1
|
Carletti B, Banaj N, Piras F, Bossù P. Schizophrenia and Glutathione: A Challenging Story. J Pers Med 2023; 13:1526. [PMID: 38003841 PMCID: PMC10672475 DOI: 10.3390/jpm13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SZ) is a devastating mental illness with a complex and heterogeneous clinical state. Several conditions like symptoms, stage and severity of the disease are only some of the variables that have to be considered to define the disorder and its phenotypes. SZ pathophysiology is still unclear, and the diagnosis is currently relegated to the analysis of clinical symptoms; therefore, the search for biomarkers with diagnostic relevance is a major challenge in the field, especially in the era of personalized medicine. Though the mechanisms implicated in SZ are not fully understood, some processes are beginning to be elucidated. Oxidative stress, and in particular glutathione (GSH) dysregulation, has been demonstrated to play a crucial role in SZ pathophysiology. In fact, glutathione is a leading actor of oxidative-stress-mediated damage in SZ and appears to reflect the heterogeneity of the disease. The literature reports differing results regarding the levels of glutathione in SZ patients. However, each GSH state may be a sign of specific symptoms or groups of symptoms, candidating glutathione as a biomarker useful for discriminating SZ phenotypes. Here, we summarize the literature about the levels of glutathione in SZ and analyze the role of this molecule and its potential use as a biomarker.
Collapse
Affiliation(s)
- Barbara Carletti
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
2
|
Rømer TB, Jeppesen R, Christensen RHB, Benros ME. Biomarkers in the cerebrospinal fluid of patients with psychotic disorders compared to healthy controls: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:2277-2290. [PMID: 37169812 DOI: 10.1038/s41380-023-02059-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Psychotic disorders are severe mental disorders with poorly understood etiology. Biomarkers in the cerebrospinal fluid (CSF) could provide etiological clues and diagnostic tools for psychosis; however, an unbiased overview of CSF alterations in individuals with psychotic disorders is lacking. The objective of this study was to summarize all quantifiable findings in CSF from individuals with psychotic disorders compared to healthy controls (HC). Studies published before January 25th, 2023 were identified searching PubMed, EMBASE, Cochrane Library, Web of Science, ClinicalTrials.gov, and PsycINFO. Screening, full-text review, data extraction, and risk of bias assessments were performed by two independent reviewers following PRISMA guidelines. Findings in patients and healthy controls were compared and summarized using random-effects analyses and assessment of publication bias, subgroup and sensitivity analyses were performed. 145 studies, covering 197 biomarkers, were included, of which 163 biomarkers have not previously been investigated in meta-analyses. All studies showed some degree of bias. 55 biomarkers measured in CSF were associated with psychosis and of these were 15 biomarkers measured in ≥2 studies. Patients showed increased levels of noradrenaline (standardized mean difference/SMD, 0.53; 95% confidence interval/CI, 0.16 to 0.90) and its metabolite 3-methoxy-4-hydroxyphenylglycol (SMD, 0.30; 95% CI: 0.05 to 0.55), the serotonin metabolite 5-hydroxyindoleacetic acid (SMD, 0.11; 95% CI: 0.01 to 0.21), the pro-inflammatory neurotransmitter kynurenic acid (SMD, 1.58; 95% CI: 0.34 to 2.81), its precursor kynurenine (SMD,0.99; 95% CI: 0.60 to 1.38), the cytokines interleukin-6 (SMD, 0.58; 95% CI: 0.39 to 0.77) and interleukin-8 (SMD, 0.43; 95% CI: 0.24 to 0.62), the endocannabinoid anandamide (SMD, 0.78; 95% CI: 0.53 to 1.02), albumin ratio (SMD, 0.40; 95% CI: 0.08 to 0.72), total protein (SMD, 0.29; 95% CI: 0.16 to 0.43), immunoglobulin ratio (SMD, 0.45; 95% CI: 0.06 to 0.85) and glucose (SMD, 0.48; 95% CI: 0.01 to 0.94). Neurotensin (SMD, -0.67; 95% CI: -0.89 to -0.46) and γ-aminobutyric acid (SMD, -0.29; 95% CI: -0.50 to -0.09) were decreased. Most biomarkers showed no significant differences, including the dopamine metabolites homovanillic acid and 3,4-dihydroxyphenylacetic acid. These findings suggest that dysregulation of the immune and adrenergic system as well as blood-brain barrier dysfunction are implicated in the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rose Jeppesen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo Bojesen Christensen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Chen S, Alhassen W, Vakil Monfared R, Vachirakorntong B, Nauli SM, Baldi P, Alachkar A. Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Int J Mol Sci 2021; 22:10387. [PMID: 34638726 PMCID: PMC8509004 DOI: 10.3390/ijms221910387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Almost all brain cells contain primary cilia, antennae-like microtubule sensory organelles, on their surface, which play critical roles in brain functions. During neurodevelopmental stages, cilia are essential for brain formation and maturation. In the adult brain, cilia play vital roles as signaling hubs that receive and transduce various signals and regulate cell-to-cell communications. These distinct roles suggest that cilia functions, and probably structures, change throughout the human lifespan. To further understand the age-dependent changes in cilia roles, we identified and analyzed age-dependent patterns of expression of cilia's structural and functional components across the human lifespan. We acquired cilia transcriptomic data for 16 brain regions from the BrainSpan Atlas and analyzed the age-dependent expression patterns using a linear regression model by calculating the regression coefficient. We found that 67% of cilia transcripts were differentially expressed genes with age (DEGAs) in at least one brain region. The age-dependent expression was region-specific, with the highest and lowest numbers of DEGAs expressed in the ventrolateral prefrontal cortex and hippocampus, respectively. The majority of cilia DEGAs displayed upregulation with age in most of the brain regions. The transcripts encoding cilia basal body components formed the majority of cilia DEGAs, and adjacent cerebral cortices exhibited large overlapping pairs of cilia DEGAs. Most remarkably, specific α/β-tubulin subunits (TUBA1A, TUBB2A, and TUBB2B) and SNAP-25 exhibited the highest rates of downregulation and upregulation, respectively, across age in almost all brain regions. α/β-tubulins and SNAP-25 expressions are known to be dysregulated in age-related neurodevelopmental and neurodegenerative disorders. Our results support a role for the high dynamics of cilia structural and functional components across the lifespan in the normal physiology of brain circuits. Furthermore, they suggest a crucial role for cilia signaling in the pathophysiological mechanisms of age-related psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| |
Collapse
|
4
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
5
|
Xu C, Sellgren CM, Fatouros-Bergman H, Piehl F, Blennow K, Zetterberg H, Brinkmalm A, Santillo AF, Lundgren S, Cervenka S, Engberg G, Erhardt S. CSF levels of synaptosomal-associated protein 25 and synaptotagmin-1 in first-episode psychosis subjects. IBRO Rep 2020; 8:136-142. [PMID: 32490278 PMCID: PMC7262376 DOI: 10.1016/j.ibror.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022] Open
Abstract
Post-mortem studies consistently show evidence of reduced synaptic protein levels in patients with schizophrenia. Clinically high-risk subjects show a steeper decrease in grey matter thickness and in vitro modeling using patient-derived cells implicate excessive synaptic pruning during neurodevelopment as a part of the schizophrenia pathophysiology. However, it is unclear to what extent synapse elimination is present during various stages of the disease, which is of clinical importance as in a real-world setting most subjects received their first-episode psychosis (FEP) diagnosis not until their mid-twenties. In the present study, we measured cerebrospinal fluid (CSF) concentrations of the two pre-synaptic proteins synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1), both of which are increased in conditions of ongoing synaptic degeneration, in 44 FEP subjects (mean age 29.9 years) and 21 healthy controls (25.9 years) using immunoprecipitation mass spectrometry. Neither protein was found to differ between healthy controls and patients, and they showed no correlation with symptom ratings, cognitive performance or antipsychotic medication. Additional studies in high-risk subjects in the early prodromal phase will be needed to address if excessive synapse destruction occurs before the development of overt psychotic symptoms.
Collapse
Key Words
- BACS-SC, Brief Assessment of Cognition in Schizophrenia Symbol Coding
- BMI, body mass index
- BVMT-R, Brief Visuospatial Memory Test-Revised
- CGI, Clinical Global Impression
- CPT-IP, Continuous Performance Test-Identical Pairs
- DUP, duration of untreated psychosis
- FEP, first-episode psychosis
- GAF, Global Assessment of Functioning
- HC, healthy controls
- HVLT-R, Hopkins Verbal Learning Test-Revised
- LNS, Letter-Number Span
- MSCEIT, Mayer–Salovey– Caruso Emotional Intelligence Test
- NAB: MAZES, Neuropsychological Assessment Battery: Mazes
- PANSS, the Positive and Negative Syndrome Scale
- SNAP-25
- SYT-1
- Schizophrenia
- Synapse pruning
- TMT, Trail Making Test
- WMS-III, Wechsler Memory Scale-3rd Edition
Collapse
Affiliation(s)
- Chengai Xu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Alexander Frizell Santillo
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Sofia Lundgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm & Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Symptomatic psychosis risk and physiological fluctuation in functional MRI data. Schizophr Res 2020; 216:339-346. [PMID: 31810761 DOI: 10.1016/j.schres.2019.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/11/2019] [Accepted: 11/19/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Physiological brain pulsations have been shown to play a critical role in maintaining interstitial homeostasis in the glymphatic brain clearance mechanism. We investigated whether psychotic symptomatology is related to the physiological variation of the human brain using fMRI. METHODS The participants (N = 277) were from the Northern Finland Birth Cohort 1986. Psychotic symptoms were evaluated with the Positive Symptoms Scale of the Structured Interview for Prodromal Syndromes (SIPS). We used the coefficient of variation of BOLD signal (CVBOLD) as a proxy for physiological brain pulsatility. The CVBOLD-analyses were controlled for motion, age, sex, and educational level. The results were also compared with fMRI and voxel-based morphometry (VBM) meta-analyses of schizophrenia patients (data from the Brainmap database). RESULTS At the global level, participants with psychotic-like symptoms had higher CVBOLD in cerebrospinal fluid (CSF) and white matter (WM), when compared to participants with no psychotic symptoms. Voxel-wise analyses revealed that CVBOLD was increased, especially in periventricular white matter, basal ganglia, cerebellum and parts of the cortical structures. Those brain regions, which included alterations of physiological fluctuation in symptomatic psychosis risk, overlapped <6% with the regions that were found to be affected in the meta-analyses of previous fMRI and VBM studies in schizophrenia patients. Motion did not vary as a function of SIPS. CONCLUSIONS Psychotic-like symptoms were associated with elevated CVBOLD in a variety of brain regions. The CVBOLD findings may produce new information about cerebral physiological fluctuations that have been out of reach in previous fMRI and VBM studies.
Collapse
|
7
|
Kang SG, Chee IS, Chang HS, Na KS, Lee K, Lee J. Polymorphism of the SNAP25 gene is associated with symptom improvement in schizophrenic patients treated with amisulpride. Neurosci Lett 2017; 661:46-50. [DOI: 10.1016/j.neulet.2017.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 02/01/2023]
|
8
|
A Multilevel Functional Study of a SNAP25 At-Risk Variant for Bipolar Disorder and Schizophrenia. J Neurosci 2017; 37:10389-10397. [PMID: 28972123 DOI: 10.1523/jneurosci.1040-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant in SNAP25, rs6039769, that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. We then combined in vitro and in vivo approaches in humans to understand the functional impact of the at-risk allele. Thus, we showed in vitro that the rs6039769 C allele was sufficient to increase the SNAP25 transcription level. In a postmortem expression analysis of 33 individuals affected with schizophrenia and 30 unaffected control subjects, we showed that the SNAP25b/SNAP25a ratio was increased in schizophrenic patients carrying the rs6039769 at-risk allele. Last, using genetics imaging in a cohort of 71 subjects, we showed that male risk carriers had an increased amygdala-ventromedial prefrontal cortex functional connectivity and a larger amygdala than non-risk carriers. The latter association has been replicated in an independent cohort of 121 independent subjects. Altogether, results from these multilevel functional studies are bringing strong evidence for the functional consequences of this allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network, which therefore may increase the vulnerability to both early-onset bipolar disorder and schizophrenia.SIGNIFICANCE STATEMENT Functional characterization of disease-associated variants is a key challenge in understanding neuropsychiatric disorders and will open an avenue in the development of personalized treatments. Recent studies have accumulated evidence that the SNARE complex, and more specifically the SNAP25 protein, may be involved in psychiatric disorders. Here, our multilevel functional studies are bringing strong evidence for the functional consequences of an allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network. These results demonstrate a common genetically driven functional alteration of a synaptic mechanism both in schizophrenia and early-onset bipolar disorder and confirm the shared genetic vulnerability between these two disorders.
Collapse
|
9
|
Proteome Analysis of Potential Synaptic Vesicle Cycle Biomarkers in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2016; 54:5177-5191. [PMID: 27562179 DOI: 10.1007/s12035-016-0029-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent fatal human prion disease with a rapid progression and unknown mechanism. The synaptic vesicle (SV) cycle pathway has been a hot research field associated with many neurodegenerative diseases that affect synaptic function and thus may affect pathogenesis of the disorder. Here, we used the iTRAQ-based proteomic method and a KEGG pathway enrichment analysis to meticulously analyze all pathways involved in sCJD disease. In total, 1670 proteins were validated in pooled cerebrospinal fluid (CSF) from 20 patients with sCJD compared with that from 13 patients without CJD. The demographic analysis demonstrated that 557 proteins were upregulated and 595 proteins were downregulated with a 1.5-fold change, and 690 proteins involved in 39 pathways changed significantly (p ≤ 0.05) according to the enrichment analysis. The SV cycle pathway and proteins involved were further evaluated, and 14 proteins were confirmed to participate in the SV cycle pathway due to increased expression. Six key proteins, such as AP2A1, SYT1, SNAP25, STXBP1, CLTB, and Rab3a, showed the same trend by western blot as detected by iTRAQ. This is the first study to use high-throughput proteomics to accurately identify and quantify proteins in the SV cycle pathway of a neurodegenerative disease. These results will help define the mechanism and provide new insight into the pathogenetic factors involved in the SV cycle pathway in patients with sCJD. We hope that promising biomarkers can be identified in the CSF of patients with sCJD and other neurodegenerative disorders to help predict disease progression.
Collapse
|
10
|
Staley LA, Ebbert MTW, Bunker D, Bailey M, Ridge PG, Goate AM, Kauwe JSK. Variants in ACPP are associated with cerebrospinal fluid Prostatic Acid Phosphatase levels. BMC Genomics 2016; 17 Suppl 3:439. [PMID: 27357282 PMCID: PMC4943489 DOI: 10.1186/s12864-016-2787-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostatic Acid Phosphatase (PAP) is an enzyme that is produced primarily in the prostate and functions as a cell growth regulator and potential tumor suppressor. Understanding the genetic regulation of this enzyme is important because PAP plays an important role in prostate cancer and is expressed in other tissues such as the brain. METHODS We tested association between 5.8 M SNPs and PAP levels in cerebrospinal fluid across 543 individuals in two datasets using linear regression. We then performed meta-analyses using METAL =with a significance threshold of p < 5 × 10(-8) and removed SNPs where the direction of the effect was different between the two datasets, identifying 289 candidate SNPs that affect PAP cerebrospinal fluid levels. We analyzed each of these SNPs individually and prioritized SNPs that had biologically meaningful functional annotations in wANNOVAR (e.g. non-synonymous, stop gain, 3' UTR, etc.) or had a RegulomeDB score less than 3. RESULTS Thirteen SNPs met our criteria, suggesting they are candidate causal alleles that underlie ACPP regulation and expression. CONCLUSIONS Given PAP's expression in the brain and its role as a cell-growth regulator and tumor suppressor, our results have important implications in brain health such as cancer and other brain diseases including neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease) and mental health (e.g., anxiety, depression, and schizophrenia).
Collapse
Affiliation(s)
- Lyndsay A Staley
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Daniel Bunker
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew Bailey
- Biology and Biomedical Sciences, Washington University, St. Louis, MO, 63110, USA
| | | | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Alison M Goate
- Department of Neuroscience Icahn School of Medicine, New York, NY, 10029, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
11
|
Brinkmalm A, Brinkmalm G, Honer WG, Frölich L, Hausner L, Minthon L, Hansson O, Wallin A, Zetterberg H, Blennow K, Öhrfelt A. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer's disease. Mol Neurodegener 2014; 9:53. [PMID: 25418885 PMCID: PMC4253625 DOI: 10.1186/1750-1326-9-53] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/27/2022] Open
Abstract
Background Synaptic degeneration is an early pathogenic event in Alzheimer’s disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. Results We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer’s disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer’s disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer’s disease from controls with area under the curve of 0.901 (P < 0.0001). Conclusions We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials. Electronic supplementary material The online version of this article (doi:10.1186/1750-1326-9-53) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations. PLoS One 2014; 9:e97851. [PMID: 24846136 PMCID: PMC4028278 DOI: 10.1371/journal.pone.0097851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Prostatic acid phosphatase (PAP), the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG), but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP) in the brain by utilizing mice deficient in TMPAP (PAP−/− mice). Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.
Collapse
|
13
|
Onaivi ES, Schanz N, Lin ZC. Psychiatric disturbances regulate the innate immune system in CSF of conscious mice. Transl Psychiatry 2014; 4:e367. [PMID: 24594778 PMCID: PMC3966044 DOI: 10.1038/tp.2014.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 12/07/2013] [Indexed: 12/18/2022] Open
Abstract
Environment may affect brain activity through cerebrospinal fluid (CSF) only if there are regulatory molecules or cascades in CSF that are sensitive to external stimuli. This study was designed to identify regulatory activity present in CSF, better elucidating environmental regulation of brain function. By using cannulation-based sequential CSF sampling coupled with mass spectrometry-based identification and quantification of proteins, we show that the naive mouse CSF harbors, among 22 other pathways, the innate immune system as a main pathway, which was downregulated and upregulated, respectively, by acute stressor (AS) and acute cocaine (AC) administrations. Among novel processes and molecular functions, AS also regulated schizophrenia-associated proteins. Furthermore, AC upregulated exosome-related proteins with a false discovery rate of 1.0 × 10(-)(16). These results suggest that psychiatric disturbances regulate the neuroimmune system and brain disorder-related proteins, presenting a sensitive approach to investigating extracellular mechanisms in conscious and various mouse models of psychiatric disorders.
Collapse
Affiliation(s)
- E S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, USA
| | - N Schanz
- Department of Biology, William Paterson University, Wayne, NJ, USA
| | - Z C Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA,Laboratory of Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA, USA,Laboratory of Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, McLean Hospital Mailstop 318, 115 Mill Street, Belmont 02478, MA, USA. E-mail:
| |
Collapse
|
14
|
Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep 2013; 14:645-51. [PMID: 23732542 DOI: 10.1038/embor.2013.75] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We show that, unexpectedly, halved SNAP-25 levels at 13-14 DIV not only fail to impair synaptic transmission but instead enhance evoked glutamatergic neurotransmission. This effect is possibly dependent on presynaptic voltage-gated calcium channel activity and is not accompanied by changes in spontaneous quantal events or in the pool of readily releasable synaptic vesicles. Notably, synapses of 13-14 DIV neurons with reduced SNAP-25 expression show paired-pulse depression as opposed to paired-pulse facilitation occurring in their wild-type counterparts. This phenotype disappears with synapse maturation. As alterations in short-term plasticity represent a new mechanism contributing to cognitive impairments in intellectual disabilities, our data provide mechanistic clues for neuronal circuit alterations in psychiatric diseases characterized by reduced expression of SNAP-25.
Collapse
|
15
|
Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM. Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:209-16. [PMID: 23318689 DOI: 10.1016/j.pnpbp.2012.12.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/18/2022]
Abstract
Sleep-onset and maintenance insomnia is a common symptom in schizophrenic patients regardless of either their medication status (drug-naive or previously treated) or the phase of the clinical course (acute or chronic). Regarding sleep architecture, the majority of studies indicate that non-rapid eye movement (NREM), N3 sleep and REM sleep onset latency are reduced in schizophrenia, whereas REM sleep duration tends to remain unchanged. Many of these sleep disturbances in schizophrenia appear to be caused by abnormalities of the circadian system as indicated by misalignments of the endogenous circadian cycle and the sleep-wake cycle. Circadian disruption, sleep onset insomnia and difficulties in maintaining sleep in schizophrenic patients could be partly related to a presumed hyperactivity of the dopaminergic system and dysfunction of the GABAergic system, both associated with core features of schizophrenia and with signaling in sleep and wake promoting brain regions. Since multiple neurotransmitter systems within the CNS can be implicated in sleep disturbances in schizophrenia, the characterization of the neurotransmitter systems involved remains a challenging dilemma.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, Clinics Hospital, Montevideo, 11600, Uruguay
| | | | | | | | | | | | | |
Collapse
|
16
|
Lochman J, Balcar VJ, Sťastný F, Serý O. Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes. Psychiatry Res 2013; 205:7-12. [PMID: 22940547 DOI: 10.1016/j.psychres.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/18/2012] [Accepted: 08/03/2012] [Indexed: 10/27/2022]
Abstract
The results of linkage and candidate gene association studies have led to a range of hypotheses about the pathogenesis of schizophrenia. We limited our study to polymorphisms in candidate genes involved in dopaminergic and noradrenergic systems, and in the 25KDa synaptosomal-associated protein (SNAP-25) gene that is related to neurotransmitter exocytosis. Eight single nucleotide polymorphisms (SNPs) in regulating or coding regions of genes for the alpha-2A adrenergic receptor (ADRA2A), dopamine receptors D1 and D3 (DRD1 and DRD3), dopamine β-hydroxylase (DBH) and SNAP-25 were genotyped in male patients with schizophrenia (n=192) and in healthy controls (n=213). These polymorphisms were previously associated with schizophrenia. The allelic association between schizophrenia and ADRA2A rs1800544 polymorphism, SNAP-25 rs1503112 polymorphism, and DRD3 rs6280 polymorphism was found in our study. However, only observations for rs1503112 survived correction for multiple testing. Association was also evaluated by considering the polymorphisms as interactions; in this case, a likelihood ratio test (LRT) revealed evidence for association with schizophrenia in four polymorphism combinations: two DRD3*SNAP-25 combinations (rs6280*rs3746544 and rs6280*rs3746544, P=0.02), one ADRA2A*SNAP25 combination (rs1800544*rs3746544) and one ADRA2A*DBH combination (rs1800544*rs2519152). Our results are in agreement with the previously proposed role of DNA polymorphisms involved in dopaminergic, noradrenergic and synaptic functions in the pathogenesis of schizophrenia. Further relevant studies including larger sample size and more markers are needed to confirm our results.
Collapse
Affiliation(s)
- Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Vasic N, Connemann BJ, Wolf RC, Tumani H, Brettschneider J. Cerebrospinal fluid biomarker candidates of schizophrenia: where do we stand? Eur Arch Psychiatry Clin Neurosci 2012; 262:375-91. [PMID: 22173848 DOI: 10.1007/s00406-011-0280-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/03/2011] [Indexed: 02/07/2023]
Abstract
Here, we review the cerebrospinal fluid (CSF) candidate markers with regard to their clinical relevance as potential surrogates for disease activity, prognosis assessment, and predictors of treatment response. We searched different online databases such as MEDLINE and EMBASE for studies on schizophrenia and CSF. Initial studies on cerebrospinal fluid in patients with schizophrenia revealed increased brain-blood barrier permeability with elevated total protein content, increased CSF-to-serum ratio for albumin, and intrathecal production of immunoglobulins in subgroups of patients. Analyses of metabolites in CSF suggest alterations within glutamatergic neurotransmission as well as monoamine and cannabinoid metabolism. Decreased levels of brain-derived neurotrophic factor and nerve growth factor in CSF of first-episode patients with schizophrenia reported in recent studies point to a dysregulation of neuroprotective and neurodevelopmental processes. Still, these findings must be considered as non-specific. A more profound characterization of the particular psychopathological profiles, the investigation of patients in the prodromal phase or within the first episode of schizophrenia promoting longitudinal investigations, implementation of different approaches of proteomics, and rigorous adherence to standard procedures based on international CSF guidelines are necessary to improve the quality of CSF studies in schizophrenia, paving the way for identification of syndrome-specific biomarker candidates.
Collapse
Affiliation(s)
- Nenad Vasic
- Department of Psychiatry and Psychotherapy III, University of Ulm, Germany.
| | | | | | | | | |
Collapse
|
18
|
Oliver P, Sobczyk M, Maywood E, Edwards B, Lee S, Livieratos A, Oster H, Butler R, Godinho S, Wulff K, Peirson S, Fisher S, Chesham J, Smith J, Hastings M, Davies K, Foster R. Disrupted circadian rhythms in a mouse model of schizophrenia. Curr Biol 2012; 22:314-9. [PMID: 22264613 PMCID: PMC3356578 DOI: 10.1016/j.cub.2011.12.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/27/2011] [Accepted: 12/22/2011] [Indexed: 01/28/2023]
Abstract
Sleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4]. Notably, SNAP-25 has been implicated in schizophrenia from genetic [5-8], pathological [9-13], and functional studies [14-16]. We show here that the rest and activity rhythms of Bdr mice are phase advanced and fragmented under a light/dark cycle, reminiscent of the disturbed sleep patterns observed in schizophrenia. Retinal inputs appear normal in mutants, and clock gene rhythms within the suprachiasmatic nucleus (SCN) are normally phased both in vitro and in vivo. However, the 24 hr rhythms of arginine vasopressin within the SCN and plasma corticosterone are both markedly phase advanced in Bdr mice. We suggest that the Bdr circadian phenotype arises from a disruption of synaptic connectivity within the SCN that alters critical output signals. Collectively, our data provide a link between disruption of circadian activity cycles and synaptic dysfunction in a model of neuropsychiatric disease.
Collapse
Affiliation(s)
- Peter L. Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Melanie V. Sobczyk
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Elizabeth S. Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Benjamin Edwards
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Sheena Lee
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Achilleas Livieratos
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Henrik Oster
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Rachel Butler
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Sofia I.H. Godinho
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Katharina Wulff
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Simon P. Fisher
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Johanna E. Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Janice W. Smith
- Lilly, Erl Wood Manor, Sunninghill Road, Windlesham, Surrey GU20 6PH, UK
| | - Michael H. Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kay E. Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
19
|
Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol 2011; 95:520-34. [PMID: 21524681 DOI: 10.1016/j.pneurobio.2011.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022]
Abstract
The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.
| | | | | | | |
Collapse
|
20
|
Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 2011; 64:283-8. [PMID: 21497654 DOI: 10.1016/j.phrs.2011.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 12/26/2022]
Abstract
Synaptosomal-associated protein of 25kD (SNAP-25), a protein participating in the regulation of synaptic vesicle exocytosis and in calcium homeostasis, was recently involved in neuropsychiatric conditions. Because alterations affecting the homeostasis of calcium are described in patients affected by autism spectrum disorders (ASD) we investigated a possible involvement of SNAP-25 in ASD by evaluating five SNAP-25 gene polymorphisms in a cohort of 67 ASD children. Data analyzed in relationship with clinical outcomes and compared to those of 205 healthy sex-matched children did not reveal significant differences. Further analyses nevertheless showed the presence of highly significant associations of the rs363043 (CT) genotype, localized in the intron 1 region that affects the transcription factor binding sites of the SNAP-25 gene, with both increasing CARS (p=0.001) and hyperactivity scores (p=0.006). The finding that polymorphisms of the SNAP-25 gene, a gene involved in neurotransmission and regulation of calcium homeostasis, are associated with the degree of hyperactivity in children with ASD, reinforces the hypothesis that alterations of these mechanisms play a pivotal role in the events leading to ASD-associated behavioral impairment. Modulation of these processes could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Franca R Guerini
- Don C. Gnocchi Foundation ONLUS, P. le Morandi 6, 20121 Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li HY, Thornton AE, Wong H, Rosokilja G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Ilievski B, Dwork AJ, Falkai P, Honer WG. A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 2010; 35:1226-38. [PMID: 20072114 PMCID: PMC3055413 DOI: 10.1038/npp.2009.228] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/20/2009] [Indexed: 02/01/2023]
Abstract
Abnormalities of amount and function of presynaptic terminals may have an important role in the mechanism of illness in schizophrenia. The SNARE proteins (SNAP-25, syntaxin, and VAMP) are enriched in presynaptic terminals, where they interact to form a functional complex to facilitate vesicle fusion. SNARE protein amounts are altered in the cortical regions in schizophrenia, but studies of protein-protein interactions are limited. We extended these investigations to the striatal regions (such as the nucleus accumbens, ventromedial caudate (VMC), and dorsal caudate) relevant to disease symptoms. In addition to measuring SNARE protein levels, we studied SNARE protein-protein interactions using a novel ELISA method. The possible effect of antipsychotic treatment was investigated in parallel in the striatum of rodents that were administered haloperidol and clozapine. In schizophrenia samples, compared with controls, SNAP-25 was 32% lower (P=0.015) and syntaxin was 26% lower (P=0.006) in the VMC. In contrast, in the same region, SNARE protein-protein interactions were higher in schizophrenia (P=0.008). Confocal microscopy of schizophrenia and control VMC showed qualitatively similar SNARE protein immunostaining. Haloperidol treatment of rats increased levels of SNAP-25 (mean 24%, P=0.003), syntaxin (mean 18%, P=0.010), and VAMP (mean 16%, P=0.001), whereas clozapine increased only the VAMP level (mean 13%, P=0.004). Neither drug altered SNARE protein-protein interactions. These results indicate abnormalities of amount and interactions of proteins directly related to presynaptic function in the VMC in schizophrenia. SNARE proteins and their interactions may be a novel target for the development of therapeutics.
Collapse
Affiliation(s)
- Vilte E Barakauskas
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Athena R Ypsilanti
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Hong-Ying Li
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Allen E Thornton
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Hubert Wong
- Department of Health Care and Epidemiology, University of British Columbia, Vancouver, BC, Canada
| | - Gorazd Rosokilja
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
- Macedonian Academy of Sciences and Arts, University ‘SS. Cyril and Methodius' Skopje, Macedonia
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
| | - Branislav Mancevski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
| | - Zlatko Jakovski
- Institute for Forensic Medicine, University ‘SS. Cyril and Methodius,' Skopje, Macedonia
| | - Natasha Davceva
- Institute for Forensic Medicine, University ‘SS. Cyril and Methodius,' Skopje, Macedonia
| | - Boro Ilievski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Institute for Pathology, University ‘SS. Cyril and Methodius,', Skopje, Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians, Surgeons of Columbia University, New York, NY, USA
| | - Peter Falkai
- Department of Psychiatry, Göttingen University, Göttingen, Germany
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Fanous A, Zhao Z, van den Oord E, Maher B, Thiselton D, Bergen S, Wormley B, Bigdeli T, Amdur R, O'Neill F, Walsh D, Kendler K, Riley B. Association study of SNAP25 and schizophrenia in Irish family and case-control samples. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:663-674. [PMID: 19806613 PMCID: PMC2859301 DOI: 10.1002/ajmg.b.31037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SNAP25 occurs on chromosome 20p12.2, which has been linked to schizophrenia in some samples, and recently linked to latent classes of psychotic illness in our sample. SNAP25 is crucial to synaptic functioning, may be involved in axonal growth and dendritic sprouting, and its expression may be decreased in schizophrenia. We genotyped 18 haplotype-tagging SNPs in SNAP25 in a sample of 270 Irish high-density families. Single marker and haplotype analyses were performed in FBAT and PDT. We adjusted for multiple testing by computing q values. Association was followed up in an independent sample of 657 cases and 411 controls. We tested for allelic effects on the clinical phenotype by using the method of sequential addition and 5 factor-derived scores of the OPCRIT. Nine of 18 SNPs had P values <0.05 in either FBAT or PDT for one or more definitions of illness. Several two-marker haplotypes were also associated. Subjects inheriting the risk alleles of the most significantly associated two-marker haplotype were likely to have higher levels of hallucinations and delusions. The most significantly associated marker, rs6039820, was observed to perturb 12 transcription-factor binding sites in in silico analyses. An attempt to replicate association findings in the case-control sample resulted in no SNPs being significantly associated. We observed robust association in both single marker and haplotype-based analyses between SNAP25 and schizophrenia in an Irish family sample. Although we failed to replicate this in an independent sample, this gene should be further tested in other samples.
Collapse
Affiliation(s)
- A.H. Fanous
- Washington VA Medical Center, Washington, District of Columbia,Georgetown University Medical Center, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Correspondence to: Dr. A.H. Fanous, 50 Irving St. NW, Washington, DC 20422.
| | - Z. Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - E.J.C.G. van den Oord
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - B.S. Maher
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - D.L. Thiselton
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - S.E. Bergen
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - B. Wormley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - T. Bigdeli
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - R.L. Amdur
- Washington VA Medical Center, Washington, District of Columbia,Georgetown University Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - D. Walsh
- Health Research Board, Dublin, Ireland
| | - K.S. Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - B.P. Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Carroll LS, Kendall K, O'Donovan MC, Owen MJ, Williams NM. Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:893-9. [PMID: 19132710 DOI: 10.1002/ajmg.b.30915] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Synaptosomal Associated Protein 25 kDa (SNAP25) has been implicated in the pathogenesis of schizophrenia by numerous neuropathological studies and genetic variation at SNAP25 has been reported to be associated with ADHD. Expression levels of the putative schizophrenia susceptibility gene DTNBP1 has been shown to influence the levels of SNAP25 in vitro. We undertook directed mutation screening of SNAP25 in UK schizophrenic cases followed by direct association analysis of all variants identified and identified known exonic SNPs that showed evidence for association (rs3746544 P = 0.004 OR = 1.26, rs8636 P = 0.003 OR = 1.27), although these SNPs are highly correlated (r(2) > 0.99). We additionally genotyped a further 31 tag SNPs spanning the SNAP25 locus and identified several independent SNPs that were nominally associated with schizophrenia (strongest association at rs3787283, P = 0.006, OR = 1.25) however, due to the number of tests performed no SNP met experiment-wise significance (minimum permuted P-value = 0.1). Post hoc analysis revealed that the SNPs nominally associated with schizophrenia (rs3787283, rs3746544) were the same as those previously demonstrated to be associated with ADHD but with the opposite alleles, allowing the intriguing hypothesis that genetic variation at SNAP25 may be differentially associated with both schizophrenia and ADHD.
Collapse
Affiliation(s)
- L S Carroll
- Department of Psychological Medicine, School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, UK
| | | | | | | | | |
Collapse
|
24
|
Mukaetova-Ladinska EB, Milne J, Andras A, Abdel-All Z, Cerejeira J, Greally E, Robson J, Jaros E, Perry R, McKeith IG, Brayne C, Xuereb J, Cleghorn A, Doherty J, McIntosh G, Milton I. Alpha- and gamma-synuclein proteins are present in cerebrospinal fluid and are increased in aged subjects with neurodegenerative and vascular changes. Dement Geriatr Cogn Disord 2008; 26:32-42. [PMID: 18577885 DOI: 10.1159/000141039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Disease-specific biomarkers should reflect a fundamental feature of neuropathology and be validated in neuropathologically confirmed cases. Several synaptic proteins have been described in cerebrospinal fluid (CSF) of patients with dementia. In Lewy body disease alpha-synuclein is incorporated within Lewy bodies and alpha-, beta- and gamma-synucleins in dystrophic neuritis. These pathological changes are expected to be seen in CSF. METHODS A total of 25 CSF post-mortem samples (8 control and 17 subjects with dementia) were used to quantify alpha- and gamma-synucleins and IgG. RESULTS We describe for the first time the presence of gamma-synuclein in CSF. There is an elevation of both alpha- and gamma-synucleins in CSF from elderly individuals with Alzheimer's disease, Lewy body disease (LBD) and vascular dementia (CVD), compared to normal controls. gamma-Synuclein showed a greater elevation in LBD, IgG in CVD. The elevation of alpha- and gamma-synucleins was seen from Braak stage III onwards and remained stable until Braak stage VI. These results were not influenced by age at death or post-mortem delay. CONCLUSIONS The reported increases in alpha- and gamma-synucleins and IgG in the ventricular CSF of individuals with dementia are novel findings. They now need to be explored further using a greater number of cases in each subgroup, using lumbar CSF samples to determine their applicability and relevance to a clinical diagnostic setting. It needs to be established whether using these markers may help to discriminate LBD from other types of neurodegenerative and vascular dementias.
Collapse
|
25
|
Musil R, Spellmann I, Riedel M, Dehning S, Douhet A, Maino K, Zill P, Müller N, Möller HJ, Bondy B. SNAP-25 gene polymorphisms and weight gain in schizophrenic patients. J Psychiatr Res 2008; 42:963-70. [PMID: 18191416 DOI: 10.1016/j.jpsychires.2007.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 10/16/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
Drug induced weight gain is a serious side effect of several atypical antipsychotics. As genetic factors play an important role in the homeostasis of hunger/satiety we tried to replicate a preliminary previous finding about an impact of three polymorphisms in the synaptosomal-associated protein of 25kDa (SNAP-25; sites MnlI, TaiI and DdelI in the 3(')-UTR) on clinical response and antipsychotic induced weight gain. We genotyped 162 schizophrenic patients being treated in monotherapy with atypical antipsychotics and 312 healthy control subjects for the three polymorphisms in the SNAP-25 gene using PCR. PANSS scores and weight were measured weekly for a minimum of five weeks. We found significant associations between the TaiI and MnlI polymorphisms and serum triglyceride levels at baseline and for the DdelI polymorphism and weight gain. In conclusion our study can at least partly replicate the previous findings concerning the impact of SNAP-25 gene polymorphisms on weight gain during antipsychotic treatment.
Collapse
Affiliation(s)
- Richard Musil
- Psychiatric Clinic of University Munich, Nussbaumstrasse 7, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Associations of SNAP-25 polymorphisms with cognitive dysfunctions in Caucasian patients with schizophrenia during a brief trail of treatment with atypical antipsychotics. Eur Arch Psychiatry Clin Neurosci 2008; 258:335-44. [PMID: 18347838 DOI: 10.1007/s00406-007-0800-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The synaptosomal-associated protein of 25 kDa (SNAP-25) is part of the soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment receptor (SNARE), which mediates synaptic neurotransmission. In earlier studies a possible involvement of this protein in schizophrenia has been shown. As neurocognitive impairment is a core feature in the pathology of schizophrenia and considered to be a putative endophenotype according to genetic studies we investigated the influences of different SNAP-25 polymorphisms on neuropsychological test results before and during treatment with atypical antipsychotics. A total of 104 schizophrenic patients treated with atypical antipsychotics were genotyped for three different polymorphisms of the SNAP-25 gene (MnlI, TaiI and DdeI in the 3'-UTR). Cognitive function was assessed at baseline, week 4 or 6 and week 8 or 12. Results of individual neuropsychological tests were assigned to six cognitive domains (reaction time and quality; executive function; working, verbal and visual memory) and a general cognitive index. The MnlI and TaiI polymorphisms showed no associations to deficits on neuropsychological test results. In contrast, we observed a significant relation between the DdeI polymorphism of the SNAP-25 gene and cognitive dysfunctions. Homozygote T/T allele carriers of the DdeI polymorphism showed significant better neuropsychological test results in cognitive domains verbal memory and executive functions than those with the combined T/C and C/C genotypes (P < 0.01) at all three time points, but no differences in response to treatment with atypical antipsychotics. Additionally, TT carriers exhibited significantly better results in a general cognitive index (P < 0.05). As we observed an association between the DdeI polymorphism of the SNAP-25 gene and cognitive dysfunctions of schizophrenic patients our finding suggests that the SNAP-25 gene could play a role in the pathophysiology of neurocognitive dysfunctions in schizophrenia but is not predictive for treatment response with atypical antipsychotics.
Collapse
|
27
|
Perinatal Oxygen Restriction Does Not Result in Reduced Rat Frontal Cortex Synaptophysin Protein Levels at Adulthood as Opposed to Postmortem Findings in Schizophrenia. J Mol Neurosci 2008; 37:60-6. [DOI: 10.1007/s12031-008-9120-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/04/2008] [Indexed: 11/25/2022]
|
28
|
Schwarz E, Bahn S. Cerebrospinal fluid: identification of diagnostic markers for schizophrenia. Expert Rev Mol Diagn 2008; 8:209-16. [PMID: 18366307 DOI: 10.1586/14737159.8.2.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disease but, despite extensive research efforts over the last 100 years, the etiology of this disorder remains elusive. Diagnosis is still based on a subjective, interview-based process, which may not align with the biological underpinnings of the symptoms. This old-fashioned descriptive approach contributes to the low treatment success and impedes early intervention, which is thought to be crucial for successful therapy. Therefore, there is an urgent need to discover biochemical analytes that facilitate an objective and reliable diagnosis. Disease markers might also have utility for tracking treatment success and compliance, as well as the discovery of novel drug targets. For schizophrenia and psychiatric disorders at large, analyzing cerebrospinal fluid (CSF) is an intuitive choice due to its close proximity to the brain and its clinical accessibility in the living patient. Although numerous studies have aimed to identify potential diagnostic markers in the CSF of schizophrenia patients, as yet not one has found its way to clinical application. Here, we review molecular alterations of proteins and metabolites that have been identified in schizophrenia CSF and discuss their potential applicability as diagnostic markers.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.
| | | |
Collapse
|
29
|
Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the striatum of rats with methamphetamine-induced behavioral sensitization. Proteomics 2007; 7:1131-9. [PMID: 17351886 DOI: 10.1002/pmic.200600595] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Repeated administration of methamphetamine (MAP) results in an increased behavioral response to the drug during subsequent exposure. This phenomenon is called behavioral sensitization. Sensitization is an enduring phenomenon, and suggests chronic alterations in neuronal plasticity. MAP-induced sensitization has been proposed and widely investigated as an animal model of MAP psychosis and schizophrenia. However, little is known about the molecular mechanisms underlying MAP-induced sensitization. 2-DE-based proteomics allows us to examine global changes in protein expression in complex biological systems and to propose hypotheses concerning the mechanisms underlying various pathological conditions. In the present study, we examined protein expression profiles in the striatum of MAP-sensitized rats using 2-DE-based proteomics. Repeated administration of MAP (4.0 mg/kg, once a day, intraperitoneal (i.p.)) for 10 days significantly augmented the locomotor response to an MAP challenge injection (1.0 mg/kg, i.p.) on day 11. This enhanced activity was maintained even after a week of drug abstinence. 2-DE analysis revealed 42 protein spots were differentially regulated in the striatum of MAP-sensitized rats compared to control. Thirty-one protein spots were identified using MALDI-TOF, including synapsin II, synaptosomal-associated protein 25 (SNAP-25), adenylyl cyclase-associated protein 1 (CAP1), and dihydropyrimidinase-related protein 2 (DRP2). These proteins can be related to underlying mechanisms of MAP-induced behavioral sensitization, indicating cytoskeletal modification, and altered synaptic function.
Collapse
Affiliation(s)
- Takeshi Iwazaki
- Discipline of Pathology, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
30
|
Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X, Liang S. Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 2006; 98:1126-40. [PMID: 16895580 DOI: 10.1111/j.1471-4159.2006.03934.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The hippocampus is a distinct brain structure that is crucial in memory storage and retrieval. To identify comprehensively proteins of hippocampal plasma membrane (PM) and detect the neuronal-specific PM proteins, we performed a proteomic analysis of rat hippocampus PM using the following three technical strategies. First, proteins of the PM were purified by differential and density-gradient centrifugation from hippocampal tissue and separated by one-dimensional electophoresis, digested with trypsin and analyzed by electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) tandem mass spectrometry (MS/MS). Second, the tryptic peptide mixture from PMs purified from hippocampal tissue using the centrifugation method was analyzed by liquid chromatography ion-trap ESI-MS/MS. Finally, the PM proteins from primary hippocampal neurons purified by a biotin-directed affinity technique were separated by one-dimensional electrophoresis, digested with trypsin and analyzed by ESI-Q-TOF-MS/MS. A total of 345, 452 and 336 non-redundant proteins were identified by each technical procedure respectively. There was a total of 867 non-redundant protein entries, of which 64.9% are integral membrane or membrane-associated proteins. One hundred and eighty-one proteins were detected only in the primary neurons and could be regarded as neuronal PM marker candidates. We also found some hypothetical proteins with no functional annotations that were first found in the hippocampal PM. This work will pave the way for further elucidation of the mechanisms of hippocampal function.
Collapse
Affiliation(s)
- Ping Chen
- College of Life Sciences, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kumamoto N, Matsuzaki S, Inoue K, Hattori T, Shimizu S, Hashimoto R, Yamatodani A, Katayama T, Tohyama M. Hyperactivation of midbrain dopaminergic system in schizophrenia could be attributed to the down-regulation of dysbindin. Biochem Biophys Res Commun 2006; 345:904-9. [PMID: 16701550 DOI: 10.1016/j.bbrc.2006.04.163] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/26/2006] [Indexed: 12/26/2022]
Abstract
Extraordinal activation of nigrostriatal and mesolimbic dopaminergic systems (midbrain dopaminergic system) is thought to be one of the most important etiologies for schizophrenia, though the reason why unusual hyperactivation of the dopaminergic system occurs in the schizophrenic brain is quite obscure. Dysbindin, one of the most susceptible genes for schizophrenia, has been reported to be reduced in the schizophrenic brain. In situ hybridization analysis showed the mRNA expression of dysbindin in the mouse substantia nigra. Furthermore, suppression of dysbindin expression in PC12 cells resulted in an increase of the expression of SNAP25, which plays an important role in neurotransmitter release, and increased the release of dopamine. On the other hand, up-regulation of dysbindin expression in PC12 cells showed a tendency to decrease the expression of SNAP25. These data suggest that dysbindin might regulate the dopamine release of the dopaminergic system via modulation of the expression of SNAP25.
Collapse
Affiliation(s)
- Natsuko Kumamoto
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fountoulakis M, Tsangaris GT, Maris A, Lubec G. The rat brain hippocampus proteome. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819:115-29. [PMID: 15797529 DOI: 10.1016/j.jchromb.2005.01.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/31/2005] [Indexed: 11/23/2022]
Abstract
The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders.
Collapse
|
33
|
Müller DJ, Klempan TA, De Luca V, Sicard T, Volavka J, Czobor P, Sheitman BB, Lindenmayer JP, Citrome L, McEvoy JP, Lieberman JA, Honer WG, Kennedy JL. The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci Lett 2005; 379:81-9. [PMID: 15823421 DOI: 10.1016/j.neulet.2004.12.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
The synaptosomal-associated protein of 25 kDa (SNAP-25) is an essential component of the core complex that mediates presynaptic vesicle trafficking. Thus, SNAP-25 is directly involved in the release of neurotransmitters. Quantitative alterations of SNAP-25 expression have been reported in brain regions and cerebrospinal fluid (CSF) of schizophrenics and in haloperidol treated rats. This observed altered expression may be influenced by genetic variants of SNAP-25. We hypothesized that polymorphisms of the SNAP-25 gene (sites DdeI, MnlI and TaiI in the 3'UTR) are associated with antipsychotic drug response and induced weight gain. A sample of 59 patients with prior suboptimal response to antipsychotic treatment and diagnosed with DSM-IV schizophrenia or schizoaffective disorder was examined. Patients were administered clozapine, haloperidol, olanzapine or risperidone for up to 14 weeks. Clinical response was defined as the difference between the baseline and the endpoint total scores on the Positive and Negative Syndrome Scale (PANSS). Weight was assessed at baseline and at study endpoint. ANOVA revealed that the MnlI and TaiI polymorphisms were associated with response (F[2,53] = 4.57, p = 0.01 and F[2,52] = 3.53, p = 0.03) and with weight gain (F[2,52] = 4.28, p = 0.01 and F[2,51] = 3.38, p = 0.04). When covariates were included, the MnlI polymorphism remained significantly associated with changes of PANSS scores, but not with weight gain. The DdeI polymorphism was not associated with response or weight gain. These findings suggest that SNAP-25 gene variants affect clinical response in patients with prior poor response to antipsychotics. Weight changes do not seem to be associated with polymorphism of the SNAP-25 gene, however, replication in independent samples is warranted.
Collapse
Affiliation(s)
- Daniel J Müller
- Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 250 College Street R30, Toronto, Ont. M5T 1R8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|