1
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
2
|
Zoicas I, Licht C, Mühle C, Kornhuber J. Repetitive transcranial magnetic stimulation (rTMS) for depressive-like symptoms in rodent animal models. Neurosci Biobehav Rev 2024; 162:105726. [PMID: 38762128 DOI: 10.1016/j.neubiorev.2024.105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.
Collapse
Affiliation(s)
- Iulia Zoicas
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany.
| | - Christiane Licht
- Paracelsus Medical University, Department of Psychiatry and Psychotherapy, Prof.-Ernst-Nathan-Str. 1, Nürnberg 90419, Germany
| | - Christiane Mühle
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| | - Johannes Kornhuber
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Psychiatry and Psychotherapy, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
3
|
Denning CJE, Madory LE, Herbert JN, Cabrera RA, Szumlinski KK. Neuropharmacological Evidence Implicating Drug-Induced Glutamate Receptor Dysfunction in Affective and Cognitive Sequelae of Subchronic Methamphetamine Self-Administration in Mice. Int J Mol Sci 2024; 25:1928. [PMID: 38339206 PMCID: PMC10856401 DOI: 10.3390/ijms25031928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.
Collapse
Affiliation(s)
- Christopher J. E. Denning
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Lauren E. Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Jessica N. Herbert
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Ryan A. Cabrera
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (C.J.E.D.); (L.E.M.); (J.N.H.); (R.A.C.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Althobaiti YS. Oral self-administration of pregabalin in a mouse model and the resulting drug addiction features. Saudi Pharm J 2024; 32:101935. [PMID: 38292403 PMCID: PMC10825552 DOI: 10.1016/j.jsps.2023.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Prescription drug abuse is an issue that is rapidly growing globally. Pregabalin, an anticonvulsant, analgesic, and anxiolytic medication, is effective in the management of multiple neurological disorders; however, there is increasing concern regarding its widespread illicit use. It has been previously reported in mice that pregabalin can induce conditioned place preference. In this current investigation, the potential of pregabalin to elicit free-choice drinking in a mouse model of drug addiction, and its effect on recognition and withdrawal behaviors after forced abstinence, were studied. Twenty-two male BALB/c mice were randomly divided into three groups (n = 7-8/group); control, pregabalin-30, and pregabalin-60. The study had three phases: habituation (days 1-5) with free water access, free-choice drinking (days 6-13) with pregabalin groups receiving one water and one pregabalin bottle, and forced abstinence (days 14-21) with free water access. On day 13, the first open field test was conducted, followed by the Novel Object Recognition Test. On day 21, the second open field test was performed, followed by the Tail Suspension Test and Forced Swimming Test. Pregabalin elicited voluntary drinking in the higher-dose group, concurrently causing a decline in recognition memory performance in the novel object recognition test. Moreover, pregabalin induced withdrawal behavior after a period of forced abstinence in the forced swimming and tail suspension tests. This is the first report to establish an animal model of free-choice pregabalin drinking that may be used for further molecular studies and targeted therapy for pregabalin addiction.
Collapse
Affiliation(s)
- Yusuf S. Althobaiti
- Address: Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
5
|
Jo C, Joo H, Lim NY, Park SJ, Choi SO. Withdrawal from 3-Fluoroethamphetamine induces hyperactivity and depression-like behaviors in male mice. J Neurosci Res 2024; 102:e25251. [PMID: 37818759 DOI: 10.1002/jnr.25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
3-Fluoroethamphetamine (3-FEA) belongs to the amphetamine class of stimulant drugs and functions as a releasing agent for the monoamine neurotransmitters norepinephrine, dopamine, and serotonin. 3-FEA acts on the central nervous system and elicits physical and mental side effects, such as euphoria, increased heart rate, and excitement. However, little is known about the withdrawal symptoms and behavioral changes induced by 3-FEA administration. This study aimed to evaluate the short-term consequences of 3-FEA administration (twice a day, 7 days, i.p.; 1 and 10 mg/kg) in C57BL/6J mice (male, 7 weeks old) at three behavioral levels following 1-4 days of withdrawal. The evaluation included (1) withdrawal score, (2) hyperactivity (open field [OF], elevated plus maze [EPM], and cliff avoidance [CA] test), and (3) depression-like behavior (forced-swim test). In the withdrawal score test, withdrawal behavior increased in all 3-FEA groups at 16 and 40 h after withdrawal. In the OF, EPM, and CA tests, the 3-FEA administration group showed significant changes in terms of hyperactivity. In addition, in the forced-swim test, both the 1 mg/kg and 10 mg/kg 3-FEA groups showed increased immobility time. These findings indicate that 3-FEA administration may lead to physical dependence, demonstrated by the withdrawal score increase and significant changes in hyperactivity and depression-like behavior following repeated administration and drug cessation. In conclusion, this study reveals the adverse consequences of 3-FEA administration and highlights the need for awareness raising and regulatory action to control the use of this new psychoactive substance.
Collapse
Affiliation(s)
- Cheolmin Jo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Hyejin Joo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Na Young Lim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Su-Jeong Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| |
Collapse
|
6
|
Liu Y, Pan Y, Curtis TJ, Wang Z. Amphetamine exposure alters behaviors, and neuronal and neurochemical activation in the brain of female prairie voles. Neuroscience 2022; 498:73-84. [PMID: 35798262 PMCID: PMC9420825 DOI: 10.1016/j.neuroscience.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that 3-day d-amphetamine (AMPH) treatment effectively induced conditioned place preferences (CPP) and impaired pair bonding behaviors in prairie voles (Microtus ochrogaster). Using this established animal model and treatment regimen, we examined the effects of the demonstrated threshold rewarding dose of AMPH on various behaviors and their potential underlying neurochemical systems in the brain of female prairie voles. Our data show that 3-day AMPH injections (0.2 mg/kg/day) impaired social recognition and decreased depressive-like behavior in females without affecting their locomotion and anxiety-like behaviors. AMPH treatment also decreased neuronal activation indicated by the labeling of the early growth response protein 1 (Egr-1) as well as the number of neurons double-labeled for Egr-1 and corticotrophin-releasing hormone (CRH) in the dentate gyrus (DG) of the hippocampus and paraventricular nucleus of the hypothalamus (PVN) in the brain. Further, AMPH treatment decreased the number of neurons double-labeled for Egr-1 and tyrosine hydroxylase (TH) but did not affect oxytocinergic neurons in the PVN or cell proliferation and neurogenesis markers in the DG. These data not only demonstrate potential roles of the brain CRH and dopamine systems in mediating disrupted social recognition and depressive-like behaviors by AMPH in female prairie voles, but also further confirm the utility of the prairie vole model for studying interactions between psychostimulants and social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Yongliang Pan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou Central Hospital, Huzhou University, Huzhou 313000, China
| | - Thomas J Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
7
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Nunes EJ, Kebede N, Bagdas D, Addy NA. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J Exp Anal Behav 2022; 117:404-419. [PMID: 35286712 PMCID: PMC9743782 DOI: 10.1002/jeab.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli. Behaviors characterized by increased vigor, persistence, and work output are considered to reflect activational components of motivation. Disruption of DA signaling has been shown to decrease activational components of motivation, while leaving directional features intact. Facilitation of DA release promotes the activational aspects of motivated behavior. In this review, we discuss cholinergic and DA regulation of motivated behaviors. We place emphasis on effort-choice processes and the ability of effort-choice tasks to examine and dissociate changes of motivated behavior in the context of substance use and mood disorders. Furthermore, we consider how altered cholinergic transmission impacts motivated behavior across disease states, and the possible role of cholinergic dysregulation in the etiology of these illnesses. Finally, we suggest that treatments targeting cholinergic activity may be useful in ameliorating motivational disruptions associated with substance use and comorbid substance use and mood disorders.
Collapse
Affiliation(s)
- Eric J. Nunes
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nardos Kebede
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Deniz Bagdas
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine,Yale Tobacco Center of Regulatory Science, Yale School of Medicine,Department of Cellular and Molecular Physiology, Yale School of Medicine,Interdepartmental Neuroscience Program, Yale University,Wu Tsai Institute, Yale University
| |
Collapse
|
9
|
Hiranita T, Obeng S, Sharma A, Wilkerson JL, McCurdy CR, McMahon LR. In vitro and in vivo pharmacology of kratom. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:35-76. [PMID: 35341571 DOI: 10.1016/bs.apha.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Kratom products have been historically and anecdotally used in south Asian countries for centuries to manage pain and opioid withdrawal. The use of kratom products has dramatically increased in the United States. More than 45 kratom alkaloids have been isolated, yet the overall pharmacology of the individual alkaloids is still not well characterized. The purpose of this chapter is to summarize in vitro and in vivo opioid activities of the primary kratom alkaloid mitragynine and its more potent metabolite 7-hydroxymitragynine. Following are experimental procedures described to characterize opioid receptor activity; receptor binding and functional assays, antinociceptive assays, operant conditioning assays, and respiratory plethysmography. The capacity of kratom alkaloids to confer tolerance and physical dependence as well as their pharmacokinetic properties are also summarized. The data reviewed here suggest that kratom products and mitragynine possess low efficacy agonist activity at the mu-opioid receptor in vivo. In addition, kratom products and mitragynine have been demonstrated to antagonize the effects of high efficacy mu-opioid agonists. The data further suggest that 7-hydroxymitragynine formed in vivo by metabolism of mitragynine may be minimally involved in the overall behavioral profile of mitragynine and kratom, whereas 7-hydroxymitragynine itself, at sufficiently high doses administered exogenously, shares many of the same abuse- and dependence-related behavioral effects associated with traditional opioid agonists. The apparent low efficacy of kratom products and mitragynine at mu-opioid receptors supports the development of these ligands as effective and potentially safe medications for opioid use disorder.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Samuel Obeng
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
10
|
Han J, Nepal P, Odelade A, Freely FD, Belton DM, Graves JL, Maldonado-Devincci AM. High-Fat Diet-Induced Weight Gain, Behavioral Deficits, and Dopamine Changes in Young C57BL/6J Mice. Front Nutr 2021; 7:591161. [PMID: 33553228 PMCID: PMC7855171 DOI: 10.3389/fnut.2020.591161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic exposure to a high-fat diet (HFD) may predispose individuals to neuropathologies and behavioral deficits. The objective of this study was to determine the temporal effects of a HFD on weight gain, behavioral deficits, and dopamine changes in young mice. One-month old C57BL/6J male and female mice were fed either a control diet (containing 10% calories from fat) or a HFD (containing 45% of calories from fat) for 5 months. Physiological measures such as food consumption, body weight, blood glucose, and behaviors such as motor activity, sensorimotor integration, and anxiety-like behaviors were evaluated monthly. Dopamine (DA), dopamine receptor D2 (DRD2), and dopamine transporter (DT) protein expression levels were measured in the midbrain after 5 months of dietary exposure. Results showed that body weight was significantly greater in the HFD-exposed group compared to the control-group at the end of the 4th month, while food consumption was similar in both groups. For behavioral effects, the HFD group exhibited a significant decrease in motor activity in the open field test after 3 months, and rearing frequency after 4 months of dietary exposure. The HFD group also showed deficits in sensorimotor integration after 3 months. Specifically, chronic HFD exposure increased contact time and time to remove the first adhesive tape in the adhesive-tape removal test (p < 0.05). Furthermore, the HFD group showed significant deficits in balance/coordination compared to the control group after 4 months of dietary exposure using the beam traverse test, and increased anxiety-like behavior tested by both the open field and light/dark box tests (p < 0.05). Neurochemical measurements showed that HFD-exposed mice had significantly higher midbrain DA and DRD2 protein levels compared to the control group after 5 months of dietary exposure (p < 0.05). These results indicate that the impact of HFD on the C57BL/6J mouse strain began at the 3rd month of dietary exposure. Behavioral deficits occurred at a similar time point as increased body weight, at about 3–4 months. Overall, this study provides a critical understanding on how HFD-induced changes in weight gain and behavioral deficits in this strain occur over time. The behavioral changes support the idea that changes also occurred in neurochemical pathways such as dopamine dysregulation.
Collapse
Affiliation(s)
- Jian Han
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Pragya Nepal
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Anuoluwapo Odelade
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Frederick D Freely
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Destiny M Belton
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Joseph L Graves
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
11
|
Chronic Lorcaserin Treatment Reverses the Nicotine Withdrawal-Induced Disruptions to Behavior and Maturation in Developing Neurons in the Hippocampus of Rats. Int J Mol Sci 2021; 22:ijms22020868. [PMID: 33467149 PMCID: PMC7831001 DOI: 10.3390/ijms22020868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Preclinical data have shown that treatment with serotonin (5-HT)2C receptor agonists inhibits the behavioral effects of nicotine, including self-administration, reinstatement, and locomotor responses to nicotine. Since the data on the effects of 5-HT2C receptor agonism on nicotine withdrawal signs are limited, we aimed to investigate whether 5-HT2C receptor agonism alleviated the behavioral and neurobiochemical (hippocampal neurogenesis) consequences of nicotine withdrawal in Sprague-Dawley rats. Our data indicate that withdrawal from nicotine self-administration induced locomotor hyperactivity, lengthened immobility time (the forced swim test), induced ‘drug-seeking’ behavior and deficits in cognition-like behavior (the novel object recognition task). A two-week exposure to the 5-HT2C receptor agonist lorcaserin attenuated locomotor hyperactivity and induced recovery from depression-like behavior. Analyses of brain slices from nicotine-withdrawn animals revealed that lorcaserin treatment recovered the reduced number of doublecortin (DCX)-positive cells, but it did not affect the number of Ki-67- or 5-bromo-2’-deoxyuridine (BrdU)-positive cells or the maturation of proliferating neurons in drug-weaned rats. To summarize, we show that lorcaserin alleviated locomotor responses and depression-like state during nicotine withdrawal. We propose that the modulatory effect of lorcaserin on the ‘affective’ aspects of nicotine cessation may be linked to the positive changes caused by the compound in hippocampal neurogenesis during nicotine withdrawal.
Collapse
|
12
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
13
|
Wojcieszak J, Kuczyńska K, Zawilska JB. Behavioral Effects of 4-CMC and 4-MeO-PVP in DBA/2J Mice After Acute and Intermittent Administration and Following Withdrawal from Intermittent 14-Day Treatment. Neurotox Res 2021; 39:575-587. [PMID: 33428180 PMCID: PMC8096775 DOI: 10.1007/s12640-021-00329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/06/2023]
Abstract
Synthetic cathinones appeared on the market in the 2000s as new psychoactive substances and gained significant prevalence among drug abusers. Cathinones produce psychostimulant and empathogenic effects by enhancing dopaminergic, noradrenergic, and serotoninergic neurotransmission in the brain, and those which potently and selectively enhance dopaminergic transmission are considered to have higher abuse potential. The present study examines the behavioral effects related to psychostimulant properties, abuse potential, and addiction in DBA/2J mice of two cathinones with different profile of action on monoamine system, 4-chloromethcathinone (4-CMC), and 4-methoxy-pyrrolidinopentiophenone (4-MeO-PVP). 4-CMC and 4-MeO-PVP increase spontaneous locomotor activity after acute treatment and produce behavioral sensitization after 7-day intermittent treatment, which is a common feature of drugs of abuse. 4-MeO-PVP, but not 4-CMC, produces conditioned place preference after 4 days, indicating its rewarding properties. Finally, the ability of 4-CMC and 4-MeO-PVP to induce withdrawal symptoms after discontinuation from 14-day treatment was assessed using a battery of tests for behavioral markers of depression in mice: a tail suspension test, a forced swim test, measuring despair, and a sucrose preference test, measuring anhedonia. None of the three tests revealed increased depressive symptoms. Moreover, neither spontaneous locomotor activity nor motor performance on a rotarod was impaired after 14-day treatment with the tested compounds. These results indicate that 14-day treatment of mice with 4-CMC or 4-MeO-PVP does not induce significant withdrawal symptoms after cessation, nor significant impairment of dopaminergic circuitry resulting in motor impairment. The current study shows that 4-CMC and 4-MeO-PVP produce abuse-related behavioral changes in mice, which are more pronounced after more dopamine-selective 4-MeO-PVP.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| |
Collapse
|
14
|
Behnood-Rod A, Chellian R, Wilson R, Hiranita T, Sharma A, Leon F, McCurdy CR, McMahon LR, Bruijnzeel AW. Evaluation of the rewarding effects of mitragynine and 7-hydroxymitragynine in an intracranial self-stimulation procedure in male and female rats. Drug Alcohol Depend 2020; 215:108235. [PMID: 32889450 PMCID: PMC7542979 DOI: 10.1016/j.drugalcdep.2020.108235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Kratom (Mitragyna speciosa Korth.) has been used in Southeast Asia for hundreds of years to increase energy, for relaxation, and to diminish opioid withdrawal. Kratom use has recently spread to Western countries. Kratom could potentially be used for the treatment of opioid withdrawal and pain, but more insight is needed into its abuse potential. Therefore, we investigated the rewarding properties of the primary kratom alkaloid mitragynine and its active metabolite 7-hydroxymitragynine, and morphine as a reference drug in male and female rats. These compounds have agonist activity at mu-opioid receptors. METHODS The compounds were tested in an intracranial self-stimulation (ICSS) procedure, which allows for the evaluation of the rewarding/aversive and sedative effects of drugs. Rewarding doses of drugs decrease the brain reward thresholds, and aversive drug doses have the opposite effect. RESULTS Mitragynine, 7-hydroxymitragynine, and morphine affected the brain reward thresholds. A high dose of 7-hydroxymitragynine (3.2 mg/kg) increased the brain reward thresholds, whereas an intermediate dose of morphine (10 mg/kg) decreased the reward thresholds. 7-Hydroxymitragynine and morphine affected the response latencies. Five mg/kg of morphine increased response latencies. 7-Hydroxymitragynine tended to increase the response latencies, but the post hoc analyses did not reveal a significant effect. There were no sex differences in the effects of mitragynine, 7-hydroxymitragynine, and morphine on the reward thresholds and the response latencies. CONCLUSIONS These initial findings indicate that mitragynine and 7-hydroxymitragynine are not rewarding in the ICSS procedure. The present results suggest that these kratom alkaloids do not have abuse potential.
Collapse
Affiliation(s)
- Azin Behnood-Rod
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Ryann Wilson
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco Leon
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
15
|
Bray B, Clement KA, Bachmeier D, Weber MA, Forster GL. Corticosterone in the ventral hippocampus differentially alters accumbal dopamine output in drug-naïve and amphetamine-withdrawn rats. Neuropharmacology 2020; 165:107924. [PMID: 31881169 DOI: 10.1016/j.neuropharm.2019.107924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Dysregulation in glucocorticoid stress and accumbal dopamine reward systems can alter reward salience to increase motivational drive in control conditions while contributing to relapse during drug withdrawal. Amphetamine withdrawal is associated with dysphoria and stress hypersensitivity that may be mediated, in part, by enhanced stress-induced corticosterone observed in the ventral hippocampus. Electrical stimulation of the ventral hippocampus enhances accumbal shell dopamine release, establishing a functional connection between these two regions. However, the effects of ventral hippocampal corticosterone on this system are unknown. To address this, a stress-relevant concentration of corticosterone (0.24ng/0.5 μL) or vehicle were infused into the ventral hippocampus of urethane-anesthetized adult male rats in control and amphetamine withdrawn conditions. Accumbal dopamine output was assessed with in vivo chronoamperometry. Corticosterone infused into the ventral hippocampus rapidly enhanced accumbal dopamine output in control conditions, but produced a biphasic reduction of accumbal dopamine output in amphetamine withdrawal. Selectively blocking glucocorticoid-, mineralocorticoid-, or cytosolic receptors prevented the effects of corticosterone. Overall, these results suggest that the ability of corticosterone to alter accumbal dopamine output requires cooperative activation of mineralocorticoid and glucocorticoid receptors in the cytosol, which is dysregulated during amphetamine withdrawal. These findings implicate ventral hippocampal corticosterone in playing an important role in driving neural systems involved in positive stress coping mechanisms in healthy conditions, whereas dysregulation of this system may contribute to relapse during withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Kaci A Clement
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Dana Bachmeier
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA.
| | - Matthew A Weber
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Neurology, Iowa Neuroscience Institute, Pappajohn Biomedical Discovery Building, 169 Newton Road, Iowa City, IA, 52242, USA.
| | - Gina L Forster
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, SD, 57069, USA; Department of Anatomy and Brain Health Research Centre, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
16
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
17
|
Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20:686-701. [DOI: 10.1038/s41583-019-0221-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 12/15/2022]
|
18
|
Alhadeff AL, Conway SM, Ong ZY, Wald HS, Roitman MF, Grill HJ. Central leptin signaling transmits positive valence. Brain Res 2019; 1724:146441. [PMID: 31513793 DOI: 10.1016/j.brainres.2019.146441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
Abstract
Hunger resulting from food deprivation is associated with negative affect. This is supported by recent evidence showing that hunger-sensitive neurons drive feeding through a negative valence teaching signal. However, the complementary hypothesis that hormonal signals of energy surfeit counteract this negative valence, or even transmit positive valence, has received less attention. The adipose-derived hormone leptin signals in proportion to fat mass, is an indicator of energy surplus, and reduces food intake. Here, we showed that centrally-delivered leptin reduced food intake and conditioned a place preference in food-restricted as well as ad libitum fed rats. In contrast, leptin did not reduce food intake nor condition a place preference in obese rats, likely due to leptin resistance. Despite a well-known role for hindbrain leptin receptor signaling in energy balance control, hindbrain leptin delivery did not condition a place preference in food-restricted rats, suggesting that leptin acting in midbrain or forebrain sites mediates place preference conditioning. Supporting the hypothesis that leptin signaling induces a positive affective state, leptin also decreased the threshold for ventral tegmental area brain stimulation reward. Together, these data suggest that leptin signaling is intrinsically preferred, and support the view that signals of energy surfeit are associated with positive affect. Harnessing the positive valence of signals such as leptin may attenuate the negative affect associated with hunger, providing a compelling new approach for weight loss maintenance.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - Sineadh M Conway
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hallie S Wald
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Kolesnikova TO, Khatsko SL, Eltsov OS, Shevyrin VA, Kalueff AV. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’ on adult zebrafish. Neurotoxicol Teratol 2019; 73:15-21. [DOI: 10.1016/j.ntt.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
20
|
Effects of repeated treatment with methcathinone, mephedrone, and fenfluramine on intracranial self-stimulation in rats. Psychopharmacology (Berl) 2019; 236:1057-1066. [PMID: 30232529 PMCID: PMC6424659 DOI: 10.1007/s00213-018-5029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE Synthetic cathinones constitute a class of abused drugs that can act at dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT, respectively). Intracranial self-stimulation (ICSS) is a preclinical procedure that can be used to evaluate abuse potential of drugs, and prior studies have indicated that abuse-related ICSS effects of monoamine-transporter substrates, including some synthetic cathinones, are positively correlated with drug selectivity for DAT vs. SERT. Abuse potential of drugs can also be influenced by regimens of repeated drug exposure, but the role of repeated exposure on abuse-related ICSS effects of synthetic cathinones has not been examined. OBJECTIVES This study used ICSS to evaluate effects of repeated treatment with the DAT>SERT substrate methcathinone, the DAT<SERT substrate fenfluramine, and the DAT≈SERT substrate mephedrone. METHODS Male Sprague-Dawley rats were trained in a frequency-rate ICSS procedure, and different groups were used to evaluate effects of methcathinone, mephedrone, and fenfluramine before, during, and after regimens of repeated treatment with the designated drug. RESULTS Before repeated treatment, methcathinone produced dose-dependent and abuse-related ICSS facilitation, fenfluramine produced dose-dependent ICSS depression, and mephedrone produced mixed effects that included both facilitation and depression. Chronic treatment produced no change in effects of methcathinone, but complete tolerance to effects of fenfluramine. For mephedrone, chronic treatment produced partial tolerance to ICSS depression and enhanced expression of ICSS facilitation. CONCLUSIONS Repeated exposure to mixed-action DAT≈SERT substrates such as mephedrone can result in increased abuse potential due to sustained expression of DAT-mediated abuse-related effects and tolerance to SERT-mediated abuse-limiting effects.
Collapse
|
21
|
Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12533. [PMID: 30375183 PMCID: PMC6399044 DOI: 10.1111/gbb.12533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022]
Abstract
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression-like symptoms during early periods of withdrawal, compared with non-binge users. The impact of varying durations of MA abstinence on depression-like symptoms and on subsequent MA intake was examined in mice genetically prone to binge-level MA consumption. Binge-level MA intake was induced using a multiple-bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression-like symptoms were measured using a tail-suspension test and a subsequent forced-swim test, after forced abstinence of 6 and 30 hours from a 28-day course of chronic MA intake. An additional study measured the same depression-like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression-like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug-naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression-like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression-like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Grand Valley State University, Allendale, MI, USA
- Minot State University, Minot, ND, USA
| | | | | | | | | | | | - Tamara J. Phillips
- Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
22
|
Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019; 14:365-378. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Depression is a highly debilitating psychiatric disorder that affects the global population and causes severe disabilities and suicide. Depression pathogenesis remains poorly understood, and the disorder is often treatment-resistant and recurrent, necessitating the development of novel therapies, models and concepts in this field. Areas covered: Animal models are indispensable for translational biological psychiatry, and markedly advance the study of depression. Novel approaches continuously emerge that may help untangle the disorder heterogeneity and unclear categories of disease classification systems. Some of these approaches include widening the spectrum of model species used for translational research, using a broader range of test paradigms, exploring new pathogenic pathways and biomarkers, and focusing more closely on processes beyond neural cells (e.g. glial, inflammatory and metabolic deficits). Expert opinion: Dividing the core symptoms into easily translatable, evolutionarily conserved phenotypes is an effective way to reevaluate current depression modeling. Conceptually novel approaches based on the endophenotype paradigm, cross-species trait genetics and 'domain interplay concept', as well as using a wider spectrum of model organisms and target systems will enhance experimental modeling of depression and antidepressant drug discovery.
Collapse
Affiliation(s)
- Konstantin A Demin
- a Institute of Experimental Medicine , Almazov National Medical Research Centre , St. Petersburg , Russia.,b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Maxim Sysoev
- c Laboratory of Preclinical Bioscreening , Russian Research Center for Radiology and Surgical Technologies , St. Petersburg , Russia.,d Institute of Experimental Medicine , St. Petersburg , Russia
| | - Maria V Chernysh
- b Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia
| | - Anna K Savva
- e Faculty of Biology , St. Petersburg State University , St. Petersburg , Russia
| | | | | | - Cai Song
- h Research Institute of Marine Drugs and Nutrition , Guangdong Ocean University , Zhanjiang , China.,i Marine Medicine Development Center, Shenzhen Institute , Guangdong Ocean University , Shenzhen , China
| | - Murilo S De Abreu
- j Bioscience Institute , University of Passo Fundo (UPF) , Passo Fundo , Brazil
| | | | - Matthew O Parker
- l Brain and Behaviour Lab , School of Pharmacy and Biomedical Science, University of Portsmouth , Portsmouth , UK
| | - Brian H Harvey
- m Center of Excellence for Pharmaceutical Sciences , Division of Pharmacology, School of Pharmacy, North-West University , Potchefstroom , South Africa
| | - Li Tian
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Eero Vasar
- n Institute of Biomedicine and Translational Medicine , University of Tartu , Tartu , Estonia
| | - Tatyana Strekalova
- o Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, and Department of Normal Physiology , Sechenov First Moscow State Medical University , Moscow , Russia.,p Laboratory of Cognitive Dysfunctions , Institute of General Pathology and Pathophysiology , Moscow , Russia.,q Department of Neuroscience , Maastricht University , Maastricht , The Netherlands
| | | | - Andrey D Volgin
- g The International Zebrafish Neuroscience Research Consortium (ZNRC) , Slidell , LA , USA.,r Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia
| | - Erik T Alpyshov
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Dongmei Wang
- s School of Pharmacy , Southwest University , Chongqing , China
| | - Allan V Kalueff
- s School of Pharmacy , Southwest University , Chongqing , China.,t Almazov National Medical Research Centre , St. Petersburg , Russia.,u Ural Federal University , Ekaterinburg , Russia.,v Granov Russian Research Center of Radiology and Surgical Technologies , St. Petersburg , Russia.,w Laboratory of Biological Psychiatry, Institute of Translational Biomedicine , St. Petersburg State University , St. Petersburg , Russia.,x Laboratory of Translational Biopsychiatry , Scientific Research Institute of Physiology and Basic Medicine , Novosibirsk , Russia.,y ZENEREI Institute , Slidell , LA , USA.,z The International Stress and Behavior Society (ISBS), US HQ , New Orleans , LA , USA
| |
Collapse
|
23
|
Rincón-Cortés M, Gagnon KG, Dollish HK, Grace AA. Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine. Neuropsychopharmacology 2018; 43:2418-2425. [PMID: 29959439 PMCID: PMC6180061 DOI: 10.1038/s41386-018-0123-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
Psychostimulants such as amphetamine (AMPH) increase dopamine (DA) release from ventral tegmental area (VTA) neurons, which is associated with their acute reinforcing actions. This positive state is followed by a negative affective state during the withdrawal period each time the drug is taken (i.e., opponent process theory). AMPH withdrawal is accompanied by symptoms of anxiety and depression, which are associated with DA system dysfunction in humans and animal models. Most studies have focused on the negative affective state after withdrawal from chronic drug administration; yet, this negative state appears even after a drug is taken for the first time in both humans and rodents. In rats, withdrawal from a single dose of AMPH (2 mg/kg) increases forced swim test immobility and decreases the number of spontaneously active VTA DA neurons up to 48 h post-withdrawal. In the current study, acute AMPH withdrawal was found to increase anxiety-like behavior in the elevated plus maze (EPM), reduce social cage time in the three-chambered social approach test (SAT), and attenuate VTA population activity. The effects of diazepam, a drug commonly used to treat anxiety disorders, were tested on anxiety-like and social behavior as well as VTA DA neuron activity following acute AMPH withdrawal. A single (5 mg/kg) dose of diazepam circumvented the neurobehavioral effects induced by acute AMPH withdrawal, as demonstrated by increased open arm time and social cage time as well as normalized VTA DA activity comparable to controls, suggesting that these neurobehavioral effects of acute AMPH withdrawal reflect an anxiety-like state.
Collapse
Affiliation(s)
- Millie Rincón-Cortés
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15217, USA. .,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15217, USA.
| | - Kimberly G. Gagnon
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA
| | - Hannah K. Dollish
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA
| | - Anthony A. Grace
- 0000 0004 1936 9000grid.21925.3dDepartment of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15217 USA ,0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15217 USA ,0000 0004 1936 9000grid.21925.3dDepartment of Psychology, University of Pittsburgh, Pittsburgh, PA 15217 USA
| |
Collapse
|
24
|
de Abreu MS, Friend AJ, Demin KA, Amstislavskaya TG, Bao W, Kalueff AV. Zebrafish models: do we have valid paradigms for depression? J Pharmacol Toxicol Methods 2018; 94:16-22. [DOI: 10.1016/j.vascn.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/12/2018] [Accepted: 07/16/2018] [Indexed: 11/26/2022]
|
25
|
Social defeat-induced Cingulate gyrus immediate-early gene expression and anxiolytic-like effect depend upon social rank. Brain Res Bull 2018; 143:97-105. [PMID: 30343051 DOI: 10.1016/j.brainresbull.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
Abstract
Social hierarchy is considered to impart an adaptive advantage to the species by reducing long-term conflict between conspecifics. While social stratification is frequently established via stress-inducing stimuli, the subsequent integration of individuals into the hierarchy may attenuate anxiety. Presently, we hypothesized that repeated reinforcement of murine social hierarchy in the dominant-submissive relationship (DSR) food-competition test would engender divergent neuroplastic changes mediating both social and anxiety-like behavior among selectively-bred Dominant (Dom) and Submissive (Sub) mice. Two weeks of repeated respective social victory or defeat reduced serum corticosterone levels of both Dom and Sub mice, whereas socially-defeated Sub mice demonstrated markedly greater exploration of the open arms of the elevated plus maze (EPM). At the same time, social victory led to markedly greater expression of the immediate-early genes (IEGs) c-Jun and EGR-1 in the lateral septal nucleus (LSN) among Dom mice, in contrast with defeated Sub counterparts which demonstrated four-fold greater IEG expression in the cingulate gyrus (Cg). These findings point towards involvement of the Cg in the anxiety-like effect among Sub mice after repeated social defeat, and suggest stabilization of the social hierarchy to attenuate the stress-inducing nature of social interaction, particularly for subordinates. Further study of the potentially anxiolytic-like effects of Cg activity should shed light upon the functional significance of the Cg in social interaction, social hierarchical sorting and anxiety.
Collapse
|
26
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Alekseeva PA, Meshalkina DA, Friend AJ, Bao W, Demin KA, Gainetdinov RR, Kalueff AV. Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. Eur J Pharmacol 2018; 829:129-140. [DOI: 10.1016/j.ejphar.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
|
27
|
Kenny PJ, Hoyer D, Koob GF. Animal Models of Addiction and Neuropsychiatric Disorders and Their Role in Drug Discovery: Honoring the Legacy of Athina Markou. Biol Psychiatry 2018; 83:940-946. [PMID: 29602521 DOI: 10.1016/j.biopsych.2018.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
Abstract
Each of the co-authors worked with Athina Markou, at different stages of our careers and in different capacities, to develop, optimize, and use animal models of drug addiction and, more generally, mental health disorders such as anxiety, depression, and schizophrenia. Here, we briefly summarize some of our work with Athina, primarily involving the use of the intracranial self-stimulation and intravenous drug self-administration procedures. This work established that excessive consumption of addictive drugs can induce profound dysfunction in brain reward circuits. Such drug-induced reward deficits are likely to play a key role in precipitating the emergence of compulsive drug-seeking behaviors. We also summarize findings suggesting that perturbations in glutamatergic transmission contribute to brain reward deficits in drug-dependent animals and that metabotropic glutamate receptors are potential targets for the development of novel medications to facilitate long-term drug abstinence and prevention of relapse.
Collapse
Affiliation(s)
- Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California; and the National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland
| |
Collapse
|
28
|
Haj-Mirzaian A, Amiri S, Amini-Khoei H, Haj-Mirzaian A, Hashemiaghdam A, Ramezanzadeh K, Ghesmati M, Afshari K, Dehpour AR. Involvement of NO/NMDA-R pathway in the behavioral despair induced by amphetamine withdrawal. Brain Res Bull 2018; 139:81-90. [PMID: 29421244 DOI: 10.1016/j.brainresbull.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 02/01/2018] [Indexed: 12/28/2022]
Abstract
Abrupt discontinuation of chronic amphetamine consumption leads to withdrawal symptoms including depression, anhedonia, dysphoria, fatigue, and anxiety. These irritating symptoms may result in continuing to take the drug or can lead to suicidal behavior. Past studies have shown the involvement of various biologic systems in depression induced following amphetamine withdrawal (AW). However, there is no evidence about the relation between nitric oxide (NO) with NMDA receptors on depression following AW. In this study, we examined the involvement of the NO/NMDA pathways on depressive-like behaviors after 24 h withdrawal following 5 continuous days of amphetamine administration in male NMRI mice. Behavioral tasks used for depression assessment included the forced swimming test (FST), the Splash test and the open field test (OFT). In order to evaluate the role of NO/NMDA pathways animals treated with MK-801 (NMDA-R antagonist), Aminoguanidine (AG), a selective iNOS inhibitor, Nω-Nitro-l-arginine (L-NNA), a non-selective NOS inhibitor and 7-Nitro indazole (7-NI), a selective nNOS inhibitor. We also measured the level of nitrite in the hippocampus. Our data showed that AW induced the depressive-like effect in the FST and the Splash test. We showed that administration of AG, L-NNA, and MK-801 mitigated AW induced depression, however, 7-NI was failed to decrease depressive-like behaviors. Also, the antidepressant-like effect of co-injection of sub-effective doses of MK-801 with AG suggested that inducible nitric oxide synthase (iNOS) is associated with NMDA-R in AW induced depression. In conclusion, both NO and NMDA-R pathways are involved and related to each other in depression induced following AW.
Collapse
Affiliation(s)
- Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shahid Beheshti Universtiy of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arya Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arsalan Hashemiaghdam
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Ramezanzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shahid Beheshti Universtiy of Medical Sciences, Tehran, Iran
| | - Maria Ghesmati
- Department of Microbiology, Islamic Azad University of Lahijan, Lahijan, Iran
| | - Khashayar Afshari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ruiz P, Calliari A, Genovese P, Scorza C, Pautassi RM. Amphetamine, but not methylphenidate, increases ethanol intake in adolescent male, but not in female, rats. Brain Behav 2018; 8:e00939. [PMID: 29670821 PMCID: PMC5893334 DOI: 10.1002/brb3.939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION There has been an increasing interest in analyzing the interactions between stimulants and ethanol during childhood and adolescence. Stimulants are used to treat attention-deficit hyperactivity disorder (ADHD) in these developmental stages, during which ethanol initiation and escalation often occur. METHODS This study assessed the effects of repeated d-amphetamine (AMPH) or methylphenidate (MPH) treatment during adolescence [male and female Wistar rats, between postnatal day (PD) 28 to PD34, approximately] on the initiation of ethanol intake during a later section of adolescence (PD35 to PD40). RESULTS Amphetamine and MPH exerted reliable acute motor stimulant effects, but there was no indication of sensitized motor or anxiety responses. MPH did not affect dopamine (DA) levels, whereas AMPH significantly reduced insular levels of DA in both sexes and norepinephrine levels in females only. Repeated treatment with AMPH, but not with MPH, enhanced ethanol intake during late adolescence in male, but not in female, rats. CONCLUSION A short treatment with AMPH during adolescence significantly altered DA levels in the insula, both in male and females, and significantly enhanced ethanol intake in males. The present results suggest that, in adolescent males, a very brief history of AMPH exposure can facilitate the initiation of ethanol intake.
Collapse
Affiliation(s)
- Paul Ruiz
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba) Córdoba Argentina.,Facultad de Veterinaria Universidad de la República Montevideo Uruguay
| | - Aldo Calliari
- Facultad de Veterinaria Universidad de la República Montevideo Uruguay
| | - Patricia Genovese
- Facultad de Veterinaria Universidad de la República Montevideo Uruguay
| | - Cecilia Scorza
- Departmento de Neurofarmacología Experimental Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba) Córdoba Argentina.,Facultad de Psicología Universidad Nacional de Córdoba Córdoba Argentina
| |
Collapse
|
30
|
Ren W, Luan X, Zhang J, Gutteea P, Cai Y, Zhao J, Gu Y, Wu C, Su H, Tao J, Xie Y, Lv D, Feng L, He J. Brain-derived neurotrophic factor levels and depression during methamphetamine withdrawal. J Affect Disord 2017. [PMID: 28647666 DOI: 10.1016/j.jad.2017.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Depression symptoms is highly comorbid with methamphetamine (METH) dependence. Except for the role in the pathophysiology of depression symptoms, brain-derived neurotrophic factor (BDNF) is also involved in the METH dependence. The present study aims to explore whether BDNF plays a role in the development of depression symptoms during METH withdrawal. METHODS We recruited 179 patients with METH dependence who were followed up for two weeks. Ultimately, 131 (73.2%) patients finished the follow-up. Besides, 90 healthy controls were also recruited. Serum BDNF levels were measured by DuoSet ELISA Development System upon admission. The short form (13 items) of the Beck Depression Inventory (BDI) and Amphetamine Withdrawal Questionnaire (AWQ) were used to measure the depression and withdrawal symptoms. Patients with BDI score ≥ 8 were identified to have depression symptoms. RESULTS Of the 131 patients, 64 (48.9%) were identified to have depression symptoms at the two-week endpoint. Patients with depression symptoms showed significantly lower BDNF levels than those with no depression symptoms. Serum BDNF levels (≤ 1251.0pg/ml) were independently associated with the development of depression symptoms during METH withdrawal (OR = 3.50, 95% CI, 1.14-10.73, p = 0.028). LIMITATIONS BDNF levels were tested in serum but not in brain and the baseline BDI and AWQ scores between the depression and non-depression groups were not matched. Besides, the follow-up time was relatively short. CONCLUSIONS Our study demonstrated that patients with serum BDNF levels ≤ 1251.0pg/ml had higher risk of depression symptoms during METH withdrawal.
Collapse
Affiliation(s)
- Wenwei Ren
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaoqian Luan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jie Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200000, China
| | - Priyanka Gutteea
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Cai
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiyun Zhao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yingying Gu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chaowen Wu
- Department of Neurology, Ruian People's Hospital, Wenzhou 325000, China
| | - Hang Su
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingyan Tao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ying Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dezhao Lv
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Liang Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
31
|
Meye FJ, Trusel M, Soiza-Reilly M, Mameli M. Neural circuit adaptations during drug withdrawal - Spotlight on the lateral habenula. Pharmacol Biochem Behav 2017; 162:87-93. [PMID: 28843423 DOI: 10.1016/j.pbb.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 02/03/2023]
Abstract
Withdrawal after drug intake triggers a wealth of affective states including negative feelings reminiscent of depressive symptoms. This negative state can ultimately be crucial for relapse, a hallmark of addiction. Adaptations in a wide number of neuronal circuits underlie aspects of drug withdrawal, however causality between cellular modifications within these systems and precise behavioral phenotypes remains poorly described. Recent advances point to an instrumental role of the lateral habenula in driving depressive-like states during drug withdrawal. In this review we will discuss the general behavioral features of drug withdrawal, the importance of plasticity mechanisms in the mesolimbic systems, and the latest discoveries highlighting the implications of lateral habenula in drug addiction. We will further stress how specific interventions in the lateral habenula efficiently ameliorate depressive symptoms. Altogether, this work aims to provide a general knowledge on the cellular and circuit basis underlying drug withdrawal, ultimately speculating on potential treatment for precise aspects of addiction.
Collapse
Affiliation(s)
- Frank J Meye
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Massimo Trusel
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland; Inserm UMR-S 839, Institut du Fer à Moulin, Paris, France
| | | | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland; Inserm UMR-S 839, Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
32
|
Ibrahim MA, El-Alfy AT, Ezel K, Radwan MO, Shilabin AG, Kochanowska-Karamyan AJ, Abd-Alla HI, Otsuka M, Hamann MT. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space. Mar Drugs 2017; 15:md15080248. [PMID: 28792478 PMCID: PMC5577603 DOI: 10.3390/md15080248] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022] Open
Abstract
In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo-N,N-dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1H-indol-3-yl)-N,N-dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide (1a), 2-(5-bromo-1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide (1d), 2-(1H-indol-3-yl)-N,N-dimethylethanamine (2a), 2-(5-chloro-1H-indol-3-yl)-N,N-dimethylethanamine (2c), 2-(5-bromo-1H-indol-3-yl)-N,N-dimethylethanamine (2d), and 2-(5-iodo-1H-indol-3-yl)-N,N-dimethylethanamine (2e) have been shown to possess significant antidepressant-like action, while compounds 2c, 2d, and 2e exhibited potent sedative activity. Compounds 2a, 2c, 2d, and 2e showed nanomolar affinities to serotonin receptors 5-HT1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- National Center for Natural Products Research, the University of Mississippi, University, MS 38677, USA.
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Abir T El-Alfy
- Biopharmaceutical Sciences Department, Medical College of Wisconsin Pharmacy School, Milwaukee, WI 53226, USA.
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
| | - Kelly Ezel
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
| | - Mohamed O Radwan
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Abbas G Shilabin
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- Department of Chemistry, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Anna J Kochanowska-Karamyan
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University HSC, Amarillo, TX 79106, USA.
| | - Howaida I Abd-Alla
- Department of Chemistry of Natural Compounds, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Mark T Hamann
- Department of Pharmacognosy, The University of Mississippi, University, MS 38677, USA.
- National Center for Natural Products Research, the University of Mississippi, University, MS 38677, USA.
- Department of Pharmacology, The University of Mississippi, University, MS 38677, USA.
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
33
|
Bruijnzeel AW. Neuropeptide systems and new treatments for nicotine addiction. Psychopharmacology (Berl) 2017; 234:1419-1437. [PMID: 28028605 PMCID: PMC5420481 DOI: 10.1007/s00213-016-4513-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE The mildly euphoric and cognitive enhancing effects of nicotine play a role in the initiation of smoking, while dysphoria and anxiety associated with smoking cessation contribute to relapse. After the acute withdrawal phase, smoking cues, a few cigarettes (i.e., lapse), and stressors can cause relapse. Human and animal studies have shown that neuropeptides play a critical role in nicotine addiction. OBJECTIVES The goal of this paper is to describe the role of neuropeptide systems in the initiation of nicotine intake, nicotine withdrawal, and the reinstatement of extinguished nicotine seeking. RESULTS The reviewed studies indicate that several drugs that target neuropeptide systems diminish the rewarding effects of nicotine by preventing the activation of dopaminergic systems. Other peptide-based drugs diminish the hyperactivity of brain stress systems and diminish withdrawal-associated symptom severity. Blockade of hypocretin-1 and nociceptin receptors and stimulation of galanin and neurotensin receptors diminishes the rewarding effects of nicotine. Both corticotropin-releasing factor type 1 and kappa-opioid receptor antagonists diminish dysphoria and anxiety-like behavior associated with nicotine withdrawal and inhibit stress-induced reinstatement of nicotine seeking. Furthermore, blockade of vasopressin 1b receptors diminishes dysphoria during nicotine withdrawal, and melanocortin 4 receptor blockade prevents stress-induced reinstatement of nicotine seeking. The role of neuropeptide systems in nicotine-primed and cue-induced reinstatement is largely unexplored, but there is evidence for a role of hypocretin-1 receptors in cue-induced reinstatement of nicotine seeking. CONCLUSION Drugs that target neuropeptide systems might decrease the euphoric effects of smoking and improve relapse rates by diminishing withdrawal symptoms and improving stress resilience.
Collapse
Affiliation(s)
- Adriaan W. Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, Florida, USA,Department of Neuroscience, University of Florida, Gainesville, Florida, USA,Center for Addiction Research and Education, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
34
|
Slattery DA, Cryan JF. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology (Berl) 2017; 234:1451-1465. [PMID: 28224183 DOI: 10.1007/s00213-017-4552-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Despite substantial research efforts the aetiology of major depressive disorder (MDD) remains poorly understood, which is due in part to the heterogeneity of the disorder and the complexity of designing appropriate animal models. However, in the last few decades, a focus on the development of novel stress-based paradigms and a focus on using hedonic/anhedonic behaviour have led to renewed optimism in the use of animal models to assess aspects of MDD. OBJECTIVES Therefore, in this review article, dedicated to Athina Markou, we summarise the use of stress-based animal models for studying MDD in rodents and how reward-related readouts can be used to validate/assess the model and/or treatment. RESULTS We reveal the use and limitations of chronic stress paradigms, which we split into non-social (i.e. chronic mild stress), social (i.e. chronic social defeat) and drug-withdrawal paradigms for studying MDD and detail numerous reward-related readouts that are employed in preclinical research. Finally, we finish with a section regarding important factors to consider when using animal models. CONCLUSIONS One of the most consistent findings following chronic stress exposure in rodents is a disruption of the brain reward system, which can be easily assessed using sucrose, social interaction, food, drug of abuse or intracranial self-stimulation as a readout. Probing the underlying causes of such alterations is providing a greater understanding of the potential systems and processes that are disrupted in MDD.
Collapse
Affiliation(s)
- D A Slattery
- Laboratory of Translational Psychiatry, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany.
| | - J F Cryan
- APC Microbiome Institute, Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Obituary: Athina Markou PhD (1961–2016). Neuropharmacology 2017; 113:591-593. [DOI: 10.1016/j.neuropharm.2016.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
|
36
|
Korte SM, Prins J, Van den Bergh FS, Oosting RS, Dupree R, Korte-Bouws GA, Westphal KG, Olivier B, Denys DA, Garland A, Güntürkün O. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and “waiting” impulsivity, but increases “stopping” impulsivity. Eur J Pharmacol 2017; 794:257-269. [DOI: 10.1016/j.ejphar.2016.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
37
|
Shabani S, Houlton SK, Hellmuth L, Mojica E, Mootz JRK, Zhu Z, Reed C, Phillips TJ. A Mouse Model for Binge-Level Methamphetamine Use. Front Neurosci 2016; 10:493. [PMID: 27853417 PMCID: PMC5090006 DOI: 10.3389/fnins.2016.00493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Binge/crash cycles of methamphetamine (MA) use are frequently reported by individuals suffering from MA use disorders. A MA binge is self-reported as multiple daily doses that commonly accumulate to 800 mg/day (~10 mg/kg/day for a 170 pound human). A genetic animal model with a similar vulnerability to binge-level MA intake is missing. We used selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mouse lines to determine whether several procedural variations would result in binge-level MA intake. Data were also collected in two progenitor populations of the MA drinking lines, the DBA/2J (D2) strain and the F2 cross of the D2 and C57BL/6J strains. The impact of 3 factors was examined: (1) concentration of MA in the two-bottle choice procedure used for selective breeding; (2) ratio of bottles containing MA vs. water, and (3) length of the withdrawal (or abstinence) period between MA drinking sessions. When MA concentration was progressively increased every 4 days in 20 mg/l amounts from 20 to 140 mg/l, maximum intake in MALDR mice was 1.1 mg/kg, whereas MAHDR mice consumed as much as 14.6 mg/kg. When these concentrations were tested in a multiple bottle choice procedure, the highest ratio of MA to water bottles (3:1) was associated with escalated MA intake of up to 29.1 mg/kg in MAHDR mice and 12.0 mg/kg in F2 mice; MALDR mice did not show a ratio-dependent escalation in MA intake. Finally, MAHDR and D2 mice were offered 3 bottles of MA vs. water at increasing concentrations from 20 to 80 mg/l, and tested under an intermittent 6-h withdrawal period, which was lengthened to 30 h (D2 mice) or to 30 or 78 h (MAHDR). D2 and MAHDR mice initially consumed similar amounts of 14-16 mg/kg MA, but D2 mice reduced their MA intake 3-fold after introduction of 30-h abstinence periods, whereas MAHDR mice retained their high level of intake regardless of withdrawal period. MAHDR mice provide a genetic model of binge-level MA intake appropriate for the study of associated MA-induced neurobiological changes and pharmaceutical treatments.
Collapse
Affiliation(s)
| | | | - Laura Hellmuth
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - Erika Mojica
- Department of Biology, Minot State UniversityMinot, ND, USA
| | - John R. K. Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science UniversityPortland, OR, USA
- VA Portland Health Care SystemPortland, OR, USA
| |
Collapse
|
38
|
Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice. Neuropharmacology 2016; 101:460-70. [DOI: 10.1016/j.neuropharm.2015.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022]
|
39
|
Withdrawal from Acute Amphetamine Induces an Amygdala-Driven Attenuation of Dopamine Neuron Activity: Reversal by Ketamine. Neuropsychopharmacology 2016; 41:619-27. [PMID: 26129677 PMCID: PMC5130137 DOI: 10.1038/npp.2015.191] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/08/2022]
Abstract
Drug addiction is a chronic disorder characterized by a cycle composed of drug seeking, intoxication with drug taking and withdrawal associated with negative affect. Numerous studies have examined withdrawal/negative affect after chronic use; however, very few have examined the effect of acute administration on the negative affective state after acute drug withdrawal. One dose of amphetamine was injected into Sprague-Dawley rats. Despair behavior using the modified forced swim test (FST) and dopamine (DA) activity in the ventral tegmental area using in vivo electrophysiological recordings were studied 18, 48 and 72 h after injection of amphetamine. The effects of inactivation of the basolateral amygdala (BLA) and ketamine administration on VTA DA neuron activity and passivity in the modified FST were examined. Eighteen hours following amphetamine withdrawal, there was a substantial decrease in the number of active DA neurons, as well as an increase in time spent immobile in the modified FST, which returned to baseline after 72 h. Inactivation of the BLA after acute amphetamine prevented the decrease in DA neuron tonic activity. Injection of ketamine also prevented the decrease in DA population activity but had no effect on immobility measured in the modified FST. The data support a model in which the negative affective state following acute amphetamine withdrawal is associated with a decrease in DA neuron population activity, driven by hyperactivity of the BLA. Although ketamine reversed the hypodopaminergic state following withdrawal, the failure to reduce immobility in the modified FST indicates that different processes underlying negative emotional state may exist between depression and drug withdrawal.
Collapse
|
40
|
Holden JM, Slivicki R, Dahl R, Dong X, Dwyer M, Holley W, Knott C. Behavioral effects of mefloquine in tail suspension and light/dark tests. SPRINGERPLUS 2015; 4:702. [PMID: 26609504 PMCID: PMC4648841 DOI: 10.1186/s40064-015-1483-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
|
41
|
d-amphetamine withdrawal-induced decreases in brain-derived neurotrophic factor in sprague-dawley rats are reversed by treatment with ketamine. Neuropharmacology 2015; 97:7-17. [DOI: 10.1016/j.neuropharm.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/24/2015] [Accepted: 04/26/2015] [Indexed: 12/16/2022]
|
42
|
Fries GR, Valvassori SS, Bock H, Stertz L, Magalhães PVDS, Mariot E, Varela RB, Kauer-Sant'Anna M, Quevedo J, Kapczinski F, Saraiva-Pereira ML. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. J Psychiatr Res 2015; 68:329-36. [PMID: 26026487 DOI: 10.1016/j.jpsychires.2015.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala.
Collapse
Affiliation(s)
- Gabriel R Fries
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Samira S Valvassori
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Hugo Bock
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| | - Laura Stertz
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Pedro Vieira da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Edimilson Mariot
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Roger B Varela
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Marcia Kauer-Sant'Anna
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - João Quevedo
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Flávio Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Maria Luiza Saraiva-Pereira
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| |
Collapse
|
43
|
Dopamine transporter gene may be associated with bipolar disorder and its personality traits. Eur Arch Psychiatry Clin Neurosci 2015; 265:281-90. [PMID: 25547317 DOI: 10.1007/s00406-014-0570-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022]
Abstract
Dopamine transporter and its genetic factors have been suggested to play a critical role in the development of bipolar disorder (BPD). However, the importance of the dopamine transporter gene (DAT1) in the pathogenesis of BPD remains unclear. The aims of this study were to assess 18 polymorphisms of the DAT1 gene to determine whether this gene is associated with BPD and whether it influences personality traits of patients with BPD. DAT1 polymorphisms were analyzed in 492 BPD (374 BPDI and 118 BPDII) patients and 436 controls. All participants were screened using the same assessment tool, and all met the criteria for BPD. The Tridimensional Personality Questionnaire was used to assess personality traits in both patients and controls. Several polymorphisms had a weak association with BPD, including rs2550948, rs2652511, and rs2975226 in allele distribution analysis (P < 0.05). Furthermore, the promoter G-A-C-G haplotype (rs6350-rs2975226-rs2652511-rs6413429) was over-represented in the BPD patients compared to the controls (P = 0.007). In personality assessment, the BPDII patients had the highest harm avoidance score, followed by the BPDI patients and controls (P = 3.7 × 10(-32)). In addition, a significant association between rs40184 and harm avoidance was found in the patients with BPD. The DAT1 promoter may be associated with vulnerabilities in BPD. The BPD patients had a higher rate of harm avoidance personality traits than the controls, and DAT1 variants may influence personality traits in patients with BPD.
Collapse
|
44
|
Haidar M, Lam M, Chua BE, Smith CM, Gundlach AL. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency. Neurochem Res 2015; 41:481-91. [PMID: 26023064 DOI: 10.1007/s11064-015-1621-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant, and cessation of use is associated with reduced monoamine signalling, and increased anxiety/depressive states. Neurons expressing the neuropeptide, relaxin-3 (RLN3), and its cognate receptor, RXFP3, constitute a putative 'ascending arousal system', which shares neuroanatomical and functional similarities with serotonin (5-HT)/dorsal raphe and noradrenaline (NA)/locus coeruleus monoamine systems. In light of possible synergistic roles of RLN3 and 5-HT/NA, endogenous RLN3/RXFP3 signalling may compensate for the temporary reduction in monoamine signalling associated with chronic METH withdrawal, which could alter the profile of 'behavioural despair', bodyweight reductions, and increases in anhedonia and anxiety-like behaviours observed following chronic METH administration. In studies to test this theory, Rln3 and Rxfp3 knockout (KO) mice and their wildtype (WT) littermates were injected once daily with saline or escalating doses of METH (2 mg/kg, i.p. on day 1, 4 mg/kg, i.p. on day 2 and 6 mg/kg, i.p. on day 3-10). WT and Rln3 and Rxfp3 KO mice displayed an equivalent sensitivity to behavioural despair (Porsolt swim) during the 2-day METH withdrawal and similar bodyweight reductions on day 3 of METH treatment. Furthermore, during a 3-week period after the cessation of chronic METH exposure, Rln3 KO, Rxfp3 KO and corresponding WT mice displayed similar behavioural responses in paradigms that measured anxiety (light/dark box, elevated plus maze), anhedonia (saccharin preference), and social interaction. These findings indicate that a whole-of-life deficiency in endogenous RLN3/RXFP3 signalling does not markedly alter behavioural sensitivity to chronic METH treatment or withdrawal, but leave open the possibility of a more significant interaction with global or localised manipulations of this peptide system in the adult brain.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Monica Lam
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.,Faculty of Health Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Berenice E Chua
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,INC Research, Oakleigh, Victoria, Australia
| | - Craig M Smith
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia. .,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
45
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
46
|
Pathak G, Ibrahim BA, McCarthy SA, Baker K, Kelly MP. Amphetamine sensitization in mice is sufficient to produce both manic- and depressive-related behaviors as well as changes in the functional connectivity of corticolimbic structures. Neuropharmacology 2015; 95:434-47. [PMID: 25959066 DOI: 10.1016/j.neuropharm.2015.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
It has been suggested that amphetamine abuse and withdrawal mimics the diverse nature of bipolar disorder symptomatology in humans. Here, we determined if a single paradigm of amphetamine sensitization would be sufficient to produce both manic- and depressive-related behaviors in mice. CD-1 mice were subcutaneously dosed for 5 days with 1.8 mg/kg d-amphetamine or vehicle. On days 6-31 of withdrawal, amphetamine-sensitized (AS) mice were compared to vehicle-treated (VT) mice on a range of behavioral and biochemical endpoints. AS mice demonstrated reliable mania- and depression-related behaviors from day 7 to day 28 of withdrawal. Relative to VT mice, AS mice exhibited long-lasting mania-like hyperactivity following either an acute 30-min restraint stress or a low-dose 1 mg/kg d-amphetamine challenge, which was attenuated by the mood-stabilizers lithium and quetiapine. In absence of any challenge, AS mice showed anhedonia-like decreases in sucrose preference and depression-like impairments in the off-line consolidation of motor memory, as reflected by the lack of spontaneous improvement across days of training on the rotarod. AS mice also demonstrated a functional impairment in nest building, an ethologically-relevant activity of daily living. Western blot analyses revealed a significant increase in methylation of histone 3 at lysine 9 (H3K9), but not lysine 4 (H3K4), in hippocampus of AS mice relative to VT mice. In situ hybridization for the immediate-early gene activity-regulated cytoskeleton-associated protein (Arc) further revealed heightened activation of corticolimbic structures, decreased functional connectivity between frontal cortex and striatum, and increased functional connectivity between the amygdala and hippocampus of AS mice. The effects of amphetamine sensitization were blunted in C57BL/6J mice relative to CD-1 mice. These results show that a single amphetamine sensitization protocol is sufficient to produce behavioral, functional, and biochemical phenotypes in mice that are relevant to bipolar disorder.
Collapse
Affiliation(s)
- G Pathak
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - B A Ibrahim
- University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | - K Baker
- Pfizer, Neuroscience, Groton, CT 06340, USA
| | - M P Kelly
- University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
47
|
The anti-(+)-methamphetamine monoclonal antibody mAb7F9 attenuates acute (+)-methamphetamine effects on intracranial self-stimulation in rats. PLoS One 2015; 10:e0118787. [PMID: 25742165 PMCID: PMC4350938 DOI: 10.1371/journal.pone.0118787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
Passive immunization with monoclonal antibodies (mAbs) against (+)-methamphetamine (METH) is being evaluated for the treatment of METH addiction. A human/mouse chimeric form of the murine anti-METH mAb7F9 has entered clinical trials. This study examined the effects of murine mAb7F9 on certain addiction-related behavioral effects of METH in rats as measured using intracranial self-stimulation (ICSS). Initial studies indicated that acute METH (0.1-0.56 mg/kg, s.c.) lowered the minimal (threshold) stimulation intensity that maintained ICSS. METH (0.3 mg/kg, s.c.) also blocked elevations in ICSS thresholds (anhedonia-like behavior) during spontaneous withdrawal from a chronic METH infusion (10 mg/kg/day x 7 days). In studies examining effects of i.v. pretreatment with mAb7F9 (at 30, 100, or 200 mg/kg), 200 mg/kg blocked the ability of an initial injection of METH (0.3 mg/kg, s.c.) to reduce baseline ICSS thresholds, but was less capable of attenuating the effect of subsequent daily injections of METH. MAb7F9 (200 mg/kg) also produced a small but significant reduction in the ability of METH (0.3 mg/kg, s.c.) to reverse METH withdrawal-induced elevations in ICSS thresholds. These studies demonstrate that mAb7F9 can partially attenuate some addiction-related effects of acute METH in an ICSS model, and provide some support for the therapeutic potential of mAb7F9 for the treatment of METH addiction.
Collapse
|
48
|
Kotagale NR, Chopde CT, Umekar MJ, Taksande BG. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice. Eur J Pharmacol 2015; 754:190-8. [PMID: 25744879 DOI: 10.1016/j.ejphar.2015.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/29/2023]
Abstract
Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Chandrabhan T Chopde
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
49
|
Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp 2015:52587. [PMID: 25867960 PMCID: PMC4401172 DOI: 10.3791/52587] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The goal of the present protocol is to describe the forced swim test (FST), which is one of the most commonly used assays for the study of depressive-like behavior in rodents. The FST is based on the assumption that when placing an animal in a container filled with water, it will first make efforts to escape but eventually will exhibit immobility that may be considered to reflect a measure of behavioral despair. This test has been extensively used because it involves the exposure of the animals to stress, which was shown to have a role in the tendency for major depression. Additionally, the FST has been shown to share some of the factors that are influenced or altered by depression in humans, including changes in food consumption, sleep abnormalities and drug-withdrawal-induced anhedonia. The main advantages of this procedure are that it is relatively easy to perform and that its results are easily and quickly analyzed. Moreover, its sensitivity to a broad range of antidepressant drugs that makes it a suitable screening test is one of the most important features leading to its high predictive validity. Despite its appeal, this model has a number of disadvantages. First, the issue of chronic augmentation is problematic in this test because in real life patients need to be treated for at least several weeks before they experience any relief from their symptoms. Last, due to the aversiveness of the FST, it is important to take into account possible influences it might have on brain structure/function if brain analyses are to be carried out following this procedure.
Collapse
Affiliation(s)
- Roni Yankelevitch-Yahav
- School of Psychological Sciences, Tel-Aviv University; School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Motty Franko
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Avrham Huly
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo
| | - Ravid Doron
- School of Behavioral Sciences, Academic College of Tel Aviv-Yaffo; Department of Education and Psychology, The Open University of Israel; School of Health and Life Sciences, Hadassah Academic College;
| |
Collapse
|
50
|
Abstract
There is abundant evidence that the dopamine (DA) neurons that project to the nucleus accumbens play a central role in neurobiological mechanisms underpinning drug dependence. This chapter considers the ways in which these projections facilitate the addiction to nicotine and tobacco. It focuses on the complimentary roles of the two principal subdivisions of the nucleus accumbens, the accumbal core and shell, in the acquisition and maintenance of nicotine-seeking behavior. The ways in which tonic and phasic firing of the neurons contributes to the ways in which the accumbens mediate the behavioral responses to nicotine are also considered. Experimental studies suggest that nicotine has relatively weak addictive properties which are insufficient to explain the powerful addictive properties of tobacco smoke. This chapter discusses hypotheses that seek to explain this conundrum. They implicate both discrete sensory stimuli closely paired with the delivery of tobacco smoke and contextual stimuli habitually associated with the delivery of the drug. The mechanisms by which each type of stimulus influence tobacco dependence are hypothesized to depend upon the increased DA release and overflow, respectively, in the two subdivisions of the accumbens. It is suggested that a majority of pharmacotherapies for tobacco dependence are not more successful because they fail to address this important aspect of the dependence.
Collapse
Affiliation(s)
- David J K Balfour
- Medical Research Institute, Division of Neuroscience, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland,
| |
Collapse
|