1
|
Rice A, Zimmerberg J, Pastor RW. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys J 2023; 122:1018-1032. [PMID: 36575795 PMCID: PMC10111278 DOI: 10.1016/j.bpj.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The fusion peptide (FP) domain is necessary for the fusogenic activity of spike proteins in a variety of enveloped viruses, allowing the virus to infect the host cell, and is the only part of the protein that interacts directly with the target membrane lipid tails during fusion. There are consistent findings of poration by this domain in experimental model membrane systems, and, in certain conditions, the isolated FPs can generate pores. Here, we use molecular dynamics simulations to investigate the specifics of how these FP-induced pores form in membranes with different compositions of lysolipid and POPC. The simulations show that pores form spontaneously at high lysolipid concentrations via hybrid intermediates, where FP aggregates in the cis leaflet tilt to form a funnel-like structure that spans the leaflet and locally reduces the hydrophobic thickness that must be traversed by water to form a pore. By restraining a single FP within an FP aggregate to this tilted conformation, pores can be formed in lower-lysolipid-content membranes, including pure POPC, on the 100-ns timescale, much more rapidly than in unbiased simulations in bilayers with the same composition. The pore formation pathway is similar to the spontaneous formation in high lysolipid concentrations. Depending on the membrane composition, the pores can be metastable (as seen in POPC) or lead to membrane rupture.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Epand RM. The scientific adventures of Richard Epand. Biophys Chem 2023; 292:106931. [PMID: 36434860 DOI: 10.1016/j.bpc.2022.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
This essay summarizes the many areas of science that my career has contributed to. It attempts to highlight some of the innovative concepts that developed from this work. The discussion encompasses studies I undertook from graduate school to the present but it will not attempt to be comprehensive. I apologize to individuals whose work I omitted. Because of space I cannot acknowledge all the contributions from other individuals that made these achievements possible.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
3
|
Rice A, Haldar S, Wang E, Blank PS, Akimov SA, Galimzyanov TR, Pastor RW, Zimmerberg J. Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration. Nat Commun 2022; 13:7336. [PMID: 36470871 PMCID: PMC9722698 DOI: 10.1038/s41467-022-34576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
To infect, enveloped viruses employ spike protein, spearheaded by its amphipathic fusion peptide (FP), that upon activation extends out from the viral surface to embed into the target cellular membrane. Here we report that synthesized influenza virus FPs are membrane active, generating pores in giant unilamellar vesicles (GUV), and thus potentially explain both influenza virus' hemolytic activity and the liposome poration seen in cryo-electron tomography. Experimentally, FPs are heterogeneously distributed on the GUV at the time of poration. Consistent with this heterogeneous distribution, molecular dynamics (MD) simulations of asymmetric bilayers with different numbers of FPs in one leaflet show FP aggregation. At the center of FP aggregates, a profound change in the membrane structure results in thinning, higher water permeability, and curvature. Ultimately, a hybrid bilayer nanodomain forms with one lipidic leaflet and one peptidic leaflet. Membrane elastic theory predicts a reduced barrier to water pore formation when even a dimer of FPs thins the membrane as above, and the FPs of that dimer tilt, to continue the leaflet bending initiated by the hydrophobic mismatch between the FP dimer and the surrounding lipid.
Collapse
Affiliation(s)
- Amy Rice
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Sourav Haldar
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,grid.418363.b0000 0004 0506 6543Present Address: Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, UP India
| | - Eric Wang
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Paul S. Blank
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Sergey A. Akimov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur R. Galimzyanov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia ,grid.35043.310000 0001 0010 3972National University of Science and Technology “MISiS”, 4 Leninskiy Prospect, Moscow, Russia
| | - Richard W. Pastor
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Joshua Zimmerberg
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
4
|
Surmeier G, Dogan-Surmeier S, Paulus M, Albers C, Latarius J, Sternemann C, Schneider E, Tolan M, Nase J. The interaction of viral fusion peptides with lipid membranes. Biophys J 2022; 121:3811-3825. [PMID: 36110043 PMCID: PMC9674987 DOI: 10.1016/j.bpj.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022] Open
Abstract
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.
Collapse
Affiliation(s)
- Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Jan Latarius
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
5
|
Joardar A, Pattnaik GP, Chakraborty H. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J Membr Biol 2022; 255:211-224. [PMID: 35435451 PMCID: PMC9014786 DOI: 10.1007/s00232-022-00233-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid–protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
6
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
7
|
Sutherland M, Kwon B, Hong M. Interactions of HIV gp41's membrane-proximal external region and transmembrane domain with phospholipid membranes from 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183723. [PMID: 34352242 DOI: 10.1016/j.bbamem.2021.183723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
HIV-1 entry into cells requires coordinated changes of the conformation and dynamics of both the fusion protein, gp41, and the lipids in the cell membrane and virus envelope. Commonly proposed features of membrane deformation during fusion include high membrane curvature, lipid disorder, and membrane surface dehydration. The virus envelope and target cell membrane contain a diverse set of phospholipids and cholesterol. To dissect how different lipids interact with gp41 to contribute to membrane fusion, here we use 31P solid-state NMR spectroscopy to investigate the curvature, dynamics, and hydration of POPE, POPC and POPS membranes, with and without cholesterol, in the presence of a peptide comprising the membrane proximal external region (MPER) and transmembrane domain (TMD) of gp41. Static 31P NMR spectra indicate that the MPER-TMD induces strong negative Gaussian curvature (NGC) to the POPE membrane but little curvature to POPC and POPC:POPS membranes. The NGC manifests as an isotropic peak in the static NMR spectra, whose intensity increases with the peptide concentration. Cholesterol inhibits the NGC formation and stabilizes the lamellar phase. Relative intensities of magic-angle spinning 31P cross-polarization and direct-polarization spectra indicate that all three phospholipids become more mobile upon peptide binding. Finally, 2D 1H-31P correlation spectra show that the MPER-TMD enhances water 1H polarization transfer to the lipids, indicating that the membrane surfaces become more hydrated. These results suggest that POPE is an essential component of the high-curvature fusion site, and lipid dynamic disorder is a general feature of membrane restructuring during fusion.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Byungsu Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Mesa-Galloso H, Valiente PA, Valdés-Tresanco ME, Epand RF, Lanio ME, Epand RM, Alvarez C, Tieleman DP, Ros U. Membrane Remodeling by the Lytic Fragment of SticholysinII: Implications for the Toroidal Pore Model. Biophys J 2019; 117:1563-1576. [PMID: 31587828 DOI: 10.1016/j.bpj.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear. In this article, we combine molecular dynamics simulations and experimental biophysical tools to dissect different aspects of the pore-forming mechanism of StII1-30, a peptide derived from the N-terminus of sticholysin II (StII). With this combined approach, membrane curvature induction and flip-flop movement of the lipids were identified as two important membrane remodeling steps mediated by StII1-30. Pore formation by this peptide was enhanced by the presence of the negatively curved lipid phosphatidylethanolamine in membranes. This lipid emerged not only as a facilitator of membrane interactions but also as a structural element of the StII1-30 pore that is recruited to the ring upon its assembly. Collectively, these, to our knowledge, new findings support a toroidal model for the architecture of the pore formed by StII1-30 and provide new molecular insight into the role of phosphatidylethanolamine as a membrane component that can easily integrate into the ring of toroidal pores, thus probably aiding in their stabilization. This study contributes to a better understanding of the molecular mechanism underlying the permeabilizing activity of StII1-30 and peptides or proteins acting via a toroidal pore mechanism and offers an informative framework for the optimization of the biomedical application of this and similar molecules.
Collapse
Affiliation(s)
- Haydee Mesa-Galloso
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada; Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada; Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, Health Science Center, McMaster University, Hamilton, Ontario, Canada
| | - Maria E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Science Center, McMaster University, Hamilton, Ontario, Canada
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
10
|
Jefferys EE, Sansom MSP. Computational Virology: Molecular Simulations of Virus Dynamics and Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:201-233. [DOI: 10.1007/978-3-030-14741-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Pattnaik GP, Meher G, Chakraborty H. Exploring the Mechanism of Viral Peptide-Induced Membrane Fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:69-78. [PMID: 30637691 DOI: 10.1007/978-981-13-3065-0_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Membrane fusion is essential in several cellular processes in the existence of eukaryotic cells such as cellular trafficking, compartmentalization, intercellular communication, sexual reproduction, cell division, and endo- and exocytosis. Membrane fusion proceeds in model membranes as well as biological membranes through the rearrangement of lipids. The stalk hypothesis provides a picture of the general nature of lipid rearrangement based on mechanical properties and phase behavior of water-lipid mesomorphic systems. In spite of extensive research on exploring the mechanism of membrane fusion, a clear molecular understanding of intermediate and pore formation is lacking. In addition, the mechanism by which proteins and peptides reduce the activation energy for stalk and pore formation is not yet clear though there are several propositions on how they catalyze membrane fusion. In this review, we have discussed about various putative functions of fusion peptides by which they reduce activation barrier and thus promote membrane fusion. A careful analysis of the discussed effects of fusion peptides on membranes might open up new possibilities for better understanding of the membrane fusion mechanism.
Collapse
|
12
|
Levin A, Jeworrek C, Winter R, Weise K, Czeslik C. Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes. J Phys Chem B 2017; 121:8492-8502. [PMID: 28829131 DOI: 10.1021/acs.jpcb.7b06400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP). By using synchrotron X-ray diffraction, the changes of the monoolein phase behavior upon binding the peptides have been determined and the concomitant secondary structures of the peptides have been analyzed by FTIR spectroscopy. As main results we have found that the fusion peptides interact differently with monoolein and change the pressure and temperature dependent lipid phase behavior to different extents. However, they both destabilize the fluid lamellar phase and favor phases with negative curvature, i.e. inverse bicontinuous cubic and inverse hexagonal phases. These peptide-induced phase changes can partially be reversed by the application of high pressure, demonstrating that the promotion of negative curvature is achieved by a less dense packing of the monoolein membranes by the fusion peptides. Pressure jumps across the cubic-lamellar phase transition reveal that HA2-FP has a negligible effect on the rates of the cubic and the lamellar phase formation. Interestingly, the secondary structures of the fusion peptides appear unaffected by monoolein fluid-fluid phase transitions, suggesting that the fusion peptides are the structure dominant species in the fusion process of lipid membranes.
Collapse
Affiliation(s)
- Artem Levin
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Christoph Jeworrek
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Katrin Weise
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Claus Czeslik
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| |
Collapse
|
13
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. Hydrophobic surfactant proteins strongly induce negative curvature. Biophys J 2016; 109:95-105. [PMID: 26153706 DOI: 10.1016/j.bpj.2015.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023] Open
Abstract
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Ryan W Loney
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | | - Stephen B Hall
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
14
|
Smrt ST, Lorieau JL. Membrane Fusion and Infection of the Influenza Hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 966:37-54. [PMID: 27966108 DOI: 10.1007/5584_2016_174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.
Collapse
Affiliation(s)
- Sean T Smrt
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Justin L Lorieau
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
15
|
Wu W, Lin D, Shen X, Li F, Fang Y, Li K, Xun T, Yang G, Yang J, Liu S, He J. New influenza A Virus Entry Inhibitors Derived from the Viral Fusion Peptides. PLoS One 2015; 10:e0138426. [PMID: 26382764 PMCID: PMC4575187 DOI: 10.1371/journal.pone.0138426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
Influenza A viral (IAV) fusion peptides are known for their important role in viral-cell fusion process and membrane destabilization potential which are compatible with those of antimicrobial peptides. Thus, by replacing the negatively or neutrally charged residues of FPs with positively charged lysines, we synthesized several potent antimicrobial peptides derived from the fusogenic peptides (FPs) of hemagglutinin glycoproteins (HAs) of IAV. The biological screening identified that in addition to the potent antibacterial activities, these positively charged fusion peptides (pFPs) effectively inhibited the replication of influenza A viruses including oseltamivir-resistant strain. By employing pseudovirus-based entry inhibition assays including H5N1 influenza A virus (IAV), and VSV-G, the mechanism study indicated that the antiviral activity may be associated with the interactions between the HA2 subunit and pFP, of which, the nascent pFP exerted a strong effect to interrupt the conformational changes of HA2, thereby blocking the entry of viruses into host cells. In addition to providing new peptide “entry blockers”, these data also demonstrate a useful strategy in designing potent antibacterial agents, as well as effective viral entry inhibitors. It would be meaningful in treatment of bacterial co-infection during influenza pandemic periods, as well as in our current war against those emerging pathogenic microorganisms such as IAV and HIV.
Collapse
Affiliation(s)
- Wenjiao Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Dongguo Lin
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Xintian Shen
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Fangfang Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Yuxin Fang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Kaiqun Li
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Tianrong Xun
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Guang Yang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Jie Yang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
- * E-mail: (SL); (JH)
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P. R. China
- * E-mail: (SL); (JH)
| |
Collapse
|
16
|
|
17
|
Wang J, Zhong W, Lin D, Xia F, Wu W, Zhang H, Lv L, Liu S, He J. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents. Chem Biol Drug Des 2015; 86:487-95. [PMID: 25581878 DOI: 10.1111/cbdd.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
Abstract
The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjing Zhong
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Dongguo Lin
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fan Xia
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjiao Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Heyuan Zhang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
18
|
Membrane curvature modulation of protein activity determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:220-8. [DOI: 10.1016/j.bbamem.2014.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 02/04/2023]
|
19
|
Fuhrmans M, Marelli G, Smirnova YG, Müller M. Mechanics of membrane fusion/pore formation. Chem Phys Lipids 2015; 185:109-28. [DOI: 10.1016/j.chemphyslip.2014.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022]
|
20
|
Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 2014; 290:228-38. [PMID: 25398882 DOI: 10.1074/jbc.m114.611657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.
Collapse
Affiliation(s)
- Sean T Smrt
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Adrian W Draney
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Justin L Lorieau
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
21
|
Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids 2014; 181:40-55. [PMID: 24704587 PMCID: PMC4061400 DOI: 10.1016/j.chemphyslip.2014.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 02/07/2023]
Abstract
The presence of a fusion peptide (FP) is a hallmark of viral fusion glycoproteins. Structure–function relationships underlying FP conservation remain greatly unknown. FPs establish interactions satisfying their folding within pre-fusion glycoproteins. Upon fusion activation FPs insert into and restructure target membranes. FPs can finally combine with transmembrane domains to form integral membrane bundles.
Fusion peptides comprise conserved hydrophobic domains absolutely required for the fusogenic activity of glycoproteins from divergent virus families. After 30 years of intensive research efforts, the structures and functions underlying their high degree of sequence conservation are not fully elucidated. The long-hydrophobic viral fusion peptide (VFP) sequences are structurally constrained to access three successive states after biogenesis. Firstly, the VFP sequence must fulfill the set of native interactions required for (meta) stable folding within the globular ectodomains of glycoprotein complexes. Secondly, at the onset of the fusion process, they get transferred into the target cell membrane and adopt specific conformations therein. According to commonly accepted mechanistic models, membrane-bound states of the VFP might promote the lipid bilayer remodeling required for virus-cell membrane merger. Finally, at least in some instances, several VFPs co-assemble with transmembrane anchors into membrane integral helical bundles, following a locking movement hypothetically coupled to fusion-pore expansion. Here we review different aspects of the three major states of the VFPs, including the functional assistance by other membrane-transferring glycoprotein regions, and discuss briefly their potential as targets for clinical intervention.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - Eneko Largo
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - José L Nieva
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
22
|
Yao H, Hong M. Conformation and lipid interaction of the fusion peptide of the paramyxovirus PIV5 in anionic and negative-curvature membranes from solid-state NMR. J Am Chem Soc 2014; 136:2611-24. [PMID: 24428385 PMCID: PMC3985871 DOI: 10.1021/ja4121956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral fusion proteins catalyze the merger of the virus envelope and the target cell membrane through multiple steps of protein conformational changes. The fusion peptide domain of these proteins is important for membrane fusion, but how it causes membrane curvature and dehydration is still poorly understood. We now use solid-state NMR spectroscopy to investigate the conformation, topology, and lipid and water interactions of the fusion peptide of the PIV5 virus F protein in three lipid membranes, POPC/POPG, DOPC/DOPG, and DOPE. These membranes allow us to investigate the effects of lipid chain disorder, membrane surface charge, and intrinsic negative curvature on the fusion peptide structure. Chemical shifts and spin diffusion data indicate that the PIV5 fusion peptide is inserted into all three membranes but adopts distinct conformations: it is fully α-helical in the POPC/POPG membrane, adopts a mixed strand/helix conformation in the DOPC/DOPG membrane, and is primarily a β-strand in the DOPE membrane. (31)P NMR spectra show that the peptide retains the lamellar structure and hydration of the two anionic membranes. However, it dehydrates the DOPE membrane, destabilizes its inverted hexagonal phase, and creates an isotropic phase that is most likely a cubic phase. The ability of the β-strand conformation of the fusion peptide to generate negative Gaussian curvature and to dehydrate the membrane may be important for the formation of hemifusion intermediates in the membrane fusion pathway.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Chemistry, Iowa State University , Ames, Iowa 50011 United States
| | | |
Collapse
|
23
|
Tenchov BG, MacDonald RC, Lentz BR. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An x-ray diffraction study. Biophys J 2013; 104:1029-37. [PMID: 23473485 DOI: 10.1016/j.bpj.2012.12.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/08/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022] Open
Abstract
Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale. Peptide-induced Q(II) had strongly reduced lattice constants in comparison to the Q(II) phases that form in pure lipids. Q(II) formation was favored at the expense of both L(α) and H(II) phases. The wild-type fusion peptide, WT-20, was distinguished from G1E and G13L by the markedly greater magnitude of its effect. WT-20 disordered the L(α) phase and completely abolished the HII phase in DOPE-Me/WT-20 50:1 dispersions, converted the Q(II) phase type from Im3m to Pn3m and reduced the unit cell size from ∼38 nm for the Im3m phase of DOPE-Me dispersions to ∼15 nm for the Pn3m phase in DOPE-Me/WT-20 peptide mixtures. The strong reduction of the cubic phase lattice parameter suggests that the fusion-promoting WT-20 peptide may function by favoring bilayer states of more negative gaussian curvature and promoting fusion along pathways involving Pn3m phase-like fusion pore intermediates rather than pathways involving H(II) phase-like intermediates.
Collapse
Affiliation(s)
- Boris G Tenchov
- Department of Medical Physics and Biophysics, Medical University Sofia, Sofia, Bulgaria.
| | | | | |
Collapse
|
24
|
Crowet JM, Parton DL, Hall BA, Steinhauer S, Brasseur R, Lins L, Sansom MSP. Multi-Scale Simulation of the Simian Immunodeficiency Virus Fusion Peptide. J Phys Chem B 2012; 116:13713-21. [DOI: 10.1021/jp3027385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jean-Marc Crowet
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Daniel L. Parton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| | - Benjamin A. Hall
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| | - Sven Steinhauer
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Robert Brasseur
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Laurence Lins
- Centre de Biophysique Moléculaire
Numérique, Gembloux Agro-Bio Tech, University of Liège, 2 Passage des déportés,
B-5030 Gembloux, Belgium
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1
3QU, United Kingdom
| |
Collapse
|
25
|
Risselada HJ, Marelli G, Fuhrmans M, Smirnova YG, Grubmüller H, Marrink SJ, Müller M. Line-tension controlled mechanism for influenza fusion. PLoS One 2012; 7:e38302. [PMID: 22761674 PMCID: PMC3386277 DOI: 10.1371/journal.pone.0038302] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide's ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a 'super' bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions.
Collapse
Affiliation(s)
- Herre Jelger Risselada
- Theoretical Molecular Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fuhrmans M, Marrink SJ. Molecular View of the Role of Fusion Peptides in Promoting Positive Membrane Curvature. J Am Chem Soc 2012; 134:1543-52. [DOI: 10.1021/ja207290b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc Fuhrmans
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Universität Göttingen, Göttingen, Germany
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Thennarasu S, Huang R, Lee DK, Yang P, Maloy L, Chen Z, Ramamoorthy A. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Biochemistry 2010; 49:10595-605. [PMID: 21062093 PMCID: PMC3006059 DOI: 10.1021/bi101394r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a minimalist design approach, a synthetic peptide MSI-367 [(KFAKKFA)(3)-NH(2)] was designed and synthesized with the objective of generating cell-selective nonlytic peptides, which have a significant bearing on cell targeting. The peptide exhibited potent activity against both bacteria and fungi, but no toxicity to human cells at micromolar concentrations. Bacterial versus human cell membrane selectivity of the peptide was determined via membrane permeabilization assays. Circular dichroism investigations revealed the intrinsic helix propensity of the peptide, β-turn structure in aqueous buffer and extended and turn conformations upon binding to lipid vesicles. Differential scanning calorimetry experiments with 1,2-dipalmitoleoyl-sn-glycero-3-phosphatidylethanolamine bilayers indicated the induction of positive curvature strain and repression of the fluid lamellar to inverted hexagonal phase transition by MSI-367. Results of isothermal titration calorimetry (ITC) experiments suggested the possibility of formation of specific lipid-peptide complexes leading to aggregation. (2)H nuclear magnetic resonance (NMR) of deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) multilamellar vesicles confirmed the limited effect of the membrane-embedded peptide at the lipid-water interface. (31)P NMR data indicated changes in the lipid headgroup orientation of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine lipid bilayers upon peptide binding. Membrane-embedded and membrane-inserted states of the peptide were observed via sum frequency generation vibrational spectroscopy. Circular dichroism, ITC, and (31)P NMR data for Escherichia coli lipids agree with the hypothesis that strong electrostatic lipid-peptide interactions embrace the peptide at the lipid-water interface and provide the basis for bacterial cell selectivity.
Collapse
Affiliation(s)
- Sathiah Thennarasu
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Rui Huang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Dong-Kuk Lee
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Pei Yang
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
| | - Lee Maloy
- Genaera Pharmaceuticals, Plymouth Meeting, PA 19462
| | - Zhan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| | - Ayyalusamy Ramamoorthy
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055
| |
Collapse
|
28
|
Basso LGM, Rodrigues RZ, Naal RMZG, Costa-Filho AJ. Effects of the antimalarial drug primaquine on the dynamic structure of lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:55-64. [PMID: 20713019 DOI: 10.1016/j.bbamem.2010.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/28/2010] [Accepted: 08/10/2010] [Indexed: 01/28/2023]
Abstract
Primaquine (PQ) is a potent therapeutic agent used in the treatment of malaria and its mechanism of action still lacks a more detailed understanding at a molecular level. In this context, we used differential scanning calorimetry (DSC), pressure perturbation calorimetry (PPC), and electron spin resonance (ESR) to investigate the effects of PQ on the lipid phase transition, acyl chain dynamics, and on volumetric properties of lipid model membranes. DSC thermograms revealed that PQ stabilizes the fluid phase of the lipid model membranes and interacts mainly with the lipid headgroups. This result was revealed by the great effect on the pretransition of phosphatidylcholines and the destabilization of the inverted hexagonal phase of a phosphatidylethanolamine bilayer. Spin probes located at different positions along the lipid chain were used to monitor different membrane regions. ESR results indicated that PQ is effective in changing the acyl chain ordering and dynamics of the whole chain of dimyristoylphosphatidylcholine (DMPC) phospholipid in the rippled gel phase. The combined ESR and PPC results revealed that the slight DMPC volume changes at the main phase transition induced by the presence of PQ is probably due to a less dense lipid gel phase. At physiological pH, the cationic amphiphilic PQ strongly interacts with the lipid headgroup region of the bilayers, causing considerable disorganization in the hydrophobic core. These results shed light on the molecular mechanism of primaquine-lipid interaction, which may be useful in the understanding of the complex mechanism of action and/or the adverse effects of this antimalarial drug.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense 400, C.P. 369, CEP 13560-970, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Helical conformation of the SEVI precursor peptide PAP248-286, a dramatic enhancer of HIV infectivity, promotes lipid aggregation and fusion. Biophys J 2010; 97:2474-83. [PMID: 19883590 DOI: 10.1016/j.bpj.2009.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/09/2009] [Accepted: 08/12/2009] [Indexed: 01/27/2023] Open
Abstract
In previous in vivo studies, amyloid fibers formed from a peptide ubiquitous in human seminal fluid (semen-derived enhancer of viral infection (SEVI)) were found to dramatically enhance the infectivity of the HIV virus (3-5 orders of magnitude by some measures). To complement those studies, we performed in vitro assays of PAP(248-286), the most active precursor to SEVI, and other polycationic polymers to investigate the physical mechanisms by which the PAP(248-286) promotes the interaction with lipid bilayers. At acidic (but not at neutral) pH, freshly dissolved PAP(248-286) catalyzes the formation of large lipid flocculates in a variety of membrane compositions, which may be linked to the promotion of convective transport in the vaginal environment rather than transport by a random Brownian motion. Furthermore, PAP(248-286) is itself fusiogenic and weakens the integrity of the membrane in such a way that may promote fusion by the HIV gp41 protein. An alpha-helical conformation of PAP(248-286), lying parallel to the membrane surface, is implicated in promoting bridging interactions between membranes by the screening of the electrostatic repulsion that occurs when two membranes are brought into close contact. This suggests that nonspecific binding of monomeric or small oligomeric forms of SEVI in a helical conformation to lipid membranes may be an additional mechanism by which SEVI enhances the infectivity of the HIV virus.
Collapse
|
30
|
Epand RF, Schmitt MA, Gellman SH, Sen A, Auger M, Hughes DW, Epand RM. Bacterial species selective toxicity of two isomeric α/β-peptides: Role of membrane lipids. Mol Membr Biol 2009; 22:457-69. [PMID: 16373318 DOI: 10.1080/09687860500370562] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have studied how membrane interactions of two synthetic cationic antimicrobial peptides with alternating alpha- and beta-amino acid residues ("alpha/beta-peptides") impact toxicity to different prokaryotes. Electron microscopic examination of thin sections of Escherichia coli and of Bacillus subtilis exposed to these two alpha/beta-peptides reveals different structural changes in the membranes of these bacteria. These two peptides also have very different effects on the morphology of liposomes composed of phosphatidylethanolamine and phosphatidylglycerol in a 2:1 molar ratio. Freeze fracture electron microscopy indicates that with this lipid mixture, alpha/beta-peptide I induces the formation of a sponge phase. 31P NMR and X-ray diffraction are consistent with this conclusion. In contrast, with alpha/beta-peptide II and this same lipid mixture, a lamellar phase is maintained, but with a drastically reduced d-spacing. alpha/beta-Peptide II is more lytic to liposomes composed of these lipids than is I. These findings are consistent with the greater toxicity of alpha/beta-peptide II, relative to alpha/beta-peptide I, to E. coli, a bacterium having a high content of phosphatidylethanolamine. In contrast, both alpha/beta-peptides display similar toxicity toward B. subtilis, in accord with the greater anionic lipid composition in its membrane. This work shows that variations in the selectivity of these peptidic antimicrobial peptides toward different strains of bacteria can be partly determined by the lipid composition of the bacterial cell membrane.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
31
|
Fuhrmans M, Knecht V, Marrink SJ. A Single Bicontinuous Cubic Phase Induced by Fusion Peptides. J Am Chem Soc 2009; 131:9166-7. [DOI: 10.1021/ja903224q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc Fuhrmans
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany
| | - Volker Knecht
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and Max-Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Research Campus Golm, D-14424 Potsdam, Germany
| |
Collapse
|
32
|
Smith PES, Brender JR, Ramamoorthy A. Induction of negative curvature as a mechanism of cell toxicity by amyloidogenic peptides: the case of islet amyloid polypeptide. J Am Chem Soc 2009; 131:4470-8. [PMID: 19278224 PMCID: PMC2665920 DOI: 10.1021/ja809002a] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The death of insulin-producing beta-cells is a key step in the pathogenesis of type 2 diabetes. The amyloidogenic peptide Islet Amyloid Polypeptide (IAPP, also known as amylin) has been shown to disrupt beta-cell membranes leading to beta-cell death. Despite the strong evidence linking IAPP to the destruction of beta-cell membrane integrity and cell death, the mechanism of IAPP toxicity is poorly understood. In particular, the effect of IAPP on the bilayer structure has largely been uncharacterized. In this study, we have determined the effect of the amyloidogenic and toxic hIAPP(1-37) peptide and the nontoxic and nonamyloidogenic rIAPP(1-37) peptide on membranes by a combination of DSC and solid-state NMR spectroscopy. We also characterized the toxic but largely nonamyloidogenic rIAPP(1-19) and hIAPP(1-19) fragments. DSC shows that both amyloidogenic (hIAPP(1-37)) and largely nonamyloidogenic (hIAPP(1-19) and rIAPP(1-19)) toxic versions of the peptide strongly favor the formation of negative curvature in lipid bilayers, while the nontoxic full-length rat IAPP(1-37) peptide does not. This result was confirmed by solid-state NMR spectroscopy which shows that in bicelles composed of regions of high curvature and low curvature, nontoxic rIAPP(1-37) binds to the regions of low curvature while toxic rIAPP(1-19) binds to regions of high curvature. Similarly, solid-state NMR spectroscopy shows that the toxic rIAPP(1-19) peptide significantly disrupts the lipid bilayer structure, whereas the nontoxic rIAPP(1-37) does not have a significant effect. These results indicate IAPP may induce the formation of pores by the induction of excess membrane curvature and can be used to guide the design of compounds that can prevent the cell-toxicity of IAPP. This mechanism may be important to understand the toxicity of other amyloidogenic proteins. Our solid-state NMR results also demonstrate the possibility of using bicelles to measure the affinity of biomolecules for negatively or positively curved regions of the membrane, which we believe will be useful in a variety of biochemical and biophysical investigations related to the cell membrane.
Collapse
Affiliation(s)
- Pieter E S Smith
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
33
|
Jang H, Michaud-Agrawal N, Johnston JM, Woolf TB. How to lose a kink and gain a helix: pH independent conformational changes of the fusion domains from influenza hemagglutinin in heterogeneous lipid bilayers. Proteins 2008; 72:299-312. [PMID: 18214961 DOI: 10.1002/prot.21925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.
Collapse
Affiliation(s)
- Hyunbum Jang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
34
|
Hickel A, Danner-Pongratz S, Amenitsch H, Degovics G, Rappolt M, Lohner K, Pabst G. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2325-33. [PMID: 18582435 DOI: 10.1016/j.bbamem.2008.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
We have studied the influence of four antimicrobial peptides of different secondary and ternary structure--melittin (Mel), protegrin-1 (PG-1), peptidyl-glycylleucine-carboxyamide (PGLa), and gramicidin S (GS)--on the lamellar-to-nonlamellar transition of palmitoyloleoyl phosphatidylethanolamine (POPE) applying differential scanning calorimetry and small-angle X-ray diffraction. None of the peptides studied led to the formation of an inverted hexagonal phase observed for pure POPE at high temperatures. Instead either cubic or lamellar phases were stabilized to different degrees. GS was most effective in inducing a cubic phase, whereas Mel fully stabilized the lamellar phase. The behavior of POPE in the presence of PG-1 and PGLa was intermediate to GS and Mel. In addition to the known role of membrane elasticity we propose two mechanisms, which cause stabilization of the lamellar phase: electrostatic repulsion and lipid/peptide pore formation. Both mechanisms prevent transmembrane contact required to form either an inverted hexagonal phase or fusion pores, as precursors of the cubic phase.
Collapse
Affiliation(s)
- Andrea Hickel
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A 8042 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Epand RM. Membrane lipid polymorphism: relationship to bilayer properties and protein function. Methods Mol Biol 2007; 400:15-26. [PMID: 17951724 DOI: 10.1007/978-1-59745-519-0_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Bilayers are the most familiar arrangement of phospholipids. However, even as bilayers, phospholipids can arrange themselves in a variety of morphologies from essentially flat structures found in large liposomes or when adhered to a flat solid support, to the curved structures found in small liposomes or as bicontinuous cubic phases. Phospholipids can also arrange themselves as curved monolayers, such as in the hexagonal phase, and they can even form spherical or ellipsoid-shaped micelles. A number of factors will determine the final morphology of a lipid aggregate including the structure of the lipid, the nature of the lipid headgroup and its degree of hydration, and the temperature. In addition to being interesting in its own right, the property of lipid polymorphism can be applied to understand how fundamental intrinsic curvature properties of a membrane alter the physical properties of a membrane bilayer. This, in turn, will affect the functional characteristics of membrane proteins, with several possible mechanisms explaining the coupling of membrane properties with protein function.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Masum SM, Li SJ, Awad TS, Yamazaki M. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5290-7. [PMID: 15924452 DOI: 10.1021/la0469607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly(L-lysine) on the structure and phase stability of DOPA/MO membranes.
Collapse
Affiliation(s)
- Shah Md Masum
- Materials Science, Graduate School of Science and Engineering, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
37
|
Epand RM, Epand RF, Hughes DW, Sayer BG, Borochov N, Bach D, Wachtel E. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism. Chem Phys Lipids 2005; 135:39-53. [PMID: 15854624 DOI: 10.1016/j.chemphyslip.2005.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/14/2004] [Accepted: 01/31/2005] [Indexed: 11/18/2022]
Abstract
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5.
| | | | | | | | | | | | | |
Collapse
|
38
|
Huang Q, Chen CL, Herrmann A. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. Biophys J 2005; 87:14-22. [PMID: 15240440 PMCID: PMC1304337 DOI: 10.1529/biophysj.103.024562] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unraveling the conformation of membrane-bound viral fusion peptides is essential for understanding how those peptides destabilize the bilayer topology of lipids that is important for virus-cell membrane fusion. Here, molecular dynamics (MD) simulations were performed to investigate the conformation of the 20 amino acids long fusion peptide of influenza hemagglutinin of strain X31 bound to a dimyristoyl phosphatidylcholine (DMPC) bilayer. The simulations revealed that the peptide adopts a kinked conformation, in agreement with the NMR structures of a related peptide in detergent micelles. The peptide is located at the amphipathic interface between the headgroups and hydrocarbon chains of the lipid by an energetically favorable arrangement: The hydrophobic side chains of the peptides are embedded into the hydrophobic region and the hydrophilic side chains are in the headgroup region. The N-terminus of the peptide is localized close to the amphipathic interface. The molecular dynamics simulations also revealed that the peptide affects the surrounding bilayer structure. The average hydrophobic thickness of the lipid phase close to the N-terminus is reduced in comparison with the average hydrophobic thickness of a pure dimyristoyl phosphatidylcholine bilayer.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China
| | | | | |
Collapse
|
39
|
Li SJ, Yamazaki M. Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (H II) phase transition in dipalmitoleoylphosphatidylethanolamine membranes. Biophys Chem 2004; 109:149-55. [PMID: 15059667 DOI: 10.1016/j.bpc.2003.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 10/13/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
We have investigated the effects of anionic dioleoylphosphatidic acid (DOPA) on the structure and phase behavior of dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes by small-angle X-ray scattering. The results of X-ray diffraction experiments indicate that an L(alpha) to H(II) phase transition in DPOPE membranes occurred at 2.5 mol% DOPA, and above 4.0 mol% they were completely in the H(II) phase. And in the presence of 0.5 M KCl, the critical concentration of DOPA was decreased to 0.6 mol%. These results show that low concentrations of DOPA stabilize the H(II) phase rather than the L(alpha) phase in DPOPE membranes. The absolute spontaneous curvature of DPOPE membrane was gradually decreased with an increase in DOPA concentrations. On the basis of these results, the H(II) phase stability in DPOPE membranes due to low DOPA concentrations is discussed by the spontaneous curvature of monolayer membrane, the packing energy of alkyl chains of the membrane and lipid packing parameter.
Collapse
Affiliation(s)
- Shu Jie Li
- Department of Physics, Dalian University, Dalian Economic and Technical Development Zone, Dalian 116622, PR China.
| | | |
Collapse
|
40
|
Feng Y, Yu ZW, Quinn PJ. Stable cubic phases in codispersions of glucocerebroside and palmitoyloleoylphosphatidylethanolamine. Chem Phys Lipids 2003; 126:141-8. [PMID: 14623449 DOI: 10.1016/s0009-3084(03)00099-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of glucocerebroside (GlcCer) on the structure and thermotropic phase behavior of aqueous dispersions of palmitoyloleoylphosphatidylethanolamine (POPE) has been examined using simultaneous small-angle and wide-angle X-ray diffraction methods. Binary mixtures of GlcCer:POPE in molar ratios of 2:100, 5:100, 10:100, 20:100, 30:100, and 40:100 were examined in the temperature range 20-90 degrees C. Cubic phase has been observed in binary mixtures comprised of molar ratios greater than 5:100 in the temperature range of 60-90 degrees C upon heating at a rate of 2 degrees C/min. The cubic phase is relatively stable and coexists with inverted hexagonal or lamellar phases. It persists in the codispersions throughout subsequent cooling scans to 30 degrees C. The space group of the cubic phase is determined to be Pn3m or Pn3. The lattice constant of the Pn3m cubic phase was found to be almost constant when it coexists with lamellar liquid-crystal phase. Marked temperature-dependent changes were observed when cubic phase coexists with hexagonal phase or lamellar-gel phases. This is the first report of cubic phases formed by codispersions of glycosphingolipids and phospholipids. The mechanism of cubic phase formation and the interaction between GlcCer and POPE is discussed in terms of the putative biological functions of glycolipids.
Collapse
Affiliation(s)
- Ying Feng
- Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
41
|
Nieva JL, Agirre A. Are fusion peptides a good model to study viral cell fusion? BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:104-15. [PMID: 12873771 DOI: 10.1016/s0005-2736(03)00168-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusion peptides are hydrophobic and conserved sequences located within glycoprotein ectodomains that protrude from the virion surface. Direct participation of fusion peptides in the viral membrane fusion phenomenon has been inferred from genetic analyses showing that even a single residue substitution or a deletion within these sequences may completely block the process. However, the specific fusion peptide activities associated to the multi-step fusion mechanism are not well defined. Based on the assumption that fusion peptides are transferred into target membranes, biophysical methodologies have been applied to study integration into model membranes of synthetic fragments representing functional and non-functional sequences. From these studies, it is inferred that, following insertion, functional sequences generate target membrane perturbations and adopt specific structural arrangements within. Further characterization of these artificial systems may help in understanding the molecular processes that bring initial bilayer destabilizations to the eventual opening of a fusion pore.
Collapse
Affiliation(s)
- José L Nieva
- Unidad de Biofísica (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
42
|
Abstract
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both alpha-helical as well as beta-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.
Collapse
Affiliation(s)
- Richard M Epand
- Health Science Centre, Department of Biochemistry, McMaster University, 1200 Main Street West, ON, Hamilton, Canada L8N 3Z5.
| |
Collapse
|
43
|
Rouhani S, Facciotti MT, Woodcock G, Cheung V, Cunningham C, Nguyen D, Rad B, Lin CT, Lunde CS, Glaeser RM. Crystallization of membrane proteins from media composed of connected-bilayer gels. Biopolymers 2003; 66:300-16. [PMID: 12539259 DOI: 10.1002/bip.10310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of hydrated-lipid gels in which the bilayer is an infinitely periodic (or at least continuous), three-dimensional structure offers a relatively new approach for the crystallization of membrane proteins. While excellent crystals of the Halobacterial rhodopsins have been obtained with such media, success remains poor in extending their use to other membrane proteins. Experience with crystallization of bacteriorhodopsin has led us to recognize a number of improvements that can be made in the use of such hydrated-gel media, which may now prove to be of general value for the crystallization of other membrane proteins.
Collapse
Affiliation(s)
- Shahab Rouhani
- Life Sciences Division, Donner Laboratory, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00310-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Koulov AV, Vares L, Jain M, Smith BD. Cationic triple-chain amphiphiles facilitate vesicle fusion compared to double-chain or single-chain analogues. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:459-65. [PMID: 12175929 DOI: 10.1016/s0005-2736(02)00496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cationic, triple-chain amphiphiles promote vesicle fusion more than structurally related double-chain or single-chain analogues. Two types of vesicle fusion experiments were conducted, mixing of oppositely charged vesicles and acid-triggered self-fusion of vesicles composed of cationic amphiphile and anionic cholesteryl hemisuccinate (CHEMS). Vesicle fusion was monitored by standard fluorescence assays for intermembrane lipid mixing, aqueous contents mixing and leakage. Differential scanning calorimetry was used to show that triple-chain amphiphiles lower the lamellar-inverse hexagonal (L(alpha)-H(II)) phase transition temperature for dipalmitoleoylphosphatidylethanolamine. The triple-chain amphiphiles may enhance vesicle fusion because they can stabilize the inversely curved membrane surfaces of the fusion intermediates, however, other factors such as extended conformation, packing defects, chain motion, or surface dehydration may also contribute. From the perspective of drug delivery, the results suggest that vesicles containing cationic, triple-chain amphiphiles (and cationic, cone-shaped amphiphiles in general) may be effective as fusogenic delivery capsules.
Collapse
Affiliation(s)
- Atanas V Koulov
- Department of Chemistry and Biochemistry, and the Walther Cancer Research Center, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | |
Collapse
|
46
|
Hendrich AB, Malon R, Pola A, Shirataki Y, Motohashi N, Michalak K. Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur J Pharm Sci 2002; 16:201-8. [PMID: 12128175 DOI: 10.1016/s0928-0987(02)00106-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanisms of some biological effects exerted by flavonoids (e.g. activity against lipid oxidation, multidrug resistance modulation) may involve their interactions with lipid bilayers. Due to variety of substituents attached to the flavonoid nucleus individual isoflavones significantly differ in their properties; in particular they may differently interact with membranes. For this reason we have investigated the interactions of different isoflavones with lipid bilayers. The influence of four plant isoflavones on the phase transitions of dipalmitoylphosphatidylcholine (DPPC) and on liposome aggregation was studied, using microcalorimetry and absorption measurements, respectively. We found that isoflavones substituted with one or two prenyl groups less effectively induce liposome aggregation than more polar ones, possessing no prenyl groups. For aggregation-promoting compounds, rather small differences in the influence on phosphatidylcholine, phosphatidylserine and phosphatidylinositol liposomes were recorded. On the other hand, the alteration of DPPC phase transitions by prenyl-substituted isoflavones was more pronounced than changes induced by non-prenyl ones. On the basis of observed effects we conclude that prenyl-substituted isoflavones penetrate deeper into the lipid bilayer while more polar ones act closer to the membrane surface. Comparing our results with biological tests it seems that interactions with the hydrophobic core of membranes are responsible for the activity of the studied isoflavones.
Collapse
Affiliation(s)
- Andrzej Boguslaw Hendrich
- Department of Biophysics, Wroclaw Medical University, ul. Chalubinskiego 10, 50 368, Wroclaw, Poland.
| | | | | | | | | | | |
Collapse
|
47
|
Sapin C, Colard O, Delmas O, Tessier C, Breton M, Enouf V, Chwetzoff S, Ouanich J, Cohen J, Wolf C, Trugnan G. Rafts promote assembly and atypical targeting of a nonenveloped virus, rotavirus, in Caco-2 cells. J Virol 2002; 76:4591-602. [PMID: 11932424 PMCID: PMC155075 DOI: 10.1128/jvi.76.9.4591-4602.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rotavirus follows an atypical pathway to the apical membrane of intestinal cells that bypasses the Golgi. The involvement of rafts in this process was explored here. VP4 is the most peripheral protein of the triple-layered structure of this nonenveloped virus. High proportions of VP4 associated with rafts within the cell as early as 3 h postinfection. In the meantime a significant part of VP4 was targeted to the Triton X-100-resistant microdomains of the apical membrane, suggesting that this protein possesses an autonomous signal for its targeting. At a later stage the other structural rotavirus proteins were also found in rafts within the cells together with NSP4, a nonstructural protein required for the final stage of virus assembly. Rafts purified from infected cells were shown to contain infectious particles. Finally purified VP4 and mature virus were shown to interact with cholesterol- and sphingolipid-enriched model lipid membranes that changed their phase preference from inverted hexagonal to lamellar structures. Together these results indicate that a direct interaction of VP4 with rafts promotes assembly and atypical targeting of rotavirus in intestinal cells.
Collapse
Affiliation(s)
- Catherine Sapin
- INSERM U 538, CHU Saint Antoine, Université Pierre et Marie Curie, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tanaka T, Li SJ, Kinoshita K, Yamazaki M. La(3+) stabilizes the hexagonal II (H(II)) phase in phosphatidylethanolamine membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:189-201. [PMID: 11718674 DOI: 10.1016/s0005-2736(01)00413-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of the effects of the lanthanum ion (La(3+)) and the gadolinium ion (Gd(3+)), which are lanthanides, on the function of membrane proteins and the stability of the membrane structure is not well understood. We investigated the effects of La(3+) on the stability of the hexagonal II (H(II)) phase of the phosphatidylethanolamine (PE) membrane at 20 degrees C by small-angle X-ray scattering. As PE membrane we used DPOPE (dipalmitoleoylphosphatidylethanolamine) membrane, which was in the L(alpha) phase in 10 mM PIPES buffer (pH 7.4) at 20 degrees C. An L(alpha) to H(II) phase transition occurred in the DPOPE membrane at 1.4 mM La(3+) in 0 M KCl, and at 0.4 mM La(3+) in 0.5 M KCl and above the critical concentrations the membranes were in the H(II) phase, indicating that La(3+) stabilizes the H(II) phase rather than the L(alpha) phase. The basis vector length, d, of DPOPE and DOPE (dioleoylphosphatidylethanolamine) membranes containing 16 wt% tetradecane in excess water condition did not change with an increase in La(3+) concentration, suggesting that La(3+) did not change the spontaneous curvature of these PE monolayer membranes. The chain-melting transition temperature of the dielaidoylphosphatidylethanolamine membrane increased with an increase in La(3+) concentration, indicating that the lateral compression pressure increased. To elucidate the effects of a small percentage of 'guest' lipids with longer acyl chains than the average length of 'host' lipids on the stability of the H(II) phase, we investigated the effects of the concentration of a guest lipid (DOPE) in a host lipid (DPOPE) membrane on their phase behavior and structure. 12 mol% DOPE induced an L(alpha) to H(II) phase transition in DOPE/DPOPE membrane, without changing the spontaneous curvature of the monolayer membrane. We found that Ca(2+) also induced an L(alpha) to H(II) phase transition in the DPOPE membrane, and compared the effects of Ca(2+) on PE membranes with those of La(3+). Based on these results, we have proposed a new model for the mechanism of the L(alpha) to H(II) phase transition and the stabilization of the H(II) phase by La(3+).
Collapse
Affiliation(s)
- T Tanaka
- Materials Science, Graduate School of Science and Engineering, Shizuoka University, Japan
| | | | | | | |
Collapse
|
49
|
Bechor D, Ben-Tal N. Implicit solvent model studies of the interactions of the influenza hemagglutinin fusion peptide with lipid bilayers. Biophys J 2001; 80:643-55. [PMID: 11159433 PMCID: PMC1301264 DOI: 10.1016/s0006-3495(01)76045-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The "fusion peptide," a segment of approximately 20 residues of the influenza hemagglutinin (HA), is necessary and sufficient for HA-induced membrane fusion. We used mean-field calculations of the free energy of peptide-membrane association (DeltaG(tot)) to deduce the most probable orientation of the fusion peptide in the membrane. The main contributions to DeltaG(tot) are probably from the electrostatic (DeltaG(el)) and nonpolar (DeltaG(np)) components of the solvation free energy; these were calculated using continuum solvent models. The peptide was described in atomic detail and was modeled as an alpha-helix based on spectroscopic data. The membrane's hydrocarbon region was described as a structureless slab of nonpolar medium embedded in water. All the helix-membrane configurations, which were lower in DeltaG(tot) than the isolated helix in the aqueous phase, were in the same (wide) basin in configurational space. In each, the helix was horizontally adsorbed at the water-bilayer interface with its principal axis parallel to the membrane plane, its hydrophobic face dissolved in the bilayer, and its polar face in the water. The associated DeltaG(tot) value was approximately -8 to -10 kcal/mol (depending on the rotameric state of one of the phenylalanine residues). In contrast, the DeltaG(tot) values associated with experimentally observed oblique orientations were found to be near zero, suggesting they are marginally stable at best. The theoretical model did not take into account the interactions of the polar headgroups with the peptide and peptide-induced membrane deformation effects. Either or both may overcompensate for the DeltaG(tot) difference between the horizontal and oblique orientations.
Collapse
Affiliation(s)
- D Bechor
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|