1
|
Oh YI, Kim JH, Kang CW. Oxidative stress in MCF-7 cells is involved in the effects of retinoic acid-induced activation of protein kinase C-delta on insulin-like growth factor-I secretion and synthesis. Growth Horm IGF Res 2010; 20:101-109. [PMID: 19932628 DOI: 10.1016/j.ghir.2009.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/27/2009] [Accepted: 10/18/2009] [Indexed: 11/18/2022]
Abstract
It is known that all-trans retinoic acid (RA) is a useful therapeutic anticancer agent in breast cancer that acts by inducing apoptosis and growth inhibition. Insulin-like growth factor-I (IGF-I) is also known to be a growth hormone that plays an important role in cell proliferation and apoptosis. We examined the relationships between RA-induced protein kinase C (PKC)-delta, the secretion and synthesis of IGF-I, and oxidative stress. RA at 10(-8)M and 10(-7)M increased PKC-delta phosphorylation (the ratio of phosphorylated to total PKC-delta) (p<0.05) and decreased the secretion and synthesis of IGF-I (p<0.05) compared to control, with the effects peaking for treatment with 10(-7)M RA for 72h. The silencing of PKC-delta prevented the RA-induced inhibition of the secretion and synthesis of IGF-I and cell viability (p<0.05). Application of 10(-7)M RA for 72h increased the level of thiobarbituric-acid-reactive substances and the expression of inducible nitric oxide synthase relative to control (p<0.05). These increases were blocked by suppressing PKC-delta and by pretreatment with the antioxidants glutathione and diphenyleneiodonium (p<0.05). These antioxidants also reversed the RA-induced inhibition of the secretion and synthesis of IGF-I and cell viability to control levels (p<0.05). The effects of suppressing IGF-I demonstrate that IGF-I plays a critical role in the RA-induced inhibition of the cell viability. These results indicate that the anticancer effects of RA are mediated by inhibition of the secretion and synthesis of IGF-I, and involve a PKC-delta-dependent mechanism, and they provide evidence of an interaction between PKC-delta and reactive oxygen species.
Collapse
Affiliation(s)
- Young-Il Oh
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Duk-Jin Dong 1 Ga 664-14, Jeonju City, Chonbuk, South Korea
| | | | | |
Collapse
|
2
|
Naliwaiko K, Luvizon AC, Donatti L, Chammas R, Mercadante AF, Zanata SM, Nakao LS. Guanosine promotes B16F10 melanoma cell differentiation through PKC-ERK 1/2 pathway. Chem Biol Interact 2008; 173:122-8. [PMID: 18456249 DOI: 10.1016/j.cbi.2008.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 11/24/2022]
Abstract
Malignant melanoma is one of the most lethal cancers. Nowadays, several anti-melanoma therapies have been employed. However, the poor prognosis and/or the increased toxicity of those treatments clearly demonstrate the requirement of searching for new drugs or novel combined chemotherapeutic protocols, contemplating both effectiveness and low toxicity. Guanosine (Guo) has been used in combination with acriflavina to potentiate the latter's antitumor activity, through still unknown mechanisms. Here, we show that Guo induces B16F10 melanoma cell differentiation, attested by growth arrest, dendrite-like outgrowth and increased melanogenesis, and also reduced motility. A sustained ERK 1/2 phosphorylation was observed after Guo treatment and ERK inhibition led to blockage of dendritogenesis. Intracellular cyclic AMP was not involved in ERK activation, since its levels remained unchanged. Protein kinase C (PKC), in contrast to phospholipase C (PLC), inhibition completely prevented ERK activation. While the classical melanoma differentiation agent forskolin activates cAMP-PKA-Raf-MEK-ERK pathway in B16F10 cells, here we suggest that a cAMP-independent, PKC-ERK axis is involved in Guo-induced B16F10 differentiation. Altogether, our results show that Guo acts as a differentiating agent, with cytostatic rather than cytotoxic properties, leading to a decreased melanoma malignancy. Thus, we propose that Guo may be envisaged in combination with lower doses of conventional anti-melanoma drugs, in an attempt to prevent or diminish their adverse effects.
Collapse
Affiliation(s)
- Katya Naliwaiko
- Department of Basic Pathology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Banerjee S, Wang Z, Mohammad M, Sarkar FH, Mohammad RM. Efficacy of selected natural products as therapeutic agents against cancer. JOURNAL OF NATURAL PRODUCTS 2008; 71:492-496. [PMID: 18302335 DOI: 10.1021/np0705716] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
With emerging sophistication in the exploration of ocean environment, a number of marine bioactive products have been identified with promising anticancer activity. Many of these are in active phase I or phase II clinical trials or have been terminated because of adverse side effects, mainly hematological in nature. Nonetheless, the information derived has aided enormously in providing leads for laboratory synthesis with modifications in the parent structure affecting compound solubility, absorption, and toxicity, resulting in less severe toxicity while achieving maximum efficacy in smaller doses. We describe herein, a few of the compounds obtained from marine and terrestrial sources [bryostatin 1 ( 1), dolastatin 10 ( 2), auristatin PE ( 3), and combretastatin A4 ( 4)] that have been extensively investigated in our laboratory and continue to be investigated for their sensitization effects with other cytotoxic agents in several different site-specific tumors employing murine models or human subjects.
Collapse
Affiliation(s)
- Sanjeev Banerjee
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
4
|
Law FBF, Chen YW, Wong KY, Ying J, Tao Q, Langford C, Lee PY, Law S, Cheung RWL, Chui CH, Tsao GSW, Lam KY, Wong J, Srivastava G, Tang JCO. Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 2007; 26:5877-88. [PMID: 17384685 PMCID: PMC2875854 DOI: 10.1038/sj.onc.1210390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/15/2007] [Accepted: 02/07/2007] [Indexed: 12/13/2022]
Abstract
By comparative DNA fingerprinting, we identified a 357-bp DNA fragment frequently amplified in esophageal squamous cell carcinomas (ESCC). This fragment overlaps with an expressed sequence tag mapped to 7q22. Further 5' and 3'-rapid amplification of cDNA ends revealed that it is part of a novel, single-exon gene with full-length mRNA of 2052 bp and encodes a nuclear protein of 109 amino acids ( approximately 15 kDa). This gene, designated as gene amplified in esophageal cancer 1 (GAEC1), was located within a 1-2 Mb amplicon at 7q22.1 identified by high-resolution 1 Mb array-comparative genomic hybridization in 6/10 ESCC cell lines. GAEC1 was ubiquitously expressed in normal tissues including esophageal and gastrointestinal organs; with amplification and overexpression in 6/10 (60%) ESCC cell lines and 34/99 (34%) primary tumors. Overexpression of GAEC1 in 3T3 mouse fibroblasts caused foci formation and colony formation in soft agar, comparable to H-ras and injection of GAEC1-transfected 3T3 cells into athymic nude mice formed undifferentiated sarcoma in vivo, indicating that GAEC1 is a transforming oncogene. Although no significant correlation was observed between GAEC1 amplification and clinicopathological parameters and prognosis, our study demonstrated that overexpressed GAEC1 has tumorigenic potential and suggest that overexpressed GAEC1 may play an important role in ESCC pathogenesis.
Collapse
Affiliation(s)
- FBF Law
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - YW Chen
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - KY Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - J Ying
- Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | - Q Tao
- Cancer Epigenetics Laboratory, State Key Laboratory in Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong
| | | | - PY Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - S Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - RWL Cheung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - C. H. Chui
- Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hong Kong
| | - GSW Tsao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - KY Lam
- Department of Pathology, Griffith University, Queensland, Australia
| | - J Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - G Srivastava
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Johnny CO Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hong Kong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, PR China
| |
Collapse
|
5
|
Alonso-Escolano D, Medina C, Cieslik K, Radomski A, Jurasz P, Santos-Martínez MJ, Jiffar T, Ruvolo P, Radomski MW. Protein kinase C delta mediates platelet-induced breast cancer cell invasion. J Pharmacol Exp Ther 2006; 318:373-80. [PMID: 16617167 DOI: 10.1124/jpet.106.103358] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Platelets play an important role in carcinogenesis, but the underlying molecular mechanisms remain poorly understood. To investigate the effects of platelets on in vitro invasion of MCF7 human breast cancer cells, human MCF7 cells were used to study their interactions with platelets using aggregometry and cell invasion chambers. Zymography and quantitative polymerase chain reaction (PCR) were used to study matrix metalloproteinases (MMPs), whereas Western blot was used to study protein kinase C (PKC) delta in MCF7 cells. We observed that platelets promoted invasion of MCF7 cells (3-fold increase, p<0.05, n=3) and that this process correlated with a dramatic increase in MMP-9 (8 fold-increase, p<0.001, n=3), which is known to facilitate cancer cell invasion. Because both platelets and MCF7 cells have been shown to release MMP-9, we investigated the cellular source that accounted for this increase. The time course and the use of specific protein synthesis inhibitors demonstrated that most of the increase in MMP-9 levels derived from de novo synthesis of this protease by cancer cells. Furthermore, platelets activated PKCdelta in MCF7 cells after 1 h of incubation (18.45+/-4.75% increase, p<0.05, n=4-7), which, in turn, led to an up-regulation of MMP-9 mRNA (from 60+/-20 to 1040+/-100 pg, p<0.001, n=3) and protein levels (18-fold increase, p<0.001, n=3), with the subsequent cell invasion-promoting effects. PKCdelta plays a crucial role in transducing the invasion-promoting effects of platelets in breast cancer cells, and the specific inhibition of PKCdelta may be a strategy to decrease platelet-mediated cancer cell invasion.
Collapse
Affiliation(s)
- David Alonso-Escolano
- Department of Integrative Biology and Pharmacology, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas, Houston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
He Y, Brown MA, Rothnagel JA, Saunders NA, Smith R. Roles of heterogeneous nuclear ribonucleoproteins A and B in cell proliferation. J Cell Sci 2006; 118:3173-83. [PMID: 16014382 DOI: 10.1242/jcs.02448] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2 and B1 has been observed in a variety of tumour types, however, it is unknown whether this dysregulation is a consequence of, or a driving force for, unregulated cell proliferation. We have shown that the levels of hnRNPs A1, A2 and B1, but not A3, are modulated during the cell cycle of Colo16 squamous carcinoma cells and HaCaT immortalized keratinocytes, suggesting that A1, A2 and B1 are needed at particular cell cycle stages. However, the levels of hnRNP A1, A2 and B1 mRNAs were constant, indicating that regulation of protein levels was controlled at the level of translation. RNAi suppression of hnRNP A1 or A3 alone did not affect the proliferation of Colo16 cells but the proliferation rate was significantly reduced when both were suppressed simultaneously, or when either was suppressed together with hnRNP A2. Reducing hnRNP A2 expression in Colo16 and HaCaT cells by RNAi led to a non-apoptotic-related decrease in cell proliferation, reinforcing the view that this protein is required for cell proliferation. Suppression of hnRNP A2 in Colo16 cells was associated with increased p21 levels but p53 levels remained unchanged. In addition, expression of BRCA1 was downregulated, at both mRNA and protein levels. The observed effects of hnRNP A2 and its isoforms on cell proliferation and their correlation with BRCA1 and p21 expression suggest that these hnRNP proteins play a role in cell proliferation.
Collapse
Affiliation(s)
- Yaowu He
- Department of Biochemistry and Molecular Biology, University of Queensland, St Lucia Campus, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
7
|
Abstract
Protein kinase C (PKC) is activated by diacylglycerol generated by receptor-mediated hydrolysis of membrane phospholipids to mediate signals for cell growth and plays as a target of tumor-promoting phorbol esters in malignant transformation. PKC is a family of enzymes and their expression profiles have been examined in the normal melanocytes and melanoma cells, and studies have been carried out on the functions of PKC isoforms in proliferation, transformation, and metastasis of melanoma cells. Here, we summarize current knowledge of the expression and possible roles of the PKC family in melanoma in comparison with those of normal melanocytes.
Collapse
Affiliation(s)
- Masahiro Oka
- Division of Dermatology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | | |
Collapse
|
8
|
Abstract
Elevated expression of stress proteins can be a characteristic of human cancer and may be involved in the development of resistance to some types of chemotherapeutic agent. In this paper, the effect of physiological stress conditions, such as glucose deprivation, was investigated in overexpressing nPKCdelta murine melanoma BL6 (BL6T) cells. Glucose stress conditions decreased the proliferative capacity, increasing the percentage of BL6T cells in the G0/G1 phase of the cell cycle. Furthermore, under such conditions, nPKCdelta, whose subcellular localization is cell cycle dependent, showed a cytoplasmic and perinuclear localization by immunohistochemistry, this being typical for cells in G0/G1 phase. Moreover, these cells expressed GRP-78, a known stress protein. On the other hand, glucose depletion enhanced intracellular melanin as well as tyrosinase activity and expression. In summary, these data demonstrate that stress conditions can modify the biological characteristics of BL6T cells, and therefore can select a quiescent cellular population.
Collapse
Affiliation(s)
- Sabrina Cedrola
- Department of Biomolecular Science and Biotechnology, University of Milan, Milan, Italy
| | | | | |
Collapse
|
9
|
van Baal J, de Widt J, Divecha N, van Blitterswijk WJ. Translocation of diacylglycerol kinase theta from cytosol to plasma membrane in response to activation of G protein-coupled receptors and protein kinase C. J Biol Chem 2005; 280:9870-8. [PMID: 15632189 DOI: 10.1074/jbc.m409301200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.
Collapse
Affiliation(s)
- Jürgen van Baal
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | | | | | | |
Collapse
|
10
|
Deutsch E, Cohen A, Kazimirsky G, Dovrat S, Rubinfeld H, Brodie C, Sarid R. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2004; 78:10187-92. [PMID: 15331751 PMCID: PMC515025 DOI: 10.1128/jvi.78.18.10187-10192.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCdelta isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCdelta mutant supported an essential role for the PKCdelta isoform in virus reactivation, yet overexpression of PKCdelta alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.
Collapse
Affiliation(s)
- Einat Deutsch
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
11
|
Preston A, Haynes JM. Alpha 1-adrenoceptor effects mediated by protein kinase C alpha in human cultured prostatic stromal cells. Br J Pharmacol 2003; 138:218-24. [PMID: 12522093 PMCID: PMC1573647 DOI: 10.1038/sj.bjp.0705021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 We have investigated the effects of alpha(1)-adrenoceptor stimulation upon contractility, Ca(2+) influx, inositol phosphate production, and protein kinase C (PKC) translocation in human cultured prostatic stromal cells (HCPSC). 2 The alpha(1)-adrenoceptor selective agonist phenylephrine elicited contractile responses of HCPSC, i.e. a maximal cell shortening of 45+/-6% of initial cell length, with an EC(50) of 1.6+/-0.1 microM. The alpha(1)-adrenoceptor selective antagonists prazosin (1 microM) and terazosin (1 microM) both blocked contractions to phenylephrine (10 microM). The L-type calcium channel blocker nifedipine (10 microM), and the PKC inhibitors Gö 6976 (1 microM) and bisindolylmaleimide (1 microM) also inhibited phenylephrine-induced contractions. 3 Phenylephrine caused a concentration dependent increase in inositol phosphate production (EC(50) 119+/-67 nM). This response was blocked by terazosin (1 microM). 4 Phenylephrine caused the translocation of the PKC alpha isoform, but not the beta, delta, gamma, epsilon or lambda isoforms, from the cytosolic to the particulate fraction of HCPSC, with an EC(50) of 5.7+/-0.5 microM. 5 In FURA-2AM (5 microM) loaded cells, phenylephrine elicited concentration dependent increases in [Ca(2+)](i), with an EC(50) of 3.9+/-0.4 microM. The response to phenylephrine (10 microM) was blocked by prazosin (1 microM), bisindolymaleimide (1 microM), and nifedipine (10 microM). 6 In conclusion, this study has shown that HCPSC express functional alpha(1)-adrenoceptors, and that the intracellular pathways responsible for contractility may be largely dependent upon protein kinase C activation and subsequent opening of L-type calcium channels.
Collapse
Affiliation(s)
- A Preston
- School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | |
Collapse
|
12
|
Abstract
Valproic acid (VPA, 2-propylpentanoic acid) is an established drug in the long-term therapy of epilepsy. During the past years, it has become evident that VPA is also associated with anti-cancer activity. VPA not only suppresses tumor growth and metastasis, but also induces tumor differentiation in vitro and in vivo. Several modes of action might be relevant for the biological activity of VPA: (1) VPA increases the DNA binding of activating protein-1 (AP-1) transcription factor, and the expression of genes regulated by the extracellular-regulated kinase (ERK)-AP-1 pathway; (2) VPA downregulates protein kinase C (PKC) activity; (3) VPA inhibits glycogen synthase kinase-3beta (GSK-3beta), a negative regulator of the Wnt signaling pathway; (4) VPA activates the peroxisome proliferator-activated receptors PPARgamma and delta; (5) VPA blocks HDAC (histone deacetylase), causing hyperacetylation. The findings elucidate an important role of VPA for cancer therapy. VPA might also be useful as low toxicity agent given over long time periods for chemoprevention and/or for control of residual minimal disease.
Collapse
Affiliation(s)
- Roman A Blaheta
- Zentrum der Hygiene, Institut für Medizinische Virologie, Interdisziplinäres Labor für Tumor- und Virus for schung, Klinikum der J. W. Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
13
|
da Rocha AB, Mans DRA, Regner A, Schwartsmann G. Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist 2002; 7:17-33. [PMID: 11854544 DOI: 10.1634/theoncologist.7-1-17] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A large body of evidence suggests that the abnormal phenotype of neoplastic astrocytes, including their excessive proliferation rate and high propensity to invade surrounding tissues, results from mutations in critical genes involved in key cellular events. These genetic alterations can affect cell-surface-associated receptors, elements of signaling pathways, or components of the cell cycle clock, conferring a gain or a loss of relevant metabolic functions of the cells. The understanding of such phenomena may allow the development of more efficacious forms of cancer treatment. Examples are therapies specifically directed against overexpressed epidermal growth factor receptor, hyperactive Ras, excessively stimulated Raf-1, overproduced ornithine decarboxylase, or aberrantly activated cyclin-dependent kinases. The applicability of some of these approaches is now being assessed in patients suffering from primary malignant central nervous system tumors that are not amenable to current therapeutic modalities. Another potentially useful therapeutic strategy against such tumors involves the inhibition of hyperactive or overexpressed protein kinase C (PKC). This strategy is justified by the decrease in cell proliferation and invasion following inhibition of the activity of this enzyme observed in preclinical glioma models. Thus, interference with PKC activity may represent a novel form of experimental cancer treatment that may simultaneously restrain the hyperproliferative state and the invasive capacity of high-grade malignant gliomas without inducing the expected toxicity of classical cytotoxic agents. Of note, the experimental use of PKC-inhibiting agents in patients with refractory high-grade malignant gliomas has indeed led to some clinical responses. The present paper reviews the current status of the biochemistry and molecular biology of PKC, as well as the possibilities for developing novel anti-PKC-based therapies for central nervous system malignancies.
Collapse
Affiliation(s)
- A B da Rocha
- South-American Office for Anticancer Drug Development (SOAD), Comprehensive Cancer Center, Lutheran University of Brazil, Canoas, RS, Brazil.
| | | | | | | |
Collapse
|
14
|
Neri LM, Bortul R, Borgatti P, Tabellini G, Baldini G, Capitani S, Martelli AM. Proliferating or differentiating stimuli act on different lipid-dependent signaling pathways in nuclei of human leukemia cells. Mol Biol Cell 2002; 13:947-64. [PMID: 11907274 PMCID: PMC99611 DOI: 10.1091/mbc.01-02-0086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous results have shown that the human promyelocytic leukemia HL-60 cell line responds to either proliferating or differentiating stimuli. When these cells are induced to proliferate, protein kinase C (PKC)-beta II migrates toward the nucleus, whereas when they are exposed to differentiating agents, there is a nuclear translocation of the alpha isoform of PKC. As a step toward the elucidation of the early intranuclear events that regulate the proliferation or the differentiation process, we show that in the HL-60 cells, a proliferating stimulus (i.e., insulin-like growth factor-I [IGF-I]) increased nuclear diacylglycerol (DAG) production derived from phosphatidylinositol (4,5) bisphosphate, as indicated by the inhibition exerted by 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine and U-73122 (1-[6((17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), which are pharmacological inhibitors of phosphoinositide-specific phospholipase C. In contrast, when HL-60 cells were induced to differentiate along the granulocytic lineage by dimethyl sulfoxide, we observed a rise in the nuclear DAG mass, which was sensitive to either neomycin or propranolol, two compounds with inhibitory effect on phospholipase D (PLD)-mediated DAG generation. In nuclei of dimethyl sulfoxide-treated HL-60 cells, we observed a rise in the amount of a 90-kDa PLD, distinct from PLD1 or PLD2. When a phosphatidylinositol (4,5) bisphosphate-derived DAG pool was generated in the nucleus, a selective translocation of PKC-beta II occurred. On the other hand, nuclear DAG derived through PLD, recruited PKC-alpha to the nucleus. Both of these PKC isoforms were phosphorylated on serine residues. These results provide support for the proposal that in the HL-60 cell nucleus there are two independently regulated sources of DAG, both of which are capable of acting as the driving force that attracts to this organelle distinct, DAG-dependent PKC isozymes. Our results assume a particular significance in light of the proposed use of pharmacological inhibitors of PKC-dependent biochemical pathways for the therapy of cancer disease.
Collapse
Affiliation(s)
- Luca M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana Normale, Università di Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Neuzil J, Weber T, Terman A, Weber C, Brunk UT. Vitamin E analogues as inducers of apoptosis: implications for their potential antineoplastic role. Redox Rep 2002; 6:143-51. [PMID: 11523588 DOI: 10.1179/135100001101536247] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent evidence suggests that vitamin E and its analogues, which have been used for many years as antioxidants, may not only protect cells from free radical damage but also induce apoptotic cell death in various cell types. While alpha-tocopherol (alpha-TOH) is mainly known as an anti-apoptotic agent, its redox-silent analogues either have no influence on cell survival (alpha-tocopheryl acetate, alpha-TOA), or induce apoptosis (alpha-tocopheryl succinate, alpha-TOS). Although precise mechanisms of apoptosis induction by alpha-TOS remain to be elucidated, there is evidence that this process involves both the antiproliferative and membrane destabilising activities of the agent. Alpha-TOS has been shown to induce apoptosis in malignant cell lines but not, in general, in normal cells, and to inhibit tumorigenesis in vivo. These features suggest that this semi-synthetic analogue of vitamin E could be a promising antineoplastic agent.
Collapse
Affiliation(s)
- J Neuzil
- Institute for Prevention of Cardiovascular Diseases, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | |
Collapse
|
16
|
Shah BH, Catt KJ. Calcium-independent activation of extracellularly regulated kinases 1 and 2 by angiotensin II in hepatic C9 cells: roles of protein kinase Cdelta, Src/proline-rich tyrosine kinase 2, and epidermal growth receptor trans-activation. Mol Pharmacol 2002; 61:343-51. [PMID: 11809859 DOI: 10.1124/mol.61.2.343] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonist activation of endogenous angiotensin II (Ang II) AT(1) receptors expressed in hepatic C9 cells markedly stimulated inositol phosphate production, phosphorylation of the proline-rich tyrosine kinase PyK-2, and ERK activation. Ang II caused activation of protein kinase C delta (PKCdelta) in C9 cells, and its stimulatory actions on Pyk2 and extracellularly regulated kinase (ERK) phosphorylation were abolished by PKC depletion and selective inhibition of PKCdelta by rottlerin, but not by Ca(2+)-chelators. These effects, and the similar actions of the Src kinase inhibitor PP2 indicate the involvement of PKCdelta and Src kinase in ERK activation. In C9 cells, phorbol-12-myristate-13-acetate (PMA) caused much greater phosphorylation of Pyk2 and ERK than the Ca(2+) ionophore ionomycin, and the effects of PMA and Ang II were abolished in PKC-depleted cells. Ang II increased the association of Pyk2 with Src and with the epidermal growth factor receptor (EGF-R). EGF caused much greater tyrosine phosphorylation of the EGF-R than Ang II and PMA. Ang II-induced activation of ERK, but not Pyk2, was prevented by inhibition of EGF receptor phosphorylation by AG 1478 and of Src kinase by PP1. Ang II also increased the association of the adaptor protein Grb2 with the EGF-R. These findings indicate that Src and Pyk2 act upstream of the EGF-R and that the majority of Ang II-induced ERK phosphorylation is dependent on trans-activation of the EGF-R. Ang II-induced ERK activation in C9 cells is initiated by a PKCdelta-dependent but Ca(2+)-independent mechanism and is mediated by the Src/Pyk2 complex through trans-activation of the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | |
Collapse
|
17
|
Sub-structure syntheses and relative stereochemistry in the bistramide (bistratene) series of marine metabolites. Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(01)02219-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
The role of PKC isoforms in signal transduction pathways involved in regulation of the cell cycle, apoptosis, angiogenesis, differentiation, invasiveness, senescence and drug efflux are reviewed, along with the clinical results on the current crop of PKC inhibitors, including midostaurin (PKC-412, CGP 41251, N -benzoylstaurosporine), UCN-01 (7-hydroxystaurosporine), bryostatin 1, perifosine, ilmofosine, Ro 31-8220, Ro 32-0432, GO 6976, ISIS-3521 (CGP 64128A) and the macrocyclic bis (indolyl) maleimides (LY-333531, LY-379196, LY-317615). An appreciation of the complex, often contradictory roles of PKC isoforms in signal transduction pathways involved in cancer is important for interpreting the clinical results observed with PKC inhibitors of varying selectivity. An antisense oligonucleotide, ISIS-3521 and two orally available small molecule inhibitors, LY 333531 and midostaurin, have now advanced to latter stage development for cancer and/or other indications. These compounds have varying levels of selectivity for the PKC isoforms and for the kinase and initial safety and early clinical efficacy have been encouraging. At this stage, the potential of PKC inhibition for the treatment of cancer has not been fully realised. The concurrent inhibition of multiple PKC isoforms may yet provide an improved clinical outcome in treating cancers in view of the complex interrelated roles of the PKC isoforms.
Collapse
Affiliation(s)
- P G Goekjian
- Laboratoire Chimie Organique II/UMR 5622, Universite Claude Bernard Lyon 1; Bat. 308-CPE, 3 Rue Victor Grignard, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
19
|
Recht LD, Salmonsen R, Rosetti R, Jang T, Pipia G, Kubiatowski T, Karim P, Ross AH, Zurier R, Litofsky NS, Burstein S. Antitumor effects of ajulemic acid (CT3), a synthetic non-psychoactive cannabinoid. Biochem Pharmacol 2001; 62:755-63. [PMID: 11551521 DOI: 10.1016/s0006-2952(01)00700-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the endogenous transformation products of tetrahydrocannabinol (THC) is THC-11-oic acid, and ajulemic acid (AJA; dimethylheptyl-THC-11-oic acid) is a side-chain synthetic analog of THC-11-oic acid. In preclinical studies, AJA has been found to be a potent anti-inflammatory agent without psychoactive properties. Based on recent reports suggesting antitumor effects of cannabinoids (CBs), we assessed the potential of AJA as an antitumor agent. AJA proved to be approximately one-half as potent as THC in inhibiting tumor growth in vitro against a variety of neoplastic cell lines. However, its in vitro effects lasted longer. The antitumor effect was stereospecific, suggesting receptor mediation. Unlike THC, however, whose effect was blocked by both CB(1) and CB(2) receptor antagonists, the effect of AJA was inhibited by only the CB(2) antagonist. Additionally, incubation of C6 glioma cells with AJA resulted in the formation of lipid droplets, the number of which increased over time; this effect was noted to a much greater extent after AJA than after THC and was not seen in WI-38 cells, a human normal fibroblast cell line. Analysis of incorporation of radiolabeled fatty acids revealed a marked accumulation of triglycerides in AJA-treated cells at concentrations that produced tumor growth inhibition. Finally, AJA, administered p.o. to nude mice at a dosage several orders of magnitude below that which produces toxicity, inhibited the growth of subcutaneously implanted U87 human glioma cells modestly but significantly. We conclude that AJA acts to produce significant antitumor activity and effects its actions primarily via CB(2) receptors. Its very favorable toxicity profile, including lack of psychoactivity, makes it suitable for chronic usage. Further studies are warranted to determine its optimal role as an antitumor agent.
Collapse
Affiliation(s)
- L D Recht
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gilhooly EM, Morse-Gaudio M, Bianchi L, Reinhart L, Rose DP, Connolly JM, Reed JA, Albino AP. Loss of expression of protein kinase C beta is a common phenomenon in human malignant melanoma: a result of transformation or differentiation? Melanoma Res 2001; 11:355-69. [PMID: 11479424 DOI: 10.1097/00008390-200108000-00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As with most cancers, the aetiology of human cutaneous melanoma is likely to be multifactorial and to include the accumulation of irreversible alterations in an unknown number of genes. Elucidating this molecular progression necessitates both the identification of genetic perturbations at each clinically relevant stage, and the assessment of their impact on the normal melanocyte. The observation that the epidermal melanocyte, in contrast to metastatic melanoma cells, requires activation of the protein kinase C (PKC) pathway to facilitate growth in vitro indicates that one or more isoforms (or substrates) of this large and complex family of proteins are among those that undergo alteration during the development of malignant melanoma. Consequently, a number of studies have investigated the expression of various PKC family members in both melanocyte and melanoma cell lines, without a consensus of opinion as to which isoforms are of biological significance in melanoma development and progression. The present study involved a comprehensive evaluation of the PKC profile in normal melanocytes and in 16 metastatic melanoma cell lines. The results show that the major difference in isoform expression between epidermal melanocytes and melanoma cells is the loss of PKCbeta protein expression in 90% of melanoma cell lines. Examination of PKCbeta in benign and malignant melanocytic lesions revealed that this protein is either downregulated or absent in both naevi and metastatic melanomas. We conjecture that, although the loss of PKCbeta expression is a common phenomenon in malignant melanocytes, it may be related more to a normal process of melanocytic differentiation than to malignant transformation.
Collapse
Affiliation(s)
- E M Gilhooly
- American Health Foundation, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Frey MR, Leontieva O, Watters DJ, Black JD. Stimulation of protein kinase C-dependent and -independent signaling pathways by bistratene A in intestinal epithelial cells. Biochem Pharmacol 2001; 61:1093-100. [PMID: 11301042 PMCID: PMC3601670 DOI: 10.1016/s0006-2952(01)00596-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(0)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(0)/G(1) blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(0)/G(1) and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEC-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta-dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(0)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms.
Collapse
Affiliation(s)
- Mark R. Frey
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Olga Leontieva
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dianne J. Watters
- Department of Surgery, University of Queensland, Clinical Sciences Building, Royal Brisbane Hospital, Brisbane 4029, Australia
| | - Jennifer D. Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Corresponding author. Tel.: +1-716-845-5766; fax: +1-716-845-8857. (J.D. Black)
| |
Collapse
|
22
|
Abstract
Bryostatins are a class of antineoplastic compounds isolated from the bryozoans Bugula neritina. A wide range of scientific research is currently underway, studying different aspects of the bryostatins. In this review we try to summarize the latest findings, including all the topics involved, from marine biology to medicinal chemistry.
Collapse
Affiliation(s)
- R Mutter
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | |
Collapse
|
23
|
Abstract
Luteinization is essential to the success of early gestation. It is the process by which elements of the ovarian follicle, usually including both theca interna and granulosa cells, are provoked by the ovulatory stimulus to develop into the corpus luteum. Although there are significant species differences in luteinization, some elements pervade, including the morphological and functional differentiation to produce and secrete progesterone. There is evidence that luteinization results in granulosa cell exit from the cell cycle. The mechanisms that appear to control luteinization include intracellular signalling pathways, cell adhesion factors, intracellular cholesterol and oxysterols, and perhaps progesterone itself as a paracrine or intracrine regulator. Cell models of luteinization, along with some of the conflicting observations on the luteinization process, are discussed in this review.
Collapse
Affiliation(s)
- B D Murphy
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6.
| |
Collapse
|
24
|
Pawlik TM, Souba WW, Sweeney TJ, Bode BP. Phorbol esters rapidly attenuate glutamine uptake and growth in human colon carcinoma cells. J Surg Res 2000; 90:149-55. [PMID: 10792956 DOI: 10.1006/jsre.2000.5872] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The amino acid glutamine, while essential for gut epithelial growth, has also been shown to stimulate colon carcinoma proliferation and diminish differentiation. Human colon carcinomas are known to extract and metabolize glutamine at rates severalfold greater than those of normal tissues, but the regulation of this response is unclear. Previously we reported that phorbol esters regulate hepatoma System ASC/B(0)-mediated glutamine uptake and cell growth. As human colon carcinoma cells use this same transporter for glutamine uptake, the present studies were undertaken to determine whether similar regulation functions in colon carcinoma. MATERIALS AND METHODS Human colon carcinoma cell lines (WiDr and HT29) were treated with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and initial-rate transport of glutamine and other nutrients was measured at specific times thereafter. Growth rates were monitored during culture +/- PMA or an excess of System ASC/B(0) substrates relative to glutamine. RESULTS PMA treatment induced a rapid inhibition of glutamine uptake rates in WiDr and HT29 cells by 30 and 57%, respectively, after 1 h. Cycloheximide failed to block this response, indicating that the mechanism by which PMA exerts its effects is posttranslational. The inhibition of glutamine uptake by PMA was abrogated by the PKC inhibitor staurosporine, suggesting that this rapid System ASC/B(0) regulation may be mediated by a PKC-dependent pathway. PMA also significantly decreased transport via System y(+) (arginine) and System A (small zwitterionic amino acids). Chronic phorbol ester treatment inhibited WiDr cell growth, as did attenuation of System B(0)-mediated glutamine uptake with other transporter substrates. CONCLUSIONS System ASC/B(0) uptake governs glutamine-dependent growth in colon carcinoma cell lines, and is regulated by a phorbol ester-sensitive pathway that may involve PKC. The results further establish the link between glutamine uptake and colon carcinoma cell growth, a relationship worthy of further investigation with the goal of discovering novel cancer therapeutic targets.
Collapse
Affiliation(s)
- T M Pawlik
- Surgical Oncology Research Laboratories, Massachusetts General Hospital and, Boston, Massachusetts 02114-2696, USA
| | | | | | | |
Collapse
|
25
|
Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 2000; 21:181-7. [PMID: 10785652 DOI: 10.1016/s0165-6147(00)01468-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein kinase C (PKC) family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. To date, identification of the physiological function of individual PKC isoforms has been restricted by the availability of few agents that inhibit or activate the isoforms with specificity. More recent approaches that are used to modulate PKC isoforms include oligonucleotide antisense technology, and peptide fragments to either inhibit or promote translocation of PKC isoforms to specific anchoring proteins. In this review, several currently available inhibitors and activators of PKC that display varying degrees of selectivity for the PKC isoforms will be discussed.
Collapse
Affiliation(s)
- K J Way
- Harvard Medical School, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| | | | | |
Collapse
|