, Bakheet SA, Al-Mazroua HA, Alhazzani K, Assiri MA, Alqinyah M, Almudimeegh S, Ahmad SF. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res Bull 2023; 194:45-53. [PMID: 36646144 DOI: 10.1016/j.brainresbull.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease leading to demyelination, followed by consequent axonal degeneration, causing sensory, motor, cognitive, and visual symptoms. Experimental autoimmune encephalomyelitis (EAE) is the most well-studied animal model of MS. Most current MS treatments are not completely effective, and severe side effects remain a great challenge. In this study, we report the therapeutic efficacy of PD98059, a potent mitogen-activated protein kinase inhibitor, on proteolipid protein (PLP)139-151-induced EAE in SJL/J mice. Following the induction of EAE, mice were intraperitoneally treated with PD98059 (5 mg/kg for 14 days) daily from day 14 to day 28. This study investigated the effects of PD98059 on C-C motif chemokine receptor 6 (CCR6), CD14, NF-κB p65, IκBα, GM-CSF, iNOS, IL-6, TNF-α in CD45R+ B lymphocytes using flow cytometry. Furthermore, we analyzed the effect of PD98059 on CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA and protein expression levels using qRT-PCR analysis in brain tissues. Mechanistic investigations revealed that PD98059-treated in mice with EAE had reduced CD45R+CCR6+, CD45R+CD14+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+iNOS+, CD45R+IL-6+, and CD45R+TNF-α+ cells and increased CD45R+IκBα+ cells compared with vehicle-treated control mice in the spleen. Moreover, downregulation of CCR6, CD14, NF-κB p65, GM-CSF, iNOS, IL-6, and TNF-α mRNA expression level was observed in PD98059-treated mice with EAE compared with vehicle-treated control mice in the brain tissue. The results of this study demonstrate that PD98059 modulates inflammatory mediators through multiple cellular mechanisms. The results of this study suggest that PD98059 may be pursued as a therapeutic agent for the treatment of MS.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
9
|
Sobel RA, Albertelli M, Hinojoza JR, Eaton MJ, Grimes KV, Rubenstein E. Azetidine-2-Carboxylic Acid-Induced Oligodendrogliopathy: Relevance to the Pathogenesis of Multiple Sclerosis. J Neuropathol Exp Neurol 2022; 81:414-433. [PMID: 35521963 PMCID: PMC9123080 DOI: 10.1093/jnen/nlac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The naturally occurring imino acid azetidine-2-carboxylic acid (Aze) is consumed by humans and can be misincorporated in place of proline in myelin basic protein (MBP) in vitro. To determine Aze effects on the mammalian CNS in vivo, adult CD1 mice were given Aze orally or intraperitoneally. Clinical signs reminiscent of MBP-mutant mice occurred with 600 mg/kg Aze exposure. Aze induced oligodendrocyte (OL) nucleomegaly and nucleoplasm clearing, dilated endoplasmic reticulum, cytoplasmic vacuolation, abnormal mitochondria, and Aze dose-dependent apoptosis. Immunohistochemistry demonstrated myelin blistering and nuclear translocation of unfolded protein response (UPR)/proinflammatory molecules (ATF3, ATF4, ATF6, eIF2α, GADD153, NFκB, PERK, XBP1), MHC I expression, and MBP cytoplasmic aggregation in OL. There were scattered microglial nodules in CNS white matter (WM); other CNS cells appeared unaffected. Mice given Aze in utero and postnatally showed more marked effects than their dams. These OL, myelin, and microglial alterations are found in normal-appearing WM (NAWM) in multiple sclerosis (MS) patients. Thus, Aze induces a distinct oligodendrogliopathy in mice that recapitulates MS NAWM pathology without leukocyte infiltration. Because myelin proteins are relatively stable throughout life, we hypothesize that Aze misincorporation in myelin proteins during myelinogenesis in humans results in a progressive UPR that may be a primary process in MS pathogenesis.
Collapse
Affiliation(s)
- Raymond A Sobel
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Megan Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Julian R Hinojoza
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mary Jane Eaton
- From the Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Rubenstein
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Rouillard ME, Hu J, Sutter PA, Kim HW, Huang JK, Crocker SJ. The Cellular Senescence Factor Extracellular HMGB1 Directly Inhibits Oligodendrocyte Progenitor Cell Differentiation and Impairs CNS Remyelination. Front Cell Neurosci 2022; 16:833186. [PMID: 35573828 PMCID: PMC9095917 DOI: 10.3389/fncel.2022.833186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
HMGB1 is a highly conserved, ubiquitous protein in eukaryotic cells. HMGB1 is normally localized to the nucleus, where it acts as a chromatin associated non-histone binding protein. In contrast, extracellular HMGB1 is an alarmin released by stressed cells to act as a danger associated molecular pattern (DAMP). We have recently determined that progenitor cells from multiple sclerosis patients exhibit a cellular senescent phenotype and release extracellular HMGB1 which directly impaired the maturation of oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes (OLs). Herein, we report that administration of recombinant HMGB1 into the spinal cord at the time of lysolecithin administration resulted in arrest of OPC differentiation in vivo, and a profound impairment of remyelination. To define the receptor by which extracellular HMGB1 mediates its inhibitory influence on OPCs to impair OL differentiation, we tested selective inhibitors against the four primary receptors known to mediate the effects of HMGB1, the toll-like receptors (TLRs)-2, -4, -9 or the receptor for advanced glycation end-products (RAGE). We found that inhibition of neither TLR9 nor RAGE increased OL differentiation in the presence of HMGB1, while inhibition of TLR4 resulted in partial restoration of OL differentiation and inhibiting TLR2 fully restored differentiation of OLs in the presence of HMGB1. Analysis of transcriptomic data (RNAseq) from OPCs identified an overrepresentation of NFκB regulated genes in OPCs when in the presence of HMGB1. We found that application of HMGB1 to OPCs in culture resulted in a rapid and concentration dependent shift in NFκB nuclear translocation which was also attenuated with coincident TLR2 inhibition. These data provide new information on how extracellular HMGB1 directly affects the differentiation potential of OPCs. Recent and past evidence for elevated HMGB1 released from senescent progenitor cells within demyelinated lesions in the MS brain suggests that a greater understanding of how this molecule acts on OPCs may unfetter the endogenous remyelination potential in MS.
Collapse
Affiliation(s)
- Megan E. Rouillard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Jingwen Hu
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Hee Won Kim
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Jeffrey K. Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, United States
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
11
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Romeo MA, Montani MSG, Benedetti R, Arena A, Gaeta A, Cirone M. The dysregulation of autophagy and ER stress induced by HHV-6A infection activates pro-inflammatory pathways and promotes the release of inflammatory cytokines and cathepsin S by CNS cells. Virus Res 2022; 313:198726. [DOI: 10.1016/j.virusres.2022.198726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
13
|
Roberti A, Chaffey LE, Greaves DR. NF-κB Signaling and Inflammation-Drug Repurposing to Treat Inflammatory Disorders? BIOLOGY 2022; 11:372. [PMID: 35336746 PMCID: PMC8945680 DOI: 10.3390/biology11030372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
NF-κB is a central mediator of inflammation, response to DNA damage and oxidative stress. As a result of its central role in so many important cellular processes, NF-κB dysregulation has been implicated in the pathology of important human diseases. NF-κB activation causes inappropriate inflammatory responses in diseases including rheumatoid arthritis (RA) and multiple sclerosis (MS). Thus, modulation of NF-κB signaling is being widely investigated as an approach to treat chronic inflammatory diseases, autoimmunity and cancer. The emergence of COVID-19 in late 2019, the subsequent pandemic and the huge clinical burden of patients with life-threatening SARS-CoV-2 pneumonia led to a massive scramble to repurpose existing medicines to treat lung inflammation in a wide range of healthcare systems. These efforts continue and have proven to be controversial. Drug repurposing strategies are a promising alternative to de novo drug development, as they minimize drug development timelines and reduce the risk of failure due to unexpected side effects. Different experimental approaches have been applied to identify existing medicines which inhibit NF-κB that could be repurposed as anti-inflammatory drugs.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; (A.R.); (L.E.C.)
| |
Collapse
|
14
|
Ye F, Li J, Xu P, Xie Z, Zheng G, Liu W, Ye G, Yu W, Lin J, Su Z, Che Y, Zhang Z, Wang P, Wu Y, Shen H. Osteogenic differentiation of mesenchymal stem cells promotes c-Jun-dependent secretion of interleukin 8 and mediates the migration and differentiation of CD4+ T cells. Stem Cell Res Ther 2022; 13:58. [PMID: 35123547 PMCID: PMC8818240 DOI: 10.1186/s13287-022-02735-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background The immune system and the skeletal system have complex interactions in the bone marrow and even in the joints, which has promoted the development of the concept of osteoimmunology. Some evidence has indicated that T cells and B cells contribute to the balance between the resorption and formation of bone. However, there has been little discussion on the regulation of CD4+ T lymphocytes by cells involved in bone metabolism. Mesenchymal stem cells (MSCs), which exert core functions related to immunoregulation and osteogenic differentiation, are crucial cells linked to both bone metabolism and the immune system. Previous studies have shown that the immunoregulatory capacity of MSCs changes following differentiation. However, it is still unclear whether the osteogenic differentiation of MSCs affects the migration and differentiation of CD4+ T cells. Methods MSCs were cultured in growth medium or osteogenic medium for 10 days and then cocultured with CD4+ T cells. CD4+ T cell migration and differentiation were detected by flow cytometry. Further, gene expression levels of specific cytokines were analyzed by quantitative real-time PCR and enzyme-linked immunosorbent assays. A Proteome Profiler Human XL Cytokine Array Kit was used to analyze supernatants collected from MSCs. Alizarin red S staining and Alkaline phosphatase assay were used to detect the osteogenic differentiation of MSCs. Results Here, we found that the migration of CD4+ T cells was elevated, and the capacity to induce the differentiation of regulatory T (Treg) cells was weakened during MSC osteogenic differentiation, while the differentiation of T helper 1 (Th1), T helper 2 (Th2) and T helper 17 (Th17) cells was not affected. Further studies revealed that interleukin (IL)-8 was significantly upregulated during MSC osteogenic differentiation. Both a neutralizing antibody and IL-8-specific siRNA significantly inhibited the migration of CD4+ T cells and promoted the differentiation of Treg cells. Finally, we found that the transcription factor c-Jun was involved in regulating the expression of IL-8 and affected the osteogenic differentiation of MSCs, thereby mediating the migration and differentiation of CD4+ T cells. Conclusion This study demonstrated that MSC osteogenic differentiation promoted c-Jun-dependent secretion of IL-8 and mediated the migration and differentiation of CD4+ T cells. These results provide a further understanding of the crosstalk between bone and the immune system and reveal information about the relationship between osteogenesis and inflammation in the field of osteoimmunology. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02735-0.
Collapse
|
15
|
Understanding Abnormal c-JNK/p38MAPK Signaling Overactivation Involved in the Progression of Multiple Sclerosis: Possible Therapeutic Targets and Impact on Neurodegenerative Diseases. Neurotox Res 2021; 39:1630-1650. [PMID: 34432262 DOI: 10.1007/s12640-021-00401-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Demyelination, immune dysregulation, and neuroinflammation are the most common triggers of motor neuron disorders such as multiple sclerosis (MS). MS is a chronic demyelinating neurodegenerative disease of the central nervous system caused by abnormal immune activation, which causes myelin sheath damage. Cell signal transduction pathways are required for a variety of physiological and pathological processes in the brain. When these signaling systems become overactive, they can lead to disease progression. In various physiological conditions, abnormal mitogen-activated protein kinase (MAPK) activation is associated with several physiological dysfunctions that cause neurodegeneration. Previous research indicates that c-JNK and p38MAPK signaling play critical roles in neuronal growth and differentiation. c-JNK/p38MAPK is a member of the MAPK family, which regulates metabolic pathways, cell proliferation, differentiation, and apoptosis that control certain neurological activities. During brain injuries, c-JNK/p38MAPK also affects neuronal elastic properties, nerve growth, and cognitive processing. This review systematically linked abnormal c-JNK/p38MAPK signaling activation to multiple neuropathological pathways in MS and related neurological dysfunctions. MS progression is linked to genetic defects, oligodendrocyte destruction, glial overactivation, and immune dysregulation. We concluded that inhibiting both the c-JNK/p38MAPK signaling pathways can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of MS and influence other neurological disorders. As a result, the potential benefits of c-JNK/p38MAPK downregulation for the development of disease-modifying treatment interventions in the future could include MS prevention and related neurocomplications.
Collapse
|
16
|
Targeting Nuclear Factor-Kappa B Signaling Pathway by Curcumin: Implications for the Treatment of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331683 DOI: 10.1007/978-3-030-56153-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which involves an auto-immune mechanism that leads to perivascular demyelination. The role of nuclear factor-kappa B (NF-κB) signaling pathway in the pathogenesis of MS has been suggested by genome-wide association studies. Therefore, strategies targeting this pathway could be potentially beneficial. Curcumin is the active component of turmeric and a phenolic phytochemical. This phytochemical has anti-inflammatory properties and has been shown by multiple studies to downregulate NF-κB and its downstream gene targets including cyclooxygenase-2, tumor necrosis factor-α, interleukin-1, and interleukin-6. This review discusses the modulatory effects of curcumin on the NF-κB signaling pathway and its downstream effectors, and the therapeutic implications of this modulation on MS.
Collapse
|
17
|
Borgonetti V, Sanna MD, Lucarini L, Galeotti N. Targeting the RNA-Binding Protein HuR Alleviates Neuroinflammation in Experimental Autoimmune Encephalomyelitis: Potential Therapy for Multiple Sclerosis. Neurotherapeutics 2021; 18:412-429. [PMID: 33200288 PMCID: PMC8116432 DOI: 10.1007/s13311-020-00958-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune inflammatory and neurodegenerative disease of the central nervous system characterized by demyelination, axonal loss, and motor dysfunction. Activated microglia are associated with the destruction of myelin in the CNS. Activated microglia produce cytokines and proinflammatory factors, favoring neuroinflammation, myelin damage, and neuronal loss, and it is thought to be involved in the disease pathogenesis. The present study investigated the role of post-transcriptional regulation of gene expression on the neuroinflammation related to experimental autoimmune encephalomyelitis (EAE) in mice, by focusing on HuR, an RNA-binding protein involved in inflammatory and immune phenomena. Spinal cord sections of EAE mice showed an increased HuR immunostaining that was abundantly detected in the cytoplasm of activated microglia, a pattern associated with its increased activity. Intrathecal administration of an anti-HuR antisense oligonucleotide (ASO) decreased the proinflammatory activated microglia, inflammatory infiltrates, and the expression of the proinflammatory cytokines IL-1β, TNF-α, and IL-17, and inhibited the activation of the NF-κB pathway. The beneficial effect of anti-HuR ASO in EAE mice corresponded also to a decreased permeability of the blood-brain barrier. EAE mice showed a reduced spinal CD206 immunostaining that was restored by anti-HuR ASO, indicating that HuR silencing promotes a shift to the anti-inflammatory and regenerative microglia phenotype. Mice that received anti-HuR ASO exhibited improved EAE-related motor dysfunction, pain hypersensitivity, and body weight loss. Targeting HuR might represent an innovative and promising perspective to control neurological disturbances in MS patients.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Maria Domenica Sanna
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Nicoletta Galeotti
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
18
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
19
|
Perga S, Montarolo F, Martire S, Bonaldo B, Bono G, Bertolo J, Magliozzi R, Bertolotto A. Overexpression of the ubiquitin-editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathol 2020; 31:283-296. [PMID: 33051914 PMCID: PMC8018032 DOI: 10.1111/bpa.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB. The TNFAIP3 locus is genetically associated to MS and its transcripts is downregulated in blood cells in treatment-naïve MS patients. Recently, several evidences in mouse models have led to hypothesize a function of A20 also in the CNS. Thus, here we aimed to unveil a possible contribution of A20 to the CNS human MS pathology. By immunohistochemistry/immunofluorescence and biomolecular techniques on post-mortem brain tissue blocks obtained from control cases (CC) and progressive MS cases, we demonstrated that A20 is present in CC brain tissues in both white matter (WM) regions, mainly in few parenchymal astrocytes, and in grey matter (GM) areas, in some neuronal populations. Conversely, in MS brain tissues, we observed increased expression of A20 by perivascular infiltrating macrophages, resident-activated astrocytes, and microglia in all the active and chronic active WM lesions. A20 was highly expressed also in the majority of active cortical lesions compared to the neighboring areas of normal-appearing grey matter (NAGM) and control GM, particularly by activated astrocytes. We demonstrated increased A20 expression in the active MS plaques, particularly in macrophages and resident astrocytes, suggesting a key role of this molecule in chronic inflammation.
Collapse
Affiliation(s)
- Simona Perga
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Gabriele Bono
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Jessica Bertolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Roberta Magliozzi
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.,Neurology B, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy.,Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
20
|
Yan J, McCombe PA, Pender MP, Greer JM. Reduced IκB-α Protein Levels in Peripheral Blood Cells of Patients with Multiple Sclerosis-A Possible Cause of Constitutive NF-κB Activation. J Clin Med 2020; 9:jcm9082534. [PMID: 32781504 PMCID: PMC7465818 DOI: 10.3390/jcm9082534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
NF-κB signaling pathways are dysregulated in both the central nervous system (CNS) and peripheral blood cells in multiple sclerosis (MS), but the cause of this is unknown. We have recently reported that peripheral blood mononuclear cells (PBMC) of patients with MS have increased constitutive activation and translocation of the transcription factor NF-κB to the nucleus compared to healthy subjects. NF-κB can be activated through either canonical or non-canonical pathways. In the canonical pathway, activation of NF-κB is normally negatively regulated by the inhibitor IκB. We therefore hypothesized that the increased activation of NF-κB could be caused by reduced IκB-α in the cells of patients with MS, possibly due to increased activity of the IκB kinase (IKK) complex, which regulates IκB-α. Alternatively, changes to the activity of key molecules in the non-canonical pathway, such as IKKα, could also lead to increased NF-κB activation. We therefore used Western blotting to detect IκB-α levels and ELISA to investigate NF-κB DNA binding activity and phosphorylation of IKKα and IKKβ in samples from PBMC of MS patients and controls. The level of full-length IκB-α protein in the cytosolic fraction of PBMC of MS patients was significantly reduced compared to healthy subjects, with significantly more evidence of multiple low molecular weight putative degradation products of IκB-α present in MS patients compared to healthy subjects. Conversely, the level of NF-κB DNA binding activity was increased in whole cell lysates from MS patients. Both IKKα and IKKβ showed increased overall activity in MS compared to healthy subjects, although not all of the MS patients showed increased activity compared to the healthy subjects, suggesting that there may be several different mechanisms underlying the constitutive activation of NF-κB in MS. Taken together, these findings suggest that there may be multiple points at which the NF-κB pathway is dysregulated in MS and that decreased levels of the full-length IκB-α protein are a major component in this.
Collapse
Affiliation(s)
- Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
| | - Pamela A. McCombe
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
- Wesley Medical Research, The Wesley Hospital, Auchenflower, QLD 4066, Australia
| | - Michael P. Pender
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia;
- Department of Neurology, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland Centre for Clinical Research, Brisbane, QLD 4029, Australia; (J.Y.); (P.A.M.)
- Wesley Medical Research, The Wesley Hospital, Auchenflower, QLD 4066, Australia
- Correspondence: ; Tel.: +(61)-07-3346-6018
| |
Collapse
|
21
|
NF-κB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. J Neurosci 2020; 40:6444-6456. [PMID: 32661025 DOI: 10.1523/jneurosci.1156-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/09/2023] Open
Abstract
Previous studies demonstrate that activation of pancreatic ER kinase (PERK) protects oligodendrocytes against inflammation in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Interestingly, data indicate that the cytoprotective effects of PERK activation on oligodendrocytes during EAE are not mediated by activating transcription factor 4 (ATF4) but are accompanied by activation of nuclear factor κB (NF-κB). NF-κB plays a critical role in MS and EAE; however, the effects of NF-κB activation on oligodendrocytes in these diseases remain elusive. Herein, we generated a mouse model that allow for activation of NF-κB specifically in oligodendrocytes and found that enhanced NF-κB activation in oligodendrocytes had a minimal effect on their viability and function under normal conditions (both male and female mice). Interestingly, we found that enhanced NF-κB activation in oligodendrocytes attenuated EAE disease severity and ameliorated EAE-induced oligodendrocyte loss, demyelination, and axon degeneration, without affecting inflammation (female mice). Moreover, we showed that the detrimental effects of PERK inactivation in oligodendrocytes in EAE were accompanied by impaired NF-κB activation in oligodendrocytes, and were completely rescued by enhanced NF-κB activation in oligodendrocytes (female mice). These findings suggest that NF-κB activation accounts for the cytoprotective effects of PERK activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Nuclear factor κB (NF-κB) is activated in oligodendrocytes in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE); however, the role of NF-κB activation in oligodendrocytes in MS and EAE remains elusive. Herein, we generated a mouse model that allows for activation of NF-κB selectively in oligodendrocytes and demonstrated that NF-κB activation prevented oligodendrocyte death and myelin damage in the EAE model. We further demonstrated that NF-κB activation contributed to the protective effects of pancreatic ER kinase (PERK) activation on oligodendrocytes in the EAE model. As such, this work will facilitate the development of new treatments that enhance oligodendrocyte survival in MS patients by targeting the PERK-NF-κB pathway.
Collapse
|
22
|
Fazia T, Nova A, Gentilini D, Beecham A, Piras M, Saddi V, Ticca A, Bitti P, McCauley JL, Berzuini C, Bernardinelli L. Investigating the Causal Effect of Brain Expression of CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10 Genes on Multiple Sclerosis: A Two-Sample Mendelian Randomization Approach. Front Bioeng Biotechnol 2020; 8:397. [PMID: 32432099 PMCID: PMC7216783 DOI: 10.3389/fbioe.2020.00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple Sclerosis (MS) exhibits considerable heterogeneity in phenotypic expression, course, prognosis and response to therapy. This suggests this disease involves multiple, as yet poorly understood, causal mechanisms. In this work we assessed the possible causal link between gene expression level of five selected genes related to the pro-inflammatory NF-κB signaling pathway (i.e., CCL2, NFKB1, MAPK14, TNFRSF1A, CXCL10) in ten different brain tissues (i.e., cerebellum, frontal cortex, hippocampus, medulla, occipital cortex, putamen, substantia nigra, thalamus, temporal cortex and intralobular white matter) and MS. We adopted a two-stage Mendelian Randomization (MR) approach for the estimation of the causal effects of interest, based on summary-level data from 20 multiplex Sardinian families and data provided by the United Kingdom Brain Expression Consortium (UKBEC). Through Radial-MR and Cochrane's Q statistics we identified and removed genetic variants which are most likely to be invalid instruments. To estimate the total causal effect, univariable MR was carried out separately for each gene and brain region. We used Inverse-Variance Weighted estimator (IVW) as main analysis and MR-Egger Regression estimator (MR-ER) and Weighted Median Estimator (WME) as sensitivity analysis. As these genes belong to the same pathway and thus they can be closely related, we also estimated their direct causal effects by applying IVW and MR-ER within a multivariable MR (MVMR) approach using set of genetic instruments specific and common (composite) to each multiple exposures represented by the expression of the candidate genes. Univariate MR analysis showed a significant positive total causal effect for CCL2 and NFKB1 respectively in medulla and cerebellum. MVMR showed a direct positive causal effect for NFKB1 and TNFRSF1A, and a direct negative causal effect for CCL2 in cerebellum; while in medulla we observed a direct positive causal effect for CCL2. Since in general we observed a different magnitude for the gene specific causal effect we hypothesize that in cerebellum and medulla the effect of each gene expression is direct but also mediated by the others. These results confirm the importance of the involvement of NF-κB signaling pathway in brain tissue for the development of the disease and improve our understanding in the pathogenesis of MS.
Collapse
Affiliation(s)
- Teresa Fazia
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea Nova
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Anna Ticca
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Pierpaolo Bitti
- Centro di Tipizzazione Tissutale, S.I.T., Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, Nuoro, Italy
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, United States
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL, United States
| | - Carlo Berzuini
- Centre for Biostatistics, University of Manchester, Manchester, United Kingdom
| | - Luisa Bernardinelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Manuel AM, Dai Y, Freeman LA, Jia P, Zhao Z. Dense module searching for gene networks associated with multiple sclerosis. BMC Med Genomics 2020; 13:48. [PMID: 32241259 PMCID: PMC7118851 DOI: 10.1186/s12920-020-0674-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex disease in which the immune system attacks the central nervous system. The molecular mechanisms contributing to the etiology of MS remain poorly understood. Genome-wide association studies (GWAS) of MS have identified a small number of genetic loci significant at the genome level, but they are mainly non-coding variants. Network-assisted analysis may help better interpret the functional roles of the variants with association signals and potential translational medicine application. The Dense Module Searching of GWAS tool (dmGWAS version 2.4) developed in our team is applied to 2 MS GWAS datasets (GeneMSA and IMSGC GWAS) using the human protein interactome as the reference network. A dual evaluation strategy is used to generate results with reproducibility. RESULTS Approximately 7500 significant network modules were identified for each independent GWAS dataset, and 20 significant modules were identified from the dual evaluation. The top modules included GRB2, HDAC1, JAK2, MAPK1, and STAT3 as central genes. Top module genes were enriched with functional terms such as "regulation of glial cell differentiation" (adjusted p-value = 2.58 × 10- 3), "T-cell costimulation" (adjusted p-value = 2.11 × 10- 6) and "virus receptor activity" (adjusted p-value = 1.67 × 10- 3). Interestingly, top gene networks included several MS FDA approved drug target genes HDAC1, IL2RA, KEAP1, and RELA, CONCLUSIONS: Our dmGWAS network analyses highlighted several genes (GRB2, HDAC1, IL2RA, JAK2, KEAP1, MAPK1, RELA and STAT3) in top modules that are promising to interpret GWAS signals and link to MS drug targets. The genes enriched with glial cell differentiation are important for understanding neurodegenerative processes in MS and for remyelination therapy investigation. Importantly, our identified genetic signals enriched in T cell costimulation and viral receptor activity supported the viral infection onset hypothesis for MS.
Collapse
Affiliation(s)
- Astrid M. Manuel
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030 USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030 USA
| | - Leorah A. Freeman
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030 USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030 USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
24
|
Zhou Y, Cui C, Ma X, Luo W, Zheng SG, Qiu W. Nuclear Factor κB (NF-κB)-Mediated Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:391. [PMID: 32265906 PMCID: PMC7105607 DOI: 10.3389/fimmu.2020.00391] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling cascade has been implicating in a broad range of biological processes, including inflammation, cell proliferation, differentiation, and apoptosis. The past three decades have witnessed a great progress in understanding the impact of aberrant NF-κB regulation on human autoimmune and inflammatory disorders. In this review, we discuss how aberrant NF-κB activation contributes to multiple sclerosis, a typical inflammatory demyelinating disease of the central nervous system, and its involvement in developing potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Ma
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Paricalcitol improves experimental autoimmune encephalomyelitis (EAE) by suppressing inflammation via NF-κB signaling. Biomed Pharmacother 2020; 125:109528. [PMID: 32106388 DOI: 10.1016/j.biopha.2019.109528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune disease in the central nervous system (CNS) characterized by motor deficits, pain, fatigue, cognitive impairment, and sensory and visual dysfunction. MS is considered to be resulted from significant inflammatory response. Paricalcitol (Pari) is a vitamin D2 analogue, which has been indicated to show anti-inflammatory activities in kidney and heart diseases. In the present study, if Pari could ameliorate the experimental autoimmune encephalomyelitis (EAE) was investigated. Here, the C57BL/6 mice were immunized using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55). Subsequently, Pari was intraperitoneally injected into the mice. As for in vitro analysis, RAW264.7 and Jurkat cells were incubated with Pari together with corresponding stimulus. The results indicated that Pari administration reduced the paralytic severity, neuropathology and apoptosis in MOG-treated mice compared to the MOG single group. Pari also exhibited a significantly inhibitory effect on immune cell infiltration, glial cell activation, expression of pro-inflammatory factors and the activation of nuclear factor κB (NF-κB). The expression of pro-inflammatory regulators and the translocation of NF-κB from cytoplasm into nuclear in RAW264.7 and Jurkat cells under specific stimulation was clearly down-regulated by Pari incubation. Furthermore, we found that suppressing NF-κB with its inhibitor combined with Pari could further reduce the expression of pro-inflammatory factors and associated proteins. These data illustrated that Pari could diminish MOG-triggered EAE, as well as macrophages and T cells activation through blocking NF-κB activation. Collectively, Pari might have therapeutic effects in mouse models with MS.
Collapse
|
26
|
Guo D, Hu H, Pan S. Oligodendrocyte dysfunction and regeneration failure: A novel hypothesis of delayed encephalopathy after carbon monoxide poisoning. Med Hypotheses 2019; 136:109522. [PMID: 31841765 DOI: 10.1016/j.mehy.2019.109522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022]
Abstract
Carbon monoxide (CO) poisoning usually causes brain lesions and delayed encephalopathy, also known as delayed neurological sequelae (DNS). Demyelination of white matter (WM) is one of the most common sites of abnormalities in patients with DNS, but its mechanisms remain unclear. Oligodendrocytes (OLs) are myelinated cells that ensure the rapid conduction of neuronal axon signals and provide the nutritional factors necessary for maintaining nerve integrity in the central nervous system (CNS). OLs readily regenerate and replace damaged myelin membranes around axons in the adult mammalian CNS following demyelination. The ability to regenerate OLs depends on the availability of precursor cells (OPCs) in the CNS of adults. Multiple injury-related signals can induce OPC expansion followed by OL differentiation, axonal contact and myelin regeneration (remyelination). Therefore, OL dysfunction and regeneration failure in the deep WM of the brain are the key pathophysiological mechanisms leading to delayed brain injury after CO poisoning. CO-induced toxicity may interfere with OL function and render OPCs unable to regenerate OLs through some unclear mechanisms, leading to progressive demyelinating damage and resulting in DNS. In the future, combination therapies to reduce OL damage and promote OPC differentiation and remyelination may be important for the prevention and treatmentof DNS after CO poisoning.
Collapse
Affiliation(s)
- Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China.
| | - Huijun Hu
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center, PLA General Hospital, Beijing 100048, China
| |
Collapse
|
27
|
Waugh DT. The Contribution of Fluoride to the Pathogenesis of Eye Diseases: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E856. [PMID: 30857240 PMCID: PMC6427526 DOI: 10.3390/ijerph16050856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This study provides diverse lines of evidence demonstrating that fluoride (F) exposure contributes to degenerative eye diseases by stimulating or inhibiting biological pathways associated with the pathogenesis of cataract, age-related macular degeneration and glaucoma. As elucidated in this study, F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na⁺, K⁺-ATPase, Nrf2, γ -GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and glutathione activity, and upregulating NF-κB, IL-6, AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and impaired antioxidant activity. Based on the evidence presented in this study, it can be concluded that F exposure may be added to the list of identifiable risk factors associated with pathogenesis of degenerative eye diseases. The broader impact of these findings suggests that reducing F intake may lead to an overall reduction in the modifiable risk factors associated with degenerative eye diseases. Further studies are required to examine this association and determine differences in prevalence rates amongst fluoridated and non-fluoridated communities, taking into consideration other dietary sources of F such as tea. Finally, the findings of this study elucidate molecular pathways associated with F exposure that may suggest a possible association between F exposure and other inflammatory diseases. Further studies are also warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, P72 YF10 Co. Cork, Ireland.
| |
Collapse
|
28
|
Mendonca P, Taka E, Bauer D, Reams RR, Soliman KFA. The attenuating effects of 1,2,3,4,6 penta-O-galloyl-β-d-glucose on pro-inflammatory responses of LPS/IFNγ-activated BV-2 microglial cells through NFƙB and MAPK signaling pathways. J Neuroimmunol 2018; 324:43-53. [PMID: 30236786 DOI: 10.1016/j.jneuroim.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Overactivated microglial cells exhibit chronic inflammatory response and can lead to the continuous production of pro-inflammatory cytokines, perpetuating inflammation, and ultimately resulting in neuronal injury. 1,2,3,4,6-Penta-O-Galloyl-β-d-Glucose (PGG), which is a naturally occurring polyphenolic compound, has exhibited anti-inflammatory effect through the inhibition of many cytokines in different experimental models, but its effect on activated microglia cells was never described. In the present study, we investigated PGG effect in proteins involved in the NFƙB and MAPK signaling pathways, which play a central role in inflammation through their ability to induce transcription of pro-inflammatory genes. METHODS PCR arrays and RT-PCR with individual primers were used to determine the effect of PGG on mRNA expression of genes involved in NFƙB and MAPK signaling pathways. Western blots were performed to confirm PCR results. RESULTS The data obtained showed that PGG modulated the expression of 5 genes from the NFƙB (BIRC3, CHUK, IRAK1, NFƙB1, NOD1) and 2 genes from MAPK signaling pathway (CDK2 and MYC) when tested in RT-PCR assays. Western blots confirmed the PCR results at the protein level, showing that PGG attenuated the expression of total and phosphorylated proteins (CDK2, CHUK, IRAK1, and NFƙB1) involved in NFƙB and MAPK signaling. CONCLUSION These findings show that PGG could modulate the expression of genes and proteins involved in the production of pro-inflammatory cytokines in microglia cells.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - David Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Renee R Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
29
|
Suman S, Rachakonda G, Mandape SN, Sakhare SS, Villalta F, Pratap S, Lima MF, Nde PN. Phospho-proteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase. PLoS Negl Trop Dis 2018; 12:e0006792. [PMID: 30222739 PMCID: PMC6160231 DOI: 10.1371/journal.pntd.0006792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, causes severe morbidity and mortality in afflicted individuals. About 30% of T. cruzi-infected individuals present with cardiac, gastrointestinal tract, and/or neurological disorders. Megacolon, one of the major pathologies of Chagas disease, is accompanied by gastrointestinal motility disorders. The molecular mechanism of T. cruzi-mediated megacolon in Chagas disease is currently unknown. To decipher the molecular mechanism of T. cruzi-induced alteration in the colon during the early infection phase, we exposed primary human colonic epithelial cells (HCoEpiC) to invasive T. cruzi trypomastigotes at multiple time points to determine changes in the phosphoprotein networks in the cells following infection using proteome profiler Human phospho-kinase arrays. We found significant changes in the phosphorylation pattern that can mediate cellular deregulations in colonic epithelial cells after infection. We detected a significant increase in the levels of phosphorylated heat shock protein (p-HSP) 27 and transcription factors that regulate various cellular functions, including c-Jun and CREB. Our study confirmed significant upregulation of phospho (p-) Akt S473, p-JNK, which may directly or indirectly modulate CREB and c-Jun phosphorylation, respectively. We also observed increased levels of phosphorylated CREB and c-Jun in the nucleus. Furthermore, we found that p-c-Jun and p-CREB co-localized in the nucleus at 180 minutes post infection, with a maximum Pearson correlation coefficient of 0.76±0.02. Increased p-c-Jun and p-CREB have been linked to inflammatory and profibrotic responses. T. cruzi infection of HCoEpiC induces an increased expression of thrombospondin-1 (TSP-1), which is fibrogenic at elevated levels. We also found that T. cruzi infection modulates the expression of NF-kB and JAK2-STAT1 signaling molecules which can increase pro-inflammatory flux. Bioinformatics analysis of the phosphoprotein networks derived using the phospho-protein data serves as a blueprint for T. cruzi-mediated cellular transformation of primary human colonic cells during the early phase of T. cruzi infection.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sammed N. Mandape
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Shruti S. Sakhare
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Pius N. Nde
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Li X, Zhao L, Han JJ, Zhang F, Liu S, Zhu L, Wang ZZ, Zhang GX, Zhang Y. Carnosol Modulates Th17 Cell Differentiation and Microglial Switch in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:1807. [PMID: 30150982 PMCID: PMC6100297 DOI: 10.3389/fimmu.2018.01807] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicinal plants as a rich pool for developing novel small molecule therapeutic medicine have been used for thousands of years. Carnosol as a bioactive diterpene compound originated from Rosmarinus officinalis (Rosemary) and Salvia officinalis, herbs extensively applied in traditional medicine for the treatment of multiple autoimmune diseases (1). In this study, we investigated the therapeutic effects and molecule mechanism of carnosol in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Carnosol treatment significantly alleviated clinical development in the myelin oligodendrocyte glycoprotein (MOG35-55) peptide-induced EAE model, markedly decreased inflammatory cell infiltration into the central nervous system and reduced demyelination. Further, carnosol inhibited Th17 cell differentiation and signal transducer and activator of transcription 3 phosphorylation, and blocked transcription factor NF-κB nuclear translocation. In the passive-EAE model, carnosol treatment also significantly prevented Th17 cell pathogenicity. Moreover, carnosol exerted its therapeutic effects in the chronic stage of EAE, and, remarkably, switched the phenotypes of infiltrated macrophage/microglia. Taken together, our results show that carnosol has enormous potential for development as a therapeutic agent for autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Li Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuai Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lin Zhu
- Department of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
31
|
Li A, McGranahan T, Su E, Kipp L, Gold CA. Coexistence of Neuromyelitis Optica and Amyotrophic Lateral Sclerosis: A Case Report. Neurohospitalist 2018; 9:37-40. [PMID: 30671163 DOI: 10.1177/1941874418783914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The occurrence of amyotrophic lateral sclerosis (ALS) and neuromyelitis optica (NMO) in a single patient is exceedingly rare. We report a case of a 54-year-old woman of East Asian descent with a prior diagnosis of ALS who developed an episode of unexplained hiccups and nausea and vomiting consistent with area postrema syndrome 3 months prior to the onset of acute transverse myelitis. Magnetic resonance imaging revealed abnormal T2 hyperintensity and gadolinium enhancement at the cervicomedullary junction with extension to C3. Imaging was also notable for nonenhancing central cord T2 hyperintensity from T6 to T8 suggesting previous demyelination. The patient's cerebrospinal fluid analysis was mildly inflammatory. She was found to have a positive NMO/aquaporin-4 immunoglobulin G titer (cell-based assay) greater than 1:100 000, consistent with a diagnosis of NMO. The unusual coexistence of ALS and NMO prompts consideration of potential common pathological neuroinflammatory processes.
Collapse
Affiliation(s)
- Amy Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tresa McGranahan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Elaine Su
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucas Kipp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Carl A Gold
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Yan J, Winterford CM, Catts VS, Pat BK, Pender MP, McCombe PA, Greer JM. Increased constitutive activation of NF-κB p65 (RelA) in peripheral blood cells of patients with progressive multiple sclerosis. J Neuroimmunol 2018; 320:111-116. [DOI: 10.1016/j.jneuroim.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/06/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
|
33
|
Bae MJ, Choi J, Kim HK, Lim S, Kim S. PG201 protects mice from experimental autoimmune encephalomyelitis via suppression of effector T cell activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:150-157. [PMID: 29747748 DOI: 10.1016/j.phymed.2018.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 01/31/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND PG201 is a botanical formulation, approved as an ethical drug (ETC) phytomedicine for treatment of patients with osteoarthritis in Korea, following satisfactory phase II and phase III studies. This phytomedicine was previously been shown to possess significant anti-inflammatory activities, presumably via the control of Th1 and Th17 cells in animal models and in vitro cell culture systems. PURPOSE In this study, the possibility of using PG201 to treat multiple sclerosis was explored. METHODS In vitro, the effect of PG201 on the differentiation of CD4+ T cells was investigated. To test the effects of PG201 in vivo, a mouse experimental autoimmune encephalomyelitis (EAE) model was used. RESULTS It was found that PG201 treatment decreased the frequency of both CD4+T-bet+ and CD4+RORγt+T cells. In addition, the production of interferon- gamma (IFN-γ) and interleukin-17 (IL-17) from respective Th cells was highly reduced. The data from western blots showed that the amount of phosphorylated c-Jun, but not that of p65, was decreased by PG201. Consistently, the level of luciferase activity was downregulated by PG201 in activator protein 1 (AP-1) reporter plasmid assays. In mice pretreated with PG201, the day of onset was delayed and clinical symptoms of EAE were significantly improved in a dose-dependent manner. Consistent with these results, the number of infiltrated cells and the expression level of pro-inflammatory molecules were decreased. CONCLUSION These findings indicate that PG201 may exert strong immunomodulatory effects in the EAE model via suppression of T cell activation, and that PG201 is a therapeutic reagent for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Min-Jung Bae
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jinyong Choi
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Keun Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seonung Lim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sunyoung Kim
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea; ViroMed Co., Ltd., Republic of Korea.
| |
Collapse
|
34
|
Yue Y, Stone S, Lin W. Role of nuclear factor κB in multiple sclerosis and experimental autoimmune encephalomyelitis. Neural Regen Res 2018; 13:1507-1515. [PMID: 30127103 PMCID: PMC6126134 DOI: 10.4103/1673-5374.237109] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor nuclear factor κB (NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability. Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). It has been shown that NF-κB is activated in multiple cell types in the CNS of MS patients, including T cells, microglia/macrophages, astrocytes, oligodendrocytes, and neurons. Interestingly, data from animal model studies, particularly studies of experimental autoimmune encephalomyelitis, have suggested that NF-κB activation in these individual cell types has distinct effects on the development of MS. In this review, we will cover the current literature on NF-κB and the evidence for its role in the development of MS and its animal model experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sarrabeth Stone
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
NF-κB Activation Protects Oligodendrocytes against Inflammation. J Neurosci 2017; 37:9332-9344. [PMID: 28842413 PMCID: PMC5607472 DOI: 10.1523/jneurosci.1608-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/13/2023] Open
Abstract
NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that express IFN-γ ectopically in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. NF-κB is a major player in inflammatory diseases that acts by regulating inflammation and cell viability. Data indicate that NF-κB activation in inflammatory cells facilitates the development of MS. However, to date, attempts to understand the role of NF-κB activation in oligodendrocytes in MS have been unsuccessful. Herein, we generated a mouse model that allows for inactivation of NF-κB specifically in oligodendrocytes and then used this model to determine the precise role of NF-κB activation in oligodendrocytes in models of MS. The results presented in this study represent the first demonstration that NF-κB activation acts cell autonomously to protect oligodendrocytes against inflammation in animal models of MS.
Collapse
|
36
|
Leibowitz SM, Yan J. NF-κB Pathways in the Pathogenesis of Multiple Sclerosis and the Therapeutic Implications. Front Mol Neurosci 2016; 9:84. [PMID: 27695399 PMCID: PMC5023675 DOI: 10.3389/fnmol.2016.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways are involved in cell immune responses, apoptosis and infections. In multiple sclerosis (MS), NF-κB pathways are changed, leading to increased levels of NF-κB activation in cells. This may indicate a key role for NF-κB in MS pathogenesis. NF-κB signaling is complex, with many elements involved in its activation and regulation. Interestingly, current MS treatments are found to be directly or indirectly linked to NF-κB pathways and act to adjust the innate and adaptive immune system in patients. In this review, we will first focus on the intricacies of NF-κB signaling, including the activating pathways and regulatory elements. Next, we will theorize about the role of NF-κB in MS pathogenesis, based on current research findings, and discuss some of the associated therapeutic implications. Lastly, we will review four new MS treatments which interrupt NF-κB pathways—fingolimod, teriflunomide, dimethyl fumarate (DMF) and laquinimod (LAQ)—and explain their mechanisms, and the possible strategy for MS treatments in the future.
Collapse
Affiliation(s)
- Saskia M Leibowitz
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| | - Jun Yan
- UQ Centre for Clinical Research, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
37
|
Wang Q, Meng J, Dong A, Yu JZ, Zhang GX, Ma CG. The Pharmacological Effects and Mechanism ofTripterygium wilfordiiHook F in Central Nervous System Autoimmunity. J Altern Complement Med 2016; 22:496-502. [DOI: 10.1089/acm.2016.0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Qing Wang
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
| | - Jian Meng
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| | - Aiguo Dong
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
| | - Jie-zhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Cun-Gen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Shanxi Province, People's Republic of China
- Institute of Brain Science, Shanxi Datong University, Datong, People's Republic of China
| |
Collapse
|
38
|
Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM, Haines JL, Pericak-Vance MA. GWAS analysis implicates NF-κB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun 2016; 17:305-12. [PMID: 27278126 PMCID: PMC4956564 DOI: 10.1038/gene.2016.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
To identify genes and biologically relevant pathways associated with risk to develop multiple sclerosis (MS), the Genome-Wide Association Studies noise reduction method (GWAS-NR) was applied to MS genotyping data. Regions of association were defined based on the significance of linkage disequilibrium blocks. Candidate genes were cross-referenced based on a review of current literature, with attention to molecular function and directly interacting proteins. Supplementary annotations and pathway enrichment scores were generated using The Database for Annotation, Visualization and Integrated Discovery. The candidate set of 220 MS susceptibility genes prioritized by GWAS-NR was highly enriched with genes involved in biological pathways related to positive regulation of cell, lymphocyte and leukocyte activation (P=6.1E-15, 1.2E-14 and 5.0E-14, respectively). Novel gene candidates include key regulators of NF-κB signaling and CD4+ T helper type 1 (Th1) and T helper type 17 (Th17) lineages. A large subset of MS candidate genes prioritized by GWAS-NR were found to interact in a tractable pathway regulating the NF-κB-mediated induction and infiltration of pro-inflammatory Th1/Th17 T-cell lineages, and maintenance of immune tolerance by T-regulatory cells. This mechanism provides a biological context that potentially links clinical observations in MS to the underlying genetic landscape that may confer susceptibility.
Collapse
Affiliation(s)
| | - A H Beecham
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - M Schmidt
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - E R Martin
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J M Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - J L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - M A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
39
|
Kramann N, Menken L, Hayardeny L, Hanisch UK, Brück W. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e233. [PMID: 27231712 PMCID: PMC4871804 DOI: 10.1212/nxi.0000000000000233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Objective: To test whether Toll-like receptor (TLR) signaling plays a key role for reduced nuclear factor B (NF-κB) activation after laquinimod treatment in the model of cuprizone-induced demyelination, oligodendrocyte apoptosis, inflammation, and axonal damage. Methods: Ten-week-old C57BL/6J, TLR4−/−, and MyD88−/− mice received 0.25% cuprizone for 6 weeks and were treated daily with 25 mg/kg laquinimod or vehicle. After 6 weeks of demyelination, extent of demyelination, oligodendrocyte density, microglia infiltration, and axonal damage were analyzed in the corpus callosum. Additionally, we analyzed primary mouse astrocytes from C57BL/6J, TLR4−/−, MyD88−/−, and TRIF−/− mice for alteration in NF-κB signaling. Results: Vehicle-treated controls from C57BL/6J, TLR4−/−, and MyD88−/− mice displayed extensive callosal demyelination as well as microglial activation. In contrast, mice treated with 25 mg/kg laquinimod showed mainly intact callosal myelin. The demyelination score was significantly higher in all untreated mice compared to mice treated with laquinimod. There were significantly fewer APP-positive axonal spheroids, Mac3-positive macrophages/microglia, and less oligodendrocyte apoptosis in the corpus callosum of laquinimod-treated mice in comparison to untreated controls. Stimulated primary mouse astrocytes from laquinimod-treated groups show reduced NF-κB activation compared to vehicle-treated controls. Conclusions: Our results confirm that laquinimod prevents demyelination in the cuprizone mouse model for multiple sclerosis via downregulation of NF-κB activation. This laquinimod effect, however, does not involve upstream Toll-like receptor signaling.
Collapse
Affiliation(s)
- Nadine Kramann
- Institute of Neuropathology (N.K., L.M., U.-K.H., W.B.), University Medical Center Göttingen, Germany; and Teva Pharmaceutical Industries (L.H.), Netanya, Israel
| | - Lena Menken
- Institute of Neuropathology (N.K., L.M., U.-K.H., W.B.), University Medical Center Göttingen, Germany; and Teva Pharmaceutical Industries (L.H.), Netanya, Israel
| | - Liat Hayardeny
- Institute of Neuropathology (N.K., L.M., U.-K.H., W.B.), University Medical Center Göttingen, Germany; and Teva Pharmaceutical Industries (L.H.), Netanya, Israel
| | - Uwe-Karsten Hanisch
- Institute of Neuropathology (N.K., L.M., U.-K.H., W.B.), University Medical Center Göttingen, Germany; and Teva Pharmaceutical Industries (L.H.), Netanya, Israel
| | - Wolfgang Brück
- Institute of Neuropathology (N.K., L.M., U.-K.H., W.B.), University Medical Center Göttingen, Germany; and Teva Pharmaceutical Industries (L.H.), Netanya, Israel
| |
Collapse
|
40
|
Pedata F, Dettori I, Coppi E, Melani A, Fusco I, Corradetti R, Pugliese AM. Purinergic signalling in brain ischemia. Neuropharmacology 2015; 104:105-30. [PMID: 26581499 DOI: 10.1016/j.neuropharm.2015.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022]
Abstract
Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | - Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Alessia Melani
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Irene Fusco
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
41
|
A genetic association study of two genes linked to neurodegeneration in a Sardinian multiple sclerosis population: The TARDBP Ala382Thr mutation and C9orf72 expansion. J Neurol Sci 2015; 357:229-34. [DOI: 10.1016/j.jns.2015.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/05/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022]
|
42
|
Schreiner B, Ingold-Heppner B, Pehl D, Locatelli G, Berrit-Schönthaler H, Becher B. Deletion of Jun proteins in adult oligodendrocytes does not perturb cell survival, or myelin maintenance in vivo. PLoS One 2015; 10:e0120454. [PMID: 25774663 PMCID: PMC4361052 DOI: 10.1371/journal.pone.0120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS), are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions.
Collapse
Affiliation(s)
- Bettina Schreiner
- Institute of Experimental Immunology, University Zürich, Zürich, Switzerland
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | | | - Debora Pehl
- Institute of Neuropathology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Locatelli
- Institute of Experimental Immunology, University Zürich, Zürich, Switzerland
- Institute of Clinical Neuroimmunology, LMU Universität München, Germany
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Zhang J, Zeng YQ, Zhang J, Pan XD, Kang DY, Huang TW, Chen XC. Tripchlorolide ameliorates experimental autoimmune encephalomyelitis by down-regulating ERK1/2-NF-κB and JAK/STAT signaling pathways. J Neurochem 2015; 133:104-12. [PMID: 25662403 DOI: 10.1111/jnc.13058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Jian Zhang
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| | - Yu-qi Zeng
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| | - Jing Zhang
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| | - Xiao-dong Pan
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| | - De-yong Kang
- Department of Pathology; Fujian Medical University Union Hospital; Fuzhou China
| | - Tian-wen Huang
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| | - Xiao-chun Chen
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University Union Hospital; Fuzhou China
| |
Collapse
|
44
|
Miljković D, Blaževski J, Petković F, Djedović N, Momčilović M, Stanisavljević S, Jevtić B, Mostarica Stojković M, Spasojević I. A Comparative Analysis of Multiple Sclerosis–Relevant Anti-Inflammatory Properties of Ethyl Pyruvate and Dimethyl Fumarate. THE JOURNAL OF IMMUNOLOGY 2015; 194:2493-503. [DOI: 10.4049/jimmunol.1402302] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis. Expert Opin Ther Targets 2015; 19:471-87. [PMID: 25652642 DOI: 10.1517/14728222.2014.989834] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Advances in molecular pathogenesis suggest that the chronic inflammation is a shared mechanism in the initiation and progression of multiple neurodegenerative diseases with diverse clinical manifestations such as Alzheimer's disease (AD) and Multiple sclerosis (MS). Restricted cell renewal and regenerative capacity make the neural tissues extremely vulnerable to the uncontrolled inflammatory process leading to irreversible tissue damage. AREAS COVERED A predominant consequence of increased inflammatory signaling is the upregulation of the transcription factor, NF-κB with subsequent neuroprotective or deleterious effects depending on the strength of the signal and the type of NF-κB dimers activated. We discuss the interplay between neuroinflammation and neurodegeneration keeping in focus NF-κB signaling as the point of convergence of multiple pathways associated with the development of the neurodegenerative pathologies, AD and MS. EXPERT OPINION Considerable interest exists in developing efficient NF-κB inhibitors for neurodegenerative diseases. The review includes an overview of natural compounds and rationally designed agents that inhibit NF-κB and mediate neuroprotection in AD and MS. The key chemical moieties of the natural and the synthetic compounds provide efficient leads for the development of effective small molecule inhibitors that selectively target NF-κB activation; this would result in the desired benefit to risk therapeutic effects.
Collapse
Affiliation(s)
- Mythily Srinivasan
- Indiana University School of Dentistry, Oral Pathology, Radiology and Medicine , Indianapolis, IN , USA +1 317 278 9686 ; +1 317 278 3018 ;
| | | |
Collapse
|
46
|
Arepalli SK, Choi M, Jung JK, Lee H. Novel NF-κB inhibitors: a patent review (2011 – 2014). Expert Opin Ther Pat 2015; 25:319-34. [DOI: 10.1517/13543776.2014.998199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediators Inflamm 2014; 2014:805198. [PMID: 25165414 PMCID: PMC4138795 DOI: 10.1155/2014/805198] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.
Collapse
|
48
|
Nijland PG, Michailidou I, Witte ME, Mizee MR, van der Pol SMA, van Het Hof B, Reijerkerk A, Pellerin L, van der Valk P, de Vries HE, van Horssen J. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia 2014; 62:1125-41. [PMID: 24692237 DOI: 10.1002/glia.22667] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 12/12/2022]
Abstract
To ensure efficient energy supply to the high demanding brain, nutrients are transported into brain cells via specific glucose (GLUT) and monocarboxylate transporters (MCT). Mitochondrial dysfunction and altered glucose metabolism are thought to play an important role in the progression of neurodegenerative diseases, including multiple sclerosis (MS). Here, we investigated the cellular localization of key GLUT and MCT proteins in human brain tissue of non-neurological controls and MS patients. We show that in control brain tissue GLUT and MCT proteins were abundantly expressed in a variety of central nervous system cells, particularly in microglia and endothelial cells. In active MS lesions, GLUTs and MCTs were highly expressed in infiltrating leukocytes and reactive astrocytes. Astrocytes manifest increased MCT1 staining and maintain GLUT expression in inactive lesions, whereas demyelinated axons exhibit significantly reduced GLUT3 and MCT2 immunoreactivity in inactive lesions. Finally, we demonstrated that the co-transcription factor peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), an important protein involved in energy metabolism, is highly expressed in reactive astrocytes in active MS lesions. Overexpression of PGC-1α in astrocyte-like cells resulted in increased production of several GLUT and MCT proteins. In conclusion, we provide for the first time a comprehensive overview of key nutrient transporters in white matter brain samples. Moreover, our data demonstrate an altered expression of these nutrient transporters in MS brain tissue, including a marked reduction of axonal GLUT3 and MCT2 expression in chronic lesions, which may impede efficient nutrient supply to the hypoxic demyelinated axons thereby contributing to the ongoing neurodegeneration in MS.
Collapse
Affiliation(s)
- Philip G Nijland
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Miljković D, Spasojević I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2013; 19:2286-334. [PMID: 23473637 PMCID: PMC3869544 DOI: 10.1089/ars.2012.5068] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/09/2012] [Accepted: 03/09/2013] [Indexed: 12/15/2022]
Abstract
The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy.
Collapse
Affiliation(s)
- Djordje Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković,” University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|