1
|
Li A, Fang J. Anti‐angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2025]
Abstract
AbstractImmunotherapy, specifically immune checkpoint inhibitors, is revolutionizing cancer treatment, achieving durable control of previously incurable or advanced tumors. However, only a certain group of patients exhibit effective responses to immunotherapy. Anti‐angiogenic therapy aims to block blood vessel growth in tumors by depriving them of essential nutrients and effectively impeding their growth. Emerging evidence shows that tumor vessels exhibit structural and functional abnormalities, resulting in an immunosuppressive microenvironment and poor response to immunotherapy. Both preclinical and clinical studies have used anti‐angiogenic agents to enhance the effectiveness of immunotherapy against cancer. In this review, we concentrate on the synergistic effect of anti‐angiogenic and immune therapies in cancer management, dissect the direct effects and underlying mechanisms of tumor vessels on recruiting and activating immune cells, and discuss the potential of anti‐angiogenic agents to improve the effectiveness of immunotherapy. Lastly, we outline challenges and opportunities for the anti‐angiogenic strategy to enhance immunotherapy. Considering the increasing approval of the combination of anti‐angiogenic and immune therapies in treating cancers, this comprehensive review would be timely and important.
Collapse
Affiliation(s)
- An‐Qi Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
| | - Jian‐Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou China
- Department of Hepatobiliary Surgery I General Surgery Center Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
2
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
3
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Simmons S, Sasaki N, Umemoto E, Uchida Y, Fukuhara S, Kitazawa Y, Okudaira M, Inoue A, Tohya K, Aoi K, Aoki J, Mochizuki N, Matsuno K, Takeda K, Miyasaka M, Ishii M. High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node. eLife 2019; 8:41239. [PMID: 31570118 PMCID: PMC6773441 DOI: 10.7554/elife.41239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.
Collapse
Affiliation(s)
- Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Naoko Sasaki
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Umemoto
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Michiyo Okudaira
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Keita Aoi
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masayuki Miyasaka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| |
Collapse
|
5
|
Balogh P, Bagchi P. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks. Physiol Rep 2019; 7:e14067. [PMID: 31062494 PMCID: PMC6503071 DOI: 10.14814/phy2.14067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Using a high-fidelity, 3D computational model of blood flow in microvascular networks, we provide the full 3D distribution of wall shear stress (WSS), and its gradient (WSSG), and quantify the influence of red blood cells (RBCs) on WSS and WSSG. The deformation and flow dynamics of the individual RBCs are accurately resolved in the model, while physiologically realistic microvascular networks comprised of multiple bifurcations, convergences, and tortuous vessels are considered. A strong heterogeneity in WSS and WSSG is predicted across the networks, with the highest WSS occurring in precapillary bifurcations and capillary vessels. 3D variations of WSS and WSSG are shown to occur due to both network morphology and the influence of RBCs. The RBCs increase the WSS by as much as three times compared to that when no RBCs are present, and the highest increase is observed in venules. WSSG also increases significantly, and high WSSGs occur over wider regions in the presence of RBCs. In most vessels, the circumferential component of WSSG is observed to be greater than the axial component in the presence of RBCs, while the opposite trend is observed when RBCs are not considered. These results underscore the important role of RBCs on WSS and WSSG that cannot be predicted by widely used 1D models of network blood flow. Furthermore, the subendothelium-scale variations of WSS and WSSG predicted by the present model have implications in terms of endothelial cell functions in the microvasculature.
Collapse
Affiliation(s)
- Peter Balogh
- Mechanical and Aerospace Engineering DepartmentRutgers, The State University of New JerseyPiscatawayNew Jersey
| | - Prosenjit Bagchi
- Mechanical and Aerospace Engineering DepartmentRutgers, The State University of New JerseyPiscatawayNew Jersey
| |
Collapse
|
6
|
|
7
|
Kellermayer Z, Hayasaka H, Kajtár B, Simon D, Robles EF, Martinez-Climent JA, Balogh P. Divergence of Vascular Specification in Visceral Lymphoid Organs-Genetic Determinants and Differentiation Checkpoints. Int Rev Immunol 2015; 35:489-502. [PMID: 26186200 DOI: 10.3109/08830185.2015.1059427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite their functional similarities, peripheral lymphoid tissues are remarkably different according to their developmental properties and structural characteristics, including their specified vasculature. Access of leukocytes to these organs critically depends on their interactions with the local endothelium, where endothelial cells are patterned to display a restricted set of adhesion molecules and other regulatory compounds necessary for extravasation. Recent advances in high throughput analyses of highly purified endothelial subsets in various lymphoid tissues as well as the expansion of various transgenic animal models have shed new light on the transcriptional complexities of lymphoid tissue vascular endothelium. This review is aimed at providing a comprehensive analysis linking the functional competence of spleen and intestinal lymphoid tissues with the developmental programming and functional divergence of their vascular specification, with particular emphasis on the transcriptional control of endothelial cells exerted by Nkx2.3 homeodomain transcription factor.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| | - Haruko Hayasaka
- c Laboratory of Immunoregulation, Osaka University Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University , Osaka , Japan
| | - Béla Kajtár
- d Department of Pathology , University of Pécs , Pécs , Hungary
| | - Diána Simon
- a Department of Immunology and Biotechnology
| | - Eloy F Robles
- e Centro de Investigación Médica Aplicada of the University of Navarra , Pamplona , Spain
| | | | - Péter Balogh
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| |
Collapse
|
8
|
Yamakawa RH, Saito PK, da Silva Junior WV, de Mattos LC, Borelli SD. Polymorphism of leukocyte and erythrocyte antigens in chronic kidney disease patients in southern Brazil. PLoS One 2014; 9:e84456. [PMID: 24409300 PMCID: PMC3883691 DOI: 10.1371/journal.pone.0084456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/22/2013] [Indexed: 12/02/2022] Open
Abstract
We investigated the polymorphism of human leukocyte antigens (HLA) and Duffy erythrocyte antigens in chronic kidney disease (CKD) patients in southern Brazil. One hundred and eighty-three CKD patients, over 18 years old, on hemodialysis, were included. HLA-A, -B and -DRB1 typing was performed using the LABType®SSO (One Lambda, Inc.). Duffy phenotypes were determined by gel column agglutination using anti-Fya and anti-Fyb monoclonal anti-sera. The patients' predominant ages ranged between 51 and 70 years (43%) and the predominant gender, ethnic group and dialysis period were, respectively, male (62%), white (62%) and 1–3 years (40%). The highest and lowest frequencies of Duffy phenotypes were Fy(a+b+) and Fy(a−b−), respectively. Nineteen HLA-A, 30 HLA-B and 13 HLA-DRB1 allele groups were identified. The most frequent HLA allele groups were HLA-A*01, -A*02, -A*03, -A*11, -A*24; HLA-B*07, -B*15, -B*35, -B*44, -B*51; HLA-DRB1*03, -DRB1*04, -DRB1*07, -DRB1*11 and -DRB1*13. Statistically significant differences were observed in the Duffy and HLA polymorphisms compared between CKD patients and healthy subjects. The Fy(a+b−) phenotype (p<0.0001, OR = 2.56, 95% CI = 1.60–4.07) was the most frequent in the patients (p<0.05), and the Fy(a+b+) phenotype (p = 0.0039, OR = 1.71, 95% CI = 1.18–2.51) was the most frequent in the healthy subjects in the same region of Paraná state (p<0.05). Regarding HLA, the HLA-B*42, -B*45, -B*51 and -DRB1*03 allele groups were the most frequent in the patients (p<0.05), and the HLA-B*44 allele group was the most frequent in the healthy subjects in the same region of Brazil (p<0.05). The polymorphism of these two markers among CKD patients in southern Brazil and healthy subjects of other studies, suggests that these markers might be involved with CKD development. Further studies should be undertaken to analyze the markers' influence on CKD and the long-term results from kidney transplantation.
Collapse
Affiliation(s)
- Roger Haruki Yamakawa
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Patricia Keiko Saito
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - Luiz Carlos de Mattos
- Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Sueli Donizete Borelli
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
9
|
Graham GJ, Locati M, Mantovani A, Rot A, Thelen M. The biochemistry and biology of the atypical chemokine receptors. Immunol Lett 2012; 145:30-8. [PMID: 22698181 DOI: 10.1016/j.imlet.2012.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/13/2012] [Indexed: 01/13/2023]
Abstract
A subset of chemokine receptors, initially called "silent" on the basis of their apparent failure to activate conventional signalling events, has recently attracted growing interest due to their ability to internalize, degrade, or transport ligands and thus modify gradients and create functional chemokine patterns in tissues. These receptors recognize distinct and complementary sets of ligands with high affinity, are strategically expressed in different cellular contexts, and lack structural determinants supporting Gα(i) activation, a key signalling event in cell migration. This is in keeping with the hypothesis that they have evolved to fulfil fundamentally different functions to the classical signalling chemokine receptors. Based on these considerations, these receptors (D6, Duffy antigen receptor for chemokines (DARC), CCX-CKR1 and CXCR7) are now collectively considered as an emerging class of 'atypical' chemokine receptors. In this article, we review the biochemistry and biology of this emerging chemokine receptor subfamily.
Collapse
Affiliation(s)
- G J Graham
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
10
|
Suphasiriroj W, Mikami M, Sato S. Comparative studies on microvascular endothelial cells isolated from periodontal tissue. J Periodontol 2012; 84:1002-9. [PMID: 23003919 DOI: 10.1902/jop.2012.120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Most available periodontal studies regarding the endothelial cell (EC) were investigated by using human umbilical vein endothelial cells (HUVECs); however, ECs can display remarkable heterogeneity in vascular beds of different origins. The aim of the present study, therefore, is to characterize microvascular ECs isolated from periodontal tissue and investigate their growth and gene expression compared to HUVECs (macrovascular). METHODS Periodontal ligament ECs (PDL-ECs) and gingiva ECs (G-ECs) were isolated by coupling to monoclonal anti-CD31 antibody magnetic beads. Both PDL-ECs and G-ECs were characterized to definitively demonstrate that the culture represented pure ECs. Their growth was determined by resazurin reduction assay. Interleukin (IL)-8, intercellular adhesion molecule 1 (ICAM-1), and E-selectin gene expression were determined by real-time quantitative reverse-transcription polymerase chain reaction after treatment with Escherichia coli lipopolysaccharide (LPS). RESULTS PDL-ECs and G-ECs revealed specific EC characteristics but formed tube-like structures and had slower growth rates than HUVECs. After E. coli LPS treatment, PDL-ECs and G-ECs showed similar dose-dependently increased levels of IL-8, ICAM-1, and E-selectin mRNA expression; however, their expressions were in contrast to HUVECs. PDL-ECs and G-ECs showed obviously increased ICAM-1 mRNA expression, whereas HUVECs showed markedly increased E-selectin mRNA expression after treatment with 0.1 μg/mL E. coli LPS. CONCLUSIONS ECs isolated from periodontal tissue show different growth and gene expression from those of HUVECs. Thus, these microvascular ECs appear to be a more valuable in vitro model system than HUVECs (macrovascular) to further study pathogenesis and angiogenesis of periodontal disease.
Collapse
Affiliation(s)
- Wiroj Suphasiriroj
- Department of Periodontology, The Nippon Dental University, School of Life Dentistry at Niigata, Niigata, Japan.
| | | | | |
Collapse
|
11
|
Hu H, Zhang H, Ge W, Liu X, Loera S, Chu P, Chen H, Peng J, Zhou L, Yu S, Yuan Y, Zhang S, Lai L, Yen Y, Zheng S. Secreted protein acidic and rich in cysteines-like 1 suppresses aggressiveness and predicts better survival in colorectal cancers. Clin Cancer Res 2012; 18:5438-48. [PMID: 22891198 DOI: 10.1158/1078-0432.ccr-12-0124] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Secreted protein acidic and rich in cysteines-like 1 (SPARCL1) is an extracellular matrix glycoprotein with malignancy-suppressing potential. The hypothesis that SPARCL1 reduces cancer invasiveness and predicts better survival in colorectal cancers (CRC) was investigated. EXPERIMENTAL DESIGN Stable SPARCL1 transfectants, RKO-SPARCL1, and corresponding vector control were constructed and implanted into nude mice to generate a mouse xenograft model of liver metastasis. Also, a retrospective outcome study was conducted on the COH set (222 CRCs) and ZJU set (412 CRCs). The protein expression level of SPARCL1 was determined by immunohistochemistry. The Kaplan-Meier and Cox analyses were used for survival analysis. The association of SPARCL1 with mesenchymal-epithelial transition (MET) was examined by reverse transcription PCR (RT-PCR) and Western blot analysis. RESULTS The ectopic expression of SPARCL1 significantly reduced the potential for anchorage-independent growth, migration, invasion and induced cell differentiation in RKO and SW620 cells. In mouse xenograft model, the expression of SPARCL1 significantly reduced the liver metastasis (P < 0.01). The patient-based studies revealed that the expression of SPARCL1 was related to better differentiation (P < 0.01), less lymph node involvement [OR, 0.67; 95% confidence interval (CI), 0.45-1.00], and less distant metastasis (OR, 0.38; 95% CI, 0.18-0.79). The Kaplan-Meier and Cox analysis showed that the expression of SPARCL1 was associated with better overall survival (log-rank: P < 0.01; HR, 0.57; 95% CI, 0.39-0.84). Transfection of SPARCL1 induced MET of colon cancer cells. CONCLUSION SPARCL1 functions as a tumor suppressor promoting differentiation possibly via MET, which inhibits the aggressiveness of CRCs.
Collapse
Affiliation(s)
- Hanguang Hu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kasprzak A, Surdacka A, Tomczak M, Konkol M. Role of high endothelial postcapillary venules and selected adhesion molecules in periodontal diseases: a review. J Periodontal Res 2012; 48:1-21. [PMID: 22582923 DOI: 10.1111/j.1600-0765.2012.01492.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontitis is accompanied by the proliferation of small blood vessels in the gingival lamina propria. Specialized postcapillary venules, termed periodontal high endothelial-like venules, are also present, and demonstrate morphological and functional traits similar to those of high endothelial venules (HEVs) in lymphatic organs. The suggested role of HEVs in the pathogenesis of chronic periodontitis involves participation in leukocyte transendothelial migration and therefore proinflammatory effects appear. Recent observations suggest that chronic periodontitis is an independent risk factor for systemic vascular disease and may result in stimulation of the synthesis of acute phase protein by cytokines released by periodontal high endothelial cells (HECs). However, tissue expression of HEV-linked adhesion molecules has not been evaluated in the gingiva of patients with chronic periodontitis. This is significant in relation to potential therapy targeting expression of the adhesion molecules. In this review, current knowledge of HEV structure and the related expression of four surface adhesion molecules of HECs [CD34, platelet endothelial cell adhesion molecule 1, endoglin and intercellular adhesion molecule 1 (ICAM-1)], involved in the key steps of the adhesion cascade in periodontal diseases, are discussed. Most studies on the expression of adhesion molecules in the development and progression of periodontal diseases pertain to ICAM-1 (CD54). Studies by the authors demonstrated quantitatively similar expression of three of four selected surface markers in gingival HEVs of patients with chronic periodontitis and in HEVs of reactive lymph nodes, confirming morphological and functional similarity of HEVs in pathologically altered tissues with those in lymphoid tissues.
Collapse
Affiliation(s)
- A Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland.
| | | | | | | |
Collapse
|
13
|
Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, Rochaix P, Girard JP. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 2011; 71:5678-87. [PMID: 21846823 DOI: 10.1158/0008-5472.can-11-0431] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanisms governing infiltration of lymphocytes into tumors remain poorly characterized, in spite of the critical impact of these cells on patient prognosis and therapeutic responses. High endothelial venules (HEV) are blood vessels found in lymphoid tissues, specialized in lymphocyte recruitment, but their implications in human cancer are unknown. In this article, we report the presence of MECA 79(+) blood vessels displaying all the phenotypic characteristics of HEVs in most of the 319 human primary solid tumors, including melanomas, breast, ovarian, colon, and lung carcinomas, analyzed. Tumor HEVs were specifically located within lymphocyte-rich areas, and their density within the tumor stroma was a strong predictor of infiltration by CD3(+) and CD8(+) T cells as well as B cells. Large-scale flow cytometric and quantitative reverse transcriptase-PCR analyses in freshly operated breast tumors revealed that high densities of tumor HEVs correlated with increased naive, central memory and activated effector memory T-cell infiltration and upregulation of genes related to T-helper 1 adaptive immunity and T-cell cytotoxicity. Finally, in a retrospective cohort of 146 invasive breast cancer patients, we found that high densities of tumor HEVs independently conferred a lower risk of relapse and significantly correlated with longer metastasis-free, disease-free, and overall survival rates. Together, our findings suggest that tumor HEVs function as major gateways for lymphocyte infiltration into human tumors, and may represent attractive targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ludovic Martinet
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Paul DM, Vilas SP, Kumar JM. A flow-cytometry assisted segregation of responding and non-responding population of endothelial cells for enhanced detection of intracellular nitric oxide production. Nitric Oxide 2011; 25:31-40. [PMID: 21550415 DOI: 10.1016/j.niox.2011.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/04/2011] [Accepted: 04/23/2011] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is an important paracrine substance released by the endothelium to regulate vasomotor tone. The constitutive levels of endothelium dependent NO production is low. However, it is induced significantly in response to certain environmental and biological stimuli. An accurate evaluation of such stimulus induced NO release is of pharmacological significance. We observed that the sensitivity of NO detection in endothelial cells is compromised by baseline fluorescence emanated from non-activated cells resulting in ambiguous detection. In order to measure NO levels in activated population independent of non-activated cells, we segregated DAF-FM loaded cells based on their fluorescence intensity using flow-cytometry. Specific agonists like bradykinin, VEGF and insulin enhanced the proportion of activated cells. This effect was partially blocked in presence of NO synthase inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME). We demonstrate that the fluorescence yield of activated population serves as a sensitive measure to evaluate agonist induced nitric oxide production in endothelial cells. Such increase in NO production in activated cells was also associated with increased eNOS phosphorylation at Ser-1177. While the endothelial cells showed heterogeneity with respect to NO production, immuno-phenotyping for endothelial cell-surface markers revealed a homogenous population.
Collapse
Affiliation(s)
- Dias M Paul
- Hindustan Unilever Research Centre, # 64 Main Road, Whitefield, Bangalore, Karnataka 560 066, India.
| | | | | |
Collapse
|
15
|
Abstract
Chemokine receptors adorn the surface of leukocytes and other cell types ready to translate the extracellular chemokine environment into functional cellular outcomes. However, there are several molecules that, in many respects, look like chemokine receptors, but which do not have the ability to confer chemotactic potential to cell lines. This apparent silence spurred the search for signalling-independent functions and led to the development of new paradigms of chemokine regulation. In this review, we summarise the experimental basis for these ideas focussing on DARC and D6, the most studied members of this group of molecules. We discuss data generated using in vitro systems and genetically deficient mice, include results from observational human studies, and summarise the key findings of recent research. We take a critical look at current models of in vivo function highlighting important gaps in our knowledge and demonstrating that there is still much to find out about these enigmatic molecules.
Collapse
Affiliation(s)
- Chris A H Hansell
- Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA
| | - Catherine E Hurson
- Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA
| | - Robert J B Nibbs
- Institute for Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA
| |
Collapse
|
16
|
Hayasaka H, Taniguchi K, Fukai S, Miyasaka M. Neogenesis and development of the high endothelial venules that mediate lymphocyte trafficking. Cancer Sci 2010; 101:2302-8. [PMID: 20726857 PMCID: PMC11158135 DOI: 10.1111/j.1349-7006.2010.01687.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physiological recruitment of lymphocytes from the blood into lymph nodes and Peyer's patches is mediated by high endothelial venules (HEV), specialized blood vessels found in secondary lymphoid tissues except for the spleen. The HEV are distinguished from other types of blood vessels by their tall and plump endothelial cells, and by their expression of specific chemokines and adhesion molecules, which all contribute to the selective lymphocyte trafficking across these blood vessels. The development of HEV is ontogenically regulated, and they appear perinatally in the mouse. High endothelial venules can appear ectopically, for instance in chronically inflamed tissues. Given that HEV enable the efficient trafficking of lymphocytes into tissues, the induction of HEV at a tumor site could potentiate tumor-specific immune responses, and the artificial manipulation of HEV neogenesis might thus provide a new tool for cancer immunotherapy. However, the process of HEV development and the mechanisms by which the unique features of HEV are maintained are incompletely understood. In this review, we discuss the process of HEV neogenesis and development during ontogeny, and their molecular requirements for maintaining their unique characteristics under physiological conditions.
Collapse
Affiliation(s)
- Haruko Hayasaka
- Department of Microbiology and Immunology, Laboratory of Immunodynamics, Osaka University Graduate School of Medicine Laboratory of Immunodynamics, WPI Immunology Frontier Center, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
17
|
Expression of chemokine decoy receptors and their ligands at the porcine maternal-fetal interface. Immunol Cell Biol 2010; 89:304-13. [PMID: 20680026 DOI: 10.1038/icb.2010.95] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful pregnancy requires coordinated maternal-fetal cross-talk to establish vascular connections that support conceptus growth. In pigs, two waves of spontaneous fetal loss occur and 30-40% of conceptuses are lost before parturition. Previous studies associated these losses with decreased angiogenic and increased inflammatory cytokines. Chemokines, a sub-category of cytokines, and decoy receptors control leukocyte trafficking, angiogenesis and development. The availability of chemokines is regulated by three non-signalling decoy receptors: chemokine decoy receptor (D6), Duffy antigen receptor for chemokines (DARC) and Chemocentryx decoy receptor (CCX CKR). We hypothesized that the expression of these receptors and their chemokine ligands regulate the porcine pregnancy success or failure. Here, we describe for the first time the transcription and translation of all three decoy receptors and several chemokine ligands in endometrium and trophoblast associated with healthy and arresting conceptuses at gestation day (gd) 20 and gd50. Among decoy receptors, transcripts for DARC were significantly reduced in endometrium, whereas that for CCX CKR were significantly increased in endometrium and trophoblast at gd50 arresting compared with healthy sites. However, western blot analysis revealed no differences in decoy receptor expression between healthy and arresting tissues. Transcripts for decoy receptor ligands CCL2, CCL3, CCL4, CCL5, CCL11, CCL19, CCL21, CXCL2 and CXCL8 were stable between healthy and arresting littermates. Quantification by SearchLight chemiluminescent protein array confirmed ligand expression at the protein level. These data indicate that decoy receptors and ligands are expressed at the porcine maternal-fetal interface and dysregulation of decoy receptor (DARC and CCX CKR) transcripts occurs at sites of fetal arrest.
Collapse
|
18
|
Ruan W, Ying K. Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 2010; 206:537-43. [PMID: 20452131 DOI: 10.1016/j.prp.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/21/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
For significant improvements to occur in the survival of patients with idiopathic pulmonary fibrosis (IPF), it is necessary to develop novel and more precisely targeted therapies. The selection of future appropriate regimens must critically depend on improved characterization of the molecules driving the pathogenesis of IPF. It is well defined that IPF is characterized by the expression of genes indicating an active tissue remodeling program, including extracellular matrix (ECM) and basement membrane components, as well as myofibroblast-associated and epithelial cell-related genes. A few recent advances are worth mentioning. Pulmonary research demonstrates abnormal expression of insulin-like growth factor (IGF) binding proteins (IGFBPs) in IPF, including human IPF bronchoalveolar lavage (BAL) cells and BAL fluids, human IPF fibroblasts, as well as fibrotic lung tissues of bleomycin-induced mice and IPF patients, analyzed by microarray, reverse transcription-polymerase chain reaction (RT-PCR), ribonuclease protection assay (RPA), Western blot, immunohistochemistry, or enzyme-linked immunosorbent assay (ELISA). Simultaneously, in vitro and in vivo studies indicate the involvement of IGFBPs in the initiation and development of the fibrosis process, including fibroblast activation and transdifferentiation to a myofibroblast phenotype, epithelial-mesenchymal transition (EMT), increased ECM production, and decreased ECM degradation, possibly contributing to the final lung fibrosis. These observations suggest that dysregulation of IGFBPs may be a key factor responsible for the initiation and perpetuation of IPF. Such efforts could lead to potential candidate molecules being exploited for therapeutic manipulation.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | | |
Collapse
|
19
|
Vielhauer V, Allam R, Lindenmeyer MT, Cohen CD, Draganovici D, Mandelbaum J, Eltrich N, Nelson PJ, Anders HJ, Pruenster M, Rot A, Schlöndorff D, Segerer S. Efficient renal recruitment of macrophages and T cells in mice lacking the duffy antigen/receptor for chemokines. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:119-31. [PMID: 19498001 PMCID: PMC2708800 DOI: 10.2353/ajpath.2009.080590] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/09/2009] [Indexed: 12/14/2022]
Abstract
The Duffy antigen/receptor for chemokines (DARC) is a chemokine-binding protein that is expressed on erythrocytes and renal endothelial cells. DARC-mediated endothelial transcytosis of chemokines may facilitate the renal recruitment of macrophages and T cells, as has been suggested for neutrophils. We studied the role of Darc in two mouse models of prolonged renal inflammation, one that primarily involves the tubulointerstitium (unilateral ureteral obstruction), and one that requires an adaptive immune response that leads to glomerulonephritis (accelerated nephrotoxic nephritis). Renal expression of Darc and its ligands was increased in both models. Leukocytes effectively infiltrated obstructed kidneys in Darc-deficient mice with pronounced T-cell infiltration at early time points. Development of interstitial fibrosis was comparable in both genotypes. Nephrotoxic nephritis was inducible in Darc-deficient mice, with both an increased humoral immune response and functional impairment during the early phase of disease. Leukocytes efficiently infiltrated kidneys of Darc-deficient mice, with increased cell numbers at early but not late time points. Taken together, renal inflammation developed more rapidly in DARC-deficient mice, without affecting the extent of renal injury at later time points. Thus, genetic elimination of Darc in mice does not prevent the development of renal infiltrates and may even enhance such development during the early phases of interstitial and glomerular diseases in mouse models of prolonged renal inflammation.
Collapse
Affiliation(s)
- Volker Vielhauer
- Medizinische Poliklinik, Campus Innenstadt, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
For almost 30 years, the cell-surface protein CD34 has been widely used as a marker to assist in the identification and Summary isolation of hematopoietic stem cells (HSCs) and progenitors in preparation for bone-marrow transplantation. In addition, it has increasingly been used as a marker to help identify other tissue-specific stem cells, including muscle satellite cells and epidermal precursors. Despite its utility as a stem-cell marker, however, the function of CD34 has remained remarkably elusive. This is probably because: (1) it is subject to a range of tissue-specific post-transcriptional and post-translational modifications that are expected to alter its function dramatically; (2) the simple interpretation of CD34 gain- and loss-of-function experiments has been confounded by the overlapping expression of the two recently discovered CD34-related proteins podocalyxin and endoglycan; and (3) there has been a glaring lack of robust in vitro and in vivo functional assays that permit the structural and functional analysis of CD34 and its relatives. Here, we provide a brief review of the domain structure, genomic organization, and tissue distribution of the CD34 family. We also describe recent insights from gain- and loss-of-function experiments and improved assays, which are elucidating a fascinating role for these molecules in cell morphogenesis and migration.
Collapse
Affiliation(s)
- Julie S Nielsen
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, BC, Canada V8R 6V5
| | | |
Collapse
|
21
|
Borroni EM, Bonecchi R, Mantovani A, Locati M. Chemoattractant receptors and leukocyte recruitment: more than cell migration. Sci Signal 2009; 2:pe10. [PMID: 19244210 DOI: 10.1126/scisignal.259pe10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chemoattractants induce cell migration through the activation of a distinct family of structurally related heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Over the past few years, several receptors in this family have been identified that recognize different classes of chemoattractants but do not induce cell migration. These atypical "chemoattractant receptors" are unable to activate transduction events that lead directly to cell migration, but appear nonetheless to play a nonredundant role in leukocyte recruitment by shaping the chemoattractant gradient, either by removing, transporting, or concentrating their cognate ligands.
Collapse
Affiliation(s)
- Elena Monica Borroni
- Laboratory of Leukocyte Biology, Department of Translational Medicine, University of Milan, Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico, Rozzano, Italy
| | | | | | | |
Collapse
|
22
|
Van Langendonckt A, Donnez J, Defrere S, Dunselman GA, Groothuis PG. Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol Hum Reprod 2008; 14:259-68. [DOI: 10.1093/molehr/gan019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Borroni EM, Bonecchi R, Buracchi C, Savino B, Mantovani A, Locati M. Chemokine decoy receptors: new players in reproductive immunology. Immunol Invest 2008; 37:483-97. [PMID: 18716935 DOI: 10.1080/08820130802191318] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chemokines are multifunctional molecules with roles in leukocyte trafficking and developmental processes. Both fetal and maternal components of the placenta produce chemokines, which control leukocyte trafficking observed in the placenta. Thus, chemokines play roles in the balance between protection of the developing embryo/fetus and tolerance of its hemiallogeneic tissues. Recently, a group of chemokine receptors, which include D6, DARC, and CCX-CKR, have been described as "silent" receptors by virtue of their inability to activate signal transduction events leading to cell chemoattraction. Here we review in vitro and in vivo evidence indicating that chemokine "silent" receptors regulate innate and adaptive immunity behaving as decoy receptors that support internalization and degradation of chemotactic factors, and discuss available information on their potential role in reproductive immunology.
Collapse
MESH Headings
- Animals
- Cell Movement/immunology
- Chemokines/agonists
- Chemokines/immunology
- Chemokines/metabolism
- Chemotaxis, Leukocyte/immunology
- Duffy Blood-Group System/immunology
- Duffy Blood-Group System/metabolism
- Female
- Humans
- Leukocytes/immunology
- Leukocytes/metabolism
- Placenta/immunology
- Placenta/metabolism
- Placental Circulation/immunology
- Pregnancy/immunology
- Receptors, CCR10/agonists
- Receptors, CCR10/immunology
- Receptors, CCR10/metabolism
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/immunology
- Receptors, G-Protein-Coupled/metabolism
- Reproductive Medicine
- Signal Transduction/immunology
- Chemokine Receptor D6
Collapse
|
24
|
Abstract
B lymphocytes are part of the inflammatory cells recruited to the human kidney in various disease settings. B cell infiltrates have been described in renal allografts, in acute and chronic interstitial nephritis, and the most common glomerular diseases like immunoglobulin A (IgA) and membranous nephropathy. These cells are almost exclusively recruited to the tubulointerstitium, but not the glomerular tuft. In addition to diffuse tubulointerstitial infiltrates, B cells together with T cells and dendritic cells form organized nodular aggregates surrounded by neo-lymphatic vessels. The functional significance of these tertiary lymphoid organs remains to be fully defined. Intrarenal B cells may be part of a local system to enhance the immunological response by functioning as antigen presenting cells, and as a source for cytokines promoting T-cell proliferation and lymphatic neoangiogenesis. In this way, they could enhance the local immune response to persisting autoantigens in the tubulointerstitium.
Collapse
Affiliation(s)
- S Segerer
- Medizinische Poliklinik, University of Munich, Munich, Germany.
| | | |
Collapse
|
25
|
Shen Y, Wilder-Smith E, Yu E, Ng YK, Ling EA, Spence I, Wong MC. A novel methodology to probe endothelial differential gene expression profile reveals novel genes. ACTA ACUST UNITED AC 2007; 14:303-14. [PMID: 18080867 DOI: 10.1080/10623320701678425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction is a major feature of vascular diseases. A practical, minimally invasive method to effectively "probe" gene transcription for an individual patient's endothelium has potential to "customize" assessment for an individual at risk of vascular disease as well as pathophysiologic insight in an in vivo human, clinical context. Published literature lacks a methodology to identify endothelial differential gene expression in individuals with vascular disease. We describe a methodology to do so. The aim of this study was to specifically utilize (a) cutaneous microvascular biopsy, (b) laser capture microdissection, (c) cDNA amplification, (d) suppression subtractive hybridization, (e) high-throughput sequencing techniques, (f) real-time polymerase chain reaction (PCR), and (g) in combination of these methods, to profile differential gene expression in the context of cardiovascular and cerebrovascular disease. Endothelial cells were obtained by laser capture microdissection from a patient and a healthy sibling's microvascular biopsy tissues. Endothelial RNA was extracted, reverse transcribed, and amplified to ds cDNA. Suppression subtractive hybridization was used to establish an endothelial differential gene expression library. Real-time PCR confirmed SERP1, caspase 8, IGFBP7, S100A4, F85, and F147 up-regulation between 1.4- and 3.47-fold. The authors have successfully established a methodology to profile endothelial differential gene expression and identified six differentially expressed genes. This minimally invasive novel method has potential wide application in the customized assessment of many patients suffering vascular diseases.
Collapse
Affiliation(s)
- Yi Shen
- Department of Neurology, National Neuroscience Institute (SGH Campus), Singapore
| | | | | | | | | | | | | |
Collapse
|
26
|
Reynolds SD, Reynolds PR, Snyder JC, Whyte F, Paavola KJ, Stripp BR. CCSP regulates cross talk between secretory cells and both ciliated cells and macrophages of the conducting airway. Am J Physiol Lung Cell Mol Physiol 2007; 293:L114-23. [PMID: 17384087 DOI: 10.1152/ajplung.00014.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary host defense employs a combination of biochemical and biophysical activities to recognize, inactivate, and mediate clearance of environmental agents as well as modulate the overall response to such challenge. Dysregulation of the inflammatory arm of this response is associated with chronic lung diseases (CLD) including cystic fibrosis and chronic obstructive lung disease. Although mechanisms mediating immunoregulation are incompletely characterized, decrements in levels of the nonciliated secretory cell product Clara cell secretory protein (CCSP) in numerous CLD and identification of proinflammatory state in mice homozygous for a null allele of the CCSP gene (CCSP−/−) suggest a central role for the nonciliated secretory cell in this process. In an effort to determine the molecular basis for immunoregulatory defects associated with CCSP deficiency, we utilized difference gel electrophoresis in combination with matrix-assisted laser desorption ionization time-of-flight to compare the proteomes of wild-type and CCSP−/− mice. We demonstrate a shift in the isoelectric point of the immunomodulatory protein annexin A1 (ANXA1) to more acidic isoforms in CCSP−/− mice. Similar ANXA1 mRNA and protein abundance in wild-type and CCSP−/− tissue and identical localization of ANXA1 protein to alveolar macrophages and the ciliary bed of ciliated cells demonstrated that CCSP deficiency was associated exclusively with altered posttranslational modification of ANXA1. These results suggest that both long- and short-range paracrine signaling between nonciliated secretory cells and cells of the immune system and epithelium impact modification of cell type-specific proteins and implicate nonciliated secretory cells in a regulatory axis that might integrate critical aspects of host defense.
Collapse
Affiliation(s)
- Susan D Reynolds
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Endothelial cells, which form the inner cellular lining of blood vessels and lymphatics, display remarkable heterogeneity in structure and function. This is the first of a 2-part review focused on phenotypic heterogeneity of blood vessel endothelium. This review provides an historical perspective of our understanding of endothelial heterogeneity, discusses the scope of phenotypic diversity across the vascular tree, and addresses proximate and evolutionary mechanisms of endothelial cell heterogeneity. The overall goal is to underscore the importance of phenotypic heterogeneity as a core property of the endothelium.
Collapse
Affiliation(s)
- William C Aird
- Division of Molecular and Vascular Medicine, Department of Medicine, and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA.
| |
Collapse
|
28
|
Comerford I, Litchfield W, Harata-Lee Y, Nibbs RJB, McColl SR. Regulation of chemotactic networks by ‘atypical’ receptors. Bioessays 2007; 29:237-47. [PMID: 17295321 DOI: 10.1002/bies.20537] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Directed cell migration is a fundamental component of numerous biological systems and is critical to the pathology of many diseases. Although the importance of secreted chemoattractant factors in providing navigational cues to migrating cells bearing specific chemoattractant receptors is now well-established, how the function of these factors is regulated is not so well understood and may be of key importance to the design of new therapeutics for numerous human diseases. While regulation of migration clearly takes place on a number of different levels, it is becoming clear that so-called 'atypical' receptors play a role in scavenging, or altering the localisation of, chemoattractant molecules such as chemokines and complement components. These receptors do this through binding and/or internalising their chemoattractant ligands without activating signal transduction cascades leading to cell migration. The atypical chemokine receptor family currently comprises the receptors D6, DARC and CCX-CKR. In this review, we discuss the evidence from in vitro and in vivo studies that these receptors play a role in regulating cell migration, and speculate that other orphan receptors may also belong to this family. Furthermore, with the advent of gene therapy on the horizon, the therapeutic potential of these receptors in human disease is also considered.
Collapse
Affiliation(s)
- Iain Comerford
- School of Molecular and Biomedical Science, University of Adelaide, Australia.
| | | | | | | | | |
Collapse
|
29
|
Ran Y, Jiang Y, Zhong X, Zhou Z, Liu H, Hu H, Lou JN, Yang Z. Identification of derlin-1 as a novel growth factor-responsive endothelial antigen by suppression subtractive hybridization. Biochem Biophys Res Commun 2006; 348:1272-8. [PMID: 16914117 DOI: 10.1016/j.bbrc.2006.07.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 11/21/2022]
Abstract
Endothelial cells play an important regulatory role in embryonic development, reproductive functions, tumor growth and progression. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify differentially expressed genes between non-stimulated endothelial cells and activated endothelial cells. Following mRNA isolation of non-stimulated and hepatocellular carcinoma homogenate-stimulated cells, cDNAs of both populations were prepared and subtracted by suppressive PCR. Sequencing of the enriched cDNAs identified a couple of genes differentially expressed, including derlin-1. Derlin-1 was significantly up-regulated by tumor homogenates, VEGF, and endothelial growth supplements in a dose-dependent manner. Knock-down of derlin-1 triggered endothelial cell apoptosis, inhibited endothelial cell proliferation, and blocked the formation of a network of tubular-like structures. Our data reveal that derlin-1 is a novel growth factor-responsive endothelial antigen that promotes endothelial cell survival and growth.
Collapse
Affiliation(s)
- Yuliang Ran
- Department of Cellular and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Naves R, Reyes LI, Rosemblatt M, Jacobelli S, González A, Bono MR. Lymphoid B cells induce NF-κB activation in high endothelial cells from human tonsils. Int Immunol 2005; 18:259-67. [PMID: 16373365 DOI: 10.1093/intimm/dxh365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Immune surveillance depends on still poorly understood lymphocyte-endothelium interactions required for lymphocyte transendothelial migration into secondary lymphoid organs. The nuclear factor kappaB (NF-kappaB) regulatory system and its inhibitory IkappaB proteins control the inducible expression of adhesion molecules, cytokines and chemokines involved in endothelial activation and lymphocyte transmigration. Here we present results showing the activation of this system in response to the interaction of high endothelial cells from human tonsils (HUTEC) with human B and T lymphoid cell lines and primary tonsillar lymphocytes. Western blot and electrophoretic mobility shift assays show that adhesion of different lymphoid cells induce varying levels of NF-kappaB activation in HUTEC, with Daudi cells, tonsil-derived B cell line 10 (TBCL-10) and primary tonsillar B lymphocytes causing the strongest activation. The main NF-kappaB protein complexes translocated to the nucleus were p65/p50 and p50/p50. Results from reverse transcription-PCR and flow cytometry analysis of HUTEC indicate that the interaction with Daudi cells induce an increased expression of IL-6 and IL-8 mRNA and cell-surface expression of intercellular adhesion molecule-1, all of which were prevented by sodium salicylate, an inhibitor of NF-kappaB activation. Transwell experiments show that NF-kappaB activation and the response of HUTEC to the interaction of Daudi cells does not depend on direct cell-cell contact but rather on the production of soluble factors that require the presence of both cell types. These results suggest that lymphocytes and high endothelium establish a cross talk leading to NF-kappaB-mediated expression of cytokines and adhesion molecules, inducing endothelial cell activation.
Collapse
Affiliation(s)
- Rodrigo Naves
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Casilla, Santiago 1365, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Locati M, Torre YMDL, Galliera E, Bonecchi R, Bodduluri H, Vago G, Vecchi A, Mantovani A. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev 2005; 16:679-86. [PMID: 15996892 DOI: 10.1016/j.cytogfr.2005.05.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/13/2005] [Indexed: 10/25/2022]
Abstract
The chemokine system includes at least three "silent" receptors, DARC, D6 and CCX CKR, with distinct specificity and tissue distribution. D6 binds most inflammatory, but not homeostatic, CC chemokines and shuttles in a ligand-independent way from the plasma membrane to endocytic compartments where chemokines are targeted to degradation. In vitro and in vivo evidence, including results with gene-targeted mice, is consistent with the view that D6 acts as a decoy and scavenger for inflammatory CC chemokines. Thus, D6 has unique functional and structural features, which make it ideally adapted to act as a chemokine decoy and scavenger receptor, strategically located on lymphatic endothelium to dampen inflammation in tissues and draining lymph nodes.
Collapse
Affiliation(s)
- Massimo Locati
- Institute of General Pathology, Medical Faculty, University of Milan, I-20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Middleton J, Americh L, Gayon R, Julien D, Mansat M, Mansat P, Anract P, Cantagrel A, Cattan P, Reimund JM, Aguilar L, Amalric F, Girard JP. A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 2005; 206:260-8. [PMID: 15887283 DOI: 10.1002/path.1788] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endothelial cells play a central role in chronic inflammation: for example, they express adhesion molecules and present chemokines leading to enhanced leukocyte recruitment into tissues. Numerous markers of endothelial cells have been reported but there has been a lack of comparative data on their specificity. The present study compared the specificity of seven endothelial cell markers in the rheumatoid synovium and the colon of patients with Crohn's disease. These markers were: the sulphated epitope MECA-79, the Duffy antigen receptor for chemokines (DARC), von Willebrand factor, CD31 (PECAM-1), CD34, CD105 (endoglin) and CD146. MECA-79, DARC and von Willebrand factor showed a specific endothelial cell distribution. MECA-79, which recognizes sulphated ligands for leukocyte adhesion receptor L-selectin (CD62L), was selective for a subset of venules in highly inflamed tissue and was present in rheumatoid but not control osteoarthritic synovia. DARC was also specific for venules but had a more widespread distribution than MECA-79, and was present in rheumatoid and control synovia. The other markers all labelled endothelial cells in venules, arterioles and capillaries. However, they also localized to other cell types. For example, CD34 stained fibroblasts, CD146 was expressed by the pericytes and smooth muscle cells of vessel walls and CD31 and CD105 labelled a broad range of cell types.
Collapse
Affiliation(s)
- Jim Middleton
- Endocube S.A.S., Prologue Biotech-BP-700, Rue Pierre et Marie Curie, 31319 Labege Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rot A. Contribution of Duffy antigen to chemokine function. Cytokine Growth Factor Rev 2005; 16:687-94. [PMID: 16054417 DOI: 10.1016/j.cytogfr.2005.05.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/28/2022]
Abstract
In addition to classical G protein-coupled receptors (GPCRs), a group of alternative, "silent" chemokine receptors has recently been identified. These serpentine molecules are not coupled to G proteins and subsequent signaling cascades, but can efficiently internalize their cognate chemokine ligands, thus act as "interceptors" (internalizing receptors). Here we discuss a mechanism by which a member of this family, Duffy antigen (DARC), contributes to chemokine-induced leukocyte emigration. Cumulative experimental evidence suggests that DARC on venular endothelium mediates chemokine internalization at the abluminal surface followed by transcytosis and transfer of the chemokine cargo onto the luminal surface. DARC is also expressed on the erythrocyte surface of DARC positive individuals. Erythrocyte DARC binds plasma chemokines which results, on one hand, in impediment of the chemokines loss from the circulation and, on the other hand, in neutralization of chemokines in the blood. This leads to leukocyte protection from inadvertent "desensitization" and enhancement of leukocyte recruitment.
Collapse
Affiliation(s)
- Antal Rot
- Novartis Institutes for BioMedical Research, Brunnerstrasse 59, A-1230 Vienna, Austria.
| |
Collapse
|
34
|
Rebrikov D, Desai S, Kogan YN, Thornton AM, Diatchenko L. Subtractive cloning: new genes for studying inflammatory disorders. ACTA ACUST UNITED AC 2005; 7:17-28. [PMID: 16013213 DOI: 10.1902/annals.2002.7.1.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding of the biology of interaction between pathogens and host is the central question in studying inflammatory disorders. Subtractive DNA cloning is one of the most efficient and comprehensive methods available for identifying eukaryotic genes regulated under specific physiological conditions, including inflammation and host response. Here we explore the utility of subtractive DNA cloning and describe suppression subtractive hybridization (SSH), a polymerase chain reaction (PCR)-based DNA subtraction method that has been developed and evolved in our labs over several years. The SSH method possesses a number of advantages as compared to other subtractive cloning techniques, making it one of the most adventitious methods for cloning differentially expressed genes. Besides isolation of differentially expressed eukaryotic mRNAs, subtractive DNA cloning can be used to identify genes that are differentially expressed between diverse bacterial species. These genes can be of great interest, as some may encode strain-specific traits such as drug resistance, or bacterial surface proteins involved in determining the virulence of a particular strain. Other genes may be useful as markers for epidemiological or evolutionary studies. To demonstrate the potential of the SSH technique, we describe here the comprehensive characterization of 2 SSH subtracted libraries constructed in our laboratories. One library was created using eukaryotic cDNA subtraction and is specific for mRNAs up-regulated in CD25 positive cells from mouse lymph nodes as compared to CD25 negative cells. The second subtracted library is specific for a methicillin-resistant Staphylococcus aureus bacterial strain, but not in a methicillin-sensitive strain. The bacterial genomes of these 2 strains have been completely sequenced and this second library provides an excellent reference for testing the ability of SSH to recover all strain-specific gene content. The analysis of these 2 subtracted libraries serves as the basis for a discussion of the strength and limitations of the SSH technique. We will also compare and contrast subtractive DNA cloning to other current technologies used to isolate differentially expressed genes.
Collapse
Affiliation(s)
- Denis Rebrikov
- Evrogen JSC; Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | |
Collapse
|
35
|
Sengoelge G, Luo W, Fine D, Perschl AM, Fierlbeck W, Haririan A, Sorensson J, Rehman TU, Hauser P, Trevick JS, Kulak SC, Wegner B, Ballermann BJ. A SAGE-based comparison between glomerular and aortic endothelial cells. Am J Physiol Renal Physiol 2005; 288:F1290-300. [PMID: 15657302 DOI: 10.1152/ajprenal.00076.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endothelial cells have many characteristics in common, but significant morphological and functional differences exist between endothelial cells from different anatomic sites. The specific glomerular endothelial (GEn) cell transcript repertoire is unknown. We sought to determine whether endothelial cells derived from bovine glomeruli display a distinct transcriptional profile compared with bovine aortic endothelium (BAE) under identical conditions. Serial analysis of gene expression (SAGE), which includes known and unknown transcripts, was used to make the comparison. The GEn and BAE SAGE libraries contain 36,844 and 26,452 total tag sequences, respectively. Among 6,524 unique tag sequences represented at least 2 times in the 2 libraries, 2,094 (32%) were matched to well-characterized bovine cDNA sequences (358 tags) or expressed sequence tags (EST). Identification of the human homolog was achieved for 1,035 of these tags. Forty-two tags were differentially expressed in GEn. For 25 of these, the bovine cDNA or EST, and for 17 the human homolog was identified. Among all transcripts with a known bovine and human tag, seven were expressed at levels more than 10-fold higher in cultured GEn cells compared with all other SAGE libraries. The transcript “DKFZp564B076” was localized by in situ hybridization to glomerular endothelium in vivo and was shown by real-time RT-PCR to be highly abundant in glomeruli compared with aortic intima. This work supports the concept that differences in the transcriptional profile of endothelial cells from distinct origins are observed under otherwise equivalent conditions. Furthermore, we have identified the first known transcript predominant in glomerular endothelium in vivo.
Collapse
Affiliation(s)
- Gürkan Sengoelge
- Division of Nephrology and Dialysis, Dept. of Medicine III, Medical Univ. Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Comerford I, Nibbs RJB. Post-translational control of chemokines: a role for decoy receptors? Immunol Lett 2005; 96:163-74. [PMID: 15585320 DOI: 10.1016/j.imlet.2004.08.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 11/23/2022]
Abstract
It is well-established that chemokines play a critical role in the orchestration of inflammation and immunity. Interactions between chemokines and their receptors are essential for the homing of specific subsets of leukocytes to their functional microenvironments. They also influence other diverse biological processes such as development, leukocyte activation, Th1/Th2 polarisation, tumour metastasis, angiogenesis, and HIV pathogenesis. However, despite their importance, only now are we beginning to understand the complex regulation brought to bear on these molecules. In this review, we discuss a number of these key chemokine regulators that exert their influence once these proteins have been synthesised. We examine (i) chemokine storage, release, and presentation, (ii) protease regulation, (iii) viral manipulation of host chemokines, and (iv) natural mammalian receptor antagonists. Principally, the growing evidence for a role for decoy receptors in the chemokine system is discussed. In particular, the potential decoy function of the 'silent' pro-inflammatory chemokine receptor D6 is described alongside two other candidate decoy receptor molecules, DARC, and CCX-CKR. Dissecting the biological and pathological function of these chemokine controllers will lead to a deeper understanding of chemokine regulation, and may reveal novel strategies to therapeutically modify the chemokine system.
Collapse
Affiliation(s)
- Iain Comerford
- Cancer Research UK Beatson Laboratories, The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
37
|
Yang JL, Zhu NS, Wang Y, Guan XF, Zheng ZX. Protein and mRNA characterization in high and low metastasis adenoid cystic carcinoma cell lines. Mol Biol Rep 2005; 31:241-8. [PMID: 15663007 DOI: 10.1007/s11033-005-2712-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastasis and invasion, the important characteristics of malignant tumors, are closely associated with a series of changes in the expression of genes and proteins. In this study, we compare mRNA and protein expression in high and low metastasis adenoid cystic carcinoma cell lines by mRNA suppression subtractive hybridization and two-dimensional electrophoresis combined with peptide mass fingerprint analysis. 34 differentially expressed genes were obtained using suppression subtractive hybridization experiments including 6 highly expressed gene sequences in the high metastasis cell line, and 28 in the low metastasis cell line. RNA dot blot hybridization further confirmed the results after excluding false positives. For protein analysis, ten significantly different protein spots were detected using two-dimensional gel electrophoresis technique combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI- TOF-MS). The results then compare with the SWISS PROT database. These results suggest that high tumor metastasis of adenoid cystic carcinoma is associated with multiple genes whose function include angiogenesis, protein synthesis, signal transduction, modulation of cell cycle, molecular chaperones, and immune co-stimulating molecule. Moreover, the results of the phenotypic function-related expression mapping analysis at the mRNA and protein level revealed obvious complementarities, providing important clues for further study of the molecular mechanism of metastasis, metastasis control and possible targets for cancer gene therapy.
Collapse
Affiliation(s)
- Jie-lin Yang
- Lab of Molecular Immunology, State Key Lab of Genetic Engineering, School of Life Sciences, Fudan University
| | | | | | | | | |
Collapse
|
38
|
Linderholm B, Karlsson E, Klaar S, Lindahl T, Borg AL, Elmberger G, Bergh J. Thrombospondin-1 expression in relation to p53 status and VEGF expression in human breast cancers. Eur J Cancer 2004; 40:2417-23. [PMID: 15519514 DOI: 10.1016/j.ejca.2004.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/28/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
The aim of the present study was to study the expression and relationship of potential angiogenic factors. Paraffin-embedded tumour sections from 261 breast cancer patients were stained immunohistochemically for thrombospondin (TSP-1) expression. p53 status was previously determined by cDNA-based sequencing, and vascular endothelial growth factor (VEGF) protein expression had been previously analysed using an immunoassay. 241 cancers (92%) had detectable levels of TSP-1. No associations between TSP-1 and p53 status or VEGF were found. No correlations between TSP-1 and relapse-free (P=0.3), breast cancer-corrected (P=0.2) or overall survival (P=0.5) were found. A correlation was found for patients with p53 mutations, but negative p53 expression, with higher VEGF levels (P=0.009), but there was no correlation between this p53 group and those with low TSP-1 levels (P=0.2). In conclusion, TSP-1 expression was not prognostic and was not associated with neither p53-status or VEGF expression.
Collapse
Affiliation(s)
- Barbro Linderholm
- Department of Oncology and Pathology, CCK Cancer Centrum Karolinska, Karolinska Institutet and Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sullivan MM, Sage EH. Hevin/SC1, a matricellular glycoprotein and potential tumor-suppressor of the SPARC/BM-40/Osteonectin family. Int J Biochem Cell Biol 2004; 36:991-6. [PMID: 15094114 DOI: 10.1016/j.biocel.2004.01.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/07/2004] [Accepted: 01/13/2004] [Indexed: 12/20/2022]
Abstract
Hevin is an extracellular matrix-associated, secreted glycoprotein belonging to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins. It contains three conserved structural domains that are implicated in the regulation of cell adhesion, migration, and proliferation. Hevin is expressed during embryogenesis and tissue remodeling and is especially prominent in brain and vasculature. Its down-regulation in a number of cancers and the possibility of its functional compensation by SPARC has led to recent interest in hevin as a tumor suppressor and regulator of angiogenesis.
Collapse
Affiliation(s)
- Millicent M Sullivan
- Department of Vascular Biology, The Hope Heart Institute, 1124 Columbia Street, Seattle, WA 98104, USA.
| | | |
Collapse
|
40
|
Wu MP, Cheng YJ, Lin YS, Kang CY, Huang KF, Tzeng CC. Tumor/Normal Counterpart Microvessel Density Ratio has a Better Correlation with Clinicopathologic Parameters in Endometrial Carcinoma than Tumor Microvessel Density Alone. Taiwan J Obstet Gynecol 2004. [DOI: 10.1016/s1028-4559(09)60086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Gardner L, Patterson AM, Ashton BA, Stone MA, Middleton J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem Biophys Res Commun 2004; 321:306-12. [PMID: 15358176 DOI: 10.1016/j.bbrc.2004.06.146] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/18/2022]
Abstract
The aim of the study was to compare the ability of the human Duffy antigen to bind homeostatic and inflammatory chemokines. Homeostatic chemokines did not bind to the Duffy antigen on erythrocytes with high affinity. In contrast, 60% of inflammatory chemokines bound strongly to Duffy, with no obvious preference for CXC or CC classes. It was investigated if this binding profile was reflected in the binding pattern of endothelial cells. Two examples of homeostatic (125I-CXCL12 and 125I-CCL21) and inflammatory (125I-CXCL8 and 125I-CCL5) chemokines were incubated with human synovia. In agreement with the erythrocyte binding data, intense specific signals for CXCL8 and CCL5 binding were found on endothelial cells, whereas CXCL12 and CCL21 showed only weak binding to these cells. Our study provides evidence that the human Duffy antigen binds selected inflammatory, but not homeostatic, chemokines and that this binding pattern is reflected by endothelial cells within inflamed and non-inflamed tissue.
Collapse
Affiliation(s)
- Lucy Gardner
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Medical School, Keele University at Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG, UK
| | | | | | | | | |
Collapse
|
42
|
Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 2004; 14:523-35. [PMID: 14563354 DOI: 10.1016/s1359-6101(03)00059-5] [Citation(s) in RCA: 546] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical acute lung injury (ALI) is a major cause of acute respiratory failure in critically ill patients. There is considerable experimental and clinical evidence that pro- and anti-inflammatory cytokines play a major role in the pathogenesis of inflammatory-induced lung injury from sepsis, pneumonia, aspiration, and shock. A recent multi-center clinical trial found that a lung-protective ventilatory strategy reduces mortality by 22% in patients with ALI. Interestingly, this protective ventilatory strategy was associated with a marked reduction in the number of neutrophils and the concentration of pro-inflammatory cytokines released into the airspaces of the injured lung. Further research is needed to establish the contribution of cytokines to both the pathogenesis and resolution of ALI.
Collapse
Affiliation(s)
- Richard B Goodman
- Medical Research Service, Department of Veterans Affairs, VA Puget Sound Health Care System, VA Puget Sound Medical Center, Division of Pulmonary & Critical Care, University of Washington School of Medicine, Seattle, WA 98108, USA
| | | | | | | |
Collapse
|
43
|
Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 2004; 4:360-70. [PMID: 15122201 DOI: 10.1038/nri1354] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Masayuki Miyasaka
- Laboratory of Molecular and Cellular Recognition, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita 565-0871, Japan.
| | | |
Collapse
|
44
|
Lacorre DA, Baekkevold ES, Garrido I, Brandtzaeg P, Haraldsen G, Amalric F, Girard JP. Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 2004; 103:4164-72. [PMID: 14976058 DOI: 10.1182/blood-2003-10-3537] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Endothelial cells display remarkable heterogeneity in different organs and vascular beds. Although many studies suggest that tissues “speak” to endothelial cells, endothelial cell diversity remains poorly characterized at the molecular level. Here, we describe a novel strategy to characterize tissue-specific endothelial cell phenotypes and to identify endothelial cell genes that are under the control of the local microenvironment. By comparing post-capillary high endothelial venule endothelial cells (HEVECs), freshly isolated from human tonsils without any cell culture step, with HEVECs cultured for 2 days, we found that HEVECs rapidly lost their specialized characteristics when isolated from the lymphoid tissue microenvironment. Striking changes occurred as early as after 48 hours, with complete loss of the postcapillary venule–specific Duffy antigen receptor for chemokines (DARCs) and the HEV-specific fucosyltransferase Fuc-TVII. DNA microarray analysis identified several other candidate HEV genes that were rapidly down-regulated ex vivo, including type XV collagen, which we characterized as a novel, abundant HEV transcript in situ. Together, our results demonstrate that blood vessel type–specific and tissue-specific characteristics of endothelial cells are under the control of their microenvironment. Therefore, even short-term primary cultures of human endothelial cells may not adequately mimic the differentiated endothelial cell phenotypes existing in vivo.
Collapse
Affiliation(s)
- Delphine-Armelle Lacorre
- Laboratoire de Biologie Vasculaire, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, UMR 5089, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Sun XY, Li FX, Li J, Tan YF, Piao YS, Tang S, Wang YL. Determination of Genes Involved in the Early Process of Embryonic Implantation in Rhesus Monkey (Macaca mulatta) by Suppression Subtractive Hybridization1. Biol Reprod 2004; 70:1365-73. [PMID: 14724130 DOI: 10.1095/biolreprod.103.018523] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Embryonic implantation is a temporally and spatially restricted process that involves a precise cross talk between the embryo and the receptive maternal endometrium. Underlying the complex changes in the uterus during implantation is the alteration in gene expression pattern, which is not fully understood for the primates. In the present study, suppression subtractive hybridization (SSH) was performed to screen genes that were differentially expressed in the implantation site of the pregnant rhesus monkey, and a subtractive cDNA library was constructed. Furthermore, with dot blot analysis, reverse Northern blot analysis, and semiquantitative reverse transcription-polymerase chain reaction, 76 of 376 clones randomly selected from the library were proven to be differentially expressed in the implantation site. With DNA sequencing and BLAST analysis against the GenBank/EMBL database, it was demonstrated that the cDNA fragments carried by 73 clones shared high homology with 31 human genes. Among them, 15 positive clones represented the S100A10 gene and 10 positive ones corresponded with the secreted frizzled-related protein 4 gene. The other two clones shared homology with one human EST. There was one clone homologous to a human DNA sequence, which indicated that it might be a novel gene. To our knowledge, this is the first report to determine genes involved in the early implantation stage in the rhesus monkey with high throughput technology.
Collapse
Affiliation(s)
- Xiao-Yang Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Palmeri D, Zuo FR, Rosen SD, Hemmerich S. Differential gene expression profile of human tonsil high endothelial cells: implications for lymphocyte trafficking. J Leukoc Biol 2004; 75:910-27. [PMID: 14761935 DOI: 10.1189/jlb.0903408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Lymphocyte recirculation is dependent on the interactions of adhesion and signaling molecules expressed on lymphocytes and their partners on high endothelial cells (HEC). Many of the events in this process have yet to be molecularly characterized. To identify novel HEC-specific proteins with potential function in the recruitment cascade, we sequenced a normalized human tonsil HEC cDNA library (generated from an inflamed tonsil) from which lymphocyte and human umbilical vein endothelial cell cDNAs had been subtracted. One-thousand forty-nine sequences were analyzed. All but three mapped to known cDNAs or genomic DNAs. The two most abundant transcripts encoded alpha2-macroglobulin and hevin. The next-abundant transcripts encoded several other protease inhibitors, making this protein class the most prominent in HEC. Several endothelial-specific transcripts were also identified, including those encoding E-selectin, vascular cell adhesion molecule-1, vascular endothelial-junctional adhesion molecule, and platelet-endothelial cell adhesion molecule-1. The library contains a great diversity of transcripts, and studies of the encoded proteins will provide further insight into the complex biology of these specialized endothelial cells.
Collapse
Affiliation(s)
- Diana Palmeri
- Department of Anatomy and Program of Immunology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Ulrich H von Andrian
- The CBR Institute for Biomedical Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusettes 02115, USA.
| | | |
Collapse
|
48
|
Nibbs R, Graham G, Rot A. Chemokines on the move: control by the chemokine "interceptors" Duffy blood group antigen and D6. Semin Immunol 2003; 15:287-94. [PMID: 15001178 DOI: 10.1016/j.smim.2003.08.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemokines drive and direct leukocyte trafficking across the biological barriers. Controlling the microanatomical localization and quantity of chemokines is of fundamental importance in regulating these migratory responses. Here we discuss the emerging roles that two atypical chemokine receptors, Duffy antigen and D6, may play in controlling chemokine movement and how this may impinge on chemokine function. Mechanistically, Duffy antigen and D6 represent a subclass of chemokine internalizing receptors, "interceptors," taking chemokines into nucleated cells in the apparent absence of signaling. The subsequent fate of chemokines, either transport or degradation, may ultimately depend on cell type-specific targeting within the endocytotic pathway.
Collapse
Affiliation(s)
- Robert Nibbs
- Cancer Research UK-Beatson Laboratories, Glasgow, UK
| | | | | |
Collapse
|
49
|
Nagakubo D, Murai T, Tanaka T, Usui T, Matsumoto M, Sekiguchi K, Miyasaka M. A high endothelial venule secretory protein, mac25/angiomodulin, interacts with multiple high endothelial venule-associated molecules including chemokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:553-61. [PMID: 12847218 DOI: 10.4049/jimmunol.171.2.553] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that mac25/angiomodulin (AGM), a 30-kDa secretory protein, is abundantly expressed in high endothelial venules (HEVs), which play a crucial role in lymphocyte trafficking to the lymph nodes and Peyer's patches. We report that mac25/AGM interacts preferentially with certain molecules that are expressed in or around HEVs. In particular, mac25/AGM interacted with not only the extracellular matrix proteins and glycosaminoglycans that are expressed in most blood vessels including HEVs, but also with some chemokines that are implicated in the regulation of lymphocyte trafficking, such as the secondary lymphoid-tissue chemokine (SLC; CCL21), IFN-gamma-inducible protein 10 (IP-10; CXCL10), and RANTES (CCL5). The binding of mac25/AGM to SLC and IP-10 was dose-dependent and saturable. The binding to IP-10 could be inhibited by SLC but not by a non-mac25/AGM-binding chemokine, EBI1-ligand chemokine (ELC; CCL19). Interestingly, mac25/AGM failed to interact with 18 other chemokines, suggesting that it binds to certain chemokines preferentially. Immunohistochemical analysis indicated that mac25/AGM colocalizes at least partially with SLC and IP-10 at the basal lamina of HEVs. Upon binding with mac25/AGM, SLC and IP-10 retained all their Ca(2+)-signaling activity in vitro, suggesting that mac25/AGM can hold and present chemokines in the basal lamina of HEVs. These results imply that mac25/AGM plays a multifunctional role, serving not only as an adhesion protein to interact with glycosaminoglycans and extracellular matrix proteins but also as a molecule to present chemokines so that lymphocytes extravasating through HEVs receive further directional cues subsequent to the luminal encounter with lymphoid chemokines.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Laboratory of Molecular and Cellular Recognition, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:69-79. [PMID: 12819012 PMCID: PMC1868188 DOI: 10.1016/s0002-9440(10)63631-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lymphocyte homing to secondary lymphoid tissue and lesions of chronic inflammation is directed by multi-step interactions between the circulating cells and the specialized endothelium of high endothelial venules (HEVs). In this study, we used the PCR-based method of suppression subtractive hybridization (SSH) to identify novel HEV genes by comparing freshly purified HEV endothelial cells (HEVECs) with nasal polyp-derived microvascular endothelial cells (PMECs). By this approach, we cloned the first nuclear factor preferentially expressed in HEVECs, designated nuclear factor from HEVs (NF-HEV). Virtual Northern and Western blot analyses showed strong expression of NF-HEV in HEVECs, compared to human umbilical vein endothelial cells (HUVECs) and PMECs. In situ hybridization and immunohistochemistry revealed that NF-HEV mRNA and protein are expressed at high levels and rather selectively by HEVECs in human tonsils, Peyers's patches, and lymph nodes. The NF-HEV protein was found to contain a bipartite nuclear localization signal, and was targeted to the nucleus when ectopically expressed in HUVECs and HeLa cells. Furthermore, endogenous NF-HEV was found in situ to be confined to the nucleus of tonsillar HEVECs. Finally, threading and molecular modeling studies suggested that the amino-terminal part of NF-HEV (aa 1-60) corresponds to a novel homeodomain-like Helix-Turn-Helix (HTH) DNA-binding domain. Similarly to the atypical homeodomain transcription factor Prox-1, which plays a critical role in the induction of the lymphatic endothelium phenotype, NF-HEV may be one of the key nuclear factors that controls the specialized HEV phenotype.
Collapse
Affiliation(s)
- Espen S Baekkevold
- Laboratory for Immunohistochemistry and Immunopathology, University of Oslo, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|