1
|
Kumar N, Bhagwat P, Singh S, Pillai S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction. Biochimie 2024:S0300-9084(24)00157-3. [PMID: 38944107 DOI: 10.1016/j.biochi.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
2
|
Kim YE, Kim KY. A Bee Trp-Arg Dense Peptide with Antiproliferation Efficacy against the Prostate Cancer Cell Line DU145. Curr Issues Mol Biol 2024; 46:2251-2262. [PMID: 38534760 DOI: 10.3390/cimb46030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Prostate cancer accounts for 14% of male cancer-related fatalities in the UK. Given the challenges associated with hormone-based therapies in the context of androgen-independent prostate cancer, there is an imperative need for research into anticancer drugs. N0821, a peptide belonging to the Trp-Arg dense region and derived from the homologous region of various bee species, shows substantial potential for an anticancer effect. Both MTT assays and 3D spheroid assays were conducted to substantiate its antiproliferation potential and strongly indicated the antiproliferation effect of N0820 (WWWWRWWRKI) and N0821 (YWWWWRWWRKI). Notably, the mechanism underlying this effect is related to the downregulation of CCNA2 and the upregulation of CCNE1. Cell cycle arrest results from the reduction of CCNA2 in the S/G2 phase, leading to the accumulation of CCNE1. Our peptides were predicted to make an α-helix structure. This can act as an ion channel in the cell membrane. Therefore, we analyzed genes implicated in the influx of calcium ions into the mitochondria. Trp-Arg dense-region peptides are known for their antibacterial properties in targeting cell membranes, making the development of resistance less likely. Hence, further research in this area is essential and promising.
Collapse
Affiliation(s)
- Ye-Eun Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin 17104, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin 17104, Republic of Korea
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
4
|
Song X, He S, Zheng J, Yang S, Li Q, Zhang Y. One-Step Construction of Tryptophan-Derived Small Molecule Hydrogels for Antibacterial Materials. Molecules 2023; 28:molecules28083334. [PMID: 37110568 PMCID: PMC10141015 DOI: 10.3390/molecules28083334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid-based hydrogels have received widespread attention because of their wide range of sources, biodegradability, and biocompatibility. Despite considerable progress, the development of such hydrogels has been limited by critical problems such as bacterial infection and complex preparation. Herein, by using the non-toxic gluconolactone (GDL) to adjust the pH of the solution to induce the rapid self-assembly of N-[(benzyloxy)carbonyl]-L-tryptophan (ZW) to form a three-dimensional (3D) gel network, we developed a stable and effective self-assembled small-molecule hydrogel. Characterization assays and molecular dynamics studies indicate that π-π stacking and hydrogen bonding are the main drivers of self-assembly between ZW molecules. In vitro experiments further confirmed this material's sustained release properties, low cytotoxicity, and excellent antibacterial activity, particularly against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This study provides a different and innovative perspective for the further development of antibacterial materials based on amino acid derivatives.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shunmei He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Greve JM, Cowan JA. Activity and Synergy of Cu-ATCUN Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms232214151. [PMID: 36430622 PMCID: PMC9692552 DOI: 10.3390/ijms232214151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance demands innovative strategies and therapies. The pairs of antimicrobial peptides tested in this work show broad-spectrum synergy and are capable of interacting with diverse bacterial membranes. In most cases, the ATCUN motif enhanced the activity of peptides tested in combination. Our studies also show CP10A to be a multifaceted peptide, displaying both cell membrane and intracellular activity and acting as a chameleon, improving the activity of other peptides as needed. The results of the synergy experiments demonstrate the importance of varied modes of action and how these changes can affect the ability to combat pathogens, while also illustrating the value of the metal-binding domain in enhancing the activity of antimicrobial peptides in combination.
Collapse
|
6
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
7
|
Ghosh S, Chatterjee S, Satpati P. Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding. J Phys Chem B 2022; 126:5262-5273. [PMID: 35815580 DOI: 10.1021/acs.jpcb.2c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we had reported a synthetic positively charged leucine-rich 14-residue-long antimicrobial peptide (AMP, LL-14: NH3+-LKWLKKLLKWLKKL-CONH2), which was highly active and cytotoxic relative to its valine analogue (VV-14). However, the thermodynamics underlying this differential toxicity and antimicrobial activity was unclear. Understanding the energetics of peptide binding to micelles (simplest membrane mimic, viz., SDS as a bacterial membrane and DPC as a eukaryotic membrane) and the effect of Leu → Val peptide mutations on the stability of the peptide:micelle complexes are of great academic interest and relevant for the rational design of potent and selective AMPs for therapeutic use. Here, we have reported the molecular dynamics free energy simulations that allowed us to quantitatively estimate the strength of peptide discrimination (based on single- or multiple-site Leu/Val mutations in LL-14) by membrane mimetic micelles (SDS and DPC) and decipher the energetics underlying peptide selectivity by micelles. The Leu-containing peptide (LL-14) was found to be preferred for micelle (SDS and DPC) binding relative to its Val analogues (single or multiple Val mutants). The strength of the preference depended on the position of the Leu/Val mutation in the peptide. Surprisingly, the N-terminal LL-14 single mutation (Leu → Val: L1V) was found to fine-tune the electrostatic interactions, resulting in the highest peptide selectivity (ΔΔG ∼ 8 kcal/mol for both SDS and DPC). However, the mechanism of L1V peptide selectivity was distinctly different for SDS and DPC micelles. SDS ensured high selectivity by disrupting the peptide:micelle salt bridge, whereas DPC desolvated the broken-peptide-backbone hydrogen bond in the V1 peptide:micelle complex. Mutations (Leu → Val) in the middle positions of the LL-14 (4th, 7th, 8th, and 11th) were disfavored by the micelles primarily due to the loss of peptide:micelle hydrophobic interactions. Peptides differing at the C-terminal (i.e., L14V) were recognized by SDS micelles (ΔΔG ∼ 4 kcal/mol) by altering peptide:micelle interactions. L14V mutation, on the other hand, did not play any role in the peptide:DPC binding, as no direct interactions between the C-terminal and DPC micelle were observed due to obvious electrostatic reasons. The strength of selectivity favoring LL-14 binding against VV-14 was found to be much higher for DPC micelles (ΔΔG ∼ 25 kcal/mol) relative to SDS micelles (ΔΔG ∼ 19 kcal/mol). The loss of the peptide:micelle hydrophobic contact in response to LL-14 → VV-14 mutation was found to be significantly larger for DPC relative to SDS micelles, resulting in higher discriminatory power for the former. Peptide:SDS salt bridges seemed to prevent the loss of peptide:micelle hydrophobic contact to some extent, leading to weaker selectivity for SDS micelles. High selectivity of DPC micelles provided an efficient mechanism for VV-14 dissociation from DPC micelles, whereas low-selectivity of SDS micelles ensured binding of both LL-14 and VV-14. To the best of our knowledge, this is the first study in which the experimental observations (antimicrobial activity and toxicity) between leucine-rich and valine-rich peptides have been explained by establishing a direct link between the energetics and structures.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
Batista Araujo J, Sastre de Souza G, Lorenzon EN. Indolicidin revisited: biological activity, potential applications and perspectives of an antimicrobial peptide not yet fully explored. World J Microbiol Biotechnol 2022; 38:39. [PMID: 35018535 DOI: 10.1007/s11274-022-03227-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/02/2022] [Indexed: 11/29/2022]
Abstract
The emergence of multidrug-resistant bacteria, viruses and tumors is a serious threat to public health. Among natural peptides, indolicidin, a 13-residue peptide belonging to the cathelicidin family, deserves special attention. Indolicidin has a broad spectrum of biological activity and is active against a wide range of targets, such as bacteria (Gram+ and Gram-), fungi and viruses. Here, we review the most important features of the biological activity, potential applications and perspectives of indolicidin and its analogs. Although not yet approved for commercialization, this peptide has great potential to be applied in different areas, including the medical, biomedical, food industry and other unexplored areas. To achieve this goal, a multidisciplinary team of researchers must work together to fine tune peptides that overall lead to novel analogs and formulations to combat existing and possibly future diseases.
Collapse
Affiliation(s)
| | - Guilherme Sastre de Souza
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Prêto, São Paulo, Brazil
| | | |
Collapse
|
9
|
Necelis MR, Santiago-Ortiz LE, Caputo GA. Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B. Protein Pept Lett 2021; 28:388-402. [PMID: 32798369 PMCID: PMC8259864 DOI: 10.2174/0929866527666200813202918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide. OBJECTIVE In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity. METHODS Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers. RESULTS MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria. CONCLUSION There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.
Collapse
Affiliation(s)
- Matthew R Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | | | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| |
Collapse
|
10
|
Sharma D, Bisht GS. Recent Updates on Antifungal Peptides. Mini Rev Med Chem 2020; 20:260-268. [PMID: 31556857 DOI: 10.2174/1389557519666190926112423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/17/2018] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The current trend of increment in the frequency of antifungal resistance has brought research into an era where new antifungal compounds with novel mechanisms of action are required. Natural antimicrobial peptides, which are ubiquitous components of innate immunity, represent their candidature for novel antifungal peptides. Various antifungal peptides have been isolated from different species ranging from small marine organisms to insects and from various other living species. Based on these peptides, various mimetics of antifungal peptides have also been synthesized using non-natural amino acids. Utilization of these antifungal peptides is somehow limited due to their toxic and unstable nature. This review discusses recent updates and future directions of antifungal peptides, for taking them to the shelf from the bench.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| |
Collapse
|
11
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
12
|
Peng J, Xiao Y, Wan X, Chen Q, Wang H, Li J, Chen J, Gao R. Enhancement of Immune Response and Anti-Infection of Mice by Porcine Antimicrobial Peptides and Interleukin-4/6 Fusion Gene Encapsulated in Chitosan Nanoparticles. Vaccines (Basel) 2020; 8:vaccines8030552. [PMID: 32967351 PMCID: PMC7563165 DOI: 10.3390/vaccines8030552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/17/2023] Open
Abstract
In order to develop a novel and effective immunoregulator to enhance both the immune response and antimicrobial function, a recombinant eukaryotic expression plasmid-pVAX1 co-expressing fusion cathelicidin antimicrobial peptides (CAMPs) and fusion porcine interleukin-4/6 gene (IL-4/6) was constructed and encapsulated in chitosan nanoparticles (CS-VAP4/6), prepared by the ionotropic gelation method. Four-week-old female Kunming mice were divided into three groups and intramuscularly injected, respectively, with CS-VAP, CS-VAP4/6, and CS-pVAX1. On 28 days post-inoculation, the mice were challenged by intraperitoneal injection with Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922); IgG, IgG1 and IgG2a, CD4+, and CD8+ T cells increased significantly in the VAP- and VAP4/6- treated mice, detected by ELISA and flow cytometry, correspondingly (p < 0.05). As analyzed by qPCR, expression levels of Toll-like receptor (TLR) 1, TLR4, TLR6, TLR9, IL-1, IL-2, IL-4, IL-6, IL-7, IL-12, IL-15, IL-23, Tumor Necrosis Factor (TNF)-α, and Interferon-gamma (IFN-γ) genes were also significantly up-regulated in comparison with those of the control mice (p < 0.05). Their immunological markers were elevated significantly to different degrees in CS-VAP4/6-treated mice compared with CS-VAP in different days post-inoculation (p < 0.05). After challenge with E. coli and Staphylococcus aureus, most of the VAP- and VAP4/6- treated mice survived, and no symptoms of bacterial infection were observed. In contrast, 80% of control mice died of infection. Among the treated groups, VAP4/6 had a stronger resistance against challenge with E. coli infection. These results demonstrated that the fusion gene of antimicrobial peptide and interleukin-4/6 has the promising potential as a safe and effective immunomodulator for the control of bacterial infections.
Collapse
Affiliation(s)
- Junjie Peng
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
| | - Yongle Xiao
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
| | - Xiaoping Wan
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
| | - Qian Chen
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
| | - Huan Wang
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
| | - Jiangling Li
- Sichuan Animal Science Academy, Chengdu 610066, China;
| | - Jianlin Chen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (J.C.); (R.G.); Fax: +86-28-8547199 (R.G.)
| | - Rong Gao
- College of Life Science, Sichuan University, Chengdu 610065, China; (J.P.); (Y.X.); (X.W.); (Q.C.); (H.W.)
- Correspondence: (J.C.); (R.G.); Fax: +86-28-8547199 (R.G.)
| |
Collapse
|
13
|
Lee H, Yang S, Shin SY. Improved Cell Selectivity of Symmetric α‐Helical Peptides Derived From Trp‐Rich Antimicrobial Peptides. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyunhee Lee
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
| | - Sungtae Yang
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
- Department of Microbiology, School of Medicine Chosun University Gwangju 61452 Republic of Korea
| | - Song Yub Shin
- Department of Medical Science, Graduate School Chosun University Gwangju 61452 Republic of Korea
- Department of Cellular and Molecular Medicine School of Medicine, Chosun University Gwangju 61452 Republic of Korea
| |
Collapse
|
14
|
Fluorine-19 NMR spectroscopy of fluorinated analogs of tritrpticin highlights a distinct role for Tyr residues in antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183260. [DOI: 10.1016/j.bbamem.2020.183260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
15
|
Arias M, Haney EF, Hilchie AL, Corcoran JA, Hyndman ME, Hancock REW, Vogel HJ. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183228. [PMID: 32126228 DOI: 10.1016/j.bbamem.2020.183228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) constitute a diverse family of peptides with the ability to protect their host against microbial infections. In addition to their ability to kill microorganisms, several AMPs also exhibit selective cytotoxicity towards cancer cells and are collectively referred to as anticancer peptides (ACPs). Here a large library of AMPs, mainly derived from the porcine cathelicidin peptide, tritrpticin (VRRFPWWWPFLRR), were assessed for their anticancer activity against the Jurkat T cell leukemia line. These anticancer potencies were compared to the cytotoxicity of the peptides towards normal cells isolated from healthy donors, namely peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs; where hemolytic activity was assessed). Among the active tritrpticin derivatives, substitution of Arg by Lys enhanced the selectivity of the peptides towards Jurkat cells when compared to PBMCs. Additionally, the side chain length of the Lys residues was also optimized to further enhance the tritrpticin ACP selectivity at low concentrations. The mechanism of action of the peptides with high selectivity involved the permeabilization of the cytoplasmic membrane of Jurkat cells, without formation of apoptotic bodies. The incorporation of non-natural Lys-based cationic amino acids could provide a new strategy to improve the selectivity of other synthetic ACPs to enhance their potential for therapeutic use against leukemia cells.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Biophysics Group, School of Physics, Faculty of Sciences, Universidad Nacional de Colombia - Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashley L Hilchie
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Jennifer A Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Microbiology, Immunology and Infectious Disease Department, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - M Eric Hyndman
- Department of Surgery, Division of Urology, Southern Alberta Institute of Urology, University of Calgary, Calgary, AB T2V 1P9, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
16
|
Yang Y, Wu D, Wang C, Shan A, Bi C, Li Y, Gan W. Hybridization with Insect Cecropin A (1-8) Improve the Stability and Selectivity of Naturally Occurring Peptides. Int J Mol Sci 2020; 21:ijms21041470. [PMID: 32098142 PMCID: PMC7073140 DOI: 10.3390/ijms21041470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) offer great hope and a promising opportunity to overcome the rapid development of drug-resistant pathogenic microbes. However, AMPs often lack the stability required for a successful systemic drug. Hybridizing different AMPs is a simple and effective strategy to obtain novel peptides. N-terminal fragment of cecropin A (CA (1-8)) is often used to hybridize with other AMPs to reduce cytotoxicity. However, hybridizing with CA (1-8) in improving the stability of AMPs is not clear. Therefore, a series of peptides were designed by combining with CA (1–8) and their antibacterial activity and stability in the presence of salts and human serum were evaluated. The resultant α-helical hybrid peptide CA-FO composed of CA (1-8) and the most potent region of Fowlicidin-2 (FO (1–15)) exhibited excellent antibacterial activity (2-8 μM) and cell selectivity toward bacterial over mammalian cells. Moreover, CA-FO still retained vigorous antimicrobial activity in the presence of human serum and salts at physiological concentrations. CA-FO exhibited effective antibacterial activity by increasing membrane permeability and damaging membrane integrity. In conclusion, these results indicated the success of hybridization in designing and optimizing AMPs with improved stability and selectivity and the peptide CA-FO can be further evaluated as peptide-therapy to treat bacterial infections.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (D.W.); (C.W.); (C.B.)
| | - Di Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (D.W.); (C.W.); (C.B.)
| | - Chenxi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (D.W.); (C.W.); (C.B.)
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (D.W.); (C.W.); (C.B.)
- Correspondence: ; Tel.: +86-451-5519-0685
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (D.W.); (C.W.); (C.B.)
| | - Yanbing Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Wenping Gan
- Institute of Animal Husbandry and Veterinary Medicine, Heilongjiang Academy of Land Reclamation Sciences, Harbin 150038, China;
| |
Collapse
|
17
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
18
|
Bozelli JC, Salay LC, Arcisio-Miranda M, Procopio J, Riciluca KCT, Silva Junior PI, Nakaie CR, Schreier S. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183110. [PMID: 31672543 DOI: 10.1016/j.bbamem.2019.183110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 02/01/2023]
Abstract
A strategy that has been gaining increased application for the study of the conformation, dynamics, orientation, and physicochemical properties of peptides is labeling with the paramagnetic amino acid TOAC. This approach was used to gain a deeper understanding on the mechanism of action of the antimicrobial peptide tritrpticin (TRP3). TRP3 was labeled with TOAC at the N-terminus (prior to V1, TOAC0-TRP3) or internally (replacing P5, TOAC5-TRP3). Functional studies showed that labeling led to peptides with higher activity against Gram-positive bacteria and lower hemolytic activity with respect to TRP3. Peptide-induced model membranes permeabilization and ion channel-like activity studies corroborated the functional assays qualitatively, showing higher activity of the peptides against negatively charged membranes, which had the purpose of mimicking bacterial membranes. TOAC presented a greater freedom of motion at the N-terminus than at the internal position, as evinced by EPR spectra. EPR and fluorescence spectra reported on the peptides conformational properties, showing acquisition of a more packed conformation in the presence of the secondary structure-inducing solvent, TFE. CD studies showed that TOAC0-TRP3 acquires a conformation similar to that of TRP3, both in aqueous solution and in TFE, while TOAC5-TRP3 presents a different conformation in all environments. While the mechanism of action of TRP3 was impacted to some extent by TOAC labeling at the N-terminus, it did change upon replacement of P5 by TOAC. The results demonstrated that TOAC-labeling could be used to modulate TRP3 activity and mechanism of action and, more importantly, the critical role of P5 for TRP3 pore formation.
Collapse
Affiliation(s)
- José C Bozelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada.
| | - Luiz C Salay
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Exact and Technological Sciences, State University of Santa Cruz-UESC, Ilhéus, BA 45662-900, Brazil
| | - Manoel Arcisio-Miranda
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Joaquim Procopio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Katie C T Riciluca
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Pedro I Silva Junior
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
19
|
Shruti SR, Rajasekaran R. Identification of therapeutic peptide scaffold from tritrpticin family for urinary tract infections using in silico techniques. J Biomol Struct Dyn 2019; 38:4407-4417. [DOI: 10.1080/07391102.2019.1680437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- S. R. Shruti
- Department of Biotechnology, School of Biosciences and Technology, VIT (Deemed to Be University), Vellore, India
| | - R. Rajasekaran
- Department of Biotechnology, School of Biosciences and Technology, VIT (Deemed to Be University), Vellore, India
| |
Collapse
|
20
|
Yang S, Lee CW, Kim HJ, Jung HH, Kim JI, Shin SY, Shin SH. Structural analysis and mode of action of BMAP-27, a cathelicidin-derived antimicrobial peptide. Peptides 2019; 118:170106. [PMID: 31226350 DOI: 10.1016/j.peptides.2019.170106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
Abstract
BMAP-27, a member of cathelicidin family, plays an important role against microorganisms, including bacteria and fungi. BMAP-27 may exert antimicrobial effects through membrane integrity disruption, but the exact molecular mechanism remains unclear. To identify the structural features important for antimicrobial activity and propose a mechanism underlying antibacterial effects, we determined the nuclear magnetic resonance structure of BMAP-27 in a membrane-mimetic environment and investigated its interactions with lipid membranes. BMAP-27 exhibited a long N-terminal α-helix with faces patterned into aromatic and cationic regions, central kink, and short hydrophobic C-terminal helix. While the N-terminal 18-residue peptide (BMAP-18) exerted only antibacterial activity, BMAP-27 showed potent activity against bacteria and cancer cells. Both peptides inhibited bacterial growth, but BMAP-18 showed delayed bactericidal activity and BMAP-27 completely killed bacteria within 20 min. The differences in antimicrobial activities and microbicidal kinetics may be associated with membrane permeabilisation; BMAP-27 rapidly and largely disrupted membrane integrity, whereas BMAP-18 showed low membrane disruption activity. Thus, the N-terminal helix is sufficient to inhibit bacterial growth and the C-terminal helix is involved in membrane permeabilisation for rapid bactericidal and efficient anticancer activities. The structural and functional characterisation of BMAP-27 may encourage the development of novel antimicrobial/anticancer agents.
Collapse
Affiliation(s)
- Sungtae Yang
- Department of Microbiology, Chosun University School of Medicine, Gwangju, 61452, South Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, South Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan, 48513, South Korea
| | - Hyun-Ho Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Song Yub Shin
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 61452, South Korea
| | - Sung-Heui Shin
- Department of Microbiology, Chosun University School of Medicine, Gwangju, 61452, South Korea.
| |
Collapse
|
21
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Sowińska M, Laskowska A, Guśpiel A, Solecka J, Bochynska-Czyż M, Lipkowski AW, Trzeciak K, Urbanczyk-Lipkowska Z. Bioinspired Amphiphilic Peptide Dendrimers as Specific and Effective Compounds against Drug Resistant Clinical Isolates of E. coli. Bioconjug Chem 2018; 29:3571-3585. [PMID: 30235928 DOI: 10.1021/acs.bioconjchem.8b00544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Evolution-derived natural compounds have been inspirational for design of numerous pharmaceuticals, e.g., penicillins and tetracyclines. Herein, we present a bioinspired strategy to design peptide dendrimers for the effective therapy of E. coli infections where the selection of appropriate amino acids and the mode of their assembly are based on the information gained from research on membranolytic natural antimicrobial peptides (AMP's). On the molecular level two opposite effects were explored: the effect of multiple positive charges necessary for membrane disintegration was equilibrated by the anchoring role of tryptophanes. Indeed, a series of Trp-terminated dendrimers exhibited high potency against clinical isolates of antibiotic resistant ESBL E. coli strains, stability in human plasma along with very low hemo- and genotoxicity. Investigation of the underlying antimicrobial mechanism indicated that the dendrimers studied at minimal inhibitory concentration showed weak permeability toward membranes. Solid-state 2D NMR studies revealed their presence on and inside the model membranes. Therefore, their biological properties might be explained by targeting of extra- or intracellular receptors. Our results point to a new approach to design novel branched antimicrobials with high therapeutic index.
Collapse
Affiliation(s)
- Marta Sowińska
- Institute of Organic Chemistry PAS , Kasprzaka Str. 44/54 , Warsaw 01-224 , Poland
| | - Anna Laskowska
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Adam Guśpiel
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Jolanta Solecka
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Marta Bochynska-Czyż
- Mossakowski Medical Research Centre PAS , Pawinskiego Str. 5 , 02-106 Warsaw , Poland
| | - Andrzej W Lipkowski
- Mossakowski Medical Research Centre PAS , Pawinskiego Str. 5 , 02-106 Warsaw , Poland
| | - Katarzyna Trzeciak
- Institute of Organic Chemistry PAS , Kasprzaka Str. 44/54 , Warsaw 01-224 , Poland.,Centre of Molecular and Macromolecular Studies PAS , Sienkiewicza 112 , 90-363 Lodz , Poland
| | | |
Collapse
|
23
|
Inui Kishi RN, Stach-Machado D, Singulani JDL, dos Santos CT, Fusco-Almeida AM, Cilli EM, Freitas-Astúa J, Picchi SC, Machado MA. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018; 13:e0203451. [PMID: 30192822 PMCID: PMC6128562 DOI: 10.1371/journal.pone.0203451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp. citri (X.citri) and Candidatus Liberibacter asiaticus (CaLas), respectively. In order to control these pathogens, putative AMPs were prospected in databases containing citrus sequences. Furthermore, AMPs already reported in the literature were also used for in vitro and in vivo assays against X.citri. Since CaLas cannot be cultivated in vitro, surrogates as Sinorhizobium meliloti and Agrobacterium tumefaciens were used. This study reports the evaluation of six AMPs obtained from different sources, two of them from Citrus spp. (citrus-amp1 and citrus-amp2), three from amphibians (Hylin-a1, K0-W6-Hy-a1 and Ocellatin 4-analogue) and one from porcine (Tritrpticin). Peptides K0-W6-Hy-a1, Ocellatin 4-analogue, and citrus-amp1 showed bactericidal activity against X.citri and S. meliloti and bacteriostatic effect on A. tumefaciens. These results were confirmed for X.citri in planta. In addition cytotoxicity evaluations of these molecules were performed. The AMPs that showed the lowest hemolytic activities were Triptrpticin, citrus-amp1 and citrus-amp2. Citrus-amp1 and citrus-amp2 not presented toxicity in experiments using in vivo model, G. mellonella and U87 MG cells. To verify the interaction of these AMPs with bacteria and erythrocyte cell membranes, vesicles mimicking these cells were built. Citrus-amp1 and Tritrpticin exhibited higher affinity to bacterial membranes, while Ocellatin 4-analogue and Hylin-a1 showed higher affinity to erythrocyte membranes; exclude their use in citrus. This work demonstrates an essential alternative, trough AMPs obtained from Citrus spp., which can be feasibly used to control bacterial pathogens.
Collapse
Affiliation(s)
- Rosangela Naomi Inui Kishi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| | - Dagmar Stach-Machado
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Claudia Tavares dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Instituto de Química de Araraquara, Departamento de Bioquímica e tecnologia química, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | | | - Simone Cristina Picchi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
24
|
Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 2018; 50:995-1005. [PMID: 29728914 PMCID: PMC6060862 DOI: 10.1007/s00726-018-2575-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Hemocyanin, the multifunctional glycoprotein in the hemolymph of invertebrates, can generate various antimicrobial peptides (AMPs). Given the rising interest in the use of natural therapeutic agents such as AMPs, alternative and more efficient methods for their generation are being explored. In this work, free online software was first applied to predict the generation of antimicrobial peptides from the large subunit of Litopenaeus vannamei hemocyanin. Twenty potential antimicrobial peptides ranging from 1.5 to 1.9 kDa were predicted, five of which had α-helical structures and were selected for antibacterial activity testing. The results indicated that these five peptides had antibacterial activity against seven different bacteria. Of the five peptides, one peptide, designated L1, had the strongest antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, CD and NMR data showed that L1 had both α-helical and β-turns structural composition, and that these structures were essential for L1’s antibacterial activity. Furthermore, SEM analysis revealed that peptide L1 had broad-spectrum activity against both Gram-positive and Gram-negative bacteria, as it could destroy the bacterial cell walls and kill the bacteria. Thus, L1 is a very potent antimicrobial peptide that can be exploited and used in antibacterial therapeutics.
Collapse
|
25
|
Neelabh, Singh K, Rani J. Sequential and Structural Aspects of Antifungal Peptides from Animals, Bacteria and Fungi Based on Bioinformatics Tools. Probiotics Antimicrob Proteins 2018; 8:85-101. [PMID: 27060002 DOI: 10.1007/s12602-016-9212-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Emerging drug resistance varieties and hyper-virulent strains of microorganisms have compelled the scientific fraternity to develop more potent and less harmful therapeutics. Antimicrobial peptides could be one of such therapeutics. This review is an attempt to explore antifungal peptides naturally produced by prokaryotes as well as eukaryotes. They are components of innate immune system providing first line of defence against microbial attacks, especially in eukaryotes. The present article concentrates on types, structures, sources and mode of action of gene-encoded antifungal peptides such as mammalian defensins, protegrins, tritrpticins, histatins, lactoferricins, antifungal peptides derived from birds, amphibians, insects, fungi, bacteria and their synthetic analogues such as pexiganan, omiganan, echinocandins and Novexatin. In silico drug designing, a major revolution in the area of therapeutics, facilitates drug development by exploiting different bioinformatics tools. With this view, bioinformatics tools were used to visualize the structural details of antifungal peptides and to predict their level of similarity. Current practices and recent developments in this area have also been discussed briefly.
Collapse
Affiliation(s)
- Neelabh
- Department of Zoology (MMV), Banaras Hindu University, Varanasi, 221005, India
| | - Karuna Singh
- Department of Zoology (MMV), Banaras Hindu University, Varanasi, 221005, India.
| | - Jyoti Rani
- Department of Zoology (MMV), Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
26
|
Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules 2018; 23:molecules23040815. [PMID: 29614844 PMCID: PMC6017362 DOI: 10.3390/molecules23040815] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022] Open
Abstract
Due to the increasing emergence of drug-resistant pathogenic microorganisms, there is a world-wide quest to develop new-generation antibiotics. Antimicrobial peptides (AMPs) are small peptides with a broad spectrum of antibiotic activities against bacteria, fungi, protozoa, viruses and sometimes exhibit cytotoxic activity toward cancer cells. As a part of the native host defense system, most AMPs target the membrane integrity of the microorganism, leading to cell death by lysis. These membrane lytic effects are often toxic to mammalian cells and restrict their systemic application. However, AMPs containing predominantly either tryptophan or proline can kill microorganisms by targeting intracellular pathways and are therefore a promising source of next-generation antibiotics. A minimum length of six amino acids is required for high antimicrobial activity in tryptophan-rich AMPs and the position of these residues also affects their antimicrobial activity. The aromatic side chain of tryptophan is able to rapidly form hydrogen bonds with membrane bilayer components. Proline-rich AMPs interact with the 70S ribosome and disrupt protein synthesis. In addition, they can also target the heat shock protein in target pathogens, and consequently lead to protein misfolding. In this review, we will focus on describing the structures, sources, and mechanisms of action of the aforementioned AMPs.
Collapse
|
27
|
Salay LC, Prazeres EA, Marín Huachaca NS, Lemos M, Piccoli JP, Sanches PRS, Cilli EM, Santos RS, Feitosa E. Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4304-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Structural and Dynamic Insights of the Interaction between Tritrpticin and Micelles: An NMR Study. Biophys J 2017; 111:2676-2688. [PMID: 28002744 DOI: 10.1016/j.bpj.2016.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 01/02/2023] Open
Abstract
A large number of antimicrobial peptides (AMPs) acts with high selectivity and specificity through interactions with membrane lipid components. These peptides undergo complex conformational changes in solution; upon binding to an interface, one major conformation is stabilized. Here we describe a study of the interaction between tritrpticin (TRP3), a cathelicidin AMP, and micelles of different chemical composition. The peptide's structure and dynamics were examined using one-dimensional and two-dimensional NMR. Our data showed that the interaction occurred by conformational selection and the peptide acquired similar structures in all systems studied, despite differences in detergent headgroup charge or dipole orientation. Fluorescence and paramagnetic relaxation enhancement experiments showed that the peptide is located in the interface region and is slightly more deeply inserted in 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-1'-rac-glycerol (LMPG, anionic) than in 1-lauroyl-2-hydroxy-sn-glycero-3-phosphocholine (LLPC, zwitterionic) micelles. Moreover, the tilt angle of an assumed helical portion of the peptide is similar in both systems. In previous work we proposed that TRP3 acts by a toroidal pore mechanism. In view of the high hydrophobic core exposure, hydration, and curvature presented by micelles, the conformation of TRP3 in these systems could be related to the peptide's conformation in the toroidal pore.
Collapse
|
29
|
Kuo YL, Wang SG, Wu CY, Lee KC, Jao CJ, Chou SH, Chen YC. Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria. Nanomedicine (Lond) 2016; 11:2497-510. [PMID: 27622499 DOI: 10.2217/nnm-2016-0232] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Medical treatments for bacterial-infections have become challenging because of the emergence of antibiotic-resistant bacterial strains. Thus, new therapeutics and antibiotics must be developed. MATERIALS & METHODS Arginine and tryptophan can target negatively-charged bacteria and penetrate bacterial cell membrane, respectively. Synthetic-peptides containing arginine, tryptophan and cysteine termini, in other words, (DVFLG)2REEW4C and (DVFLG)2REEW2C, as starting materials were mixed with aqueous tetrachloroauric acid to generate peptide-immobilized gold nanoparticles (i.e., [DVFLG]2REEW4C-AuNPs and [DVFLG]2REEW2C-AuNPs) through one-pot reactions. RESULTS & DISCUSSION The peptide immobilized AuNPs exhibit targeting capacity and antibacterial activity. Furthermore, (DVFLG)2REEW4C-AuNPs immobilized with a higher number of tryptophan molecules possess more effective antibacterial capacity than (DVFLG)2REEW2C-AuNPs. Nevertheless, they are not harmful for animal cells. The feasibility of using the peptide-AuNPs to inhibit the cell growth of bacterium-infected macrophages was demonstrated. CONCLUSION These results suggested that the proposed antibacterial AuNPs are effective antibacterial agents for Staphylococci, Enterococci and antibiotic-resistant bacterial strains. [Formula: see text].
Collapse
Affiliation(s)
- Yen-Ling Kuo
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Sin-Ge Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ching-Yi Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kai-Chieh Lee
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chan-Jung Jao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
30
|
Arias M, Hoffarth ER, Ishida H, Aramini JM, Vogel HJ. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1012-23. [PMID: 26724205 DOI: 10.1016/j.bbamem.2015.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/19/2015] [Accepted: 12/20/2015] [Indexed: 11/16/2022]
Abstract
The increase in antibiotic-resistant bacterial infections has prompted significant academic research into new therapeutic agents targeted against these pathogens. Antimicrobial peptides (AMPs) appear as promising candidates, due their potent antimicrobial activity and their ubiquitous presence in almost all organisms. Tritrpticin is a member of this family of peptides and has been shown to exert a strong antimicrobial activity against several bacterial strains. Tritrpticin's main structural characteristic is the presence of three consecutive Trp residues at the center of the peptide. These residues play an important role in the activity of tritrpticin against Escherichia coli. In this work, a recombinant version of tritrpticin was produced in E. coli using calmodulin as a fusion protein expression tag to overcome the toxicity of the peptide. When used in combination with glyphosate, an inhibitor of the endogenous synthesis of aromatic amino acids, this expression system allowed for the incorporation of fluorinated Trp analogs at very high levels (>90%). The antimicrobial activity of the 4-, 5- and 6-fluoro-Trp-containing tritrpticins against E. coli was as strong as the activity of the native peptide. Similarly, the tritrpticin analogs exhibited comparable abilities to perturb and permeabilize synthetic lipid bilayers as well as the outer and inner membrane of E. coli. Furthermore, the use of 19F NMR spectroscopy established that each individual fluoro-Trp residue interacts differently with SDS micelles, supporting the idea that each Trp in the original tritrpticin plays a different role in the perturbing/permeabilizing activity of the peptide. Moreover, our work demonstrates that the use of fluoro-Trp in solvent perturbation 19F NMR experiments provides detailed site-specific information on the insertion of the Trp residues in biological membrane mimetics. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Elesha R Hoffarth
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada
| | - James M Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
31
|
Shah P, Hsiao FSH, Ho YH, Chen CS. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 2016; 16:1225-37. [PMID: 26648572 DOI: 10.1002/pmic.201500380] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 01/28/2023]
Abstract
Antimicrobial peptides have been considered well-deserving candidates to fight the battle against microorganisms due to their broad-spectrum antimicrobial activities. Several studies have suggested that membrane disruption is the basic mechanism of AMPs that leads to killing or inhibiting microorganisms. Also, AMPs have been reported to interact with macromolecules inside the microbial cells such as nucleic acids (DNA/RNA), protein synthesis, essential enzymes, membrane septum formation and cell wall synthesis. Proteins are associated with many intracellular mechanisms of cells, thus protein targets may be specifically involved in mechanisms of action of AMPs. AMPs like pyrrhocoricin, drosocin, apidecin and Bac 7 are documented to have protein targets, DnaK and GroEL. Moreover, the intracellular targeting AMPs are reported to influence more than one protein targets inside the cell, suggesting for the multiple modes of actions. This complex mechanism of intracellular targeting AMPs makes them more difficult for the development of resistance. Herein, we have summarized the current status of AMPs in terms of their mode of actions, entry to cytoplasm and inhibition of macromolecules. To reveal the mechanism of action, we have focused on AMPs with intracellular protein targets. We have also included the use of high-throughput proteome microarray to determine the unidentified AMP protein targets in this review.
Collapse
Affiliation(s)
- Pramod Shah
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Hsuan Ho
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| |
Collapse
|
32
|
Shagaghi N, Palombo EA, Clayton AHA, Bhave M. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 2016; 32:31. [PMID: 26748808 DOI: 10.1007/s11274-015-1986-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Enzo A Palombo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Andrew H A Clayton
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
33
|
Salay LC, Petri DF, Nakaie CR, Schreier S. Adsorption of the antimicrobial peptide tritrpticin onto solid and liquid surfaces: Ion-specific effects. Biophys Chem 2015; 207:128-34. [DOI: 10.1016/j.bpc.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/24/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
|
34
|
Bera S, Ghosh A, Sharma S, Debnath T, Giri B, Bhunia A. Probing the role of Proline in the antimicrobial activity and lipopolysaccharide binding of indolicidin. J Colloid Interface Sci 2015; 452:148-159. [PMID: 25935286 DOI: 10.1016/j.jcis.2015.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 01/28/2023]
Abstract
HYPOTHESIS Indolicidin (ILPWKWPWWPWRR-NH2), an antimicrobial peptide from bovine neutrophils, possesses significant antibacterial activity. An interesting feature of indolicidin is its unusually high content of Tryptophan and Proline residues. While the involvement of Tryptophan has been studied for its hemolytic and antibacterial activity, little is known about the roles played by Proline in these aspects. We herein investigate the structure and biological activities of indolicidin, where Proline at either one or more of the 3rd, 7th, 10th positions has been replaced by Alanine to better understand its structure and biological function. EXPERIMENTS Structural aspects of Proline residues of indolicidin and its effect on antimicrobial activity were elucidated by replacing Proline residues with Alanine. Minimum inhibitory concentration (MIC) and scanning electron microscopy (SEM) experiments provide substantial evidence for the importance of Proline residues for antimicrobial activity and cell wall disintegration. Binding affinity of the peptides to Lipopolysaccharide (LPS) was investigated using fluorescence spectroscopy and dynamic light scattering (DLS) in conjunction with (31)PNMR spectroscopy and confirmed the disintegration of LPS layer. FINDINGS Our study reveals that Proline residues are necessary for interaction of indolicidin with LPS and establishes the significance of the third and tenth Proline residues for its antimicrobial activity. We believe that the presence of so many Proline residues provides the molecule a selective advantage of adopting different conformations varying from a globular, closed conformation to an open extended conformation, and even to a wedge-shaped conformation, which account for the diverse mechanisms of action of indolicidin.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Shruti Sharma
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Tanmoy Debnath
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Banabihari Giri
- Central Instrument Facility, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India.
| |
Collapse
|
35
|
Effect of recombinant prophenin 2 on the integrity and viability of Trichomonas vaginalis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:430436. [PMID: 25815316 PMCID: PMC4359812 DOI: 10.1155/2015/430436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Trichomonas vaginalis is the causal agent of trichomoniasis, which is associated with preterm child delivery, low birth weight, and an increased risk of infection by human papilloma virus and human immunodeficiency virus following exposure. Several reports have established increasing numbers of trichomoniasis cases resistant to metronidazole, the agent used for treatment, and it is therefore important to identify new therapeutic alternatives. Previously, our group reported the effect of tritrpticin, a synthetic peptide derived from porcine prophenin, on T. vaginalis; however, the hemolytic activity of this small peptide complicates its possible use as a therapeutic agent. In this study, we report that the propeptide and the processed peptide of prophenin 2 (cleaved with hydroxylamine) affected the integrity and growth of T. vaginalis and that pro-prophenin 2 displays some resistance to proteolysis by T. vaginalis proteinases at 1 h. Its effect on T. vaginalis as well as its low hemolytic activity and short-time stability to parasite proteinases makes prophenin 2 an interesting candidate for synergistic or alternative treatment against T. vaginalis.
Collapse
|
36
|
Arias M, Nguyen LT, Kuczynski AM, Lejon T, Vogel HJ. Position-Dependent Influence of the Three Trp Residues on the Membrane Activity of the Antimicrobial Peptide, Tritrpticin. Antibiotics (Basel) 2014; 3:595-616. [PMID: 27025758 PMCID: PMC4790384 DOI: 10.3390/antibiotics3040595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising candidates for the development of new antibiotics. Among the ever-expanding family of AMPs, tritrpticin has strong antimicrobial activity against a broad range of pathogens. This 13-residue peptide has an unusual amino acid sequence that is almost symmetrical and features three central Trp residues with two Arg residues near each end of the peptide. In this work, the role of the three sequential Trp residues in tritrpticin was studied in a systematic fashion by making a series of synthetic peptides with single-, double- and triple-Trp substitutions to Tyr or Ala. 1H NMR and fluorescence spectroscopy demonstrated the ability of all of the tritrpticin-analog peptides to interact with negatively-charged membranes. Consequently, most tritrpticin analogs exhibited the ability to permeabilize synthetic ePC:ePG (egg-yolk phosphatidylcholine (ePC), egg-yolk phosphatidylglycerol (ePG)) vesicles and live Escherichia coli bacteria. The membrane perturbation characteristics were highly dependent on the location of the Trp residue substitution, with Trp6 being the most important residue and Trp8 the least. The membrane permeabilization activity of the peptides in synthetic and biological membranes was directly correlated with the antimicrobial potency of the peptides against E. coli. These results contribute to the understanding of the role of each of the three Trp residues to the antimicrobial activity of tritrpticin.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Andrea M Kuczynski
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Tore Lejon
- Department of Chemistry, Faculty of Science, UiT-The Artic University of Norway, Tromsø N-9037, Norway.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
37
|
Arias M, Jensen KV, Nguyen LT, Storey DG, Vogel HJ. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:277-88. [PMID: 25178967 DOI: 10.1016/j.bbamem.2014.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/22/2014] [Indexed: 01/12/2023]
Abstract
Tritrpticin is an antimicrobial peptide with a strong microbicidal activity against Gram-positive and Gram-negative bacteria as well as fungi. The 13-residue peptide is essentially symmetrical and possesses a unique cluster of three Trp residues near the center of its amino acid sequence. The mechanism of action of tritrpticin is believed to involve permeabilization of the cytoplasmic membrane of susceptible bacteria. However it has been suggested that intracellular targets may also play a role in its antimicrobial activity. In this work the mechanism of action of several tritrpticin derivatives was studied through substitution of the three Trp residues with 5-hydroxy-tryptophan (5OHW), a naturally occurring non-ribosomal amino acid. Although it is more polar, 5OHW preserves many of the biophysical and biochemical properties of Trp, allowing the use of fluorescence spectroscopy and NMR techniques to study the interaction of the modified peptides with membrane mimetics. Single or triple 5OHW substitution did not have a large effect on the MIC of the parent peptide against Escherichia coli and Bacillus subtilis. However, the mechanism of action was altered by simultaneously replacing all three Trp with 5OHW. Our results suggest that the inner membrane of Gram-negative bacteria did not constitute the main target of this particular tritrpticin derivative. Since the addition of a hydroxyl group to the indole motif of the Trp residue was able to modify the mechanism of action of the peptides, our data confirm the importance of the Trp cluster in tritrpticin. This work also shows that 5OHW constitutes a new probe to modulate the antimicrobial activity and mechanism of action of other Trp-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Katharine V Jensen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
38
|
Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 2013; 19:758-69. [DOI: 10.1002/psc.2574] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Yoonkyung Park
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Antonio Palleschi
- Department of Cellular & Molecular Medicine, School of Medicine; Chosun University; Gwangju 501-759 Korea
| | - Kyung-Soo Hahm
- BioLeaders Corp.; 559 Yongsan-Dong, Yuseong-Ku Daejeon 305-500 Korea
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma Tor Vergata; Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
39
|
Sharma R, Lomash S, Salunke DM. Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties. PLoS One 2013; 8:e75582. [PMID: 24086578 PMCID: PMC3782441 DOI: 10.1371/journal.pone.0075582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides represent one of the most promising future strategies for combating infections and microbial drug resistance. Tritrpticin is a 13mer tryptophan-rich cationic antimicrobial peptide with a broad spectrum of activity whose application in antimicrobial therapy has been hampered by ambiguity about its biological target and consequently the molecular interactions necessary for its antimicrobial activity. The present study provides clues about the mechanism of action of tritripticin by using a unique monoclonal antibody (mAb) as a 'physiological' structural scaffold. A pool of mAbs were generated against tritrpticin and based on its high affinity and ability to bind tritrpticin analogs, mAb 6C6D7 was selected and characterized further. In a screening of phage displayed random peptides, this antibody was able to identify a novel antimicrobial peptide with low sequence homology to tritrpticin, suggesting that the mAb possessed the physico-chemical characteristics mimicking the natural receptor. Subsequently, thermodynamics and molecular modeling identified a core group of hydrophobic residues in tritrpticin arranged in a distorted's' shaped conformation as critical for antibody binding. Comparison of the mAb induced conformation with the micelle bound structure of tritrpticin reveals how a common motif may be able to interact with multiple classes of biomolecules thus extending the target range of this innate immune peptide. Based on the concurrence between thermodynamic and structural data our results reveal a template that can be used to design novel antimicrobial pharmacophores while simultaneously demonstrating at a more fundamental level the potential of mAbs to act as receptor surrogates.
Collapse
Affiliation(s)
| | | | - Dinakar M. Salunke
- National Institute of Immunology, New Delhi, India
- Regional Centre for Biotechnology, Gurgaon, India
- * E-mail:
| |
Collapse
|
40
|
Salay LC, Ferreira M, Oliveira ON, Nakaie CR, Schreier S. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf B Biointerfaces 2012; 100:95-102. [DOI: 10.1016/j.colsurfb.2012.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
|
41
|
Bozelli JC, Sasahara ET, Pinto MR, Nakaie CR, Schreier S. EFFECT OF HEAD GROUP AND CURVATURE ON BINDING OF THE ANTIMICROBIAL PEPTIDE TRITRPTICIN TO LIPID MEMBRANES. Chem Phys Lipids 2012; 165:365-73. [DOI: 10.1016/j.chemphyslip.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 11/28/2022]
|
42
|
Haney EF, Nazmi K, Bolscher JGM, Vogel HJ. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin. Biochem Cell Biol 2012; 90:362-77. [PMID: 22250712 DOI: 10.1139/o11-057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.
Collapse
Affiliation(s)
- Evan F Haney
- University of Calgary, Department of Biological Sciences, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
43
|
The potential of antimicrobial peptides as biocides. Int J Mol Sci 2011; 12:6566-96. [PMID: 22072905 PMCID: PMC3210996 DOI: 10.3390/ijms12106566] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides constitute a diverse class of naturally occurring antimicrobial molecules which have activity against a wide range of pathogenic microorganisms. Antimicrobial peptides are exciting leads in the development of novel biocidal agents at a time when classical antibiotics are under intense pressure from emerging resistance, and the global industry in antibiotic research and development stagnates. This review will examine the potential of antimicrobial peptides, both natural and synthetic, as novel biocidal agents in the battle against multi-drug resistant pathogen infections.
Collapse
|
44
|
Lorin A, Noël M, Provencher MÈ, Turcotte V, Masson C, Cardinal S, Lagüe P, Voyer N, Auger M. Revisiting peptide amphiphilicity for membrane pore formation. Biochemistry 2011; 50:9409-20. [PMID: 21942823 DOI: 10.1021/bi201335t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has previously been shown that an amphipathic de novo designed peptide made of 10 leucines and four phenylalanines substituted with crown ethers induces vesicle leakage without selectivity. To gain selectivity against negatively charged dimyristoylphosphatidylglycerol (DMPG) bilayers, one or two leucines of the peptide were substituted with positively charged residues at each position. All peptides induce significant calcein leakage of DMPG vesicles. However, some peptides do not induce significant leakage of zwitterionic dimyristoylphosphatidylcholine vesicles and are thus active against only bacterial model membranes. The intravesicular leakage is induced by pore formation instead of membrane micellization. Nonselective peptides are mostly helical, while selective peptides mainly adopt an intermolecular β-sheet structure. This study therefore demonstrates that the position of the lysine residues significantly influences the secondary structure and bilayer selectivity of an amphipathic 14-mer peptide, with β-sheet peptides being more selective than helical peptides.
Collapse
Affiliation(s)
- Aurélien Lorin
- Département de chimie, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Centre de recherche sur les matériaux avancés, Université Laval, Québec, Québec, Canada G1V 0A6
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bang JK, Nan YH, Lee EK, Shin SY. A Novel Trp-rich Model Antimicrobial Peptoid with Increased Protease Stability. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.9.2509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ. Peptide-based Antifungal Therapies against Emerging Infections. DRUG FUTURE 2010; 35:197. [PMID: 20495663 DOI: 10.1358/dof.2010.035.03.1452077] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acquired drug resistance to mycotic infections is rapidly emerging as a major medical problem. Opportunistic fungal infections create therapeutic challenges, particularly in high risk immunocompromised patients with AIDS, cancer, and those undergoing transplantation. Higher mortality and/or morbidity rates due to invasive mycosis have been increasing over the last 20 years, and in light of growing resistance to commonly used antibiotics, novel antifungal drugs and approaches are required. Currently there is considerable interest in antifungal peptides that are ubiquitous in plant and animal kingdoms. These small cationic peptides may have specific targets or may be multifunctional in their mechanism of action. On the basis of recent advances in protein engineering and solid phase syntheses, the utility and potential of selected peptides as efficient antifungal drugs with acceptable toxicity profiles are being realized. This review will discuss recent advances in peptide therapy for opportunistic fungal infections.
Collapse
Affiliation(s)
- A Matejuk
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Recent advances in molecular dynamics (MD) simulation methods and in available computational resources have allowed for more reliable simulations of biological phenomena. From all-atom MD simulations, we are now able to visualize in detail the interactions between antimicrobial peptides (AMPs) and a variety of membrane mimics. This helps us to understand the molecular mechanisms of antimicrobial activity and toxicity. This chapter describes how to set up and conduct molecular dynamics simulations of AMPs and membrane mimics. Details are given for the construction of systems of interest for studying AMPs, which can include simulations of peptides in water, micelles, or lipid bilayers. Explanations of the parameters needed for running a simulation are provided as well.
Collapse
|
48
|
Ahmad A, Asthana N, Azmi S, Srivastava RM, Pandey BK, Yadav V, Ghosh JK. Structure-function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2411-20. [PMID: 19735644 DOI: 10.1016/j.bbamem.2009.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Although BMAP-28 is a potent cathelicidin-derived bovine antimicrobial peptide, its cytotoxic activity against the human and other mammalian cells is of concern for converting it into a novel antimicrobial drug. We have identified a short leucine and isoleucine zipper sequences at the N- and C-terminals of BMAP-28, respectively. To understand the possible role of these structural elements in BMAP-28, a number of alanine-substituted analogs were designed, synthesized and characterized along with the wild-type peptide. The substitution of amino acids at single or multiple 'a' position(s) of these structural motifs by alanine showed significant effects on the cytotoxic activity of the molecule on the human red blood cells (hRBCs) and 3T3 cells without showing much effects on their MIC values against the selected bacteria. BMAP-28 and all its analogs depolarized the Escherichia coli cells with almost equal efficacy. In contrast, the alanine-substituted analogs of BMAP-28 depolarized hRBCs much less efficiently than the parent molecule. Results further showed that BMAP-28 assembled appreciably onto the live E. coli and hRBC. However, the selected less toxic analogs of BMAP-28 although assembled as good as the parent molecule onto the live E. coli cells, their assembly onto the live mammalian hRBCs was much weaker as compared to that of the wild-type molecule. Looking at the remarkable similarity with the data presented in our previous work on melittin, it appears that probably the heptad repeat sequence possesses a general role in maintaining the cytotoxicity of the antimicrobial peptides against the mammalian cells and assembly therein.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Molecular and Structural Biology Division, Central Drug Research Institute, CSIR, Lucknow-226001, India
| | | | | | | | | | | | | |
Collapse
|
49
|
Park KH, Nan YH, Park Y, Kim JI, Park IS, Hahm KS, Shin SY. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1193-203. [PMID: 19285481 DOI: 10.1016/j.bbamem.2009.02.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/29/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
Abstract
To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH(2) (X indicates Leu or Lys/Arg), was synthesized. K(6)L(2)W(3) displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K(8)W(3), K(7)LW(3) and K(6)L(2)W(3)) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R(8)W(3), R(7)LW(3) and R(6)L(2)W(3)), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance of d-enantiomers (K(6)L(2)W(3)-D and R(6)L(2)W(3)-D) and Orn/Nle-containing peptides (O(6)L(2)W(3) and O(6)L(2)W(3)) to trypsin digestion compared with the rapid breakdown of the l-enantiomers (K(6)L(2)W(3) and R(6)L(2)W(3)), highlights the clinical potential of such peptides. K(6)L(2)W(3), R(6)L(2)W(3), K(6)L(2)W(3)-D and R(6)L(2)W(3)-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (7:3, v/v) liposomes. Confocal microscopy showed that these peptides penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model peptides, containing K(6)L(2)W(3), K(5)L(3)W(3), R(6)L(2)W(3), O(6)L(2)W(3), O(6)L(2)W(3), and K(6)L(2)W(3)-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these peptides have potential for future development as novel antimicrobial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Ka Hyon Park
- Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang ST, Kim JI, Shin SY. Effect of dimerization of a beta-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity. Biotechnol Lett 2008; 31:233-7. [PMID: 18815734 DOI: 10.1007/s10529-008-9848-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
PST13-RK (KKKFPWWWPFKKK-NH(2)) is an improved derivative of tritrpticin adopting a beta-turn structure. In order to investigate the effect of dimerization of PST13-RK on antimicrobial activity and mammalian cell toxicity, we designed and synthesized its Cys- and Lys-linked dimers. The dimerization of PST13-RK resulted in a 2-4 fold decreased antimicrobial activity against Gram-positive and Gram-negative bacteria. However, the dimers showed a large increase in mammalian cell toxicity against mouse NIH-3T3, human MDA-MB-361, and human A549 cells. These results suggested that PST13-RK is active as a monomer to bacterial cells but as an oligomer to mammalian cells. Since the dimeric PST13-RK is much more effective against the cancer cells than the monomer, it might be an attractive candidate for anticancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sung-Tae Yang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | | | | |
Collapse
|