1
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
2
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Decoquinate Derivative RMB041 Using Metabolomics. Antibiotics (Basel) 2021; 10:693. [PMID: 34200519 PMCID: PMC8228794 DOI: 10.3390/antibiotics10060693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), still remains one of the leading causes of death from a single infectious agent worldwide. The high prevalence of this disease is mostly ascribed to the rapid development of drug resistance to the current anti-TB drugs, exacerbated by lack of patient adherence due to drug toxicity. The aforementioned highlights the urgent need for new anti-TB compounds with different antimycobacterial mechanisms of action to those currently being used. An N-alkyl quinolone; decoquinate derivative RMB041, has recently shown promising antimicrobial activity against Mtb, while also exhibiting low cytotoxicity and excellent pharmacokinetic characteristics. Its exact mechanism of action, however, is still unknown. Considering this, we used GCxGC-TOFMS and well described metabolomic approaches to analyze and compare the metabolic alterations of Mtb treated with decoquinate derivative RMB041 by comparison to non-treated Mtb controls. The most significantly altered pathways in Mtb treated with this drug include fatty acid metabolism, amino acid metabolism, glycerol metabolism, and the urea cycle. These changes support previous findings suggesting this drug acts primarily on the cell wall and secondarily on the DNA metabolism of Mtb. Additionally, we identified metabolic changes suggesting inhibition of protein synthesis and a state of dormancy.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| |
Collapse
|
3
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics. Microorganisms 2021; 9:microorganisms9061158. [PMID: 34071153 PMCID: PMC8228629 DOI: 10.3390/microorganisms9061158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
- Correspondence: ; Tel.: +27-(0)18-299-1818
| |
Collapse
|
4
|
The Phosphatidyl- myo-Inositol Dimannoside Acyltransferase PatA Is Essential for Mycobacterium tuberculosis Growth In Vitro and In Vivo. J Bacteriol 2021; 203:JB.00439-20. [PMID: 33468587 DOI: 10.1128/jb.00439-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium tuberculosis comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids considered to be not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane-associated acyltransferase that transfers a palmitoyl moiety from palmitoyl coenzyme A (palmitoyl-CoA) to the 6-position of the mannose ring linked to the 2-position of inositol in PIM1/PIM2 We validate that the function of PatA is vital for M. tuberculosis in vitro and in vivo We constructed a patA conditional mutant and showed that silencing patA is bactericidal in batch cultures. This phenotype was associated with significantly reduced levels of Ac1PIM2, an important structural component of the mycobacterial inner membrane. The requirement of PatA for viability was also demonstrated during macrophage infection and in a mouse model of infection, where a dramatic decrease in viable counts was observed upon silencing of the patA gene. This is reminiscent of the behavior of PimA, the mannosyltransferase that initiates the PIM pathway, also found to be essential for M. tuberculosis growth in vitro and in vivo Altogether, the experimental data highlight the significance of the early steps of the PIM biosynthetic pathway for M. tuberculosis physiology and reveal that PatA is a novel target for drug discovery programs against this major human pathogen.IMPORTANCE Tuberculosis (TB) is the leading cause of death from a single infectious agent. The emergence of drug resistance in strains of M. tuberculosis, the etiologic agent of TB, emphasizes the need to identify new targets and antimicrobial agents. The mycobacterial cell envelope is a major factor in this intrinsic drug resistance. Here, we have focused on the biosynthesis of PIMs, key virulence factors and important components of the cell envelope. Specifically, we have determined that PatA, the acyltransferase responsible for the first acylation step of the PIM synthesis pathway, is essential in M. tuberculosis These results highlight the importance of early steps of the PIM biosynthetic pathway for mycobacterial physiology and the suitability of PatA as a potential new drug target.
Collapse
|
5
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
6
|
Cestari I, Stuart K. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes. PLoS Negl Trop Dis 2020; 14:e0008689. [PMID: 33119588 PMCID: PMC7595295 DOI: 10.1371/journal.pntd.0008689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unicellular eukaryote Trypanosoma brucei undergoes extensive cellular and developmental changes during its life cycle. These include regulation of mammalian stage surface antigen variation and surface composition changes between life stages; switching between glycolysis and oxidative phosphorylation; differential mRNA editing; and changes in posttranscriptional gene expression, protein trafficking, organellar function, and cell morphology. These diverse events are coordinated and controlled throughout parasite development, maintained in homeostasis at each life stage, and are essential for parasite survival in both the host and insect vector. Described herein are the enzymes and metabolites of the phosphatidylinositol (PI) cellular regulatory network, its integration with other cellular regulatory systems that collectively control and coordinate these numerous cellular processes, including cell development and differentiation and the many associated complex processes in multiple subcellular compartments. We conclude that this regulation is the product of the organization of these enzymes within the cellular architecture, their activities, metabolite fluxes, and responses to environmental changes via signal transduction and other processes. We describe a paradigm for how these enzymes and metabolites could function to control and coordinate multiple cellular functions. The significance of the PI system's regulatory functions in single-celled eukaryotes to metazoans and their potential as chemotherapeutic targets are indicated.
Collapse
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (IC); (KS)
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IC); (KS)
| |
Collapse
|
7
|
Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1355-1367. [PMID: 27826050 DOI: 10.1016/j.bbalip.2016.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 11/22/2022]
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids of unique chemical structure found in the inner and outer membranes of the cell envelope of all Mycobacterium species. The PIM family of glycolipids comprises phosphatidyl-myo-inositol mono-, di-, tri-, tetra-, penta-, and hexamannosides with different degrees of acylation. PIMs are considered not only essential structural components of the cell envelope but also the precursors of lipomannan and lipoarabinomannan, two major lipoglycans implicated in host-pathogen interactions. Since the description of the complete chemical structure of PIMs, major efforts have been committed to defining the molecular bases of its biosynthetic pathway. The structural characterization of the integral membrane phosphatidyl-myo-inositol phosphate synthase (PIPS), and that of three enzymes working at the protein-membrane interface, the phosphatidyl-myo-inositol mannosyltransferases A and B, and the acyltransferase PatA, established the basis of the early steps of the PIM pathway at the molecular level. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
|
8
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
9
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
10
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
11
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
12
|
Clarke OB, Tomasek D, Jorge CD, Dufrisne MB, Kim M, Banerjee S, Rajashankar KR, Shapiro L, Hendrickson WA, Santos H, Mancia F. Structural basis for phosphatidylinositol-phosphate biosynthesis. Nat Commun 2015; 6:8505. [PMID: 26510127 PMCID: PMC4634129 DOI: 10.1038/ncomms9505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/29/2015] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.
Collapse
Affiliation(s)
- Oliver B. Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Carla D. Jorge
- Biology Division, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Minah Kim
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Helena Santos
- Biology Division, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Yassin AF, Lapidus A, Han J, Reddy TBK, Huntemann M, Pati A, Ivanova N, Markowitz V, Woyke T, Klenk HP, Kyrpides NC. High quality draft genome sequence of Corynebacterium ulceribovis type strain IMMIB-L1395(T) (DSM 45146(T)). Stand Genomic Sci 2015; 10:50. [PMID: 26380638 PMCID: PMC4572677 DOI: 10.1186/s40793-015-0036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/07/2015] [Indexed: 01/21/2023] Open
Abstract
Corynebacterium ulceribovis strain IMMIB L-1395(T) (= DSM 45146(T)) is an aerobic to facultative anaerobic, Gram-positive, non-spore-forming, non-motile rod-shaped bacterium that was isolated from the skin of the udder of a cow, in Schleswig Holstein, Germany. The cell wall of C. ulceribovis contains corynemycolic acids. The cellular fatty acids are those described for the genus Corynebacterium, but tuberculostearic acid is not present. Here we describe the features of C. ulceribovis strain IMMIB L-1395(T), together with genome sequence information and its annotation. The 2,300,451 bp long genome containing 2,104 protein-coding genes and 54 RNA-encoding genes and is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.
Collapse
Affiliation(s)
- Atteyet F Yassin
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
| | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
| | - James Han
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Morii H, Okauchi T, Nomiya H, Ogawa M, Fukuda K, Taniguchi H. Studies of inositol 1-phosphate analogues as inhibitors of the phosphatidylinositol phosphate synthase in mycobacteria. J Biochem 2012; 153:257-66. [PMID: 23225597 DOI: 10.1093/jb/mvs141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We previously reported a novel pathway for the biosynthesis of phosphatidylinositol in mycobacteria via phosphatidylinositol phosphate (PIP) [Morii H., Ogawa, M., Fukuda, K., Taniguchi, H., and Koga, Y (2010) J. Biochem. 148, 593-602]. PIP synthase in the pathway is a promising target for the development of new anti-mycobacterium drugs. In the present study, we evaluated the characteristics of the PIP synthase of Mycobacterium tuberculosis. Four types of compounds were chemically synthesized based on the assumption that structural homologues of inositol 1-phosphate, a PIP synthase substrate, would act as PIP synthase inhibitors, and the results confirmed that all synthesized compounds inhibited PIP synthase activity. The phosphonate analogue of inositol 1-phosphate (Ino-C-P) had the greatest inhibitory effect among the synthesized compounds examined. Kinetic analysis indicated that Ino-C-P acted as a competitive inhibitor of inositol 1-phosphate. The IC(50) value for Ino-C-P inhibition of the PIP synthase activity was estimated to be 2.0 mM. Interestingly, Ino-C-P was utilized in the same manner as the normal PIP synthase substrate, leading to the synthesis of a phosphonate analogue of PIP (PI-C-P), which had a structure similar to that of the natural product, PIP. In addition, PI-C-P had high inhibitory activity against PIP synthase.
Collapse
Affiliation(s)
- Hiroyuki Morii
- Department of Chemistry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Zhang G, Tian Y, Hu K, Zhu Y, Chater KF, Feng C, Liu G, Tan H. Importance and regulation of inositol biosynthesis during growth and differentiation of Streptomyces. Mol Microbiol 2012; 83:1178-94. [PMID: 22329904 DOI: 10.1111/j.1365-2958.2012.08000.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unusually among bacteria, actinobacteria possess myo-inositol 1-phosphate synthase (mIPS). In the developmentally complex Streptomyces coelicolor, the mIPS-encoding gene (inoA) is cotranscribed with a putative regulatory gene (inoR). The inoRA transcript was more abundant in an inoR in-frame deletion mutant, and InoR formed different complexes in vitro with an extensive region around the inoRA promoter. Binding was relieved by adding glucose 6-phosphate. Thus, InoR is a metabolite-sensitive autorepressor that influences inoA expression, and hence the level of inositol, by controlling transcription from P(inoRA) . Disruption of inoA resulted in inositol-dependent growth and development, with full phenotypic correction at 0.1 mM inositol: at lower inositol concentrations differentiation was arrested at intermediate stages. This pattern may partly reflect increased demand for membrane phospholipids during sporulation septation. A corresponding sharp upregulation of inoRA transcription coincident with sporulation was dependent on a developmental regulator, WhiI. A truncated form of WhiI could bind two sites downstream of P(inoRA) , and one of the WhiI-binding sites overlapped the InoR-binding site. The combined action of a metabolic regulator and a developmental regulator at the simple P(inoRA) promoter is a previously undescribed strategy for the differential provision of developmentally appropriate levels of a substance required during the formation of spore chains.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 2011; 35:1126-57. [PMID: 21521247 PMCID: PMC3229680 DOI: 10.1111/j.1574-6976.2011.00276.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 03/28/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022] Open
Abstract
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl-arabinogalactan-peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host-pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host-pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
17
|
Morita YS, Fukuda T, Sena CB, Yamaryo-Botte Y, McConville MJ, Kinoshita T. Inositol lipid metabolism in mycobacteria: Biosynthesis and regulatory mechanisms. Biochim Biophys Acta Gen Subj 2011; 1810:630-41. [DOI: 10.1016/j.bbagen.2011.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
|
18
|
Morii H, Ogawa M, Fukuda K, Taniguchi H, Koga Y. A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria. J Biochem 2010; 148:593-602. [PMID: 20798167 DOI: 10.1093/jb/mvq093] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the last decade, it has been believed that phosphatidylinositol (PI) in mycobacteria is synthesized from free inositol and CDP-diacylglycerol by PI synthase in the presence of ATP. The role of ATP in this process, however, is not understood. Additionally, the PI synthase activity is extremely low compared with the PI synthase activity of yeast. When CDP-diacylglycerol and [(14)C]1L-myo-inositol 1-phosphate were incubated with the cell wall components of Mycobacterium smegmatis, both phosphatidylinositol phosphate (PIP) and PI were formed, as identified by fast atom bombardment-mass spectrometry and thin-layer chromatography. PI was formed from PIP by incubation with the cell wall components. Thus, mycobacterial PI was synthesized from CDP-diacylglycerol and myo-inositol 1-phosphate via PIP, which was dephosphorylated to PI. The gene-encoding PIP synthase from four species of mycobacteria was cloned and expressed in Escherichia coli, and PIP synthase activity was confirmed. A very low, but significant level of free [(3)H]inositol was incorporated into PI in mycobacterial cell wall preparations, but not in recombinant E. coli cell homogenates. This activity could be explained by the presence of two minor PI metabolic pathways: PI/inositol exchange reaction and phosphorylation of inositol by ATP prior to entering the PIP synthase pathway.
Collapse
Affiliation(s)
- Hiroyuki Morii
- Department of Chemistry, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | | | | | | | | |
Collapse
|
19
|
A unique beta-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J Bacteriol 2009; 191:6105-15. [PMID: 19648237 DOI: 10.1128/jb.00598-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to di-myo-inositol-1,3'-phosphate (DIP), a compatible solute widespread in hyperthermophiles, the organic solute pool of Thermotoga maritima comprises 2-(O-beta-D-mannosyl)-di-myo-inositol-1,3'-phosphate (MDIP) and 2-(O-beta-D-mannosyl-1,2-O-beta-D-mannosyl)-di-myo-inositol-1,3'-phosphate (MMDIP), two newly identified beta-1,2-mannosides. In cells grown under heat stress, MDIP was the major solute, accounting for 43% of the total pool; MMDIP and DIP accumulated to similar levels, each corresponding to 11.5% of the total pool. The synthesis of MDIP involved the transfer of the mannosyl group from GDP-mannose to DIP in a single-step reaction catalyzed by MDIP synthase. This enzyme used MDIP as an acceptor of a second mannose residue, yielding the di-mannosylated compound. Minor amounts of the tri-mannosylated form were also detected. With a genomic approach, putative genes for MDIP synthase were identified in the genome of T. maritima, and the assignment was confirmed by functional expression in Escherichia coli. Genes with significant sequence identity were found only in the genomes of Thermotoga spp., Aquifex aeolicus, and Archaeoglobus profundus. MDIP synthase of T. maritima had maximal activity at 95 degrees C and apparent K(m) values of 16 mM and 0.7 mM for DIP and GDP-mannose, respectively. The stereochemistry of MDIP was characterized by isotopic labeling and nuclear magnetic resonance (NMR): DIP selectively labeled with carbon 13 at position C1 of the l-inositol moiety was synthesized and used as a substrate for MDIP synthase. This beta-1,2-mannosyltransferase is unrelated to known glycosyltransferases, and within the domain Bacteria, it is restricted to members of the two deepest lineages, i.e., the Thermotogales and the Aquificales. To our knowledge, this is the first beta-1,2-mannosyltransferase characterized thus far.
Collapse
|
20
|
Jani NM, Lopes JM. Regulated transcription of the Saccharomyces cerevisiae phosphatidylinositol biosynthetic gene, PIS1, yields pleiotropic effects on phospholipid synthesis. FEMS Yeast Res 2009; 9:552-64. [PMID: 19456874 DOI: 10.1111/j.1567-1364.2009.00514.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphatidylinositol is an important membrane lipid in Saccharomyces cerevisiae and other eukaryotes. Phosphatidylinositol and its metabolites (phosphoinositides, inositol polyphosphates, etc.) affect many cellular processes with implications in human diseases. Phosphatidylinositol synthesis in S. cerevisiae requires the essential PIS1 gene. Recent studies reveal that PIS1 expression is regulated at the level of transcription in response to carbon source, oxygen, and zinc. However, the consequence of this regulation on phosphatidylinositol levels and functions has not been thoroughly studied. To investigate this, we created a strain with a galactose-inducible GAL1-PIS1 gene. In this strain, the amount of phosphatidylinositol correlated with PIS1 expression but did not exceed c. 25% of the total phospholipid composition. Interestingly, we found that 4% phosphatidylinositol was sufficient for cell growth. We also found that reduced PIS1 expression yielded derepression of two phospholipid biosynthetic genes (INO1 and CHO1) and the INO2 regulatory gene. Consistent with this derepression, reduced PIS1 expression also yielded an overproduction of inositol (Opi(-)) phenotype. The effect on transcription of the INO1, CHO1, and INO2 genes is consistent with the accepted model that phosphatidic acid (PA) is the signal for regulation of these genes because decreased phosphatidylinositol synthesis would affect PA levels.
Collapse
Affiliation(s)
- Niketa M Jani
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
21
|
Analysis of lipid biosynthesis and location. Methods Mol Biol 2009. [PMID: 20560057 DOI: 10.1007/978-1-59745-207-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A procedure for metabolic labeling of all cellular lipids starting with a culture of mycobacteria is described in this chapter using either a pulse-chase or a simple labeling experimental design. Three fractions are produced for subsequent lipid analysis: (1) the culture filtrate; (2) a readily released surface lipid fraction; and (3) the killed, labeled bacteria. A standardized, TLC-based method for general lipid analysis that can be used to quantify the labeling of all the mycobacterial lipids is given as well as a protocol for analyzing the fatty acyl moieties of the lipids.
Collapse
|
22
|
Amigues E, Greenberg M, Ju S, Chen Y, Migaud M. Synthesis of cyclophospho-glucoses and glucitols. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Owens RM, Hsu FF, VanderVen BC, Purdy GE, Hesteande E, Giannakas P, Sacchettini JC, McKinney JD, Hill PJ, Belisle JT, Butcher BA, Pethe K, Russell DG. M. tuberculosis Rv2252 encodes a diacylglycerol kinase involved in the biosynthesis of phosphatidylinositol mannosides (PIMs). Mol Microbiol 2007; 60:1152-63. [PMID: 16689792 DOI: 10.1111/j.1365-2958.2006.05174.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylated lipids play important roles in biological systems, not only as structural moieties but also as modulators of cellular function. Phospholipids of pathogenic bacteria are known to play roles both as membrane components and as factors that modulate the infectious process. Mycobacterium tuberculosis is, however, noteworthy in that it has an extremely diverse repertoire of biologically active phosphorylated lipids that, in the absence of a specialized protein translocation system, appear to constitute the main means of communication with the host. Many of these lipids are derived from phosphatidylinositol (PI) that is differentially processed to give rise to phosphatidylinositol mannosides (PIMs) or lipoarabinomannan. In preliminary studies on the lipid processing enzymes associated with the bacterial cell wall, a kinase activity was noted that gave rise to a novel lipid species released by the bacterium. It was determined that this kinase activity was encoded by the ORF Rv2252. Rv2252 demonstrates the capacity to phosphorylate various amphipathic lipids of host and bacterial origin, in particular a M. tuberculosis derived diacylglycerol. Targeted deletion of the rv2252 gene resulted in disruption of the production of certain higher order PIM species, suggesting a role for Rv2252 in the biosynthetic pathway of PI, a PIM precursor.
Collapse
Affiliation(s)
- Róisín M Owens
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14053, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rezwan M, Lanéelle MA, Sander P, Daffé M. Breaking down the wall: Fractionation of mycobacteria. J Microbiol Methods 2007; 68:32-9. [PMID: 16839634 DOI: 10.1016/j.mimet.2006.05.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/30/2006] [Indexed: 11/17/2022]
Abstract
Mycobacterium spp. possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan-arabinogalactan complex which in turn is esterified by mycolic acids that form with other non-bound lipids an asymmetric permeability barrier and an outer layer, also called a capsule in the case of pathogenic species. In order to investigate the functional roles of the cell envelope components, especially those of the major pathogens Mycobacterium tuberculosis and Mycobacterium leprae, it is necessary to fractionate the envelope by breaking the unusual wall that covers these bacteria. To this aim we first compared the efficiency of high pressure (cell disrupter/French press) with those of pathogen-compatible breakage methods such as sonication, bead beater and lysozyme treatment using the non-pathogenic Mycobacterium smegmatis. When the distribution of various specific markers of the cell envelope compartments, which include mycolic acids, arabinose, NADH oxidase activity, cell wall and cytosolic proteins, were determined sonication combined with lysozyme treatment was found to be the best option. The protocol of subcellular fractionation was then validated for pathogenic species by applying the method to Mycobacterium bovis BCG cells, an attenuated strain of the M. tuberculosis complex.
Collapse
Affiliation(s)
- Mandana Rezwan
- Institut für Medizinische Mikrobiologie, Gloriastrasse 32, Universität Zürich CH-8006 Zürich, Switzerland
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
26
|
Gardocki ME, Jani N, Lopes JM. Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:89-100. [PMID: 15967713 DOI: 10.1016/j.bbalip.2005.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/14/2005] [Accepted: 05/19/2005] [Indexed: 12/22/2022]
Abstract
Phosphatidylinositol (PI) is a ubiquitous membrane lipid in eukaryotes. It is becoming increasingly obvious that PI and its metabolites play a myriad of very diverse roles in eukaryotic cells. The Saccharomyces cerevisiae PIS1 gene is essential and encodes PI synthase, which is required for the synthesis of PI. Recently, PIS1 expression was found to be regulated in response to carbon source and oxygen availability. It is particularly significant that the promoter elements required for these responses are conserved evolutionarily throughout the Saccharomyces genus. In addition, several genome-wide strategies coupled with more traditional screens suggest that several other factors regulate PIS1 expression. The impact of regulating PIS1 expression on PI synthesis will be discussed along with the possible role(s) that this may have on diseases such as cancer.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit MI 48202, USA
| | | | | |
Collapse
|
27
|
Haites RE, Morita YS, McConville MJ, Billman-Jacobe H. Function of phosphatidylinositol in mycobacteria. J Biol Chem 2005; 280:10981-7. [PMID: 15634688 DOI: 10.1074/jbc.m413443200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) is an abundant phospholipid in the cytoplasmic membrane of mycobacteria and the precursor for more complex glycolipids, such as the PI mannosides (PIMs) and lipoarabinomannan (LAM). To investigate whether the large steady-state pools of PI and apolar PIMs are required for mycobacterial growth, we have generated a Mycobacterium smegmatis inositol auxotroph by disruption of the ino1 gene. The ino1 mutant displayed wild-type growth rates and steady-state levels of PI, PIM, and LAM when grown in the presence of 1 mM inositol. The non-dividing ino1 mutant was highly resistant to inositol starvation, reflecting the slow turnover of inositol lipids in this stage. In contrast, dilution of growing or stationary-phase ino1 mutant in inositol-free medium resulted in the rapid depletion of PI and apolar PIMs. Whereas depletion of these lipids was not associated with loss of viability, subsequent depletion of polar PIMs coincided with loss of major cell wall components and cell viability. Metabolic labeling experiments confirmed that the large pools of PI and apolar PIMs were used to sustain polar PIM and LAM biosynthesis during inositol limitation. They also showed that under non-limiting conditions, PI is catabolized via lyso-PI. These data suggest that large pools of PI and apolar PIMs are not essential for membrane integrity but are required to sustain polar PIM biosynthesis, which is essential for mycobacterial growth.
Collapse
Affiliation(s)
- Ruth E Haites
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
28
|
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
29
|
Pitarch A, Sánchez M, Nombela C, Gil C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 2002; 1:967-82. [PMID: 12543933 DOI: 10.1074/mcp.m200062-mcp200] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell wall proteins of Candida albicans play a key role in morphogenesis and pathogenesis and might be potential target sites for new specific antifungal drugs. However, these proteins are difficult to analyze because of their high heterogeneity, interconnections with wall polysaccharides (mannan, glucan, and chitin), low abundance, low solubility, and hydrophobic nature. Here we report a subproteomic approach for the study of the cell wall proteins (CWPs) from C. albicans yeast and hyphal forms. Most of the mannoproteins present in this compartment were extracted by cell wall fractionation according to the type of interactions that they establish with other structural components. CWPs were solubilized from isolated cell walls by hot SDS and dithiothreitol treatment followed by extraction either by mild alkali conditions or by enzymatic treatment with glucanases and chitinases. These highly enriched cell wall fractions were analyzed by two-dimensional PAGE, showing that a large number of proteins are involved in cell wall construction and that the wall remodeling that occurs during germ tube formation is related to changes in the composition of CWPs. We suggest that the CWP-chitin linkage is an important retention mechanism of CWPs in C. albicans mycelial forms. This article also highlights the usefulness of the combination of sequential fractionation and two-dimensional PAGE followed by Western blotting using specific antibodies against known CWPs in the characterization of incorporation mechanisms of such CWPs into the cell wall and of their interactions with other wall components. Mass spectrometry analyses have allowed the identification of several cell surface proteins classically associated with both the cell wall and other compartments. The physiological significance of the dual location of these moonlighting proteins is also discussed. This approach is therefore a powerful tool for obtaining a comprehensive and integrated view of the cell wall proteome.
Collapse
Affiliation(s)
- Aida Pitarch
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Nigou J, Besra GS. Cytidine diphosphate-diacylglycerol synthesis in Mycobacterium smegmatis. Biochem J 2002; 367:157-62. [PMID: 12106014 PMCID: PMC1222876 DOI: 10.1042/bj20020370] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2002] [Revised: 06/28/2002] [Accepted: 07/10/2002] [Indexed: 11/17/2022]
Abstract
Recent studies have demonstrated that, during infection of macrophages by mycobacteria, phospholipids (PLs) are released from the mycobacterial cell wall within infected macrophages and transported out of this compartment into intracellular vesicles. The release of these PLs may have functions that influence the outcome of mycobacterial infections. Despite their important role, little is known about the biosynthesis of PLs in mycobacteria. In all organisms, PL biosynthesis begins with acylation of sn -glycerol 3-phosphate to form phosphatidic acid (PA), which is then converted to the central liponucleotide intermediate, cytidine diphosphate-diacylglycerol (CDP-DAG) via the CDP-DAG synthase (CDS). The present work examines CDS activity in Mycobacterium smegmatis extracts, with regard to subcellular localization, pH dependence, bivalent and univalent cation requirement, substrate specificity and regulation by nucleotides. We show that CDS activity, which is mainly found within the cytoplasmic membrane, is Mg(2+)-dependent and activated by K(+) ions. Among PAs containing saturated fatty acids, dipalmitoyl-PA is the preferred substrate [ K (m)=0.23+/-0.03 mM for Triton X-100 (v/v)/PA in the ratio 5:1]. Moreover, CDS activity is inhibited by the reaction products PP(i) (IC(50)=1.5 mM), CDP-DAG (IC(50)=0.3 mM) and the nucleotides ATP, UTP and GTP. This study contributes to the delineation of PL biosynthesis in mycobacteria.
Collapse
Affiliation(s)
- Jérôme Nigou
- Department of Microbiology and Immunology, University of Newcastle, Newcastle upon Tyne NE2 4HH, U.K
| | | |
Collapse
|
31
|
Dahl JL, Wei J, Moulder JW, Laal S, Friedman RL. Subcellular localization of the Iitracellular survival-enhancing Eis protein of Mycobacterium tuberculosis. Infect Immun 2001; 69:4295-302. [PMID: 11401966 PMCID: PMC98499 DOI: 10.1128/iai.69.7.4295-4302.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. It is not clear how M. tuberculosis avoids the destructive action of macrophages, but this ability is fundamental in the pathogenicity of tuberculosis. A gene previously identified in M. tuberculosis, designated eis, was found to enhance intracellular survival of Mycobacterium smegmatis in the human macrophage-like cell line U-937 (J. Wei et al., J. Bacteriol. 182:377-384, 2000). When eis was introduced into M. smegmatis on a multicopy vector, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the appearance of a unique 42-kDa protein band corresponding to the predicted molecular weight of the eis gene product. This band was electroeluted from the gel with a purity of >90% and subjected to N-terminal amino acid sequencing, which demonstrated that the 42-kDa band was indeed the protein product of eis. The Eis protein produced by M. tuberculosis H37Ra had an identical N-terminal amino acid sequence. A synthetic polypeptide corresponding to a carboxyl-terminal region of the deduced eis protein sequence was used to generate affinity-purified rabbit polyclonal antibodies that reacted with the 42-kDa protein in Western blot analysis. Hydropathy profile analysis showed the Eis protein to be predominantly hydrophilic with a potential hydrophobic amino terminus. Phase separation of M. tuberculosis H37Ra lysates by the nonionic detergent Triton X-114 revealed the Eis protein in both the aqueous and detergent phases. After fractionation of M. tuberculosis by differential centrifugation, Eis protein appeared mainly in the cytoplasmic fraction but also in the membrane, cell wall, and culture supernatant fractions as well. Forty percent of the sera from pulmonary tuberculosis patients tested for anti-Eis antibody gave positive reactions in Western blot analysis. Although the function of Eis remains unknown, evidence presented here suggests it associates with the cell surface and is released into the culture medium. It is produced during human tuberculosis infection and therefore may be an important M. tuberculosis immunogen.
Collapse
Affiliation(s)
- J L Dahl
- Department of Microbiology and Immunology, University of Arizona, Tucson 85724, USA
| | | | | | | | | |
Collapse
|
32
|
Jackson M, Crick DC, Brennan PJ. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 2000; 275:30092-9. [PMID: 10889206 DOI: 10.1074/jbc.m004658200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) and metabolically derived products such as the phosphatidylinositol mannosides and linear and mature branched lipomannan and lipoarabinomannan are prominent phospholipids/lipoglycans of Mycobacterium sp. believed to play important roles in the structure and physiology of the bacterium as well as during host infection. To determine if PI is an essential phospholipid of mycobacteria, we identified the pgsA gene of Mycobacterium tuberculosis encoding the phosphatidylinositol synthase enzyme and constructed a pgsA conditional mutant of Mycobacterium smegmatis. The ability of this mutant to synthesize phosphatidylinositol synthase and subsequently PI was dependent on the presence of a functional copy of the pgsA gene carried on a thermosensitive plasmid. The mutant grew like the control strain under permissive conditions (30 degrees C), but ceased growing when placed at 42 degrees C, a temperature at which the rescue plasmid is lost. Loss of cell viability at 42 degrees C was observed when PI and phosphatidylinositol dimannoside contents dropped to approximately 30 and 50% of the wild-type levels, respectively. This work provides the first evidence of the essentiality of PI to the survival of mycobacteria. PI synthase is thus an essential enzyme of Mycobacterium that shows promise as a drug target for anti-tuberculosis therapy.
Collapse
Affiliation(s)
- M Jackson
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
33
|
Schaeffer ML, Khoo KH, Besra GS, Chatterjee D, Brennan PJ, Belisle JT, Inamine JM. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem 1999; 274:31625-31. [PMID: 10531370 DOI: 10.1074/jbc.274.44.31625] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of lipoarabinomannan (LAM), a key mycobacterial lipoglycan that has been implicated in numerous immunoregulatory functions, was examined utilizing D-mannosamine (ManN) as a tool to identify mannosyltransferase genes involved in LAM synthesis. Cell-free reactions utilizing cellular membranes of mycobacteria as the enzyme source indicated that ManN inhibited the synthesis of phosphatidylinositol mannosides, early precursors to LAM. A selection strategy was devised to screen a Mycobacterium tuberculosis genomic library in Mycobacterium smegmatis for clones conferring conditional resistance to ManN, with the rationale that overexpression of the gene(s) encoding a target of ManN would impart a ManN-resistant phenotype under these conditions. This strategy led to the identification of pimB, whose deduced amino acid sequence shows similarity to mannosyltransferases and other glycosyltransferases. Partially purified recombinant PimB protein from Escherichia coli or membranes from M. smegmatis overexpressing the pimB gene were used in cell-free assays to show that PimB catalyzes the formation of triacylphosphatidylinositol dimannoside from GDP-mannose and triacylphosphatidylinositol monomannoside.
Collapse
Affiliation(s)
- M L Schaeffer
- Mycobacteria Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Salman M, Brennan PJ, Lonsdale JT. Synthesis of mycolic acids of mycobacteria: an assessment of the cell-free system in light of the whole genome. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:325-32. [PMID: 10101266 DOI: 10.1016/s1388-1981(99)00026-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycolic acids are 70-90 carbon, alpha-alkyl, beta-hydroxy fatty acids constituting a major component of the cell envelope of Mycobacterium tuberculosis. The fact that the mycolic acid biosynthetic pathway is both essential in mycobacteria and the target for many first-line anti-TB drugs necessitates a detailed understanding of its biochemistry. A whole cell-free, but cell particulate- and membrane-containing enzyme preparation for mycolic acid biosynthesis was developed a few years ago and studied extensively. This system was shown to catalyze the synthesis of mature mycolic acids from [14C]acetate, but allows only minimal deposition into the cell wall proper. In the meantime the sequence of the entire genome of M. tuberculosis has been elucidated and its analysis using numerous protein sequence-based algorithms predicted cytoplasmic localization and a soluble, not a particulate, nature for the enzymes involved in the mycolic acid synthetic pathway. Accordingly, we re-assessed the 'cell-free' system for mycolic acid synthesis and concluded that it is probably due to the presence of unbroken cells, since viable cells were recovered from the cell wall preparation. The amount of whole cells depended upon the efficiency of the cell disruption method and conditions, and the amount of mycolic acid synthesized by the putative cell-free system correlated with the content of whole cells. Thus, accumulated results from the use of this 'cell-free' cell wall-based system should be re-evaluated in the light of these new data.
Collapse
Affiliation(s)
- M Salman
- SmithKline Beecham Pharmaceuticals, 1250 S. Collegeville Rd., PO Box 5089, Collegeville, PA 19403, USA.
| | | | | |
Collapse
|