1
|
Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep 2020; 10:10987. [PMID: 32620860 PMCID: PMC7335198 DOI: 10.1038/s41598-020-67748-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The biggest challenge in colorectal cancer therapy is to avoid intestinal drug absorption before reaching the colon, while focusing on tumor specific delivery with high local concentration and minimal toxicity. In our work, thymoquinone (TQ)-loaded polymeric nanocapsules were prepared using the nanoprecipitation technique using Eudragit S100 as polymeric shell. Conjugation of anisamide as a targeting ligand for sigma receptors overexpressed by colon cancer cells to Eudragit S100 was carried out via carbodiimide coupling reaction, and was confirmed by thin layer chromatography and 1H-NMR. TQ nanocapsules were characterized for particle size, surface morphology, zeta potential, entrapment efficiency % (EE%), in vitro drug release and physical stability. A cytotoxicity study on three colon cancer cell lines (HT-29, HCT-116, Caco-2) was performed. Results revealed that the polymeric nanocapsules were successfully prepared, and the in vitro characterization showed a suitable size, zeta potential, EE% and physical stability. TQ exhibited a delayed release pattern from the nanocapsules in vitro. Anisamide-targeted TQ nanocapsules showed higher cytotoxicity against HT-29 cells overexpressing sigma receptors compared to their non-targeted counterparts and free TQ after incubation for 48 h, hence delineating anisamide as a promising ligand for active colon cancer targeting.
Collapse
|
2
|
Raabe J, Arend C, Steinmeier J, Dringen R. Dicoumarol Inhibits Multidrug Resistance Protein 1-Mediated Export Processes in Cultured Primary Rat Astrocytes. Neurochem Res 2018; 44:333-346. [PMID: 30443714 DOI: 10.1007/s11064-018-2680-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH-bimane-conjugate (GS-B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS-B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.
Collapse
Affiliation(s)
- Janice Raabe
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Johann Steinmeier
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
3
|
Zhao XZ, Wu XH. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone 1. Onco Targets Ther 2018; 11:3609-3617. [PMID: 29950865 PMCID: PMC6016593 DOI: 10.2147/ott.s165723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Spindlactone A (SPL-A) is a novel small molecule inhibitor of TACC3 that selectively
inhibits the nucleation of centrosome microtubules and induces mitotic arrest in ovarian
cancer cells. SPL-A is derived from dicoumarol which inhibits the activity of NAD(P)H
dehydrogenase quinone oxidoreductase 1 (NQO1). This study aimed to investigate the
mechanism by which SPL-A enhances TRAIL-induced apoptosis in endometrial carcinoma
cells. Materials and methods Endometrial carcinoma cells were treated with SPL-A and/or TRAIL, and the apoptosis and
protein expression in the treated cells were examined. Results Combined treatment with SPL-A and TRAIL significantly induced apoptosis in various
human endometrial carcinoma cells, but not in normal human endometrial stromal cells and
endometrial epithelial cells. Notably, both NQO1 inhibitor ES936 and NQO1 siRNA enhanced
TRAIL-induced apoptosis of endometrial carcinoma cells. Furthermore, SPL-A downregulated
the expression of c-FLIP, Bcl-2, Bcl-xl, and Mcl-1, while increasing p53 expression. Conclusion In particular, luciferase assay showed that SPL-A inhibited Bcl-2 promoter activity,
and p53 inhibitor PFT-α could reverse the effect of SPL-A on Bcl-2 expression.
Moreover, Bcl-2 overexpression inhibited the apoptosis induced by SPL-A and TRAIL. Taken
together, our results suggest that SPL-A sensitizes endometrial cancer cells to
TRAIL-induced apoptosis via the regulation of apoptosis-related proteins and the
inhibition of NQO1 activity.
Collapse
Affiliation(s)
- Xiang-Zhai Zhao
- Department of Gynecology and Obstetrics, The Third Hospital of Hebei Medical University, Hebei 050051, People's Republic of China
| | - Xiao-Hua Wu
- Department of Gynecology and Obstetrics, Hebei Medical University, Hebei 050017, People’s Republic of China.,Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University, Hebei 050000, People's Republic of China
| |
Collapse
|
4
|
Balamurugan M, Sivakumar K, Mariadoss AVA, Suresh K. Modulating Effect of Hypnea musciformis (Red Seaweed) on Lipid Peroxidation, Antioxidants and Biotransforming Enzymes in 7,12-Dimethylbenz (a) Anthracene Induced Mammary Carcinogenesis in Experimental Animals. Pharmacognosy Res 2017; 9:108-115. [PMID: 28250663 PMCID: PMC5330094 DOI: 10.4103/0974-8490.187085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is the second most widespread diagnosed cancer and second leading cause of cancer death in women. Objective: The present work was carried out to evaluate the chemo preventive potential of Hypnea musciformis (ethanol extract) seaweed on oxidative stress markers, bio transforming enzymes, incidence of tumors, and pathological observation in 7,12-dimethylbenzanthracene (DMBA) exposed experimental mammary carcinogenesis. Materials and Methods: Female Sprague–Dawley rats were randomly divided into four groups. Rats in the group 1 served as control. Rats in the group 2 and 3 received a single subcutaneous injection of DMBA (25 mg/kg body weight (b.w)) in the mammary gland to develop mammary carcinoma. In addition, group 3 rats were orally administrated with 200 mg/kg between of H. musciformis along with DMBA injection and group 4 rats received ethanolic extract of H. musciformis every day orally (200 mg/kg b.w) throughout the experimental period of 16 weeks. Results: Our results revealed that treatment with H. musciformis ethanolic extract to DMBA treated rats significantly reduced the incidence of tumor and tumor volume as compared to DMBA alone treated rats. Moreover, our results showed imbalance in the activities/levels of lipid peroxidation by products, antioxidant enzymes, and bio transforming phase I and II enzymes in the circulation, liver and mammary tissues of DMBA treated rats which were significantly modulated to near normal on treatment with ethanolic extract of H. musciformis. All these alterations were supported by histochemical findings. Conclusion: The results obtained from this study suggest that chemo preventive potential of H. musciformis ethanol extract is probably due to their free radicals quenching effect and modulating potential of bio transforming enzymes during DMBA exposed experimental mammary carcinogenesis. SUMMARY DMBA is a source of well-established site specific carcinogen Hypnea musciformis act as a free radical quencher Hypnea musciformis has a definite chemo preventive efficacy in experimental rats H. musciformis is a resource of prooxidant/antioxidant balance and also its anti-proliferative effects H. musciformis has a detoxificant in the mammary carcinoma.
Abbreviations Used: BRCA1: Breast Cancer Gene 1; BRCA2: Breast Cancer Gene 1; CYP: Cytochrome P450; DMBA: 7,12-Dimethylbenzanthracene; DMSO: Dimethyl sulfoxide; H2O2: Hydrogen peroxides; LPO: Lipid peroxidation; PAH: Polycyclic aromatic hydrocarbon; ROS: Reactive oxygen species; TBARS: Thiobarbituric acid reactive substances; GSSG: Oxidized glutathione.
Collapse
Affiliation(s)
- Mohan Balamurugan
- Department of Botany, Division of Algal Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Kathiresan Sivakumar
- Department of Botany, Division of Algal Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Arokia Vijaya Anand Mariadoss
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Kathiresan Suresh
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
5
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
6
|
Failla ML, Chitchumroonchokchai C, Aoki F. Increased bioavailability of ubiquinol compared to that of ubiquinone is due to more efficient micellarization during digestion and greater GSH-dependent uptake and basolateral secretion by Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7174-7182. [PMID: 24979483 DOI: 10.1021/jf5017829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The oral bioavailability of ubiquinol recently has been reported to be greater than that of ubiquinone in healthy adults. The basis for this influence of redox state of coenzyme Q (CoQ) on bioavailability has been investigated using the coupled in vitro digestion/Caco-2 cell model. Solubilized ubiquinol and ubiquinone were added to yogurt and subjected to simulated gastric and small intestinal digestion. Partitioning of CoQ in mixed micelles during small intestinal digestion was significantly greater during digestion of yogurt enriched with ubiquinol. Similarly, apical uptake from mixed micelles and transepithelial transport of CoQ by Caco-2 cells were significantly greater after digestion of the ubiquinol-rich yogurt compared to digested ubiquinone-rich yogurt. Reduction of cellular GSH significantly decreased cell uptake and basolateral secretion of both ubiquinol and ubiquinone, although the adverse impact was much greater for ubiquinol. These data suggest that the enhanced bioaccessibility and bioavailability of ubiquinol compared to ubiquinone results from reduced coenzyme being more efficiently incorporated into mixed micelles during digestion and its greater uptake and basolateral secretion in a glutathione-dependent mechanism.
Collapse
Affiliation(s)
- Mark L Failla
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
7
|
Vinothkumar R, Vinoth Kumar R, Sudha M, Viswanathan P, Balasubramanian T, Nalini N. Modulatory effect of troxerutin on biotransforming enzymes and preneoplasic lesions induced by 1,2-dimethylhydrazine in rat colon carcinogenesis. Exp Mol Pathol 2013; 96:15-26. [PMID: 24512697 DOI: 10.1016/j.yexmp.2013.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 01/27/2023]
Abstract
Colon cancer is the third most global oncologic problem faced by medical fraternity. Troxerutin, a flavonoid present in tea, coffee, cereal grains, and a variety of fruits and vegetables, exhibits various pharmacological and biological activities. This study was carried out to investigate the effect of troxerutin on xenobiotic metabolizing enzymes, colonic bacterial enzymes and the development of aberrant crypt foci (ACF) during 1,2-dimethylhydrazine (DMH) induced experimental rat colon carcinogenesis. Male albino Wistar rats were randomly divided into six groups. Group 1 served as control. Group 2 received troxerutin (50 mg/kg b.w., p.o. every day) for 16 weeks. Groups 3-6 received subcutaneous injections of DMH (20 mg/kg b.w.) once a week, for the first four weeks. In addition, groups 4-6 received different doses of troxerutin (12.5, 25, 50 mg/kg b.w., p.o. every day respectively) along with DMH injections. Our results reveal that DMH treated rats exhibited elevated activities of phase I enzymes such as cytochrome P450, cytochrome b5, cytochrome P4502E1, NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase and reduced activities of phase II enzymes such as glutathione-S-transferase (GST), DT-diaphorase (DTD) and uridine diphospho glucuronyl transferase (UDPGT) in the liver and colonic mucosa of control and experimental rats. Furthermore, the activities of fecal and colonic mucosal bacterial enzymes, such as β-glucronidase, β-glucosidase, β-galactosidase and mucinase were found to be significantly higher in DMH alone treated rats than those of the control rats. On supplementation with troxerutin to DMH treated rats, the alterations in the activities of the biotransforming enzymes, bacterial enzymes and the pathological changes were significantly reversed, the effect being more pronounced when troxerutin was supplemented at the dose of 25 mg/kg b.w. Thus troxerutin could be considered as a good chemopreventive agent against the formation of preneoplastic lesions in a rat model of colon carcinogenesis.
Collapse
Affiliation(s)
- Rajamanickam Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Rajenderan Vinoth Kumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Mani Sudha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Periyaswamy Viswanathan
- Department of Pathology, Rajah Muthiah Medical College, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Thangavel Balasubramanian
- Faculty of Marine Sciences, Centre for Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Namasivayam Nalini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| |
Collapse
|
8
|
Kohonen P, Benfenati E, Bower D, Ceder R, Crump M, Cross K, Grafström RC, Healy L, Helma C, Jeliazkova N, Jeliazkov V, Maggioni S, Miller S, Myatt G, Rautenberg M, Stacey G, Willighagen E, Wiseman J, Hardy B. The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing. Mol Inform 2013; 32:47-63. [PMID: 27481023 DOI: 10.1002/minf.201200114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
Abstract
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lyn Healy
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | | - Silvia Maggioni
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | - Glyn Stacey
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | |
Collapse
|
9
|
NADPH quinone oxidoreductase 1 mediates breast cancer cell resistance to thymoquinone-induced apoptosis. Biochem Biophys Res Commun 2012; 426:421-6. [DOI: 10.1016/j.bbrc.2012.08.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
|
10
|
Pandurangan K, Murnaghan KD, Walshe A, Müller-Bunz H, Paradisi F, Morgan GG. Design, Synthesis and Structure of Novel Para-Quinones and their Antibacterial Activity. Chem Biol Drug Des 2011; 78:787-99. [DOI: 10.1111/j.1747-0285.2011.01187.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Foglieni C, Cavarelli M, Piscopiello M, Fulgenzi A, Ferrero ME. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate. Nutr J 2011; 10:77. [PMID: 21781350 PMCID: PMC3171306 DOI: 10.1186/1475-2891-10-77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 07/25/2011] [Indexed: 12/20/2022] Open
Abstract
Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn) is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc) and oxyprolinate (MnOxP). For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration), but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.
Collapse
Affiliation(s)
- Chiara Foglieni
- Department of Human Morphology Città Studi, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
12
|
Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer RJM, Wells JM. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010; 298:G851-9. [PMID: 20224007 DOI: 10.1152/ajpgi.00327.2009] [Citation(s) in RCA: 438] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lactobacillus plantarum, a commensal bacterium of humans, has been proposed to enhance the intestinal barrier, which is compromised in a number of intestinal disorders. To study the effect of L. plantarum strain WCFS1 on human barrier function, healthy subjects were administered L. plantarum or placebo in the duodenum for 6 h by means of a feeding catheter. The scaffold protein zonula occludens (ZO)-1 and transmembrane protein occludin were found to be significantly increased in the vicinity of the tight-junction (TJ) structures, which form the paracellular seal between cells of the epithelium. In an in vitro model of the human epithelium, L. plantarum induced translocation of ZO-1 to the TJ region; however, the effects on occludin were minor compared with those seen in vivo. L. plantarum was shown to activate Toll-like receptor 2 (TLR2) signaling, and treatment of Caco-2 monolayers with the TLR2 agonist Pam(3)-Cys-SK4(PCSK) significantly increased fluorescent staining of occludin in the TJ. Pretreatment of Caco-2 monolayers with L. plantarum or PCSK significantly attenuated the effects of phorbol ester-induced dislocation of ZO-1 and occludin and the associated increase in epithelial permeability. Our results identifying commensal bacterial stimulation of TLR2 in the gut epithelium as a regulator of epithelial integrity have important implications for understanding probiotic mechanisms and the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Jurgen Karczewski
- Host-Microbe Interactomics Group, Univ. of Wageningen, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 2010; 15:183-95. [PMID: 19882352 DOI: 10.1007/s10495-009-0421-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thymoquinone (TQ), a component of black seed essential oil, is known to induce apoptotic cell death and oxidative stress, however, the direct involvement of oxidants in TQ-induced cell death has not been established yet. Here, we show that TQ inhibited the proliferation of a panel of human colon cancer cells (Caco-2, HCT-116, LoVo, DLD-1 and HT-29), without exhibiting cytotoxicity to normal human intestinal FHs74Int cells. Further investigation in DLD-1 revealed that apoptotic cell death is the mechanism for TQ-induced growth inhibition as confirmed by flow cytometry, M30 cytodeath and caspase-3/7 activation. Apoptosis was induced via the generation of reactive oxygen species (ROS) as evidenced by the abrogation of TQ apoptotic effect in cells preincubated with the strong antioxidant N-acetyl cysteine (NAC). TQ increased the phosphorylation states of the mitogen-activated protein kinases (MAPK) JNK and ERK, but not of p38. Their activation was completely abolished in the presence of NAC. Using PD98059 and SP600125, specific ERK and JNK inhibitors, the two kinases were found to possess pro-survival activities in TQ-induced cell death. These data present evidence linking the pro-oxidant effects of TQ with its apoptotic effects in colon cancer and prove a protective role of MAPK.
Collapse
|
14
|
Li Y, Fawcett JP, Zhang H, Tucker IG. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. J Pharm Pharmacol 2010; 59:503-11. [PMID: 17430633 DOI: 10.1211/jpp.59.4.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Mitoquinone (MitoQ10 mesylate) is a mitochondria-targeted antioxidant formulated for oral administration in the treatment of neurodegenerative diseases. We have investigated the absorption and metabolism of MitoQ10 in Caco-2 cell monolayers. The intracellular accumulation of MitoQ10 was 18–41% of the total amount of MitoQ10 added. Some of the intracellular MitoQ10 was reduced to mitoquinol and subsequently metabolized to glucuronide and sulfate conjugates. Transport of MitoQ10 was polarized with the apparent permeability (Papp) from basolateral (BL) to apical (AP) (PappBL→AP) being >2.5-fold the Papp from apical to basolateral (PappAP→BL). In the presence of 4% bovine serum albumin on the basolateral side, the PappAP→BL value increased 7-fold compared with control. The PappBL→AP value decreased by 26, 31 and 61% in the presence of verapamil 100 μM, ciclosporin 10 and 30 μM, respectively, whereas the PappAP→BL value increased 71% in the presence of ciclosporin 30 μM. Apical efflux of mitoquinol sulfate and mitoquinol glucuronide conjugates was significantly decreased by ciclosporin 30 μM and the breast cancer receptor protein (BCRP) inhibitor, reserpine 25 μM, respectively. These results suggested that the bioavailability of MitoQ10 may be limited by intracellular metabolism and the action of P-glycoprotein and BCRP. However, the dramatic increase in absorptive Papp in the presence of bovine serum albumin on the receiver side suggests these barrier functions may be less significant in-vivo.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, University of Otago, Dunedin, PO Box 913, New Zealand.
| | | | | | | |
Collapse
|
15
|
Murugan RS, Uchida K, Hara Y, Nagini S. Black tea polyphenols modulate xenobiotic-metabolizing enzymes, oxidative stress and adduct formation in a rat hepatocarcinogenesis model. Free Radic Res 2009; 42:873-84. [DOI: 10.1080/10715760802506331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Hernández A, López-Lluch G, Bernal JA, Navas P, Pintor-Toro JA. Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. Mol Cancer Ther 2008; 7:474-82. [PMID: 18347135 DOI: 10.1158/1535-7163.mct-07-0457] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Securin, the natural inhibitor of sister chromatid untimely separation, is a protooncogene overexpressed in tumors. Its protein levels correlate with malignancy and metastatic proneness. Dicoumarol, a long-established oral anticoagulant, is a new Hsp90 inhibitor that represses PTTG1/Securin gene expression and provokes apoptosis through a complex trait involving both intrinsic and extrinsic pathways. Dicoumarol activity as an Hsp90 inhibitor is confirmed by smaller levels of Hsp90 clients in treated cells and inhibition of in vivo heat shock luciferase activity recovery assays. Likewise, established Hsp90 inhibitors (17-allylamino-geldanamycin and novobiocin) repress PTTG1/Securin gene expression. Also, overexpression of human Hsp90 in yeast makes them hypersensitive to dicoumarol. Both apoptosis and PTTG1/Securin gene repression exerted by dicoumarol in cancer cells are independent of three of the most important signaling pathways affected by Hsp90 inhibition: nuclear factor-kappaB, p53, or Akt/protein kinase B signaling pathways. However, effects on PTTG1/Securin could be partially ascribed to inhibition of the Ras/Raf/extracellular signal-regulated kinase pathway. Overall, we show that expression of PTTG1/Securin gene is Hsp90 dependent and that dicoumarol is a bona fide Hsp90 inhibitor. These findings are important to understand the mode of action of Hsp90 inhibitors, mechanisms of action of dicoumarol, and Securin overexpression in tumors.
Collapse
Affiliation(s)
- Agustín Hernández
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Seville, Spain.
| | | | | | | | | |
Collapse
|
17
|
Manikandan P, Murugan RS, Abbas H, Abraham SK, Nagini S. Ocimum sanctumLinn. (Holy Basil) Ethanolic Leaf Extract Protects Against 7,12-Dimethylbenz[a]Anthracene-Induced Genotoxicity, Oxidative Stress, and Imbalance in Xenobiotic-Metabolizing Enzymes. J Med Food 2007; 10:495-502. [PMID: 17887944 DOI: 10.1089/jmf.2006.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The present study was designed to evaluate the protective effects of ethanolic Ocimum sanctum leaf extract against 7,12-dimethylbenz[a]anthracene (DMBA)-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes. Four different concentrations of ethanolic O. sanctum leaf extract (100, 200, 300, and 400 mg/kg of body weight) were administered to Wistar rats by intragastric intubation for five consecutive days followed by intraperitoneal injection of DMBA (35 mg/kg of body weight) 90 minutes after the final dose of the extract. Administration of DMBA increased bone marrow micronuclei, phase I enzymes, lipid peroxidation, and protein carbonyl formation. This was accompanied by a significant decrease in the activities of phase II detoxification enzymes and antioxidants in the liver, erythrocytes, and bone marrow. Pretreatment with ethanolic O. sanctum leaf extract at a concentration of 300 mg/kg of body weight significantly reduced micronuclei formation and phase I enzymes as well as lipid and protein oxidation with enhanced antioxidant and phase II enzyme activities. The results of the present study suggest that ethanolic O. sanctum leaf extract inhibits DMBA-induced genotoxicity and oxidative stress by modulating xenobiotic-metabolizing enzymes, reducing the extent of lipid and protein oxidation and up-regulating antioxidant defenses.
Collapse
Affiliation(s)
- P Manikandan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
18
|
Xia S, Villamena FA, Hadad CM, Kuppusamy P, Li Y, Zhu H, Zweier JL. Reactivity of molecular oxygen with ethoxycarbonyl derivatives of tetrathiatriarylmethyl radicals. J Org Chem 2007; 71:7268-79. [PMID: 16958520 PMCID: PMC2533111 DOI: 10.1021/jo0610560] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrathiatriarylmethyl (TAM) radicals are commonly used as oximetry probes for electron paramagnetic resonance imaging applications. In this study, the electronic properties and the thermodynamic preferences for O2 addition to various TAM-type triarylmethyl (trityl) radicals were theoretically investigated. The radicals' stability in the presence of O2 and biological milieu was also experimentally assessed using EPR spectroscopy. Results show that H substitution on the aromatic ring affects the trityl radical's stability (tricarboxylate salt 1-CO2Na > triester 1-CO2Et > diester 2-CO2Et > monoester 3-CO2Et) and may lead to substitution reactions in cellular systems. We propose that this degradation process involves an arylperoxyl radical that can further decompose to alcohol or quinone products. This study demonstrates how computational chemistry can be used as a tool to rationalize radical stability in the redox environment of biological systems and aid in the future design of more biostable trityl radicals.
Collapse
Affiliation(s)
- Shijing Xia
- Department of Chemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Frederick A. Villamena
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | | | - Periannan Kuppusamy
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Yunbo Li
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Hong Zhu
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
19
|
de Haan LHJ, Pot GK, Aarts JMMJG, Rietjens IMCM, Alink GM. In vivo relevance of two critical levels for NAD(P)H:quinone oxidoreductase (NQO1)-mediated cellular protection against electrophile toxicity found in vitro. Toxicol In Vitro 2006; 20:594-600. [PMID: 16314070 DOI: 10.1016/j.tiv.2005.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 10/07/2005] [Accepted: 10/15/2005] [Indexed: 11/18/2022]
Abstract
NAD(P)H:quinone oxidoreductase (NQO1)-mediated detoxification of quinones is suggested to be involved in cancer prevention. In the present study, using transfected CHO cells, it was demonstrated that the relation between NQO1 activity and the resulting protection against the cytotoxicity of menadione shows a steep dose-response curve revealing a 'lower protection threshold' of 0.5mumol DCPIP/min/mg protein and an 'upper protection threshold' at 1mumol DCPIP/min/mg protein. In an additional in vivo experiment it was investigated how both in vitro critical activity levels of NQO1, relate to NQO1 activities in mice and man, either without or upon induction of the enzyme by butylated hydroxyanisol (BHA) or indole-3-carbinol (I(3)C). Data from an experiment with CD1 mice revealed that base-line NQO1 levels in liver, kidney, small intestine, colon and lung are generally below the observed 'lower protection threshold' in vitro, this also holds for most human tissue S-9 samples. To achieve NQO1 levels above this 'lower protection threshold' will require 5-20 fold NQO1 induction. Discussion focuses on the relevance of the in vitro NQO1 activity thresholds for the in vivo situation. We conclude that increased protection against menadione toxicity can probably not be achieved by NQO1 induction but should be achieved by other mechanisms. Whether this conclusion also holds for other electrophiles and the in vivo situation awaits further definition of their NQO1 protection thresholds.
Collapse
Affiliation(s)
- Laura H J de Haan
- Subdepartment of Toxicology, Agrotechnology and Food Science Group, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Brezak MC, Quaranta M, Contour-Galcera MO, Lavergne O, Mondesert O, Auvray P, Kasprzyk PG, Prevost GP, Ducommun B. Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer Ther 2006; 4:1378-87. [PMID: 16170030 DOI: 10.1158/1535-7163.mct-05-0168] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell cycle regulators, such as the CDC25 phosphatases, are potential targets for the development of new anticancer drugs. Here we report the identification and the characterization of BN82685, a quinone-based CDC25 inhibitor that is active in vitro and in vivo. BN82685 inhibits recombinant CDC25A, B, and C phosphatases in vitro. It inhibits the growth of human tumor cell lines with an IC(50) in the submicromolar range, independently of their resistance to chemotherapeutic agents. This inhibitory effect is irreversible on both the purified CDC25 enzyme in vitro and on tumor cell proliferation. The specificity of BN82685 towards the CDC25 phosphatases is shown by an increase in cyclin-dependent kinase 1 tyrosine 15 phosphorylation, by the reversion of the mitosis-inducing effect of CDC25B overexpression in HeLa cells, and by the lack of a growth inhibitory effect in an assay based on the use of a CDC25-independent fission yeast model. Finally, when administered p.o., BN82685 is shown to inhibit the growth of the human pancreatic tumor Mia PaCa-2 xenografted in athymic nude mice. BN82685 is therefore a promising new compound targeting CDC25, which confirms the interest of the inhibition of these enzymes as an anticancer therapeutic strategy.
Collapse
|
21
|
Fabiani R, De Bartolomeo A, Morozzi G. Involvement of oxygen free radicals in the serum-mediated increase of benzoquinone genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 46:156-63. [PMID: 15920754 DOI: 10.1002/em.20146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genotoxicity of benzoquinone (BQ), a toxic benzene metabolite, is greatly enhanced by the presence of fetal calf serum (FCS) in the incubation medium. The FCS effect is abolished by heat denaturation of serum proteins and is slightly decreased by dialysis. In the present study, we have further investigated the serum effect on BQ genotoxicity by measuring DNA damage produced in peripheral blood mononuclear cells (PBMCs) using the Comet assay. We have also evaluated the effect of human serum and rat liver post-mitochondrial fraction (S9) on the DNA damage produced by BQ. Both human serum and a rat liver S9 enhanced the genotoxicity of BQ in a manner similar to FCS. Gel filtration experiments showed that all the enhancing activity of the serum eluted with the high molecular weight fractions, suggesting that low molecular weight serum constituents do not play an important role in modulating genotoxicity. The genotoxicity-enhancing activity of serum was inhibited by the iron chelator deferoxamine and by superoxide dismutase and catalase. Incubating PBMCs with BQ in the presence of FCS also resulted in the accumulation of intracellular peroxides as demonstrated by loading the cells with 2',7'-dichlorofluorescin diacetate and analyzing for peroxide formation by flow cytometry. These results indicate that oxygen free radicals are involved in the enhancement of BQ-induced DNA damage by serum. We hypothesize that enzyme activities that reduce BQ by transferring single electrons could be the source of the oxygen free radicals.
Collapse
Affiliation(s)
- Roberto Fabiani
- Dipartimento di Scienze Biochimiche e Biotecnologie Molecolari, Sezione di Scienze Igienistiche e Ambientali, Università di Perugia, Perugia, Italy.
| | | | | |
Collapse
|
22
|
Bhuvaneswari V, Abraham SK, Nagini S. Combinatorial antigenotoxic and anticarcinogenic effects of tomato and garlic through modulation of xenobiotic-metabolizing enzymes during hamster buccal pouch carcinogenesis. Nutrition 2005; 21:726-31. [PMID: 15925298 DOI: 10.1016/j.nut.2004.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 05/13/2004] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Combination chemoprevention by dietary agents is a promising approach toward cancer control. Many dietary agents are known to prevent experimental mutagenesis and carcinogenesis by modulating xenobiotic-metabolizing enzymes. The present study evaluated the combinatorial chemopreventive effects of tomato and garlic on hamster buccal pouch carcinogenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA). METHODS Hamsters were assigned to one of four groups. The right buccal pouches of animals in group 1 were painted with 0.5% DMBA three times a week. The right buccal pouches of animals in group 2 were painted with DMBA and received intragastric administration of a combined dose of tomato and garlic on days alternate to DMBA application. Animals in group 3 were given chemopreventive agents alone. Animals in group 4 served as controls. Levels of phase I and II enzymes and the frequency of bone marrow micronuclei were used as biomarkers of chemoprevention. RESULTS All the hamsters painted with DMBA alone developed buccal pouch carcinomas that exhibited increased activities of xenobiotic-metabolizing enzymes associated with increased frequencies of bone marrow micronuclei. In the liver, an increase in phase I enzymes was accompanied by compromised phase II detoxification activities. Combined administration of tomato and garlic effectively suppressed the incidence and mean tumor burden of hamster buccal pouch carcinomas. In addition, tomato and garlic combination significantly decreased phase I enzymes and increased phase II enzyme activities in the pouch and liver with a decreased incidence of bone marrow micronuclei. CONCLUSION From these results, we suggest that modulation of xenobiotic-metabolizing enzymes exerted by tomato and garlic combination plays a key role in mitigating the mutagenic and carcinogenic effects of DMBA.
Collapse
|
23
|
Köhle C, Badary OA, Nill K, Bock-Hennig BS, Bock KW. Serotonin glucuronidation by Ah receptor- and oxidative stress-inducible human UDP-glucuronosyltransferase (UGT) 1A6 in Caco-2 cells. Biochem Pharmacol 2005; 69:1397-402. [PMID: 15826610 DOI: 10.1016/j.bcp.2005.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 11/23/2022]
Abstract
Caco-2 cells are a widely used model in drug development to study intestinal drug transport and metabolism. Recently, serotonin (5-hydroxytryptamine, 5-HT) has been characterized as a highly selective substrate of human UDP-glucuronosyltransferase UGT1A6 [Krishnaswamy S, Duan SX, von Moltke LL, Greenblatt DJ, Court MH. Validation of serotonin (5-hydroxytryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Disp 2003; 31:133-9], an isoform which conjugates planar phenols and is inducible by Ah receptor agonists and by oxidative/electrophile stress. To gain more insight into intestinal 5-HT disposition, uptake and metabolism of this neurotransmitter was studied in Caco-2 cell monolayers. It was found that 5-HT was taken up from the basolateral and to a lesser extent from the apical surface. It was mainly excreted basolaterally as 5-HT glucuronide. 5-HT UGT activity and UGT1A6 mRNA were induced by Ah receptor agonists and by oxidative stress generated by tert-butylhydroquinone and by isomeric thymoquinone, a potential antitumor agent and constituent of Nigella sativa seeds, commonly used as a condiment in the Middle East. While UGT1A6 induction was clearly detectable in NAD(P)H:quinone oxidoreductase 1 (NQO1)-deficient Caco-2 cells, it was not induced in NQO1-efficient HT-29 colon adenocarcinoma cells. The results suggest that--in addition to its detoxification function--intestinal UGT1A6 contributes to intestinal homeostasis of 5-HT from dietary sources and from release by enterochromaffin cells.
Collapse
Affiliation(s)
- Christoph Köhle
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Germany
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Munday R. Activation and Detoxification of Naphthoquinones by NAD(P)H: Quinone Oxidoreductase. Methods Enzymol 2004; 382:364-80. [PMID: 15047112 DOI: 10.1016/s0076-6879(04)82020-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Rex Munday
- AgResearch, Ruakura Agricultural Research Centre, Hamilton, New Zealand
| |
Collapse
|
26
|
Petrat F, Paluch S, Dogruöz E, Dörfler P, Kirsch M, Korth HG, Sustmann R, de Groot H. Reduction of Fe(III) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro: implications for an enzymatic reduction of Fe(III) ions of the labile iron pool. J Biol Chem 2003; 278:46403-13. [PMID: 12963736 DOI: 10.1074/jbc.m305291200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Enzymatic reduction of physiological Fe(III) complexes of the "labile iron pool" has not been studied so far. By use of spectrophotometric assays based on the oxidation of NAD(P)H and formation of [Fe(II) (1,10-phenanthroline)3]2+ as well as by utilizing electron paramagnetic resonance spectrometry, it was demonstrated that the NAD(P)H-dependent flavoenzyme lipoyl dehydrogenase (diaphorase, EC 1.8.1.4) effectively catalyzes the one-electron reduction of Fe(III) complexes of citrate, ATP, and ADP at the expense of the co-enzymes NAD(P)H. Deactivated or inhibited lipoyl dehydrogenase did not reduce the Fe(III) complexes. Likewise, in the absence of NAD(P)H or in the presence of NAD(P)+, Fe(III) reduction could not be detected. The fact that reduction also occurred in the absence of molecular oxygen as well as in the presence of superoxide dismutase proved that the Fe(III) reduction was directly linked to the enzymatic activity of lipoyl dehydrogenase and not mediated by O2. Kinetic studies revealed different affinities of lipoyl dehydrogenase for the reduction of the low molecular weight Fe(III) complexes in the relative order Fe(III)-citrate > Fe(III)-ATP > Fe(III)-ADP (half-maximal velocities at 346-485 microm). These Fe(III) complexes were enzymatically reduced also by other flavoenzymes, namely glutathione reductase (EC 1.6.4.2), cytochrome c reductase (EC 1.6.99.3), and cytochrome P450 reductase (EC 1.6.2.4) with somewhat lower efficacy. The present data suggest a (patho)physiological role for lipoyl dehydrogenase and other flavoenzymes in intracellular iron metabolism.
Collapse
Affiliation(s)
- Frank Petrat
- Institut für Physiologische Chemie, Universitätsklinikum, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dehn DL, Siegel D, Swann E, Moody CJ, Ross D. Biochemical, cytotoxic, and genotoxic effects of ES936, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1, in cellular systems. Mol Pharmacol 2003; 64:714-20. [PMID: 12920209 DOI: 10.1124/mol.64.3.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specific involvement of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioactivation of quinone prodrugs has been shown through the use of the inhibitor of NQO1, dicoumarol. Disadvantages of using dicoumarol to inhibit NQO1 include its lack of specificity and its competitive mechanism of inhibition. The concentration of dicoumarol required for inhibition of NQO1 varies according to the substrate under evaluation, which may lead to either false conclusions of the involvement of NQO1 or the alteration of other cellular processes. We have reported previously on the chemical and biochemical properties of ES936, a mechanism-based inhibitor of NQO1 in cell-free systems. In this study, we investigated the effects of ES936 in cellular systems. ES936 (100 nM) inhibits more than 95% of NQO1 activity within 30 min and is stable in complete media at this concentration for a minimum of 2 h. The duration of inhibition is cell line-specific because a new protein must be generated for resumption of activity. ES936 abrogates the toxicity of streptonigrin, with greater effects seen in cell lines expressing higher levels of NQO1. ES936 does not inhibit other cellular reductases, nor does it alter cellular levels of acid-soluble thiols. Some evidence of DNA strand breaks was observed at the concentrations of ES936 required for the inhibition of NQO1 activity. From our studies, we propose the use of ES936 (100 nM) as a mechanism-based inhibitor of NQO1 in cellular systems and for use as a component of the routine activity assay for NQO1.
Collapse
Affiliation(s)
- Donna L Dehn
- Department of Pharmaceutical Sciences, Campus Box C238, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
28
|
Gliszczyńska-Swigło A, van der Woude H, de Haan L, Tyrakowska B, Aarts JMMJG, Rietjens IMCM. The role of quinone reductase (NQO1) and quinone chemistry in quercetin cytotoxicity. Toxicol In Vitro 2003; 17:423-31. [PMID: 12849725 DOI: 10.1016/s0887-2333(03)00047-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly reduced in CHO+NQO1 cells compared to wild-type CHO cells, validating the NQO1-overexpression in the CHO+NQO1 transfectant. Quercetin inhibited the proliferation of wild-type CHO and CHO+NQO1 cells to a similar extent without affecting cell viability, indicating that NQO1 enrichment of CHO cells did not provide increased protection. On the other hand, inhibition of NQO1 in both types of cells by dicoumarol significantly potentiated the inhibitory effect of quercetin on cell proliferation, revealing the role of NQO1 in cellular protection against quercetin. Altogether, these results can be explained by the hypothesis that both wild-type CHO and CHO+NQO1 cells contain sufficient NQO1 activity for optimal protection against the pro-oxidant effect of quercetin on cell proliferation. The results also point at a cellular NQO1 threshold for optimal protection against quercetin. This NQO1 threshold seems to be in the range of NQO1 activities already present in various tissues.
Collapse
Affiliation(s)
- Anna Gliszczyńska-Swigło
- Division of Toxicology, Wageningen University, 5, 6703 HE Wageningen, Tuinlaan, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Ozen T, Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf extract on biotransformation enzyme systems, antioxidant enzymes, lactate dehydrogenase and lipid peroxidation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2003; 10:405-415. [PMID: 12834006 DOI: 10.1078/0944-7113-00275] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of two doses (50 and 100 mg/kg body wt given orally for 14 days) of an ethanol-water (80%-20%) extract of Urtica dioica L. and butylated hydroxyanisole (BHA) were investigated, for phase I and phase II enzymes, antioxidant enzymes, lactate dehydrogenase, lipid peroxidation and sulfhydryl groups in the liver of Swiss albino mice (8-9 weeks old). A modulatory effect of two doses and BHA was also observed for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in the kidney, lung and forestomach, as compared with the control group. The activities of cytochrome b5 (cyt b5), NADH-cytochrome b5 reductase (cyt b5 R), glutathione S-transferase (GST), DT-diaphorase (DTD), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) showed a significant increase in the liver at both dose levels of extract. Both extract-treated showed significantly lower activity of cytochrome P450 (cyt P450), lactate dehydrogenase (LDH), NADPH-cytochrome P450 reductase (cyt P450 R), total sulfhydryl groups (T-SH), nonprotein sulfhydryl groups (NP-SH) and protein-bound sulfhydryl groups (PB-SH). BHA-treated Swiss albino mice showed a notable increase in levels of cyt b5, DTD, T-SH, PB-SH, GPx, GR, and SOD in the liver while, LDH, cyt P450, cyt P450 R, Cyt b5 R, GST, NP-SH, and CAT levels were reduced significantly as compared to control values. The extract was effective in inducing GST, DTD, SOD and CAT activity in the forestomach and SOD and CAT activity in the lung at both dose levels. BHA-treated Swiss albino mice induced DTD, GST and all antioxidative parameters in the kidney, lung and forestomach.
Collapse
Affiliation(s)
- T Ozen
- Ondokuz Mayis University, The Faculty of Arts and Sciences, Department of Chemistry, Kurupelit, Samsun-Turkey.
| | | |
Collapse
|
30
|
De Haan LHJ, Boerboom AMJF, Rietjens IMCM, van Capelle D, De Ruijter AJM, Jaiswal AK, Aarts JMMJG. A physiological threshold for protection against menadione toxicity by human NAD(P)H:quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells. Biochem Pharmacol 2002; 64:1597-603. [PMID: 12429349 DOI: 10.1016/s0006-2952(02)01383-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stable transfection. The level of NQO1 over-expression ranged from 14 to 29 times the NQO1 activity in the wild-type CHO cells. This panel of cell lines, allowed investigation of the protective role of NQO1 in quinone cytotoxicity. It could be demonstrated that menadione toxicity was significantly reduced in all NQO1-transfected CHO clones compared to the wild-type cells, but the clones did not show differences in their level of protection against menadione. This observation pointed at a critical threshold concentration of NQO1 above which a further increase does not provide further protection against quinone cytotoxicity. Additional studies in which the NQO1 activity was inhibited by dicoumarol showed that only dicoumarol concentrations of about five times the EC(50) for NQO1 inhibition were able to reduce NQO1 levels below the apparent threshold, making the cells more sensitive. The level of this threshold was estimated to be in the range of base line NQO1 activities observed in several tissues and species. Thus, the results of the present study indicate that beneficial effects of NQO1 induction by, for example, cruciferous vegetables might be absent or present depending on the NQO1 activity threshold for optimal protection and the basal level of NQO1 expression in the tissue and species of interest.
Collapse
Affiliation(s)
- Laura H J De Haan
- Department of Toxicology, Wageningen University, Tuinlaan 5, NL-6703 HE, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Rietjens IM, Awad HM, Boersma MG, van Iersel ML, Vervoort J, Van Bladeren PJ. Structure activity relationships for the chemical behaviour and toxicity of electrophilic quinones/quinone methides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:11-21. [PMID: 11764920 DOI: 10.1007/978-1-4615-0667-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- I M Rietjens
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Gao D, Kakuma M, Oka S, Sugino K, Sakurai H. Reaction of beta-alkannin (shikonin) with reactive oxygen species: detection of beta-alkannin free radicals. Bioorg Med Chem 2000; 8:2561-9. [PMID: 11092541 DOI: 10.1016/s0968-0896(00)00191-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
beta-Alkannin (shikonin), a compound isolated from the root of Lithospermum erythrorhizon Siebold Zucc., has been used as a purple dye in ancient Japan and is known to exert an anti-inflammatory activity. This study aimed to understand the biological activity in terms of physico-chemical characteristics of beta-alkannin. Several physico-chemical properties including proton dissociation constants, half-wave potentials and molecular orbital energy of beta-alkannin were elucidated. This compound shows highly efficient antioxidative activities against several types of reactive oxygen species (ROS), such as singlet oxygen ((1)O2). superoxide anion radical (.O2), hydroxyl radical (.OH) and tert-butyl peroxyl radical (BuOO.) as well as iron-dependent microsomal lipid peroxidation. During the reactions of beta-alkannin with 1O2, .O2- and BuOO., intermediate organic radicals due to beta-alkannin were detectable by ESR spectrometry. Compared with the radicals due to naphthazarin, the structural skeleton of beta-alkannin, the beta-alkannin radical observed as an intermediate in the reactions with (1)O2, and .O2- was concluded to be a semiquinone radical. On the other hand, during the reactions of beta-alkannin and naphthazarin with BuOO., ESR spectra different from the semiquinone radical were observed, and proposed to result from the abstraction of hydrogen atoms from phenolic hydroxyl groups of beta-alkannin by BuOO.. Based on the ROS-scavenging abilities of beta-alkannin, the compound was concluded to react directly with ROS and exhibits antioxidative activity, which in turn exerts anti-inflammatory activity.
Collapse
Affiliation(s)
- D Gao
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
33
|
Singh RP, Padmavathi B, Rao AR. Modulatory influence of Adhatoda vesica (Justicia adhatoda) leaf extract on the enzymes of xenobiotic metabolism, antioxidant status and lipid peroxidation in mice. Mol Cell Biochem 2000; 213:99-109. [PMID: 11129964 DOI: 10.1023/a:1007182913931] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effect of two different doses (50 and 100 mg/kg body wt/day for 14 days) of 80% ethanolic extract of the leaves of Adhatoda vesica were examined on drug metabolizing phase I and phase II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of 8 weeks old Swiss albino mice. The modulatory effect of the extract was also examined on extra-hepatic organs viz. lung, kidney and forestomach for the activities of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Significant increase in the activities of acid soluble sulfhydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) were observed in the liver at both dose levels of treatments. Adhatoda vesica acted as bifunctional inducer since it induced both phase I and phase II enzyme systems. Both the treated groups showed significant decrease in malondialdehyde (MDA) formation in liver, suggesting its role in protection against prooxidant induced membrane damage. The cytosolic protein was significantly inhibited at both the dose levels of treatment indicating the possibility of its involvement in the inhibition of protein synthesis. BHA has significantly induced the activities of GR and GSH in the present study. The extract was effective in inducing GST and DTD in lung and forestomach, and SOD and CAT in kidney. Thus, besides liver, other organs viz., lung, kidney and forestomach were also stimulated by Adhatoda, to increase the potential of the machinery associated with the detoxification of xenobiotic compounds. But, liver and lung showed a more consistent induction. Since the study of induction of the phase I and phase II enzymes is considered to be a reliable marker for evaluating the chemopreventive efficacy of a particular compound, these findings are suggestive of the possible chemopreventive role played by Adhatoda leaf extract.
Collapse
Affiliation(s)
- R P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
34
|
Aherne SA, O'Brien NM. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med 2000; 29:507-14. [PMID: 11025194 DOI: 10.1016/s0891-5849(00)00360-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.
Collapse
Affiliation(s)
- S A Aherne
- Nutritional Sciences, Department of Food Science and Technology, National University of Ireland, Cork, Ireland.
| | | |
Collapse
|
35
|
Singh RP, Banerjee S, Rao AR. Effect of Aegle marmelos on biotransformation enzyme systems and protection against free-radical-mediated damage in mice. J Pharm Pharmacol 2000; 52:991-1000. [PMID: 11007071 DOI: 10.1211/0022357001774714] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effect of hydroalcoholic (80% ethanol, 20% water) extract of leaves of Aegle marmelos was examined on carcinogen-metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation, using two doses of dried extract (50 and 100 mg kg(-1) daily for 14 days), in the liver of mice. The modulatory effect of the extract was also examined on extrahepatic organs (lung, kidney and fore-stomach) for effects on the activity of glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase. Extract treatment significantly increased the basal levels of acid-soluble sulphydryl (-SH) content, cytochrome P450, NADPH-cytochrome P450 reductase, cytochrome b5, NADH-cytochrome b5 reductase, glutathione S-transferase, DT-diaphorase, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in the liver. Aegle acted as a bifunctional inducer since it induced both phase-I and phase-II enzyme systems. Both doses significantly decreased the activity of lactate dehydrogenase and formation of malondialdehyde in liver, suggesting a role in cytoprotection as well as protection against pro-oxidant-induced membrane damage. Butylated hydroxyanisole (positive control) induced almost all the antioxidative parameters measured in this study. The extract was effective in inducing glutathione S-transferase, DT-diaphorase, superoxide dismutase and catalase in lung, glutathione S-transferase, DT-diaphorase and superoxide dismutase in fore-stomach, and DT-diaphorase and superoxide dismutase in lung. These significant changes in the levels of drug-metabolizing enzymes and antioxidative profiles are strongly indicative of the chemopreventive potential of this plant, especially against chemical carcinogenesis.
Collapse
Affiliation(s)
- R P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
36
|
Gutierrez PL. The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radic Biol Med 2000; 29:263-75. [PMID: 11035255 DOI: 10.1016/s0891-5849(00)00314-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactivation of quinone-containing anticancer agents has been studied extensively within the context of the chemistry and structure of the individual quinones which may result in various mechanisms of bioactivation and activity. In this review we focus on the two electron enzymatic reduction/activation of quinone-containing anticancer agents by DT Diaphorase (DTD). This enzyme has become important in oncopharmacology because its activity varies with tissues and it has been found to be elevated in tumors. Thus, a selective tumor cell kill can exist for agents that are good substrates for this enzyme. In addition, the enzyme can be induced by a variety of agents, a fact that can be used in chemotherapy. That is induction by a nontoxic agent followed by treatment with a good DT-Diaphorase substrate. A wide variety of anticancer drugs are discussed some of which are not good substrates such as Adriamycin, and some of which are excellent substrates. The latter category includes a variety of quinone containing alkylating agents.
Collapse
Affiliation(s)
- P L Gutierrez
- The University of Maryland Greenebaum Cancer Center, University of Maryland Medical School, Baltimore, 21201, USA.
| |
Collapse
|
37
|
Dinkova-Kostova AT, Talalay P. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic Biol Med 2000; 29:231-40. [PMID: 11035251 DOI: 10.1016/s0891-5849(00)00300-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An extensive body of evidence supports the conclusion that by catalyzing obligatory two-electron reductions of quinones to hydroquinones, NAD(P)H:quinone reductase (QR1) protects cells against the deleterious effects of redox cycling of quinones, their ability to deplete glutathione, and to produce neoplasia. The effects of elevation of QR1 levels by various enzyme inducers, inhibition of the enzyme by dicumarol, and genetic deletion of the enzyme (knockout mouse) are all consistent with the proposed protective functions. Measurement of QR1 activity in murine hepatoma cells grown in 96-well microtiter plates has provided a rapid and quantitative method for detecting inducer activity and determining inducer potency. This constitutes a strategy for the identification of potential chemoprotectors against cancer. Epidemiological studies show that humans who are genetically deficient in QR1 are more susceptible to the hematological toxicity and carcinogenicity of benzene exposure, and may be more susceptible to the development of a number of malignant tumors.
Collapse
Affiliation(s)
- A T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
38
|
Singh RP, Dhanalakshmi S, Rao AR. Chemomodulatory action of Aloe vera on the profiles of enzymes associated with carcinogen metabolism and antioxidant status regulation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2000; 7:209-219. [PMID: 11185732 DOI: 10.1016/s0944-7113(00)80006-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of two doses (30 microl and 60 microl/day/mice daily for 14 days) of the fresh leaf pulp extract of Aloe vera was examined on carcinogen-metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione content, lactate dehydrogenase and lipid peroxidation in the liver of mice. The modulatory effect of the pulp extract was also examined on extrahepatic organs (lung, kidney and forestomach) for the activities of glutathione S-transferase, DT-diophorase, superoxide dismutase and catalase. The positive control mice were treated with butylated hydroxyanisole (BHA). Significant increases in the levels of acid soluble sulfhydryl (-SH) content, NADPH-cytochrome P450 reductase, NADH-cytochrome b5 reductase, glutathione S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase (GR) were observed in the liver. Aloe vera significantly reduced the levels of cytochrome P450 and cytochrome b5. Thus, Aloe vera is clearly an inducer of phase-II enzyme system. Treatment with both doses of Aloe caused a decrease in malondialdehyde (MDA) formation and the activity of lactate dehydrogenase in the liver, suggesting its role in protection against prooxidant-induced membrane and cellular damage. The microsomal and cytosolic protein was significantly enhanced by Aloe vera, indicating the possibility of its involvement in the induction of protein synthesis. BHA, an antioxidant compound, provided the authenticity of our assay protocol and response of animals against modulator. The pulp extract was effective in inducing GST, DTD, SOD and catalase as measured in extrahepatic organs. Thus, besides liver, other organs (lung, kidney and forestomach) were also influenced favorably by Aloe vera in order to detoxify reactive metabolites, including chemical carcinogens and drugs.
Collapse
Affiliation(s)
- R P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
39
|
Ip SP, Yiu HY, Ko KM. Schisandrin B protects against menadione-induced hepatotoxicity by enhancing DT-diaphorase activity. Mol Cell Biochem 2000; 208:151-5. [PMID: 10939639 DOI: 10.1023/a:1007029625406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pretreating mice with schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, at a daily dose of 1 mmol/kg for 3 days protected against menadione-induced hepatic oxidative damage in mice, as evidenced by decreases in plasma alanine aminotransferase activity (78%) and hepatic malondialdehyde level (70%), when compared with the menadione intoxicated control. In order to define the biochemical mechanism involved in the hepatoprotection afforded by Sch B pretreatment, we examined the activity of DT-diaphorase (DTD) in hepatocytes isolated from Sch B pretreated rats. Hepatocytes isolated from Sch B pretreated (a daily dose of 1 mmol/kg for 3 days) rats showed a significant increase (25%) in DTD activity. The increase in DTD activity was associated with the enhanced rate of menadione elimination in the hepatocyte culture. The ensemble of results suggests that the ability of Sch B pretreatment to enhance hepatocellular DTD activity may at least in part be attributed to the protection against menadione hepatotoxicity.
Collapse
Affiliation(s)
- S P Ip
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P.R. China
| | | | | |
Collapse
|