1
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie 2008; 90:426-36. [DOI: 10.1016/j.biochi.2007.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/16/2007] [Indexed: 11/23/2022]
|
4
|
Marini S, Nannelli A, Sodini D, Dragoni S, Valoti M, Longo V, Gervasi PG. Expression, microsomal and mitochondrial activities of cytochrome P450 enzymes in brain regions from control and phenobarbital-treated rabbits. Life Sci 2006; 80:910-7. [PMID: 17161434 DOI: 10.1016/j.lfs.2006.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Expression and monooxygenase activity of various cytochrome P450 (CYP) enzymes along with constitutive androstane (CAR) and the pregnane X (PXR) receptors were investigated in the brain of control and phenobarbital-treated rabbits (80 mg/kg for 4 days). RT-PCR analysis, using specific primers, demonstrated that in control rabbits mRNAs of CYP 2A10, 2B4/5 and 3A6 were expressed, though to a different extent, in the liver, as well as in brain cortex, midbrain, cerebellum, striatum, hippocampus and hypothalamus, whilst CYP2A11 and 4B1 were not expressed in the hypothalamus. CAR was expressed in liver and all the brain regions examined, whereas the PXR was expressed only in liver and cortex. Real time RT-PCR analysis demonstrated that in vivo treatment with phenobarbital, in contrast with what happened in liver, did not induce the expression of CYP 2B4/5 mRNA in cortex, midbrain and cerebellum. NADPH cytochrome c reductase and some other enzymatic activities markers of CYP 2A, 2B, 3A and 4B activities were studied in liver microsomes as well as in microsomes and mitochondria of brain cortex, midbrain and cerebellum of control and phenobarbital-treated rabbits. In contrast to what was observed in liver, phenobarbital treatment did not induce the aforementioned monooxygenase activities in brain. However, we cannot exclude that a longer phenobarbital treatment may lead to a significant induction of CYP activities in brain. These findings indicated that brain CYPs, despite the presence of CAR, were resistant to phenobarbital induction, indicating a possible different regulation of these enzymes between brain and liver.
Collapse
Affiliation(s)
- Sandra Marini
- Istituto di Fisiologia Clinica, Area della Ricerca CNR, via Moruzzi 1, 56100, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Dragoni S, Bellik L, Frosini M, Matteucci G, Sgaragli G, Valoti M. Cytochrome P450-dependent metabolism of l-deprenyl in monkey (Cercopithecus aethiops) and C57BL/6 mouse brain microsomal preparations. J Neurochem 2003; 86:1174-80. [PMID: 12911625 DOI: 10.1046/j.1471-4159.2003.01927.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present investigation was to characterize the cytochrome P450 (CYP)-dependent metabolism of l-deprenyl by brain microsomal preparations obtained from two different animal models that have been extensively used in Parkinson's disease studies, namely monkey (Cercopithecus aethiops) and C57BL/6 mouse. In monkey brain microsomal fractions, the apparent Km values for methamphetamine formation from l-deprenyl were 67.8 +/- 1.0 and 72.0 +/- 1.6 microm, in the cortex and striatum, respectively. Similarly, for nordeprenyl formation from l-deprenyl, Km values in cortex and striatum were 21.3 +/- 3.2 and 27.3 +/- 4.0 microm, respectively. Both metabolic pathways appear to be more efficient in the cortex than in the striatum as the Vmax for microsomal preparation was lower in the striatum for the formation of both metabolites. The formation rate of l-methamphetamine was up to one order of magnitude greater than that of nordeprenyl. Inhibition analysis of both pathways in monkey brain suggested that l-methamphetamine formation is catalysed by CYP2A and CYP3A, whereas only CYP3A appears to be involved in nordeprenyl formation. With microsomal preparations from whole brain of C57BL/6 mice, the only l-deprenyl metabolite that could be detected was methamphetamine and the Km and Vmax values were similar to those determined in monkey cortex (53.6 +/- 2.9 microm and 33.9 +/- 0.4 pmol/min/mg protein, respectively). 4-Methylpyrazole selectively inhibited methamphetamine formation, suggesting the involvement of CYP2E1. In conclusion, the present study indicates that l-deprenyl is effectively metabolised by CYP-dependent oxidases in the brain, giving rise mainly to the formation of methamphetamine, which has been suggested to play a role in the pharmacological effects of the parent drug. The results also demonstrate that there are differences between species in CYP-dependent metabolism of l-deprenyl.
Collapse
Affiliation(s)
- Stefania Dragoni
- Istituto di Scienze Farmacologiche, Centro Interdipartimentale di Ricerca sul Metabolismo dei Farmaci Neuropsicotropi, Università di Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Jushchyshyn MI, Kent UM, Hollenberg PF. The mechanism-based inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab Dispos 2003; 31:46-52. [PMID: 12485952 DOI: 10.1124/dmd.31.1.46] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phencyclidine (PCP) was analyzed for its ability to inactivate human cytochrome p450 (p450) 2B6. PCP inactivated the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of p450 2B6 in a concentration-, time-, and NADPH-dependent manner and exhibited pseudo-first order kinetics. The K(I) was 10 microM, k(inact) was 0.01 min(-1), which corresponds to a t(1/2) of 31 min. The partition ratio was approximately 45. Spectral analysis of the heme moiety demonstrated that the heme was not modified during inactivation. Extensive dialysis of the PCP-inactivated p450 2B6 did not cause a return in catalytic activity demonstrating PCP inactivation was irreversible. Including 7-ethoxycoumarin, an alternate substrate, protected 2B6 from inactivation by PCP indicating competition of the two substrates for the active site. Exogenous nucleophiles such as glutathione (GSH) and cyanide could not protect p450 2B6 from PCP inactivation demonstrating that the reactive intermediate remained within the p450 active site. High performance liquid chromatography analysis of p450 2B6 inactivated in the presence of (3)H-labeled PCP showed that PCP binding was specific for the p450 and not to other proteins in the reaction mixture. The stoichiometry of binding of PCP to p450 2B6 was demonstrated using (3)H-labeled PCP. In the absence of GSH, the stoichiometry was 5.5:1 (PCP/p450). In the presence of GSH, the stoichiometry was 1:1. This stoichiometry was further supported using electrospray ionization-liquid chromatography-mass spectrometry to analyze PCP-inactivated p450 2B1, 2B4, and 2B6.
Collapse
Affiliation(s)
- Monica I Jushchyshyn
- Department of Pharmacology, the University of Michigan, Ann Arbor, MI 48109-0632, USA
| | | | | |
Collapse
|
7
|
Upadhya SC, Ravindranath V. Detection and Localization of Protein-Acetaldehyde Adducts in Rat Brain After Chronic Ethanol Treatment. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02615.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Upadhya SC, Chinta SJ, Pai HV, Boyd MR, Ravindranath V. Toxicological consequences of differential regulation of cytochrome p450 isoforms in rat brain regions by phenobarbital. Arch Biochem Biophys 2002; 399:56-65. [PMID: 11883903 DOI: 10.1006/abbi.2001.2727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P4502B is an isoform of cytochrome P450 (P450) that is induced by the anticonvulsant drug phenobarbital. Here, we demonstrate the constitutive expression and predominant localization of CYP2B in neurons of rat brain. Administration of phenobarbital to rats resulted in selective induction of P450 levels in cortex and midbrain, while other regions were unaffected. Immunohistochemical localization of P4502B in brains of phenobarbital treated rats revealed localization of P4502B in neuronal cells, most predominantly the reticular neurons in midbrain. The anticancer agent 9-methoxy-N(2)-methylellipticinium acetate (MMEA) has been shown to exhibit preferential neuronal toxicity in vitro. Pretreatment of rats with phenobarbital potentiated the toxicity of intrathecally administered MMEA in vivo, as seen by the degeneration of reticular neurons. Thus, induction of P450 in selective regions of brain by phenobarbital would profoundly influence xenobiotic metabolism in these regions, especially in clinical situations where phenobarbital is coadministered with other psychoactive drugs/xenobiotics.
Collapse
Affiliation(s)
- Sudarshan C Upadhya
- National Brain Research Centre, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | | | | | | |
Collapse
|
9
|
Roe AL, Poloyac SM, Howard G, Shedlofsky SI, Blouin RA. The effect of endotoxin on hepatocyte nuclear factor 1 nuclear protein binding: potential implications on CYP2E1 expression in the rat. J Pharm Pharmacol 2001; 53:1365-71. [PMID: 11697544 DOI: 10.1211/0022357011777864] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The purpose of this study was to determine if changes in nuclear protein binding of hepatocyte nuclear factor 1 (HNF-1) occur after lipopolysaccharide (LPS) administration. In addition, the time-course of alterations in CYP2E1 regulation were evaluated. Rats were injected with 2.0 mg LPS and euthanized over a 72-h period. Nuclear protein binding to a consensus HNF-1 oligonucleotide was assessed by the electrophoretic mobility shift assay. CYP2E1 activity was analysed using chlorzoxazone as a substrate (60H-CLZ), and CYP2E1 protein concentration was determined by enzyme-linked immunosorbent assay. Endotoxin treatment resulted in decreased nuclear protein binding to an HNF-1 element as early as 1 h after treatment and returned to control levels by 72 h. This reduced binding persisted for 24 h and returned to control values 48 h after LPS administration. In addition, the reduction in binding was primarily attributable to a HNF-1alpha immunoreactive protein. The observed reduction in HNF-1 binding was followed in the time-course by decreases in CYP2E1 activity and protein content with maximal decreases to 50 and 67% of control, respectively, at 48 h after LPS administration. Endotoxin is a potent inducer of the acute phase response (APR). The APR stimulation by endotoxin administration reduced HNF-1alpha binding and decreased the expression of CYP2E1 in the rat liver. The time-course of alterations in HNF-1 and CYP2E1 lend support to the possibility that HNF-1alpha may play a role in the down-regulation of genes that require HNF-1alpha for their constitutive expression. These data serve as an important precedent for future studies evaluating the direct association of decreased HNF-1alpha binding and reduced gene expression after LPS administration.
Collapse
Affiliation(s)
- A L Roe
- Procter & Gamble Pharmaceuticals, Drug Safety Assessment, Health Care Research Center, Mason, OH 45040-9462, USA.
| | | | | | | | | |
Collapse
|
10
|
Dayal M, Parmar D, Ali M, Dhawan A, Dwivedi UN, Seth PK. Induction of rat brain cytochrome P450s (P450s) by deltamethrin: regional specificity and correlation with neurobehavioral toxicity. Neurotox Res 2001; 3:351-7. [PMID: 14715465 DOI: 10.1007/bf03033196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oral administration of 5 mg/kg body weight of deltamethrin, an alpha-cyano type II pyrethroid insecticide once a day for 1, 7, 15 and 21 consecutive days to young Druckerey rats (6- 8 weeks old) produced a time dependent increase in the activity of cytochrome P450 (P450) dependent 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) in rat brain microsomes. A significant induction was observed on prolonged exposure of deltamethrin for 15 or 21 days. The induction in the activity of cerebral P450 enzymes was associated with the time dependent increase in the spontaneous locomotor activity indicating accumulation of deltamethrin or its metabolites in brain with the increase in the duration of exposure. Administration of deltamethrin (5 mg/kg) for 21 days produced region specific changes in the dealkylation of ethoxyresorufin and pentoxyresorufin in rat brain with significant induction occurring in the activity of P450 1A1/2 dependent EROD in cerebellum, hippocampus, hypothalamus and medulla-pons and that of P450 2B1/2 mediated PROD in hippocampus, hypothalamus, corpus striatum and mid brain. The data suggests that the differences in the induction of individual P450 isoenzymes in diverse brain regions could play a role in regulating the response of brain to pyrethroid insecticides by modulating their concentration per se or their active metabolites at the target site(s).
Collapse
Affiliation(s)
- M Dayal
- Developmental Toxicology Division, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow-226 001, U.P., India
| | | | | | | | | | | |
Collapse
|
11
|
Ravindranath V. Pharmacological and toxicological significance of brain cytochromes P450. Neurotox Res 2001; 3:321-8. [PMID: 14715462 DOI: 10.1007/bf03033193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- V Ravindranath
- Department of Neurochemistry, National Institute of Mental Health And Neurosciences, Hosur Road, Bangalore 560 029, India.
| |
Collapse
|
12
|
Qu W, Bradbury JA, Tsao CC, Maronpot R, Harry GJ, Parker CE, Davis LS, Breyer MD, Waalkes MP, Falck JR, Chen J, Rosenberg RL, Zeldin DC. Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain. J Biol Chem 2001; 276:25467-79. [PMID: 11328810 DOI: 10.1074/jbc.m100545200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding a new cytochrome P450 was isolated from a mouse brain library. Sequence analysis reveals that this 1,958-base pair cDNA encodes a 57-58-kDa 502-amino acid polypeptide that is 70-91% identical to CYP2J subfamily P450s and is designated CYP2J9. Recombinant CYP2J9 was co-expressed with NADPH-cytochrome P450 oxidoreductase (CYPOR) in Sf9 cells using a baculovirus system. Microsomes of CYP2J9/CYPOR-transfected cells metabolize arachidonic acid to 19-hydroxyeicosatetraenoic acid (HETE) thus CYP2J9 is enzymologically distinct from other P450s. Northern analysis reveals that CYP2J9 transcripts are present at high levels in mouse brain. Mouse brain microsomes biosynthesize 19-HETE. RNA polymerase chain reaction analysis demonstrates that CYP2J9 mRNAs are widely distributed in brain and most abundant in the cerebellum. Immunoblotting using an antibody raised against human CYP2J2 that cross-reacts with CYP2J9 detects a 56-kDa protein band that is expressed in cerebellum and other brain segments and is regulated during postnatal development. In situ hybridization of mouse brain sections with a CYP2J9-specific riboprobe and immunohistochemical staining with the anti-human CYP2J2 IgG reveals abundant CYP2J9 mRNA and protein in cerebellar Purkinje cells. Importantly, 19-HETE inhibits the activity of recombinant P/Q-type Ca(2+) channels that are known to be expressed preferentially in cerebellar Purkinje cells and are involved in triggering neurotransmitter release. Based on these data, we conclude that CYP2J9 is a developmentally regulated P450 that is abundant in brain, localized to cerebellar Purkinje cells, and active in the biosynthesis of 19-HETE, an eicosanoid that inhibits activity of P/Q-type Ca(2+) channels. We postulate that CYP2J9 arachidonic acid products play important functional roles in the brain.
Collapse
Affiliation(s)
- W Qu
- Division of Intramural Research, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rosenbrock H, Hagemeyer CE, Ditter M, Knoth R, Volk B. Expression and localization of the CYP2B subfamily predominantly in neurones of rat brain. J Neurochem 2001; 76:332-40. [PMID: 11208896 DOI: 10.1046/j.1471-4159.2001.00011.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the very small amounts of cytochrome P450 (P450, CYP) enzymes expressed in different areas and cell populations of the brain as compared with the liver, there is significant evidence for their specific involvement in brain development, function and plasticity. Nevertheless, the current discussion about occurrence and importance of cerebral cytochrome P450s is determined by inconsistent interpretations of their function in general and with respect to single isoforms. Continuing a series of publications about brain P450 isoforms, we now present evidence for the constitutive expression of CYP2B1 and CYP2B2 mRNAs in rat brain. Immunocytochemical and non-radioactive in situ hybridization studies revealed the same expression pattern throughout the brain predominantly in neuronal populations, but to some extent in astrocytes of corpus callosum and olfactory bulb. The well known testosterone-metabolizing capacity and the presence of CYP2B isoforms shown in steroid hormone-sensitive areas and neurones (e.g. hippocampus) clarify the significance of isoforms like CYP2B1 and CYP2B2 for impairment of steroid hormone actions by P450 inducing environmental substances. We argue that cerebral P450 isoforms which are induced by xenobiotics and are able to metabolize these as well as endogenous substrates help us to understand fundamental aspects of brain's functioning.
Collapse
Affiliation(s)
- H Rosenbrock
- Neurocentre, Department of Neuropathology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Miller RR, Slathar JR, Luvisotto ML. Alpha-tocopherol and gamma-tocopherol attenuate ethanol-induced changes in membrane fatty acid composition in embryonic chick brains. TERATOLOGY 2000; 62:26-35. [PMID: 10861630 DOI: 10.1002/1096-9926(200007)62:1<26::aid-tera7>3.0.co;2-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND This project investigated whether or not EtOH-induced reductions in the levels of long-chain polyunsaturated membrane fatty acids could be attenuated by exogenous exposure to either alpha-tocopherol, gamma-tocopherol, or diallyl sulfide (DAS). METHODS At 0 days of development, fertile chicken eggs were injected with a single dose of either saline supplemented with various concentrations of EtOH, alpha- or gamma-tocopherol and EtOH, or DAS and EtOH. At 18 days of development, brains were isolated and subjected to membrane analyses. RESULTS When exposed to EtOH, concentrations ranging from 0-60.50 microm/Kg egg, dose-dependent decreases in the levels of brain 18:0, 18:1 (n-9), 18:2 (n-6), 18:3 (n-3), and 20:4 (n-6) were observed. These ethanol-induced changes in membrane fatty acid composition correlated with ethanol-induced reductions in brain mass, brain protein levels, acetylcholine esterase (AChE) activities and correlated with increased lipid hydroperoxide levels. Exposure to either 2.5 microm alpha-tocopherol/Kg egg and 6.050 mm EtOH/Kg egg, or 2.5 microm alpha-tocopherol/ Kg egg and 6.050 mm EtOH/Kg egg attenuated EtOH-induced changes in membrane fatty acid composition, brain mass, brain protein levels, AChE activities, and lipid hydroperoxide levels. Embryonic exposure to the cytochrome p450-2E1 inhibitor, diallyl sulfide (DAS), also attenuated EtOH-induced decreases in long-chain, unsaturated membrane fatty acids. However, embryonic exposure to DAS promoted abnormally low brain mass. CONCLUSION EtOH-induced reductions in the levels of brain long-chain polyunsaturated fatty acid are caused by lipid peroxidation.
Collapse
Affiliation(s)
- R R Miller
- Biology Department, Hillsdale College, Hillsdale, Michigan 49242-1205, USA.
| | | | | |
Collapse
|
15
|
Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000; 59:1501-11. [PMID: 10799646 DOI: 10.1016/s0006-2952(00)00281-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In the rat, nicotine is metabolized to cotinine primarily by hepatic cytochrome P450 (CYP) 2B1. This enzyme is also found in other organs such as the lung and the brain. Hepatic nicotine metabolism is unaltered after nicotine exposure; however, nicotine may regulate CYP2B1 in other tissues. We hypothesized that nicotine induces its own metabolism in brain by increasing CYP2B1. Male rats were treated with nicotine (0.0, 0.1, 0.3, or 1.0 mg base/kg in saline) s.c. daily for 7 days. CYP2B1 mRNA and protein were assayed in the brain and liver by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemistry. In control rats, CYP2B1 mRNA and protein expression were brain region- and cell-specific. CYP2B1 was not induced in the liver, but CYP2B1 mRNA and protein showed dose-dependent, region- and cell-specific patterns of induction across brain regions. At 1.0 mg nicotine/kg, the largest increase in protein was in the brain stem (5.8-fold, P < 0.05) with a corresponding increase in CYP2B1 mRNA (7.6-fold, P < 0.05). Induction of CYP2B1 was also observed in the frontal cortex, striatum, and olfactory tubercle. Immunocytochemistry showed that induction was restricted principally to neurons. These data indicate that nicotine may alter its own metabolism in the brain through transcriptional regulation, perhaps contributing to central tolerance to the effects of nicotine. CYP2B1 and its human homologue CYP2B6 also activate tobacco smoke procarcinogens such as NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Highly localized increases in CYP2B could result in increased mutagenesis. These data suggest roles for nicotine-induced CYP2B in central metabolic tolerance, nicotine-induced neurotoxicity, neuroplasticity, and carcinogenesis.
Collapse
Affiliation(s)
- S Miksys
- Centre for Addiction and Mental Health and Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Fang J. Metabolism of clozapine by rat brain: the role of flavin-containing monooxygenase (FMO) and cytochrome P450 enzymes. Eur J Drug Metab Pharmacokinet 2000; 25:109-14. [PMID: 11112091 DOI: 10.1007/bf03190076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The atypical antipsychotic clozapine has been reported to be metabolised mainly to its N-oxide and N-demethylated products. Brain, the target organ of clozapine, is known to contain numerous drug-metabolising enzymes which could alter the local concentrations of the drug. The metabolism of clozapine was, therefore, studied in rat brain preparations. Clozapine N-oxide was the major metabolic pathway in rat brain. We characterised the N-oxygenation of clozapine by rat brain preparations. The Km and Vmax values were found to be 319.6 microM and 28.1 pmol/min/mg protein, respectively. The formation of clozapine N-oxide was shown to be inhibited by thiourea (a flavin-containing monooxygenase inhibitor) but not by ketoconazole, quinidine or furafylline. This finding suggests prominent involvement of FMO in the N-oxygenation of clozapine in rat brain. This conclusion was further confirmed by the observation that the formation of clozapine N-oxide is sensitive to heat treatment of the brain preparation and can be partially protected from thermal degeneration by the presence of an NADPH generating system. It was further observed that the rate of clozapine N-oxygenation was much higher at pH 8.5 than at pH 7.4. Taken together, the data suggest that N-oxygenation is the major metabolic pathway catalysed by rat brain and this reaction is catalysed mainly by FMO. As significant interindividual differences have been observed in brain FMO activities, these differences may contribute to the interindividual differences in patient response to clozapine.
Collapse
Affiliation(s)
- J Fang
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Upadhya SC, Tirumalai PS, Boyd MR, Mori T, Ravindranath V. Cytochrome P4502E (CYP2E) in brain: constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 2000; 373:23-34. [PMID: 10620320 DOI: 10.1006/abbi.1999.1477] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P4502E (P4502E), the major ethanol-inducible P450 metabolizes ethanol to acetaldehyde and bioactivates procarcinogens to ultimate carcinogens. Metabolism of ethanol to acetaldehyde in the brain could be deleterious since it can react with cytoskeletal proteins, forming adducts. In the present study, rats were administered ethanol chronically to evaluate its effect on chlorzoxazone hydroxylation in rat brain regions. Chlorzoxazone hydroxylation in brains from the treated rats was induced in hippocampus and cortex, downregulated in brainstem, and unchanged in cerebellum, striatum, and thalamus. The presence of functionally active P4502E was also seen in human brain regions obtained at autopsy from traffic accident victims. Northern blot analysis of rat and human brain poly(A)(+) RNA hybridized with cDNA to rat CYP2E1 revealed the constitutive presence of a corresponding transcript in rat and human brain. Localization of CYP2E by fluorescence in situ hybridization demonstrated the constitutive expression of CYP2E preferentially in the neuronal cells in rat and human brain. CYP2E expression was seen in neurons within the cerebral cortex, Purkinje and granule cell layers of cerebellum, granule cell layer of dentate gyrus, and pyramidal neurons of CA1, CA2, and CA3 subfields of hippocampus in both rat and human brain. The present studies demonstrate constitutive expression of P4502E1 in brain, its differential induction in rat brain regions by chronic ethanol treatment, and its topographic distribution in rat and human brain.
Collapse
Affiliation(s)
- S C Upadhya
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore, 560 029, India
| | | | | | | | | |
Collapse
|
18
|
Renton KW, Dibb S, Levatte TL. Lipopolysaccharide evokes the modulation of brain cytochrome P4501A in the rat. Brain Res 1999; 842:139-47. [PMID: 10526104 DOI: 10.1016/s0006-8993(99)01773-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P450 enzyme system is a multigene family of enzymes that is modulated in the liver during systemic inflammatory responses or during infection Several forms of the enzyme are expressed in discrete areas of the brain and likely play a critical role in the metabolism of drugs and endogenous chemicals in the central nervous system (CNS). Even though the brain responds to inflammation in a manner different from most tissues, we examined the possible modification of a major cytochrome P450 form (CYP1A) in the brain during inflammation confined to that organ. Total brain CYP1A activity, as measured by ethoxyresorufin dealkylase (EROD), was downregulated 24 and 48 h following the administration of a single dose of lipopolysaccharide (LPS). Regionally, a similar effect was determined in the cortex, hippocampus and the mid-brain but the activity in the cerebellum was unaffected. The examination of coronal brain sections using an antibody directed against CYP1A indicated that the enzyme was distributed in discrete cells of the hippocampus, thalamus and cortex and in the tanycytes surrounding the third ventricle. In each of these areas, the immunoreactivity was diminished in animals receiving LPS as compared to saline-treated animals. LPS also evoked the expression of the small molecular weight heat shock protein hsp27 throughout the brain indicating the development of an inflammatory response. These studies indicate that inflammation localized to the CNS causes an alteration in the levels and activity of a major cytochrome P450 form in the brain. This could have implications to the metabolism or activation of drugs and endogenous chemicals in the CNS during a disease state that features an inflammatory component.
Collapse
Affiliation(s)
- K W Renton
- Department of Pharmacology, Dalhousie University Halifax, Sir Charles Tupper Medical Bldg., Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|