1
|
Safe S, Farkas E, Hailemariam AE, Oany AR, Sivaram G, Tsui WNT. Activation of Genes by Nuclear Receptor/Specificity Protein (Sp) Interactions in Cancer. Cancers (Basel) 2025; 17:284. [PMID: 39858066 PMCID: PMC11763981 DOI: 10.3390/cancers17020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The human nuclear receptor (NR) superfamily consists of 48 genes that are ligand-activated transcription factors that play a key role in maintaining cellular homeostasis and in pathophysiology. NRs are important drug targets for both cancer and non-cancer endpoints as ligands for these receptors can act as agonists, antagonists or inverse agonists to modulate gene expression. With two exceptions, the classical mechanism of action of NRs involves their interactions as monomers, dimers or heterodimers with their cognate response elements (cis-elements) in target gene promoters. Several studies showed that a number of NR-regulated genes did not directly bind their corresponding cis-elements and promoter analysis identified that NR-responsive gene promoters contained GC-rich sequences that bind specificity protein 1 (Sp1), Sp3 and Sp4 transcription factors (TFs). This review is focused on identifying an important sub-set of Sp-regulated genes that are indirectly coregulated through interactions with NRs. Subsequent studies showed that many NRs directly bind Sp1 (or Sp3 and Sp4), the NR/Sp complexes bind GC-rich sites to regulate gene expression and the NR acts as a ligand-modulated nuclear cofactor. In addition, several reports show that NR-responsive genes contain cis-elements that bind both Sp TFs and NRs, and mutation of either cis-element results in loss of NR-responsive (inducible and/or basal). Regulation of these genes involves interactions between DNA-bound Sp TFs with proximal or distal DNA-bound NRs, and, in some cases, other nuclear cofactors are required for gene expression. Thus, many NR-responsive genes are regulated by NR/Sp complexes, and these genes can be targeted by ligands that target NRs and also by drugs that induce degradation of Sp1, Sp3 and Sp4.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA; (E.F.); (A.E.H.); (A.R.O.); (G.S.); (W.N.T.T.)
| | | | | | | | | | | |
Collapse
|
2
|
Mulholland PJ, Padula AE, Wilhelm LJ, Park B, Grant KA, Ferguson BM, Cervera-Juanes R. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. Transl Psychiatry 2023; 13:364. [PMID: 38012158 PMCID: PMC10682415 DOI: 10.1038/s41398-023-02676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Larry J Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Byung Park
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kathleen A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Betsy M Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Juanes RC, Mulholland P, Padula A, Wilhelm L, Park B, Grant K, Ferguson B. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. RESEARCH SQUARE 2023:rs.3.rs-3315122. [PMID: 37790552 PMCID: PMC10543433 DOI: 10.21203/rs.3.rs-3315122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms including alternative promoters in KCNN3 that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to impact firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betsy Ferguson
- Oregon Health & Sciences University/Oregon National Primate Research Center
| |
Collapse
|
4
|
Jeffrey DA, Russell A, Guerrero MB, Fontaine JT, Romero P, Rosehart AC, Dabertrand F. Estrogen regulates myogenic tone in hippocampal arterioles by enhanced basal release of nitric oxide and endothelial SK Ca channel activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553442. [PMID: 37645715 PMCID: PMC10462022 DOI: 10.1101/2023.08.15.553442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Arteries and arterioles exhibit myogenic tone, a partially constricted state that allows further constriction or dilation in response to moment-to-moment fluctuations in blood pressure. The vascular endothelium that lines the internal surface of all blood vessels controls a wide variety of essential functions, including the contractility of the adjacent smooth muscle cells by providing a tonic vasodilatory influence. Studies conducted on large (pial) arteries on the surface of the brain have shown that estrogen lowers myogenic tone in female mice by enhancing nitric oxide (NO) release from the endothelium, however, whether this difference extends to the intracerebral microcirculation remains ambiguous. The existing incomplete picture of sex differences in cerebrovascular physiology combined with a deficiency in treatments that fully restore cognitive function after cerebrovascular accidents places heavy emphasis on the necessity to investigate myogenic tone regulation in the microcirculation from both male and female mice. We hypothesized that sex-linked hormone regulation of myogenic tone extends its influence on the microcirculation level, and sought to characterize it in isolated arterioles from the hippocampus, a major cognitive brain area. Using diameter measurements both in vivo (acute cranial window vascular diameter) and ex vivo (pressure myography experiments), we measured lower myogenic tone responses in hippocampal arterioles from female than male mice. By using a combined surgical and pharmacological approach, we found myogenic tone in ovariectomized (OVX) female mice matches that of males, as well as in endothelium-denuded arterioles. Interestingly, eNOS inhibition induced a larger constriction in female arterioles but only partially abolished the difference in tone. We identified that the remnant difference was mediated by a higher activity and expression of the small-conductance Ca 2+ -sensitive K + (SK) channels. Collectively, these data indicate that eNOS and SK channels exert greater vasodilatory influence over myogenic tone in female mice at physiological pressures.
Collapse
|
5
|
Ca 2+-Activated K + Channels and the Regulation of the Uteroplacental Circulation. Int J Mol Sci 2023; 24:ijms24021349. [PMID: 36674858 PMCID: PMC9867535 DOI: 10.3390/ijms24021349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Adequate uteroplacental blood supply is essential for the development and growth of the placenta and fetus during pregnancy. Aberrant uteroplacental perfusion is associated with pregnancy complications such as preeclampsia, fetal growth restriction (FGR), and gestational diabetes. The regulation of uteroplacental blood flow is thus vital to the well-being of the mother and fetus. Ca2+-activated K+ (KCa) channels of small, intermediate, and large conductance participate in setting and regulating the resting membrane potential of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) and play a critical role in controlling vascular tone and blood pressure. KCa channels are important mediators of estrogen/pregnancy-induced adaptive changes in the uteroplacental circulation. Activation of the channels hyperpolarizes uteroplacental VSMCs/ECs, leading to attenuated vascular tone, blunted vasopressor responses, and increased uteroplacental blood flow. However, the regulation of uteroplacental vascular function by KCa channels is compromised in pregnancy complications. This review intends to provide a comprehensive overview of roles of KCa channels in the regulation of the uteroplacental circulation under physiological and pathophysiological conditions.
Collapse
|
6
|
Xiong W, Jiang Y, Yu T, Zheng Y, Jiang L, Shen X, Tang Y, Lin L. Estrogen-regulated expression of SK3 channel in rat colonic smooth muscle contraction. Life Sci 2020; 263:118549. [DOI: 10.1016/j.lfs.2020.118549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
|
7
|
Oliver DK, Intson K, Sargin D, Power SK, McNabb J, Ramsey AJ, Lambe EK. Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour. Neuropharmacology 2020; 168:108015. [PMID: 32092443 DOI: 10.1016/j.neuropharm.2020.108015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Social isolation raises the risk for mood disorders associated with serotonergic disruption. Yet, the underlying mechanisms by which the stress of social isolation increases risk are not well understood. Men and women are differently vulnerable; however, this modulating role of sex is challenging to study in humans under carefully controlled conditions. Therefore, we investigated this question in mice of both sexes, asking how the long-term stress of social isolation (from weaning into adulthood) affects the excitability of serotonin neurons in the dorsal raphe nucleus as well as mouse behaviour. The electrophysiological experiments and the first set of behavioural tests were conducted in young adult mice, with additional behavioural assays completed as the mice matured to assess the stability of their behavioural phenotype. We found that social isolation exerted seemingly-opposite effects in male and female mice, relative to their respective group-housed littermate controls. This distinctive pattern was observed for the effect of social isolation on the control of serotonergic neuron excitability via the SK family of calcium-activated potassium channels. Furthermore, we observed a similar and consistent pattern on tests relevant to assessing the efficacy of anti-depressant medicines, including the forced swim test, the novelty-suppressed feeding test, and the sucrose preference test. These findings underscore the concept that stress-elicited illness manifests distinctly in males and females and that treatments aimed at restoring serotonergic function may require a sex-specific approach. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- David K Oliver
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Derya Sargin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Saige K Power
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Janice McNabb
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Amy J Ramsey
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Evelyn K Lambe
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of OBGYN, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Vail G, Roepke TA. Membrane-initiated estrogen signaling via Gq-coupled GPCR in the central nervous system. Steroids 2019; 142:77-83. [PMID: 29378226 PMCID: PMC6064680 DOI: 10.1016/j.steroids.2018.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/08/2017] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
Abstract
The last few decades have revealed increasing complexity and depth to our knowledge of receptor-mediated estrogen signaling. Nuclear estrogen receptors (ERs) ERα and ERβ remain the fundamental dogma, but recent research targeting membrane-bound ERs urges for a more expanded view on ER signaling. ERα and ERβ are also involved in membrane-delineated signaling alongside membrane-specific G protein-coupled estrogen receptor 1 (GPER1), ER-X, and the Gq-coupled membrane ER (Gq-mER). Membrane ERs are responsible for eliciting rapid responses to estrogen signaling, and their importance has been increasingly indicated in central nervous system (CNS) regulation of such functions as reproduction, energy homeostasis, and stress. While the Gq-mER signaling pathway is well characterized, the receptor structure and gene remains uncharacterized, although it is not similar to the nuclear ERα/β. This review will describe the current knowledge of this putative membrane ER and its selective ligand, STX, from its initial characterization in hypothalamic melanocortin circuitry to recent research exploring its role in the CNS outside of the hypothalamus.
Collapse
Affiliation(s)
- Gwyndolin Vail
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
9
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm Behav 2018; 104:146-155. [PMID: 29626486 PMCID: PMC6196116 DOI: 10.1016/j.yhbeh.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
10
|
Hu XQ, Chen M, Dasgupta C, Xiao D, Huang X, Yang S, Zhang L. Chronic hypoxia upregulates DNA methyltransferase and represses large conductance Ca2+-activated K+ channel function in ovine uterine arteries. Biol Reprod 2018; 96:424-434. [PMID: 28203702 DOI: 10.1095/biolreprod.116.145946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
Chronic hypoxia during gestation suppresses large-conductance Ca2+-activated K+ (BKCa) channel function and impedes uterine arterial adaptation to pregnancy. This study tested the hypothesis that chronic hypoxia has a direct effect in upregulating DNA methyltransferase (DNMT) and epigenetically repressing BKCa channel beta-1 subunit (KCNMB1) expression in uterine arteries. Resistance-sized uterine arteries were isolated from near-term pregnant sheep maintained at ∼300 m above sea level or animals acclimatized to high-altitude (3,801 m) hypoxia for 110 days during gestation. For ex vivo hypoxia treatment, uterine arteries from normoxic animals were treated with 21.0% O2 or 10.5% O2 for 48 h. High-altitude hypoxia significantly upregulated DNMT3b expression and enzyme activity in uterine arteries. Similarly, ex vivo hypoxia treatment upregulated DNMT3b expression and enzyme activity that was blocked by a DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza). Of importance, 5-Aza inhibited hypoxia-induced hypermethylation of specificity protein (SP) 1 binding site at the KCNMB1 promoter and restored transcription factor binding to the KCNMB1 promoter, resulting in the recovery of KCNMB1 gene expression in uterine arteries. Furthermore, 5-Aza blocked the effect of hypoxia and rescued BKCa channel activity and reversed hypoxia-induced decrease in BKCa channel-mediated relaxations and increase in myogenic tone of uterine arteries. Collectively, these results suggest that chronic hypoxia during gestation upregulates DNMT expression and activity, resulting in hypermethylation and repression of KCNMB1 gene and BKCa channel function, impeding uterine arterial adaptation to pregnancy.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Man Chen
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xiaohui Huang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
11
|
Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, Jaffe IZ. Sex-Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. J Am Heart Assoc 2018; 7:JAHA.117.007675. [PMID: 29453308 PMCID: PMC5850194 DOI: 10.1161/jaha.117.007675] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The incidence of obesity is rising, particularly among women. Microvascular dysfunction is more common with female sex, obesity, and hyperlipidemia and predicts adverse cardiovascular outcomes, but the molecular mechanisms are unclear. Because obesity is associated with mineralocorticoid receptor (MR) activation, we tested the hypothesis that MR in endothelial cells contribute to sex differences in resistance vessel dysfunction in response to cardiometabolic risk factors. Methods and Results Male and female endothelial cell–specific MR knockout mice and MR‐intact littermates were randomized to high‐fat‐diet–induced obesity or obesity with hyperlipidemia induced by adeno‐associated virus–based vector targeting transfer of the mutant stable form (DY mutation) of the human PCSK9 (proprotein convertase subtilisin/kexin type 9) gene and compared with control diet. Female but not male mice were sensitive to obesity‐induced endothelial dysfunction, whereas endothelial function was impaired in obese hyperlipidemic males and females. In males, obesity or hyperlipidemia decreased the nitric oxide component of vasodilation without altering superoxide production or endothelial nitric oxide synthase expression or phosphorylation. Decreased nitric oxide content in obese males was overcome by enhanced endothelium‐derived hyperpolarization–mediated relaxation along with increased SK3 expression. Conversely, in females, endothelium‐derived hyperpolarization was significantly impaired by obesity with lower IK1 expression and by hyperlipidemia with lower IK1 and SK3 expression, loss of H2O2‐mediated vasodilation, and increased superoxide production. Endothelial cell–MR deletion prevented endothelial dysfunction induced by risk factors only in females. Rather than restoring endothelium‐derived hyperpolarization in females, endothelial cell–MR deletion enhanced nitric oxide and prevented hyperlipidemia‐induced oxidative stress. Conclusions These data reveal distinct mechanisms driving resistance vessel dysfunction in males versus females and suggest that personalized treatments are needed to prevent the progression of vascular disease in the setting of obesity, depending on both the sex and the metabolic profile of each patient.
Collapse
Affiliation(s)
- Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Sitara Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Imran J Anwar
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
12
|
Köhler R, Oliván-Viguera A, Wulff H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. ADVANCES IN PHARMACOLOGY 2016; 77:65-104. [DOI: 10.1016/bs.apha.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Kelly MJ, Rønnekleiv OK. Minireview: neural signaling of estradiol in the hypothalamus. Mol Endocrinol 2015; 29:645-57. [PMID: 25751314 PMCID: PMC4415204 DOI: 10.1210/me.2014-1397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Martin J Kelly
- Departments of Physiology and Pharmacology (M.J.K., O.K.R.) and Anesthesiology and Perioperative Medicine (O.K.R.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (M.J.K., O.K.R.), Oregon National Primate Research Center; Oregon Health and Science University, Beaverton, Oregon 97006
| | | |
Collapse
|
14
|
Ovariectomy-induced reductions in endothelial SK3 channel activity and endothelium-dependent vasorelaxation in murine mesenteric arteries. PLoS One 2014; 9:e104686. [PMID: 25105912 PMCID: PMC4126749 DOI: 10.1371/journal.pone.0104686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenteric artery endothelium expresses both small (SK3)- and intermediate (IK1)-conductance Ca(2+)-activated K(+) (KCa) channels whose activity modulates vascular tone via endothelium-dependent hyperpolarization (EDH). Two other major endothelium-dependent vasodilation pathways utilize nitric oxide (NO) and prostacyclin (PGI2). To examine how ovariectomy (ovx) affects the basal activity and acetylcholine (ACh)-induced activity of each of these three pathways to vasorelaxation, we used wire myograph and electrophysiological recordings. The results from functional studies using isolated murine mesenteric arteries show that ovx reduces ACh-induced endothelium-dependent vasodilation due to decreased EDH and NO contributions, although the contribution of PGI2 is upregulated. Both endothelial SK3 and IK1 channels are functionally coupled to TRPV4 (transient receptor potential, vanilloid type 4) channels: the activation of TRPV4 channels activates SK3 and IK1 channels, leading to EDH-mediated vascular relaxation. The decreased EDH-mediated vasorelaxation in ovx vessels is due to reduced SK3 channel contribution to the pathway. Further, whole-cell recordings using dispersed endothelial cells also show reduced SK3 current density in ovx endothelial cells. Consequently, activation of TRPV4 channels induces smaller changes in whole-cell current density. Thus, ovariectomy leads to a reduction in endothelial SK3 channel activity thereby reducing the SK3 contribution to EDH vasorelaxation.
Collapse
|
15
|
Expression of the small conductance Ca²⁺-activated potassium channel subtype 3 (SK3) in rat uterus after stimulation with 17β-estradiol. PLoS One 2014; 9:e87652. [PMID: 24505302 PMCID: PMC3914860 DOI: 10.1371/journal.pone.0087652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023] Open
Abstract
Preterm births accounts for roughly 9% of all births worldwide and can have detrimental or even lethal consequences for the infant. However to develop new treatment that will lower the rate of preterm births, more knowledge is required on the factors contributing to the contraction and relaxation of the myometrium. The small conductance Ca2+-activated potassium channel subtype 3 (SK3) has been identified in the myometrium of several species including humans, mice and rats, but with great inter species variation of the expression pattern and regulation. The aim of this study was to investigate the expression of SK3 in the uterus of rats stimulated with 17β-estradiol and progesterone in order to get an in depth understanding of the rat uterine SK3. Using immunohistochemistry SK3 was localized to the glandular and luminal endometrial lamina epitheliali. Furthermore, a weak signal was observed in the myometrium. Using Western blot the protein level of SK3 was found to increase in uteri from animals treated with 17β-estradiol, an effect that was not reflected at the mRNA level. The levels of mRNA for SK3 were significantly lower in the uterus of 17β-estradiol-treated animals than in the uterus of ovariectomized animals. We conclude that the SK channels are present in the endometrial epithelium, and possibly also in the myometrium of the rat uterus. Furthermore, the hormonal effect on SK3 caused by 17β-estradiol includes divergent regulation at mRNA and protein levels.
Collapse
|
16
|
Abstract
AIMS Endothelium-dependent vasorelaxation is mediated by endothelium-derived relaxing factor and endothelium-derived hyperpolarizing factor (EDHF). However, the molecular entity of EDHF remains unclear. The present study examined whether hydrogen sulfide (H₂S) acts as EDHF and how H₂S mediates EDHF pathways from endothelial origination to downstream target of smooth muscle cells (SMCs). RESULTS We found that knocking-out the expression of cystathionine γ-lyase (CSE) in mice (CSE-knockout [KO]) elevated resting-membrane-potential of SMCs and eliminated methacholine-induced endothelium-dependent relaxation of mesenteric arteries, but not that of aorta. Methacholine, a cholinergic-muscarinic agonist, hyperpolarized SMC in endothelium-intact mesenteric arteries from wide-type mice. This effect was inhibited by muscarinic antagonist (atropine) or the co-application of charybdotoxin and apamin, which blocked intermediate- and small-conductance KCa (IKCa and SKCa) channels, or abolished in CSE-KO mice. Supplementation of exogenous H₂S hyperpolarized vascular SMCs and endothelial cells from wide-type and CSE-KO mice. Both methacholine and H₂S induced greater SMC hyperpolarization of female wide-type mesenteric arteries than that of male ones. H2S-induced hyperpolarization is blocked by -SH oxidants and -SSH inhibitor. The expression of SK2.3 but not IK3.1 channel in vascular tissues was increased by H₂S and decreased by CSE inhibitor or CSE gene KO. INNOVATION AND CONCLUSIONS Taken together, H₂S is an EDHF. The identification of H2S as an EDHF will not only solve one of the long-lasting perplexing puzzles for the mechanisms underlying endothelium-dependent vasorelaxation, but also shed light on potential therapeutic effects of H₂S on pathological abnormalities in peripheral resistance arteries.
Collapse
Affiliation(s)
- Guanghua Tang
- 1 Department of Biology, Lakehead University , Thunder Bay, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Zhu R, Hu XQ, Xiao D, Yang S, Wilson SM, Longo LD, Zhang L. Chronic hypoxia inhibits pregnancy-induced upregulation of SKCa channel expression and function in uterine arteries. Hypertension 2013; 62:367-74. [PMID: 23716582 DOI: 10.1161/hypertensionaha.113.01236] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small-conductance Ca(2+)-activated K(+) (SKCa) channels are crucial in regulating vascular tone and blood pressure. The present study tested the hypothesis that SKCa channels play an important role in uterine vascular adaptation in pregnancy, which is inhibited by chronic hypoxia during gestation. Uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Immunohistochemistry revealed the presence of SKCa channels type 2 (SK2) and type 3 (SK3) in both smooth muscles and endothelium of uterine arteries. The expression of SK2 and SK3 channels was significantly increased during pregnancy, which was inhibited by chronic hypoxia. In normoxic animals, both SKCa channel opener NS309 and a large-conductance (BKCa) channel opener NS1619 relaxed norepinephrine-contracted uterine arteries in pregnant but not nonpregnant sheep. These relaxations were inhibited by selective SKCa and BKCa channel blockers, respectively. NS309-induced relaxation was largely endothelium-independent. In high-altitude hypoxic animals, neither NS1691 nor NS309 produced significant relaxation of uterine arteries in either nonpregnant or pregnant sheep. Similarly, the role of SKCa channels in regulating the myogenic reactivity of uterine arteries in pregnant animals was abrogated by chronic hypoxia. Accordingly, the enhanced SKCa channel activity in uterine arterial myocytes of pregnant animals was ablated by chronic hypoxia. The findings suggest a novel mechanism of SKCa channels in regulating myogenic adaptation of uterine arteries in pregnancy and in the maladaptation of uteroplacental circulation caused by chronic hypoxia during gestation.
Collapse
Affiliation(s)
- Ronghui Zhu
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front Neuroendocrinol 2012; 33:376-87. [PMID: 22871514 PMCID: PMC3618441 DOI: 10.1016/j.yfrne.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/07/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
It is well known that many of the actions of estrogens in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there now exists compelling evidence for membrane estrogen receptors in hypothalamic and other brain neurons. But, it is not well understood how estrogens signal via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that estrogens can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, estrogens can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by estrogens in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
19
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
|
21
|
Pierce SL, England SK. SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am J Physiol Endocrinol Metab 2010; 299:E640-6. [PMID: 20682843 PMCID: PMC2957868 DOI: 10.1152/ajpendo.00063.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of the small-conductance calcium-activated K(+) channel 3 (SK3) in transgenic mice compromises parturition, suggesting that the SK3 channel plays a role in pregnancy. In wild-type mouse myometrium, expression of SK3 transcript and protein is significantly reduced during pregnancy, but the mechanism(s) responsible for this attenuation of channel expression is unknown. The promoter region of the SK3-encoding mouse KCNN3 gene contains two binding sites for specificity protein (Sp) transcription factors, two of which are expressed in the uterus: Sp1, which enhances gene transcription in response to estrogen; and Sp3, which competes for the same binding motif as Sp1 and can repress gene expression. We investigated the hypothesis that Sp1 and Sp3 regulate SK3 channel expression during pregnancy. In mouse myometrium, Sp1 expression was reduced during late gestation, whereas Sp3 expression levels were constant throughout pregnancy. Using a reporter system, we found that Sp1 overexpression resulted in a significant increase in SK3 promoter activation and that Sp3 cotransfection reduced promoter activation to basal levels. These findings indicate that Sp3 outcompetes Sp1 to decrease SK3 transcription. To determine whether high levels of estrogen in vivo can affect the regulation of SK3 protein levels by Sp factors, ovariectomized mice were implanted with a 17β-estradiol or placebo pellet for 3 wk; estrogen-treated mice had reduced uterine SK3 protein expression compared with placebo-treated counterparts. In human myometrial cells overexpressing Sp1, estrogen treatment stimulated expression of the SK3 transcript. Overall, our findings indicate that Sp1 and Sp3 compete to regulate SK3 channel expression during pregnancy in response to stimulation by estrogen.
Collapse
Affiliation(s)
- Stephanie L Pierce
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
22
|
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192:275-83. [PMID: 20810260 DOI: 10.1016/j.aanat.2010.07.010] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Sp1 and Sp3 are transcription factors expressed in all mammalian cells. These factors are involved in regulating the transcriptional activity of genes implicated in most cellular processes. Dysregulation of Sp1 and Sp3 is observed in many cancers and diseases. Due to the amino acid sequence similarity of the DNA binding domains, Sp1 and Sp3 recognize and associate with the same DNA element with similar affinity. However, others and our laboratory demonstrated that these two factors possess different properties and exert different functional roles. Both Sp1 and Sp3 can interact with and recruit a large number of proteins including the transcription initiation complex, histone modifying enzymes and chromatin remodeling complexes, which strongly suggest that Sp1 and Sp3 are important transcription factors in the remodeling chromatin and the regulation of gene expression. In this review, the role of Sp1 and Sp3 in normal and cancer cell biology and the multiple mechanisms deciding the functional roles of Sp1 and Sp3 will be presented.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
23
|
Hopf FW, Bowers MS, Chang SJ, Chen BT, Martin M, Seif T, Cho SL, Tye K, Bonci A. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 2010; 65:682-94. [PMID: 20223203 DOI: 10.1016/j.neuron.2010.02.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, San Francisco, CA 94608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Burger NZ, Kuzina OY, Osol G, Gokina NI. Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+. Am J Physiol Endocrinol Metab 2009; 296:E503-12. [PMID: 19126786 PMCID: PMC2660142 DOI: 10.1152/ajpendo.90517.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular microcirculatory tone. This study explores the role of estrogen in controlling EDHF-mediated vasodilation of uterine resistance arteries of the rat and also analyzes the contribution of endothelial cell (EC) Ca(2+) signaling to this process. A parallel study was also performed with mesenteric arteries to provide comparison with a nonreproductive vasculature. Mature female rats underwent ovariectomy, with one half receiving 17beta-estradiol replacement (OVX+E) and the other half serving as estrogen-deficient controls (OVX). Uterine or mesenteric resistance arteries were harvested, cannulated, and pressurized. Nitric oxide and prostacyclin production were inhibited with 200 microM N(G)-nitro-l-arginine and 10 microM indomethacin, respectively. ACh effectively dilated the arteries preconstricted with phenylephrine but failed to induce dilation of vessels preconstricted with high-K(+) solution. ACh EC(50) values were decreased by estrogen replacement by five- and twofold in uterine and mesenteric arteries, respectively. As evidenced by fura-2-based measurements of EC cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), estrogen replacement was associated with increased basal and ACh-stimulated EC [Ca(2+)](i) rise in uterine, but not mesenteric, vessels. These data demonstrate that EDHF contributes to endothelium-dependent vasodilation of uterine and mesenteric resistance arteries and that estrogen controls EDHF-related mechanism(s) more efficiently in reproductive vs. nonreproductive vessels. Enhanced endothelial Ca(2+) signaling may be an important underlying mechanism in estrogenic modulation of EDHF-mediated vasodilation in small resistance uterine arteries.
Collapse
Affiliation(s)
- Natalie Z Burger
- Department of Obstetrics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
25
|
Roepke TA, Qiu J, Bosch MA, Rønnekleiv OK, Kelly MJ. Cross-talk between membrane-initiated and nuclear-initiated oestrogen signalling in the hypothalamus. J Neuroendocrinol 2009; 21:263-70. [PMID: 19187465 PMCID: PMC2796511 DOI: 10.1111/j.1365-2826.2009.01846.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is increasingly evident that 17beta-oestradiol (E(2)), via a distinct membrane oestrogen receptor (Gq-mER), can rapidly activate kinase pathways to have multiple downstream actions in central nervous system (CNS) neurones. We have found that E(2) can rapidly reduce the potency of the GABA(B) receptor agonist baclofen and mu-opioid receptor agonist DAMGO to activate G-protein-coupled, inwardly rectifying K(+) (GIRK) channels in hypothalamic neurones, thereby increasing the excitability (firing activity) of pro-opiomelanocortin (POMC) and dopamine neurones. These effects are mimicked by the membrane impermeant E(2)-BSA and a new ligand (STX) that is selective for the Gq-mER that does not bind to ERalpha or ERbeta. Both E(2) and STX are fully efficacious in attenuating the GABA(B) response in ERalpha, ERbeta and GPR 30 knockout mice in an ICI 182 780 reversible manner. These findings are further proof that E(2) signals through a unique plasma membrane ER. We have characterised the coupling of this Gq-mER to a Gq-mediated activation of phospholipase C leading to the up-regulation of protein kinase Cdelta and protein kinase A activity in these neurones, which ultimately alters gene transcription. Finally, as proof of principle, we have found that STX, similar to E(2), reduces food intake and body weight gain in ovariectomised females. STX, presumably via the Gq-mER, also regulates gene expression of a number of relevant targets including cation channels and signalling molecules that are critical for regulating (as a prime example) POMC neuronal excitability. Therefore, E(2) can activate multiple receptor-mediated pathways to modulate excitability and gene transcription in CNS neurones that are critical for controlling homeostasis and motivated behaviors.
Collapse
Affiliation(s)
- Troy A. Roepke
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Jian Qiu
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
26
|
Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41:263-75. [PMID: 18772268 PMCID: PMC2582054 DOI: 10.1677/jme-08-0103] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
17beta-estradiol binds to the estrogen receptor (ER) to activate gene expression or repression and this involves both genomic (nuclear) and non-genomic (extranuclear) pathways. Genomic pathways include the classical interactions of ligand-bound ER dimers with estrogen-responsive elements in target gene promoters. ER-dependent activation of gene expression also involves DNA-bound ER that subsequently interacts with other DNA-bound transcriptions factors and direct ER-transcription factor (protein-protein) interactions where ER does not bind promoter DNA. Ligand-induced activation of ER/specificity protein (Sp) and ER/activating protein-1 [(AP-1); consisting of jun/fos] complexes are important pathways for modulating expression of a large number of genes. This review summarizes some of the characteristics of ER/Sp- and ER/AP-1-mediated transactivation, which are dependent on ligand structure, cell context, ER-subtype (ERalpha and ERbeta), and Sp protein (SP1, SP3, and SP4) and demonstrates that this non-classical genomic pathway is also functional in vivo.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | |
Collapse
|
27
|
Wu F, Xu R, Kim K, Martin J, Safe S. In vivo profiling of estrogen receptor/specificity protein-dependent transactivation. Endocrinology 2008; 149:5696-705. [PMID: 18635651 PMCID: PMC2584598 DOI: 10.1210/en.2008-0720] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/10/2008] [Indexed: 01/14/2023]
Abstract
17beta-Estradiol (E2) activates the estrogen receptor (ER) through multiple genomic and nongenomic pathways in various tissues/organs. ERalpha/specificity protein-dependent activation of E2-responsive genes containing GC-rich promoters has been identified in breast and other cancer cell lines, and in this study, we describe transgenic animals overexpressing a transgene containing three tandem GC-rich sites linked to a minimal TATA or thymidine kinase promoter and a luciferase gene. Several mouse lines expressing the transgenes were characterized and, in line 15, E2 induced a 9-fold increase in luciferase activity in the female mouse uterus, and the synthetic estrogens bisphenol A and nonylphenol also induced uterine luciferase activity. The pure antiestrogen ICI 182,780 induced luciferase activity in the mouse uterus, and similar results were observed for ICI 182,780 in breast cancer cells transfected with this construct. Differences in the ER agonist and antagonist activities of E2, nonylphenol, bisphenol A, and ICI 182,780 were investigated in the male testis and penis and the male and female stomach in line 15 transgenic mice. All of these tissues were hormone responsive; however, the patterns of induced or repressed luciferase activity were ligand structure, tissue, and sex dependent. These results demonstrate for the first time hormonal activation or repression of a GC-rich promoter in vivo, and the results suggest that the ERalpha/specificity protein pathway may contribute to E2-dependent induction and repression of genes.
Collapse
Affiliation(s)
- Fei Wu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
28
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol 2008; 290:14-23. [PMID: 18538919 PMCID: PMC2601664 DOI: 10.1016/j.mce.2008.04.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/24/2022]
Abstract
It is well known that many of the actions of 17beta-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. But it is not well understood how estrogen signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, L334, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | |
Collapse
|
29
|
Pierce SL, Kresowik JDK, Lamping KG, England SK. Overexpression of SK3 channels dampens uterine contractility to prevent preterm labor in mice. Biol Reprod 2008; 78:1058-63. [PMID: 18305226 DOI: 10.1095/biolreprod.107.066423] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanisms that control the timing of labor have yet to be fully characterized. In a previous study, the overexpression of small conductance calcium-activated K(+) channel isoform 3 in transgenic mice, Kcnn3(tm1Jpad)/Kcnn3(tm1Jpad) (also known as SK3(T/T)), led to compromised parturition, which indicates that KCNN3 (also known as SK3) plays an important role in the delivery process. Based on these findings, we hypothesized that SK3 channel expression must be downregulated late in pregnancy to enable the uterus to produce the forceful contractions required for parturition. Thus, we investigated the effects of SK3 channel expression on gestation and parturition, comparing SK3(T/T) mice to wild type (WT) mice. Here, we show in WT mice that SK3 transcript and protein are significantly reduced during pregnancy. We also found the force produced by uterine strips from Pregnancy Day 19 (P19) SK3(T/T) mice was significantly less than that measured in WT or SK3 knockout control (SK3(DOX)) uterine strips, and this effect was reversed by application of the SK3 channel inhibitor apamin. Moreover, two treatments that induce labor in mice failed to result in complete delivery in SK3(T/T) mice within 48 h after injection. Thus, stimuli that initiate parturition under normal circumstances are insufficient to coordinate the uterine contractions needed for the completion of delivery when SK3 channel activity is in excess. Our data indicate that SK3 channels must be downregulated for the gravid uterus to generate labor contractions sufficient for delivery in both term and preterm mice.
Collapse
Affiliation(s)
- Stephanie L Pierce
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
30
|
Palmer ML, Schiller KR, O'Grady SM. Apical SK potassium channels and Ca2+-dependent anion secretion in endometrial epithelial cells. J Physiol 2007; 586:717-26. [PMID: 18048454 DOI: 10.1113/jphysiol.2007.142877] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Apical uridine triphosphate (UTP) stimulation was shown to increase short circuit current (I(sc)) in immortalized porcine endometrial gland epithelial monolayers. Pretreatment with the bee venom toxin apamin enhanced this response. Voltage-clamp experiments using amphotericin B-permeablized monolayers revealed that the apamin-sensitive current increased immediately after UTP stimulation and was K(+) dependent. The current-voltage relationship was slightly inwardly rectifying with a reversal potential of -52 +/- 2 mV, and the P(K)/P(Na) ratio was 14, indicating high selectivity for K(+). Concentration-response relationships for apamin and dequalinium had IC(50) values of 0.5 nm and 1.8 microm, respectively, consistent with data previously reported for SK3 channels in excitable cells and hepatocytes. Treatment of monolayers with 50 microm BAPTA-AM completely blocked the effects of UTP on K(+) channel activation, indicating that the apamin-sensitive current was also Ca(2+) dependent. Moreover, channel activation was blocked by calmidazolium (IC(50) = 5 microm), suggesting a role for calmodulin in Ca(2+)-dependent regulation of channel activity. RT-PCR experiments demonstrated expression of mRNA for the SK1 and SK3 channels, but not SK2 channels. Treatment of monolayers with 20 nm oestradiol-17beta produced a 2-fold increase in SK3 mRNA, a 2-fold decrease in SK1 mRNA, but no change in GAPDH mRNA expression. This result correlated with a 2.5-fold increase in apamin-sensitive K(+) channel activity in the apical membrane. We speculate that SK channels provide a mechanism for rapidly sensing changes in intracellular Ca(2+) near the apical membrane, evoking immediate hyperpolarization necessary for increasing the driving force for anion efflux following P2Y receptor activation.
Collapse
Affiliation(s)
- Melissa L Palmer
- Department of Physiology, 495 Animal Science/Veterinary Medicine Bldg, University of Minnesota, 1988 Fitch Ave., St Paul, MN 55108, USA
| | | | | |
Collapse
|
31
|
Zhou Z, Jiang DJ, Jia SJ, Xiao HB, Xiao B, Li YJ. Down-regulation of endogenous nitric oxide synthase inhibitors on endothelial SK3 expression. Vascul Pharmacol 2007; 47:265-71. [PMID: 17869187 DOI: 10.1016/j.vph.2007.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 05/23/2007] [Accepted: 08/02/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate role of endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) in down-regulation of the expression of endothelial SK3 in atherosclerosis. METHODS Apolipoprotein E deficient (apo E(-/-)) mice aged 11 approximately 12 weeks were treated with ADMA (5 mg/kg per day, subcutaneous injection) for 4 weeks. Cultured human umbilical venous endothelial cells (HUVECs) were treated with different concentrations of lysophosphatidylcholine (LPC) or ADMA for 48 h. Plasma levels of ADMA were determined by high performance liquid chromatogram (HPLC); protein and mRNA levels of SK3 in the aortas of mice and cultured cells were detected by immunofluorescence, western blot and RT-PCR, respectively. RESULTS Concomitantly with the elevated plasma levels of ADMA, the expressions of both SK3 protein and mRNA in aortas of apo E(-/-) mice were significantly reduced in comparison to those of the wild-type mice. Moreover, 4-week treatment of ADMA made levels of SK3 expression even lower. In cultured HUVECs, either LPC or ADMA notably decreased the expressions of both SK3 protein and mRNA in a concentration dependent manner. CONCLUSIONS Endogenous ADMA may be an important factor for down-regulation of the expression of endothelial SK3 in atherosclerotic animals.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | | | | | | | | | | |
Collapse
|
32
|
Kundu P, Alioua A, Stefani E, Toro L. Regulation of mouse Slo gene expression: multiple promoters, transcription start sites, and genomic action of estrogen. J Biol Chem 2007; 282:27478-27492. [PMID: 17635926 DOI: 10.1074/jbc.m704777200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The large conductance, voltage- and Ca(2+)-activated K(+) channel plays key roles in diverse body functions influenced by estrogen, including smooth muscle and neural activities. In mouse (m), estrogen up-regulates the transcript levels of its pore-forming alpha-subunit (Slo, KCNMA1), yet the underlying genomic mechanism(s) is (are) unknown. We first mapped the promoters and regulatory motifs within the mSlo 5'-flanking sequence to subsequently identify genomic regions and mechanisms required for estrogen regulation. mSlo gene has at least two TATA-less promoters with distinct potencies that may direct mSlo transcription from multiple transcription start sites. These qualities mark mSlo as a prototype gene with promoter plasticity capable of generating multiple mRNAs and the potential to adapt to organismal needs. mSlo promoters contain multiple estrogen-responsive sequences, e.g. two quasi-perfect estrogen-responsive elements, ERE1 and ERE2, and Sp1 sites. Accordingly, mSlo promoter activity was highly enhanced by estrogen and blocked by estrogen antagonist ICI 182,780. When promoters are embedded in a 4.91-kb backbone, estrogen responsiveness involves a classical genomic mechanism, via ERE1 and ERE2, that may be complemented by Sp factors, particularly Sp1. Simultaneous but not individual ERE1 and ERE2 mutations caused significant loss of estrogen action. ERE2, which is closer to the proximal promoter, up-regulates this promoter via a classical genomic mechanism. ERE2 strategic position together with ERE1 and ERE2 independence and Sp contribution should ensure mSlo estrogen responsiveness. Thus, the mSlo gene seems to have uniquely evolved to warrant estrogen regulation. Estrogen-mediated mSlo genomic regulation has important implications on long term estrogenic effects affecting smooth muscle and neural functions.
Collapse
Affiliation(s)
- Pallob Kundu
- Department of Anesthesiology, Division of Molecular Medicine, the.
| | | | - Enrico Stefani
- Department of Anesthesiology, Division of Molecular Medicine, the; Department of Physiology, UCLA, Los Angeles, California 90095; Cardiovascular Research Laboratories and Brain Research Institute, UCLA, Los Angeles, California 90095
| | - Ligia Toro
- Department of Anesthesiology, Division of Molecular Medicine, the; Cardiovascular Research Laboratories and Brain Research Institute, UCLA, Los Angeles, California 90095; Department of Molecular and Medical Pharmacology and UCLA, Los Angeles, California 90095
| |
Collapse
|
33
|
Beckett EAH, McCloskey C, O'Kane N, Sanders KM, Koh SD. Effects of female steroid hormones on A-type K+ currents in murine colon. J Physiol 2006; 573:453-68. [PMID: 16581861 PMCID: PMC1779718 DOI: 10.1113/jphysiol.2006.107375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Idiopathic constipation is higher in women of reproductive age than postmenopausal women or men, suggesting that female steroid hormones influence gastrointestinal motility. How female hormones affect motility is unclear. Colonic motility is regulated by ion channels in colonic myocytes. Voltage-dependent K(+) channels serve to set the excitability of colonic muscles. We investigated regulation of Kv 4.3 channel expression in response to acute or chronic changes in female hormones. Patch clamp experiments and quantitative PCR were used to compare outward currents and transcript expression in colonic myocytes from male, non-pregnant, pregnant and ovariectomized mice. Groups of ovariectomized mice received injections of oestrogen or progesterone to investigate the effects of hormone replacement. The capacitance of colonic myocytes from non-pregnant females was larger than in males. Net outward current density in male and ovariectomized mice was higher than in non-pregnant females and oestrogen-treated ovariectomized mice. Current densities in late pregnancy were lower than in female controls. Progesterone had no effect on outward currents. A-type currents were decreased in non-pregnant females compared with ovariectomized mice, and were further decreased by pregnancy or oestrogen replacement. Kv 4.3 transcripts did not differ significantly between groups; however, expression of the potassium channel interacting protein KChIP1 was elevated in ovariectomized mice compared with female controls and oestrogen-treated ovariectomized mice. Delayed rectifier currents were not affected by oestrogen. In the mouse colon, oestrogen suppresses A-type currents, which are important for regulating excitability. These observations suggest a possible link between female hormones and altered colonic motility associated with menses, pregnancy and menopause.
Collapse
Affiliation(s)
- Elizabeth A H Beckett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS 352, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
34
|
McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ. Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke 2006; 37:1277-82. [PMID: 16556879 DOI: 10.1161/01.str.0000217307.71231.43] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered.
Collapse
Affiliation(s)
- Alister J McNeish
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | | | | | | |
Collapse
|
35
|
Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 2006; 21:69-78. [PMID: 16443824 DOI: 10.1152/physiol.00040.2005] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Different calcium signals in the endothelium and smooth muscle target different types of Ca2+-sensitive K+ channels to modulate vascular function. These differential calcium signals and targets represent multilayered opportunities for prevention and/or treatment of vascular dysfunctions.
Collapse
Affiliation(s)
- Jonathan Ledoux
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
36
|
Dong S, Kojima T, Shiraiwa M, Méchin MC, Chavanas S, Serre G, Simon M, Kawada A, Takahara H. Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J Invest Dermatol 2005; 124:1026-33. [PMID: 15854045 DOI: 10.1111/j.0022-202x.2005.23690.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidylarginine deiminases (PAD) convert protein-bound arginine residues into citrulline residues in a Ca(2+) ion-dependent manner. Among the five isoforms (PAD1, 2, 3, 4, and 6) existing in rodents and humans, PAD2 is the most widely expressed in both species, tissues, and organs. In order to study the mechanisms regulating the expression of the human PAD2 gene, PADI2, we characterized its promoter region using transfected human keratinocytes. A series of reporter gene constructions derived from the 2 kb region upstream of the transcription initiation site defined a minimal promoter sequence from nucleotides -132 to -41. This PADI2 region is GC-rich and lacks canonical TATA and CAAT boxes. Investigation of cis-acting elements in the region, further deletion analyses and electrophoretic mobility shift assays using specific antibodies revealed four Sp1-binding sites and identified Sp1 and Sp3 as binding factors important for the promoter activity. These results suggest that Sp1/Sp3 cooperation may provide a mechanism to control the transcription of PADI2.
Collapse
Affiliation(s)
- Sijun Dong
- Department of Applied Biological Resource Sciences, School of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Teruyama R, Armstrong WE. Enhancement of calcium-dependent afterpotentials in oxytocin neurons of the rat supraoptic nucleus during lactation. J Physiol 2005; 566:505-18. [PMID: 15878948 PMCID: PMC1464748 DOI: 10.1113/jphysiol.2005.085985] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The firing pattern of oxytocin (OT) hormone synthesizing neurons changes dramatically immediately before each milk ejection, when a brief burst of action potentials is discharged. OT neurons possess intrinsic currents that would modulate this burst. Our previous studies showed the amplitude of the Ca2+ -dependent afterhyperpolarization (AHP) following spike trains is significantly larger during lactation. In the present study we sought to determine which component of the AHP is enhanced, and whether the enhancement could be related to changes in whole-cell Ca2+ current or the Ca2+ transient in identified OT or vasopressin (VP) neurons during lactation. We confirmed, with whole-cell current-clamp recordings, our previous finding from sharp electrodes that the size of the AHP following spike trains increased in OT, but not VP neurons during lactation. We then determined that an apamin-sensitive medium-duration AHP (mAHP) and an apamin-insensitive slow AHP (sAHP) were specifically increased in OT neurons. Simultaneous Ca2+ imaging revealed that the peak change in somatic [Ca2+]i was not altered in either cell type, but the slow decay of the Ca2+ transient was faster in both cell types during lactation. In voltage clamp, the whole-cell, Ca2+ current was slightly larger during lactation in OT cells only, but current density was unchanged when corrected for somatic hypertrophy. The currents, ImAHP and IsAHP, also were increased in OT neurons only, but only the apamin-sensitive ImAHP showed an increase in current density after adjusting for somatic hypertrophy. These findings suggest a specific modulation (e.g. increased number) of the small-conductance Ca2+ -dependent K+ (SK) channels, or their interaction with Ca2+, underlies the increased mAHP/ImAHP during lactation. This larger mAHP may be necessary to limit the explosive bursts during milk ejection.
Collapse
Affiliation(s)
- Ryoichi Teruyama
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, TN 38163, USA.
| | | |
Collapse
|
38
|
Kim K, Barhoumi R, Burghardt R, Safe S. Analysis of Estrogen Receptor α-Sp1 Interactions in Breast Cancer Cells by Fluorescence Resonance Energy Transfer. Mol Endocrinol 2005; 19:843-54. [PMID: 15637147 DOI: 10.1210/me.2004-0326] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen-dependent regulation of several genes associated with cell cycle progression, proliferation, and nucleotide metabolism in breast cancer cells is associated with interactions of estrogen receptor (ER)alpha/Sp1 with GC-rich promoter elements. This study investigates ligand-dependent interactions of ERalpha and Sp1 in MCF-7 breast cancer cells using fluorescence resonance energy transfer (FRET). Chimeric ERalpha and Sp1 proteins fused to cyan fluorescent protein or yellow fluorescent protein were transfected into MCF-7 cells, and a FRET signal was induced after treatment with 17beta-estradiol, 4'-hydroxytamoxifen, or ICI 182,780. Induction of FRET by these ERalpha agonists/antagonists was paralleled by their activation of gene expression in cells transfected with a construct (pSp1(3)) containing three tandem Sp1 binding sites linked to a luciferase reporter gene. In contrast, interactions between ERalpha and Sp1DeltaDBD [a DNA binding domain (DBD) deletion mutant of Sp1] are not observed, and this is consistent with the critical role of the C-terminal DBD of Sp1 for interaction with ERalpha. Results of the FRET assay are consistent with in vitro studies on ERalpha/Sp1 interactions and transactivation, and confirm that ERalpha and Sp1 interact in living breast cancer cells.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, Veterinary Research Building 409, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The Sp family of transcription factors is united by a particular combination of three conserved Cys2His2 zinc fingers that form the sequence-specific DNA-binding domain. Within the Sp family of transcription factors, Sp1 and Sp3 are ubiquitously expressed in mammalian cells. They can bind and act through GC boxes to regulate gene expression of multiple target genes. Although Sp1 and Sp3 have similar structures and high homology in their DNA binding domains, in vitro and in vivo studies reveal that these transcription factors have strikingly different functions. Sp1 and Sp3 are able to enhance or repress promoter activity. Regulation of the transcriptional activity of Sp1 and Sp3 occurs largely at the post-translational level. In this review, we focus on the roles of Sp1 and Sp3 in the regulation of gene expression.Key words: Sp1, Sp3, gene regulation, sub-cellular localization.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
40
|
Safe S, Kim K. Nuclear receptor-mediated transactivation through interaction with Sp proteins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 77:1-36. [PMID: 15196889 DOI: 10.1016/s0079-6603(04)77001-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | | |
Collapse
|
41
|
Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 2003; 93:124-31. [PMID: 12805243 DOI: 10.1161/01.res.0000081980.63146.69] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelium is a critical regulator of vascular tone, and dysfunction of the endothelium contributes to numerous cardiovascular pathologies. Recent studies suggest that apamin-sensitive, small-conductance, Ca2+-activated K+ channels may play an important role in active endothelium-dependent vasodilations, and expression of these channels may be altered in disease states characterized by vascular dysfunction. Here, we used a transgenic mouse (SK3T/T) in which SK3 expression levels can be manipulated with dietary doxycycline (DOX) to test the hypothesis that the level of expression of the SK subunit, SK3, in endothelial cells alters arterial function and blood pressure. SK3 protein was elevated in small mesenteric arteries from SK3T/T mice compared with wild-type mice and was greatly suppressed by dietary DOX. SK3 was detected in the endothelium and not in the smooth muscle by immunohistochemistry. In whole-cell patch-clamp experiments, SK currents in endothelial cells from SK3T/T mice were almost completely suppressed by dietary DOX. In intact arteries, SK3 channels contributed to sustained hyperpolarization of the endothelial membrane potential, which was communicated to the arterial smooth muscle. Pressure- and phenylephrine-induced constrictions of SK3T/T arteries were substantially enhanced by treatment with apamin, suppression of SK3 expression with DOX, or removal of the endothelium. In addition, suppression of SK3 expression caused a pronounced and reversible elevation of blood pressure. These results indicate that endothelial SK3 channels exert a profound, tonic, hyperpolarizing influence in resistance arteries and suggest that the level of SK3 channel expression in endothelial cells is a fundamental determinant of vascular tone and blood pressure.
Collapse
Affiliation(s)
- Mark S Taylor
- Department of Pharmacology, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|