1
|
Giardino M, Peluso F, Daolio O, Bellini M, Ambrosini E, Zito M, Squarcia A. An uncommon neuroradiological finding of hippocampal malrotation in childhood onset schizophrenia and 22q11.2 Deletion Syndrome: a case report and a brief review of the literature. Eur Child Adolesc Psychiatry 2025; 34:363-368. [PMID: 39164503 DOI: 10.1007/s00787-024-02569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Childhood Onset Schizophrenia is a rare neuropsychiatric disorder significantly associated with 22q11.2 Deletion Syndrome. We describe a male patient, followed from childhood to adolescence, who exhibited premorbid impairments in language, learning and social abilities, along with comorbid anxiety disorders. Over time, he gradually developed Childhood Onset Schizophrenia, with neuroradiological findings of white matter hyperintensities, a dysmorphic corpus callosum and Hippocampal Malrotation. These findings were observed in the context of a genetic diagnosis of 22q11.2 Deletion Syndrome, despite the absence of the most common congenital malformations and clinical conditions typically associated with this syndrome. A remarkable aspect of this case report is the emphasis on the importance of suspecting 22q11.2 Deletion Syndrome even in cases where only the neuropsychiatric phenotype of Childhood-Onset Schizophrenia and structural brain alterations, is present. While abnormalities of white matter and corpus callosum are associated with schizophrenia in patients with 22q11.2 Deletion Syndrome, Hippocampal Malrotation is more frequently described in patients with epilepsy and prolonged febrile seizures. Recently, only 10 adult patients with 22q11.2 Deletion Syndrome have been reported to have Hippocampal Malrotation, six of whom were affected by schizophrenia, with or without epilepsy. Our case report aims to extend the neuroradiological findings associated with 22q11.2 Deletion Syndrome and Schizophrenia, including Hippocampal Malrotation. This is the first case report in which Hippocampal Malrotation has been described in Childhood Onset Schizophrenia and 22q11.2 Deletion Syndrome. We suggest that patients with Hippocampal Malrotation and Childhood Onset Schizophrenia, should have a chromosomal microarray performed to screen for 22q11.2 Deletion Syndrome.
Collapse
Affiliation(s)
- Maria Giardino
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy.
| | - Francesca Peluso
- Medical Genetics Unit, Maternal and Child Health Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Omar Daolio
- Department of Mental Health and Pathological Addiction, Child and Adolescent Neuropsychiatry Service, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Melissa Bellini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
- Department of Pediatrics and Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, Parma, Italy
| | - Matteo Zito
- Child Neuropsychiatry Unit, Azienda USL di Parma, Parma, Italy
| | | |
Collapse
|
2
|
Castellanos FX. Back to the future: Some similarities and many differences between autism spectrum disorder and early onset schizophrenia. Clues to pathophysiology? Sci Bull (Beijing) 2024; 69:2476-2477. [PMID: 38969537 DOI: 10.1016/j.scib.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Francisco Xavier Castellanos
- New York University Grossman School of Medicine, New York NY 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg NY 10962, USA.
| |
Collapse
|
3
|
Li X, Lin Z, Liu C, Bai R, Wu D, Yang J. Glymphatic Imaging in Pediatrics. J Magn Reson Imaging 2024; 59:1523-1541. [PMID: 37819198 DOI: 10.1002/jmri.29040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The glymphatic system, which facilitates cerebrospinal fluid (CSF) flow through the brain parenchyma, is important for brain development and waste clearance. Advances in imaging techniques, particularly magnetic resonance imaging, have make it possible to evaluate glymphatic structures and functions in vivo. Recently, several studies have focused on the development and alterations of the glymphatic system in pediatric disorders. This review discusses the development of the glymphatic system, advances of imaging techniques and their applications in pediatric disorders. First, the results of the reviewed studies indicate that the development of the glymphatic system is a long-lasting process that continues into adulthood. Second, there is a need for improved glymphatic imaging techniques that are non-invasive and fast to improve suitability for pediatric applications, as some of existing methods use contrast injection and are susceptible to motion artifacts from long scanning times. Several novel techniques are potentially feasible for pediatric patients and may be used in the future. Third, the glymphatic dysfunction is associated with a large number of pediatric disorders, although only a few have recently been investigated. In conclusion, research on the pediatric glymphatic system remains an emerging field. The preliminary applications of glymphatic imaging techniques have provided unique insight into the pathological mechanism of pediatric diseases, but mainly limited in visualization of enlarged perivascular spaces and morphological measurements on CSF volumes. More in-depth studies on glymphatic functions are required to improve our understanding of the mechanisms underlying brain development and pediatric diseases. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zixuan Lin
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Morphological Abnormalities in Early-Onset Schizophrenia Revealed by Structural Magnetic Resonance Imaging. BIOLOGY 2023; 12:biology12030353. [PMID: 36979045 PMCID: PMC10045839 DOI: 10.3390/biology12030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Schizophrenia is a pathological condition characterized by delusions, hallucinations, and a lack of motivation. In this study, we performed a morphological analysis of regional biomarkers in early-onset schizophrenia, including cortical thicknesses, surface areas, surface curvature, and volumes extracted from T1-weighted structural magnetic resonance imaging (MRI) and compared these findings with a large cohort of neurotypical controls. Results demonstrate statistically significant abnormal presentation of the curvature of select brain regions in early-onset schizophrenia with large effect sizes, inclusive of the pars orbitalis, pars triangularis, posterior cingulate cortex, frontal pole, orbital gyrus, lateral orbitofrontal gyrus, inferior occipital gyrus, as well as in medial occipito-temporal, lingual, and insular sulci. We also observed reduced regional volumes, surface areas, and variability of cortical thicknesses in early-onset schizophrenia relative to neurotypical controls in the lingual, transverse temporal, cuneus, and parahippocampal cortices that did not reach our stringent standard for statistical significance and should be confirmed in future studies with higher statistical power. These results imply that abnormal neurodevelopment associated with early-onset schizophrenia can be characterized with structural MRI and may reflect abnormal and possibly accelerated pruning of the cortex in schizophrenia.
Collapse
|
5
|
Cobia D, Rich C, Smith MJ, Engel Gonzalez P, Cronenwett W, Csernansky JG, Wang L. Thalamic Shape Abnormalities Differentially Relate to Cognitive Performance in Early-Onset and Adult-Onset Schizophrenia. Front Psychiatry 2022; 13:803234. [PMID: 35479490 PMCID: PMC9035552 DOI: 10.3389/fpsyt.2022.803234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset schizophrenia (EOS) shares many biological and clinical features with adult-onset schizophrenia (AOS), but may represent a unique subgroup with greater susceptibility for disease onset and worsened symptomatology and progression, which could potentially derive from exaggerated neurodevelopmental abnormalities. Neurobiological explanations of schizophrenia have emphasized the involvement of deep-brain structures, particularly alterations of the thalamus, which have been linked to core features of the disorder. The aim of this study was to compare thalamic shape abnormalities between EOS and AOS subjects and determine whether unique behavioral profiles related to these differences. It was hypothesized abnormal thalamic shape would be observed in anterior, mediodorsal and pulvinar regions in both schizophrenia groups relative to control subjects, but exacerbated in EOS. Magnetic resonance T1-weighted images were collected from adult individuals with EOS (n = 28), AOS (n = 33), and healthy control subjects (n = 60), as well as collection of clinical and cognitive measures. Large deformation high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. General linear models were used to compare groups on surface shape features, and Pearson correlations were used to examine relationships between thalamic shape and behavioral measures. Results revealed both EOS and AOS groups demonstrated significant abnormal shape of anterior, lateral and pulvinar thalamic regions relative to CON (all p < 0.007). Relative to AOS, EOS exhibited exacerbated abnormalities in posterior lateral, mediodorsal and lateral geniculate thalamic regions (p = 0.003). Thalamic abnormalities related to worse episodic memory in EOS (p = 0.03) and worse working memory (p = 0.047) and executive functioning (p = 0003) in AOS. Overall, findings suggest thalamic abnormalities are a prominent feature in both early- and late-onset schizophrenia, but exaggerated in EOS and have different brain-behavior profiles for each. The persistence of these abnormalities in adult EOS patients suggests they may represent markers of disrupted neurodevelopment that uniquely relate to the clinical and cognitive aspects of the illness.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chaz Rich
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | - Pedro Engel Gonzalez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Will Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
6
|
Svancer P, Spaniel F. Brain ventricular volume changes in schizophrenia. A narrative review. Neurosci Lett 2021; 759:136065. [PMID: 34146640 DOI: 10.1016/j.neulet.2021.136065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/15/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022]
Abstract
Brain ventricles are among the most studied structures in psychotic illness. In our mini-review we present available evidence on brain ventricle changes during the course of schizophrenia, from high-risk subjects and the first episode of schizophrenia to patients with chronic schizophrenia. We present current findings on the relationship between ventricle changes and level of psychopathology. The potential pathophysiological background of ventricle changes is also discussed. Understanding the dynamics of brain ventricle changes could resolve long-standing questions on the proportion of neurodegenerative and neurodevelopmental processes in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Patrik Svancer
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
7
|
The role of MRI and CT of the brain in first episodes of psychosis and behavioural abnormality. Clin Radiol 2021; 76:712.e9-712.e13. [PMID: 34099260 DOI: 10.1016/j.crad.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/05/2021] [Indexed: 11/20/2022]
Abstract
AIM To investigate whether computed tomography (CT)/magnetic resonance imaging (MRI) brain imaging is associated with detection of structural causes of a first episode of psychosis (FEP) or first episode of behavioural abnormality (FEB) in the paediatric population, as this has not been previously documented in the literature. MATERIALS AND METHODS Individuals with FEP/FEB but no neurological signs referred to a tertiary children's centre for cerebral MRI or CT were reviewed retrospectively. Individuals were evaluated independently with one technique (CT or MRI) only. RESULTS Thirty-four consecutive cerebral MRI and six consecutive CT examinations were identified between 2017 and 2020. No patients were identified as having an organic cause for the psychosis at MRI or CT. Four patients (9%) had incidental findings on MRI, unrelated to the psychosis, such as prominent perivascular spaces, hypoplastic transverse sinus, and sinonasal mucosal wall thickening. No abnormal findings were seen on CT. There was therefore no obvious difference between MRI and CT imaging in detecting organic disease potentially responsible for FEP. CONCLUSION Routine structural MRI or CT of the brain is unlikely to reveal disease leading to a significant change in management. MRI demonstrated only a few incidental findings, unrelated to the child's clinical history. Therefore, routine brain structural imaging of FEP/FEB in paediatric patients without focal neurology may not be routinely required. If imaging is requested, then there is no significant difference between CT and MRI in detecting clinically significant lesions.
Collapse
|
8
|
Allebone J, Kanaan RA, Maller JJ, O'Brien T, Mullen S, Cook M, Adams S, Vogrin S, Vaughan D, Connelly A, Kwan P, Berkovic SF, D'Souza W, Jackson G, Velakoulis D, Wilson SJ. Enlarged hippocampal fissure in psychosis of epilepsy. Epilepsy Behav 2020; 111:107290. [PMID: 32759068 DOI: 10.1016/j.yebeh.2020.107290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022]
Abstract
Psychosis of epilepsy (POE) can be a devastating condition, and its neurobiological basis remains unclear. In a previous study, we identified reduced posterior hippocampal volumes in patients with POE. The hippocampus can be further subdivided into anatomically and functionally distinct subfields that, along with the hippocampal fissure, have been shown to be selectively affected in other psychotic disorders and are not captured by gross measures of hippocampal volume. Therefore, in this study, we compared the volume of selected hippocampal subfields and the hippocampal fissure in 31 patients with POE with 31 patients with epilepsy without psychosis. Cortical reconstruction, volumetric segmentation, and calculation of hippocampal subfields and the hippocampal fissure were performed using FreeSurfer. The group with POE had larger hippocampal fissures bilaterally compared with controls with epilepsy, which was significant on the right. There were no significant differences in the volumes of the hippocampal subfields between the two groups. Our findings suggest abnormal development of the hippocampus in POE. They support and expand the neurodevelopmental model of psychosis, which holds that early life stressors lead to abnormal neurodevelopmental processes, which underpin the onset of psychosis in later life. In line with this model, the findings of the present study suggest that enlarged hippocampal fissures may be a biomarker of abnormal neurodevelopment and risk for psychosis in patients with epilepsy.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia.
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Australia; Department of Psychiatry, Austin Health, University of Melbourne, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia; Centre for Research on Ageing, Health and Wellbeing, ANU College of Health and Medicine, Australian National University, Canberra, Australia
| | | | - Saul Mullen
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia
| | - Mark Cook
- St Vincent's Hospital Melbourne, Australia
| | | | | | - David Vaughan
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | - Alan Connelly
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | | | | | - Graeme Jackson
- Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| | | | - Sarah J Wilson
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Comprehensive Epilepsy Program, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, Australia
| |
Collapse
|
9
|
Driver DI, Thomas S, Gogtay N, Rapoport JL. Childhood-Onset Schizophrenia and Early-onset Schizophrenia Spectrum Disorders: An Update. Child Adolesc Psychiatr Clin N Am 2020; 29:71-90. [PMID: 31708054 DOI: 10.1016/j.chc.2019.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical severity, impact on development, and poor prognosis of childhood-onset schizophrenia may represent a more homogeneous group. Positive symptoms in children are necessary for the diagnosis, and hallucinations are more often multimodal. In healthy children and children with a variety of other psychiatric illnesses, hallucinations are not uncommon and diagnosis should not be based on these alone. Childhood-onset schizophrenia is an extraordinarily rare illness that is poorly understood but seems continuous with the adult-onset disorder. Once a diagnosis is confirmed, aggressive medication treatment combined with family education and individual counseling may prevent further deterioration.
Collapse
Affiliation(s)
- David I Driver
- Child Psychiatry Branch, National Institutes of Mental Health (NIMH), National Institutes Health (NIH), Building 10, Room 4N313C, 10 Center Drive, Bethesda, MD 20814, USA.
| | - Shari Thomas
- Healthy Foundations Group, 4350 East West Highway, Suite 200, Bethesda, Maryland 20814, USA
| | - Nitin Gogtay
- National Institutes Health (NIH), NSC Building, Room 6104, 6001 Executive Boulevard, Rockville, MD 20852, USA
| | - Judith L Rapoport
- National Institutes Health (NIH), Building 10-CRC, Room 6-5332, 10 Center Drive, Bethesda, MD 20814, USA
| |
Collapse
|
10
|
Hoffmann A, Ziller M, Spengler D. Childhood-Onset Schizophrenia: Insights from Induced Pluripotent Stem Cells. Int J Mol Sci 2018; 19:E3829. [PMID: 30513688 PMCID: PMC6321410 DOI: 10.3390/ijms19123829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Childhood-onset schizophrenia (COS) is a rare psychiatric disorder characterized by earlier onset, more severe course, and poorer outcome relative to adult-onset schizophrenia (AOS). Even though, clinical, neuroimaging, and genetic studies support that COS is continuous to AOS. Early neurodevelopmental deviations in COS are thought to be significantly mediated through poorly understood genetic risk factors that may also predispose to long-term outcome. In this review, we discuss findings from induced pluripotent stem cells (iPSCs) that allow the generation of disease-relevant cell types from early brain development. Because iPSCs capture each donor's genotype, case/control studies can uncover molecular and cellular underpinnings of COS. Indeed, recent studies identified alterations in neural progenitor and neuronal cell function, comprising dendrites, synapses, electrical activity, glutamate signaling, and miRNA expression. Interestingly, transcriptional signatures of iPSC-derived cells from patients with COS showed concordance with postmortem brain samples from SCZ, indicating that changes in vitro may recapitulate changes from the diseased brain. Considering this progress, we discuss also current caveats from the field of iPSC-based disease modeling and how to proceed from basic studies to improved diagnosis and treatment of COS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
11
|
Neither antecedent nor consequence: Developmental integration of chronic stress, pubertal timing, and conditionally adapted stress response. DEVELOPMENTAL REVIEW 2018. [DOI: 10.1016/j.dr.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Mol Psychiatry 2018; 23:952-962. [PMID: 28924186 PMCID: PMC5868632 DOI: 10.1038/mp.2017.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
Recent genome-wide association studies identified over 100 genetic loci that significantly associate with schizophrenia (SZ). A top candidate gene, ZNF804A, was robustly replicated in different populations. However, its neural functions are largely unknown. Here we show in mouse that ZFP804A, the homolog of ZNF804A, is required for normal progenitor proliferation and neuronal migration. Using a yeast two-hybrid genome-wide screen, we identified novel interacting proteins of ZNF804A. Rather than transcriptional factors, genes involved in mRNA translation are highly represented in our interactome result. ZNF804A co-fractionates with translational machinery and modulates the translational efficiency as well as the mTOR pathway. The ribosomal protein RPSA interacts with ZNF804A and rescues the migration and translational defects caused by ZNF804A knockdown. RNA immunoprecipitation-RNAseq (RIP-Seq) identified transcripts bound to ZFP804A. Consistently, ZFP804A associates with many short transcripts involved in translational and mitochondrial regulation. Moreover, among the transcripts associated with ZFP804A, a SZ risk gene, neurogranin (NRGN), is one of ZFP804A targets. Interestingly, downregulation of ZFP804A decreases NRGN expression and overexpression of NRGN can ameliorate ZFP804A-mediated migration defect. To verify the downstream targets of ZNF804A, a Duolink in situ interaction assay confirmed genes from our RIP-Seq data as the ZNF804A targets. Thus, our work uncovered a novel mechanistic link of a SZ risk gene to neurodevelopment and translational control. The interactome-driven approach here is an effective way for translating genome-wide association findings into novel biological insights of human diseases.
Collapse
|
13
|
Abstract
SummaryThis article summarises new research, together with core features, course
and outcome of schizophrenia with onset in childhood and adolescence, and
investigates its neurobiology and continuity into adult life. It concludes
that, in conformity with other disorders of childhood, adult-based
diagnostic criteria have validity in adolescence. Sadly, the disorder has a
poorer outcome when onset is in youth.
Collapse
|
14
|
Nimgaonkar VL, Prasad KM, Chowdari KV, Severance EG, Yolken RH. The complement system: a gateway to gene-environment interactions in schizophrenia pathogenesis. Mol Psychiatry 2017; 22:1554-1561. [PMID: 28761078 PMCID: PMC5656502 DOI: 10.1038/mp.2017.151] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
The pathogenesis of schizophrenia is considered to be multi-factorial, with likely gene-environment interactions (GEI). Genetic and environmental risk factors are being identified with increasing frequency, yet their very number vastly increases the scope of possible GEI, making it difficult to identify them with certainty. Accumulating evidence suggests a dysregulated complement pathway among the pathogenic processes of schizophrenia. The complement pathway mediates innate and acquired immunity, and its activation drives the removal of damaged cells, autoantigens and environmentally derived antigens. Abnormalities in complement functions occur in many infectious and autoimmune disorders that have been linked to schizophrenia. Many older reports indicate altered serum complement activity in schizophrenia, though the data are inconclusive. Compellingly, recent genome-wide association studies suggest repeat polymorphisms incorporating the complement 4A (C4A) and 4B (C4B) genes as risk factors for schizophrenia. The C4A/C4B genetic associations have re-ignited interest not only in inflammation-related models for schizophrenia pathogenesis, but also in neurodevelopmental theories, because rodent models indicate a role for complement proteins in synaptic pruning and neurodevelopment. Thus, the complement system could be used as one of the 'staging posts' for a variety of focused studies of schizophrenia pathogenesis. They include GEI studies of the C4A/C4B repeat polymorphisms in relation to inflammation-related or infectious processes, animal model studies and tests of hypotheses linked to autoimmune diseases that can co-segregate with schizophrenia. If they can be replicated, such studies would vastly improve our understanding of pathogenic processes in schizophrenia through GEI analyses and open new avenues for therapy.
Collapse
Affiliation(s)
- Vishwajit L. Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Kodavali V. Chowdari
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Emily G. Severance
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Robert H. Yolken
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
15
|
Deng D, Jian C, Lei L, Zhou Y, McSweeney C, Dong F, Shen Y, Zou D, Wang Y, Wu Y, Zhang L, Mao Y. A prenatal interruption of DISC1 function in the brain exhibits a lasting impact on adult behaviors, brain metabolism, and interneuron development. Oncotarget 2017; 8:84798-84817. [PMID: 29156684 PMCID: PMC5689574 DOI: 10.18632/oncotarget.21381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/03/2017] [Indexed: 02/03/2023] Open
Abstract
Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 (DISC1), has been associated with neuropsychiatric conditions. However, little is known regarding the long-lasting impacts on brain metabolism and behavioral outcomes from genetic insults on fetal NPCs during early life. We have established a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal depression-like deficit in adult mice. Here we took a novel unbiased metabonomics approach to identify brain-specific metabolites that are significantly changed in DN-DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. To further explore the cellular mechanisms that cause this change, DN-DISC1 suppresses proliferation and promotes the cell cycle exit of progenitors in the medial ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence that specific genetic insults on NSCs at a short period of time could lead to prolonged changes of brain metabolism and development, eventually behavioral defects.
Collapse
Affiliation(s)
- Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chongdong Jian
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Lei
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Health Examination Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yilun Shen
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Donghua Zou
- Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Ruby E, Rothman K, Corcoran C, Goetz RR, Malaspina D. Influence of early trauma on features of schizophrenia. Early Interv Psychiatry 2017; 11:322-333. [PMID: 25808607 PMCID: PMC4580512 DOI: 10.1111/eip.12239] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/16/2015] [Indexed: 02/01/2023]
Abstract
AIM This proof-of-concept study examined if early trauma influences features of schizophrenia, consistent with hypothalamic-pituitary-adrenal (HPA) axis activation. METHODS Early trauma and current perceived stress were assessed in 28 treated schizophrenia cases, along with salivary cortisol, brain volumes, cognition and symptoms. RESULTS Early trauma predicted more positive (r = .66, P = .005) and dysthymia symptoms (r -.65, P = .007), but less negative symptoms (r = -.56, P = .023), as well as reduced whole brain volumes (r = .50, P = .040) and increased amygdala to whole brain volume ratios (r = .56, P = .018). Larger volume reductions accompanied cortisol levels: evening values predicted smaller whole brain and hippocampal volumes whereas afternoon levels only significantly predicted smaller brain volumes in women. Sex differences were demonstrated between early trauma and cognition, with better cognition in traumatized women than other women and no male effects. Current perceived stress was related to dysthymia (especially in women) and diminished sense of purpose and social drive (especially in men). CONCLUSIONS These results suggest that early trauma and current stress impact features of schizophrenia, consistent with stress sensitization and increased dopamine activity for treatment refractory positive symptoms, as well as the cascade of increased morning cortisol, reduced brain volumes, and depressive and deficit symptoms. Conversely, cognitive deficits and negative symptoms may arise from a distinct diathesis. The sex differences accord with the literature on human HPA function and stress responses. Early trauma may be a stressor in the aetiopathophysiology of schizophrenia, particularly for cases with treatment refractory positive symptoms, and may guide future treatment development.
Collapse
Affiliation(s)
- Eugene Ruby
- Department of Psychiatry, New York University School of Medicine, Institute for Social and Psychiatric Initiatives-Research, Education, and Services (InSPIRES), New York, New York, USA
| | - Karen Rothman
- Department of Psychiatry, New York University School of Medicine, Institute for Social and Psychiatric Initiatives-Research, Education, and Services (InSPIRES), New York, New York, USA
| | - Cheryl Corcoran
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York, USA
| | - Raymond R Goetz
- Department of Psychiatry, New York University School of Medicine, Institute for Social and Psychiatric Initiatives-Research, Education, and Services (InSPIRES), New York, New York, USA.,Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, New York, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine, Institute for Social and Psychiatric Initiatives-Research, Education, and Services (InSPIRES), New York, New York, USA.,Creedmoor Psychiatric Center, New York State Office of Mental Health, New York, New York, USA
| |
Collapse
|
17
|
Pruessner M, Cullen AE, Aas M, Walker EF. The neural diathesis-stress model of schizophrenia revisited: An update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci Biobehav Rev 2017; 73:191-218. [DOI: 10.1016/j.neubiorev.2016.12.013] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/29/2023]
|
18
|
Hýža M, Kuhn M, Češková E, Ustohal L, Kašpárek T. Hippocampal volume in first-episode schizophrenia and longitudinal course of the illness. World J Biol Psychiatry 2016; 17:429-38. [PMID: 27403591 DOI: 10.1080/15622975.2016.1199893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Several lines of evidence suggest an adverse effect of psychotic episodes on brain morphology. It is not clear if this relationship reflects the cumulative effect of psychotic outbursts on the gradual progressive reduction of hippocampal tissue or an increased tendency toward psychotic episodes in patients with a smaller hippocampus at the beginning of the illness. METHODS This is a longitudinal 4-year prospective study of patients with first-episode schizophrenia (FES, N = 58). Baseline brain anatomical scans (at FES) were analysed using voxel-based morphometry and atlas-based volumetry of the hippocampal subfields. The effects of first-episode duration on the hippocampal morphology, and the effect of baseline hippocampal morphology on illness course with relapses, number of psychotic episodes and residual symptoms were analysed. RESULTS A significant negative correlation was detected between first-episode duration and baseline hippocampal morphology. Relapse, number of psychotic episodes and residual symptoms had no correlation with baseline hippocampal volume. CONCLUSIONS We replicated the effect of psychosis duration on hippocampal volume already at the time first-episode, which supports the concept of toxicity of psychosis. The indices of a later unfavourable course of schizophrenia had no correlation with baseline brain morphology, suggesting that there is no baseline morphological abnormality of the hippocampus that predisposes the patient to frequent psychotic outbursts.
Collapse
Affiliation(s)
- Martin Hýža
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| | - Matyáš Kuhn
- b Behavioral and Social Neuroscience Group , Ceitec-MU, Masaryk University , Brno , Czech Republic
| | - Eva Češková
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| | - Libor Ustohal
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| | - Tomáš Kašpárek
- a Department of Psychiatry, Faculty of Medicine , Masaryk University , Brno , Czech Republic ;,b Behavioral and Social Neuroscience Group , Ceitec-MU, Masaryk University , Brno , Czech Republic ;,c Department of Psychiatry , University Hospital Brno , Brno , Czech Republic
| |
Collapse
|
19
|
Ordóñez AE, Loeb FF, Zhou X, Shora L, Berman RA, Broadnax DD, Gochman P, Liu S, Rapoport JL. Lack of Gender-Related Differences in Childhood-Onset Schizophrenia. J Am Acad Child Adolesc Psychiatry 2016; 55:792-9. [PMID: 27566120 PMCID: PMC5040446 DOI: 10.1016/j.jaac.2016.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/18/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Gender differences, including younger age of onset and greater premorbid deficits in men, have been reported in adult-onset schizophrenia. This study comprehensively evaluated gender differences in childhood-onset schizophrenia (COS), a rare variant of the disorder. METHOD Demographic, premorbid, clinical, familial, and cognitive characteristics, presence of chromosomal abnormalities, and brain magnetic resonance imaging cortical volumes were evaluated in 133 patients with COS. Cortical analyses included age- and gender-matched healthy volunteers (n = 124). RESULTS Males with COS (n = 72) had a slightly but significantly younger age of onset than females with COS (mean age 9.51 ± 2.28 versus 10.29 ± 1.63 years, t131 = 2.21, p = .03), higher verbal IQ scores (83.00 ± 15.97 versus 75.58 ± 15.10, t89 = 2.24, p = .03), and higher rates of comorbid pervasive developmental disorder (28.17% versus 6.90%, χ(2)1 = 9.54, p < .01) and attention-deficit/hyperactivity disorder (43.86% versus 21.43%, χ(2)1 = 5.40, p = .02). There were no significant gender differences across other demographic, IQ, or clinical measurements, frequency of chromosomal abnormalities, family clinical measurements, premorbid functioning, or in gender-by-disorder interactions for magnetic resonance imaging brain measurements. CONCLUSION The present comprehensive examination found few remarkable gender differences in COS. Although less striking than that seen in adult-onset schizophrenia, males with COS had a younger age of onset. Attention-deficit/hyperactivity disorder and pervasive developmental disorder rates were high in COS overall, suggesting greater neurodevelopmental vulnerability in COS. However, the gender ratios of these comorbidities in COS mirror those of the general populations, indicating that these gender differences might be unrelated to COS.
Collapse
Affiliation(s)
- Anna E Ordóñez
- Child Psychiatry Branch at the time of the study and currently is with the Office of Clinical Research, NIMH, NIH.
| | - Frances F Loeb
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Xueping Zhou
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Lorie Shora
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Rebecca A Berman
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Diane D Broadnax
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Peter Gochman
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Siyuan Liu
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| | - Judith L Rapoport
- Child Psychiatry Branch research group at the National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
20
|
The Clinical Presentation of Childhood-Onset Schizophrenia: A Literature Review. SOUTH AFRICAN JOURNAL OF PSYCHOLOGY 2016. [DOI: 10.1177/008124630603600206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This literature review explores the research on the clinical presentation of childhood-onset schizophrenia (COS) that was conducted in the period 1994–2004. A literature search was done using Internet search engines and psychological databases to collect English-language journal articles from 1994 onwards. Research indicates that COS is a stable diagnosis. Generally, there is a clear history of premorbid abnormalities, an insidious onset and a deteriorating course. For the majority of cases there seems to be a poor outcome. Despite the limitations in the research conducted thus far, findings provide important insights into COS and several possibilities for future research.
Collapse
|
21
|
Abstract
Adolescence is a high-risk period for the onset of psychopathology. The occurrence of depression increases markedly in the years following the onset of puberty, and most individuals who are eventually diagnosed with a psychotic disorder show a marked rise in adjustment problems during adolescence. It is well established that puberty involves increases in the secretion of gonadal hormones. More recently, research has shown that stress hormones show a similar normative rise following puberty. Accumulating findings indicate that the postpubescent period is also characterized by significant neurodevelopment; there are changes in brain structure and function that are partially a consequence of hormonal factors. Researchers are now challenged to elucidate the neural mechanisms relating postpubertal neurodevelopment with the elevations in risk for psychopathology that characterize adolescence. One plausible mechanism is the effect of hormones on gene expression. The normal neuromaturational processes observed in adolescence partially reflect the effect of gonadal hormones on the expression of genes that control brain development. Hormone surges following puberty may also trigger the expression of genes that code for brain abnormalities that give rise to mental disorders.
Collapse
|
22
|
Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Janssen J, Arango C. Progressive brain changes in children and adolescents with early-onset psychosis: A meta-analysis of longitudinal MRI studies. Schizophr Res 2016; 173:132-139. [PMID: 25556081 DOI: 10.1016/j.schres.2014.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on longitudinal brain volume changes in patients with early-onset psychosis (EOP) are particularly valuable for understanding the neurobiological basis of brain abnormalities associated with psychosis. However, findings have not been consistent across studies in this population. We aimed to conduct a meta-analysis on progressive brain volume changes in children and adolescents with EOP. METHODS A systematic literature search of magnetic resonance imaging (MRI) studies comparing longitudinal brain volume changes in children and adolescents with EOP and healthy controls was conducted. The annualized rates of relative change in brain volume by region of interest (ROI) were used as raw data for the meta-analysis. The effect of age, sex, duration of illness, and specific diagnosis on volume change was also evaluated. RESULTS Five original studies with 156 EOP patients (mean age at baseline MRI in the five studies ranged from 13.3 to 16.6years, 67.31% males) and 163 age- and sex-matched healthy controls, with a mean duration of follow-up of 2.46years (range 2.02-3.40), were included. Frontal gray matter (GM) was the only region in which significant differences in volume change over time were found between patients and controls (Hedges' g -0.435, 95% confidence interval (CI): -0.678 to -0.193, p<0.001). Younger age at baseline MRI was associated with greater loss of temporal GM volume over time in patients as compared with controls (p=0.005). Within patients, a diagnosis of schizophrenia was related to greater occipital GM volume loss over time (p=0.001). CONCLUSIONS Compared with healthy individuals, EOP patients show greater progressive frontal GM loss over the first few years after illness onset. Age at baseline MRI and diagnosis of schizophrenia appear to be significant moderators of particular specific brain volume changes.
Collapse
Affiliation(s)
- David Fraguas
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Pina-Camacho
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, London, UK
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, The Netherlands
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, CIBERSAM, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
23
|
Neuroimaging findings from childhood onset schizophrenia patients and their non-psychotic siblings. Schizophr Res 2016; 173:124-131. [PMID: 25819937 PMCID: PMC4583796 DOI: 10.1016/j.schres.2015.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Childhood onset schizophrenia (COS), with onset of psychosis before age 13, is a rare form of schizophrenia that represents a more severe and chronic form of the adult onset illness. In this review we examine structural and functional magnetic resonance imaging (MRI) studies of COS and non-psychotic siblings of COS patients in the context of studies of schizophrenia as a whole. Studies of COS to date reveal progressive loss of gray matter volume and cortical thinning, ventricular enlargement, progressive decline in cerebellar volume and a significant but fixed deficit in hippocampal volume. COS is also associated with a slower rate of white matter growth and disrupted local connectivity strength. Sibling studies indicate that non-psychotic siblings of COS patients share many of these brain abnormalities, including decreased cortical thickness and disrupted white matter growth, yet these abnormalities normalize with age. Cross-sectional and longitudinal neuroimaging studies remain some of the few methods for assessing human brain function and play a pivotal role in the quest for understanding the neurobiology of schizophrenia as well as other psychiatric disorders. Parallel studies in non-psychotic siblings provide a unique opportunity to understand both risk and resilience in schizophrenia.
Collapse
|
24
|
Swartzwelder HS, Risher ML, Miller KM, Colbran RJ, Winder DG, Wills TA. Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure. PLoS One 2016; 11:e0155951. [PMID: 27213757 PMCID: PMC4877005 DOI: 10.1371/journal.pone.0155951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022] Open
Abstract
Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE) produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70) from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further, the robust change in non-synaptic proteins suggests that AIE may prime this signaling pathway for future ethanol exposures in adulthood.
Collapse
Affiliation(s)
- H. Scott Swartzwelder
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychology and Neuroscience, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mary-Louise Risher
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kelsey M. Miller
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Roger J. Colbran
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States of America
- J. F. Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States of America
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States of America
- J. F. Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States of America
| | - Tiffany A. Wills
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, United States of America
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Satterthwaite TD, Wolf DH, Calkins ME, Vandekar SN, Erus G, Ruparel K, Roalf DR, Linn KA, Elliott MA, Moore TM, Hakonarson H, Shinohara RT, Davatzikos C, Gur RC, Gur RE. Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms. JAMA Psychiatry 2016; 73:515-24. [PMID: 26982085 PMCID: PMC5048443 DOI: 10.1001/jamapsychiatry.2015.3463] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Structural brain abnormalities are prominent in psychotic disorders, including schizophrenia. However, it is unclear when aberrations emerge in the disease process and if such deficits are present in association with less severe psychosis spectrum (PS) symptoms in youth. OBJECTIVE To investigate the presence of structural brain abnormalities in youth with PS symptoms. DESIGN, SETTING, AND PARTICIPANTS The Philadelphia Neurodevelopmental Cohort is a prospectively accrued, community-based sample of 9498 youth who received a structured psychiatric evaluation. A subsample of 1601 individuals underwent neuroimaging, including structural magnetic resonance imaging, at an academic and children's hospital health care network between November 1, 2009, and November 30, 2011. MAIN OUTCOMES AND MEASURES Measures of brain volume derived from T1-weighted structural neuroimaging at 3 T. Analyses were conducted at global, regional, and voxelwise levels. Regional volumes were estimated with an advanced multiatlas regional segmentation procedure, and voxelwise volumetric analyses were conducted as well. Nonlinear developmental patterns were examined using penalized splines within a general additive model. Psychosis spectrum (PS) symptom severity was summarized using factor analysis and evaluated dimensionally. RESULTS Following exclusions due to comorbidity and image quality assurance, the final sample included 791 participants aged youth 8 to 22 years. Fifty percent (n = 393) were female. After structured interviews, 391 participants were identified as having PS features (PS group) and 400 participants were identified as typically developing comparison individuals without significant psychopathology (TD group). Compared with the TD group, the PS group had diminished whole-brain gray matter volume (P = 1.8 × 10-10) and expanded white matter volume (P = 2.8 × 10-11). Voxelwise analyses revealed significantly lower gray matter volume in the medial temporal lobe (maximum z score = 5.2 and cluster size of 1225 for the right and maximum z score = 4.5 and cluster size of 310 for the left) as well as in frontal, temporal, and parietal cortex. Volumetric reduction in the medial temporal lobe was correlated with PS symptom severity. CONCLUSIONS AND RELEVANCE Structural brain abnormalities that have been commonly reported in adults with psychosis are present early in life in youth with PS symptoms and are not due to medication effects. Future longitudinal studies could use the presence of such abnormalities in conjunction with clinical presentation, cognitive profile, and genomics to predict risk and aid in stratification to guide early interventions.
Collapse
Affiliation(s)
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Simon N Vandekar
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Guray Erus
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Kristin A Linn
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Russell T Shinohara
- Department of Biostatistics and Clinical Epidemiology, University of Pennsylvania, Philadelphia
| | | | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia3Department of Radiology, University of Pennsylvania, Philadelphia
| |
Collapse
|
26
|
Pina-Camacho L, Del Rey-Mejías Á, Janssen J, Bioque M, González-Pinto A, Arango C, Lobo A, Sarró S, Desco M, Sanjuan J, Lacalle-Aurioles M, Cuesta MJ, Saiz-Ruiz J, Bernardo M, Parellada M, PEPs Group. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis. Schizophr Bull 2016; 42:344-57. [PMID: 26371339 PMCID: PMC4753597 DOI: 10.1093/schbul/sbv128] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis.
Collapse
Affiliation(s)
| | - Ángel Del Rey-Mejías
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain;,Department of Methodology, School of Psychology, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Miquel Bioque
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain
| | - Ana González-Pinto
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Universitario de Álava (Sede Santiago), EHU/University of the Basque Country, Vitoria, Spain
| | - Celso Arango
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Antonio Lobo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Medicine and Psychiatry, Hospital Clínico, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Salvador Sarró
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,FIDMAG Hermanas Hospitalarias,Barcelona, Spain
| | - Manuel Desco
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Julio Sanjuan
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Clinic, University of Valencia, INCLIVA, Valencia, Spain
| | - Maria Lacalle-Aurioles
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Manuel J. Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Jerónimo Saiz-Ruiz
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Ramon y Cajal, IRYCIS, Universidad de Alcala, Madrid, Spain
| | - Miguel Bernardo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain;,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mara Parellada
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
27
|
Berman RA, Gotts SJ, McAdams HM, Greenstein D, Lalonde F, Clasen L, Watsky RE, Shora L, Ordonez AE, Raznahan A, Martin A, Gogtay N, Rapoport J. Disrupted sensorimotor and social-cognitive networks underlie symptoms in childhood-onset schizophrenia. Brain 2015; 139:276-91. [PMID: 26493637 DOI: 10.1093/brain/awv306] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/30/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is increasingly recognized as a neurodevelopmental disorder with altered connectivity among brain networks. In the current study we examined large-scale network interactions in childhood-onset schizophrenia, a severe form of the disease with salient genetic and neurobiological abnormalities. Using a data-driven analysis of resting-state functional magnetic resonance imaging fluctuations, we characterized data from 19 patients with schizophrenia and 26 typically developing controls, group matched for age, sex, handedness, and magnitude of head motion during scanning. This approach identified 26 regions with decreased functional correlations in schizophrenia compared to controls. These regions were found to organize into two function-related networks, the first with regions associated with social and higher-level cognitive processing, and the second with regions involved in somatosensory and motor processing. Analyses of across- and within-network regional interactions revealed pronounced across-network decreases in functional connectivity in the schizophrenia group, as well as a set of across-network relationships with overall negative coupling indicating competitive or opponent network dynamics. Critically, across-network decreases in functional connectivity in schizophrenia predicted the severity of positive symptoms in the disorder, such as hallucinations and delusions. By contrast, decreases in functional connectivity within the social-cognitive network of regions predicted the severity of negative symptoms, such as impoverished speech and flattened affect. These results point toward the role that abnormal integration of sensorimotor and social-cognitive processing may play in the pathophysiology and symptomatology of schizophrenia.
Collapse
Affiliation(s)
- Rebecca A Berman
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Stephen J Gotts
- 2 Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Harrison M McAdams
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Dede Greenstein
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Francois Lalonde
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Liv Clasen
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Rebecca E Watsky
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Lorie Shora
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Anna E Ordonez
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Armin Raznahan
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Alex Martin
- 2 Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Nitin Gogtay
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| | - Judith Rapoport
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda MD 20892, USA
| |
Collapse
|
28
|
Abstract
Childhood-onset schizophrenia is a rare pediatric onset psychiatric disorder continuous with and typically more severe than its adult counterpart. Neuroimaging research conducted on this population has revealed similarly severe neural abnormalities. When taken as a whole, neuroimaging research in this population shows generally decreased cortical gray matter coupled with white matter connectivity abnormalities, suggesting an anatomical basis for deficits in executive function. Subcortical abnormalities are pronounced in limbic structures, where volumetric deficits are likely related to social skill deficits, and cerebellar deficits that have been correlated to cognitive abnormalities. Structures relevant to motor processing also show a significant alteration, with volumetric increase in basal ganglia structures likely due to antipsychotic administration. Neuroimaging of this disorder shows an important clinical image of exaggerated cortical loss, altered white matter connectivity, and differences in structural development of subcortical areas during the course of development and provides important background to the disease state.
Collapse
|
29
|
Anvari AA, Friedman LA, Greenstein D, Gochman P, Gogtay N, Rapoport JL. Hippocampal volume change relates to clinical outcome in childhood-onset schizophrenia. Psychol Med 2015; 45:2667-2674. [PMID: 25936396 DOI: 10.1017/s0033291715000677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Fixed hippocampal volume reductions and shape abnormalities are established findings in schizophrenia, but the relationship between hippocampal volume change and clinical outcome has been relatively unexplored in schizophrenia and other psychotic disorders. In light of recent findings correlating hippocampal volume change and clinical outcome in first-episode psychotic adults, we hypothesized that fewer decreases in hippocampal volume would be associated with better functional outcome and fewer psychotic symptoms in our rare and chronically ill population of childhood-onset schizophrenia (COS) patients. METHOD We prospectively obtained 114 structural brain magnetic resonance images (MRIs) from 27 COS subjects, each with three or more scans between the ages of 10 and 30 years. Change in hippocampal volume, measured by fit slope and percentage change, was regressed against clinical ratings (Children's Global Assessment Scale, Scale for the Assessment of Positive Symptoms, Scale for the Assessment of Negative Symptoms) at last scan (controlling for sex, time between scans and total intracranial volume). RESULTS Fewer negative symptoms were associated with less hippocampal volume decrease (fit slope: p = 0.0003, and percentage change: p = 0.005) while positive symptoms were not related to hippocampal change. There was also a relationship between improved clinical global functioning and maintained hippocampal volumes (fit slope: p = 0.025, and percentage change: p = 0.043). CONCLUSIONS These results suggest that abnormal hippocampal development in schizophrenia can be linked to global functioning and negative symptoms. The hippocampus can be considered a potential treatment target for future therapies.
Collapse
Affiliation(s)
- A A Anvari
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| | - L A Friedman
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| | - D Greenstein
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| | - P Gochman
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| | - N Gogtay
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| | - J L Rapoport
- Child Psychiatry Branch,National Institute of Mental Health, National Institutes of Health,Bethesda,MD,USA
| |
Collapse
|
30
|
Brain network informed subject community detection in early-onset schizophrenia. Sci Rep 2014; 4:5549. [PMID: 24989351 PMCID: PMC4929688 DOI: 10.1038/srep05549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022] Open
Abstract
Early-onset schizophrenia (EOS) offers a unique opportunity to study pathophysiological mechanisms and development of schizophrenia. Using 26 drug-naïve, first-episode EOS patients and 25 age- and gender-matched control subjects, we examined intrinsic connectivity network (ICN) deficits underlying EOS. Due to the emerging inconsistency between behavior-based psychiatric disease classification system and the underlying brain dysfunctions, we applied a fully data-driven approach to investigate whether the subjects can be grouped into highly homogeneous communities according to the characteristics of their ICNs. The resultant subject communities and the representative characteristics of ICNs were then associated with the clinical diagnosis and multivariate symptom patterns. A default mode ICN was statistically absent in EOS patients. Another frontotemporal ICN further distinguished EOS patients with predominantly negative symptoms. Connectivity patterns of this second network for the EOS patients with predominantly positive symptom were highly similar to typically developing controls. Our post-hoc functional connectivity modeling confirmed that connectivity strength in this frontotemporal circuit was significantly modulated by relative severity of positive and negative syndromes in EOS. This study presents a novel subtype discovery approach based on brain networks and proposes complex links between brain networks and symptom patterns in EOS.
Collapse
|
31
|
Klein D, Rotarska-Jagiela A, Genc E, Sritharan S, Mohr H, Roux F, Han CE, Kaiser M, Singer W, Uhlhaas PJ. Adolescent brain maturation and cortical folding: evidence for reductions in gyrification. PLoS One 2014; 9:e84914. [PMID: 24454765 PMCID: PMC3893168 DOI: 10.1371/journal.pone.0084914] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/28/2013] [Indexed: 01/29/2023] Open
Abstract
Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development.
Collapse
Affiliation(s)
- Daniel Klein
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Anna Rotarska-Jagiela
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Erhan Genc
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Sharmili Sritharan
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Harald Mohr
- Department of Neurocognitive Psychology, Institute of Psychology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Frederic Roux
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Cheol E. Han
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Marcus Kaiser
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- School of Computing Science and Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Wolf Singer
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Peter J. Uhlhaas
- Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Baribeau DA, Anagnostou E. A comparison of neuroimaging findings in childhood onset schizophrenia and autism spectrum disorder: a review of the literature. Front Psychiatry 2013; 4:175. [PMID: 24391605 PMCID: PMC3869044 DOI: 10.3389/fpsyt.2013.00175] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) and childhood onset schizophrenia (COS) are pediatric neurodevelopmental disorders associated with significant morbidity. Both conditions are thought to share an underlying genetic architecture. A comparison of neuroimaging findings across ASD and COS with a focus on altered neurodevelopmental trajectories can shed light on potential clinical biomarkers and may highlight an underlying etiopathogenesis. METHODS A comprehensive review of the medical literature was conducted to summarize neuroimaging data with respect to both conditions in terms of structural imaging (including volumetric analysis, cortical thickness and morphology, and region of interest studies), white matter analysis (include volumetric analysis and diffusion tensor imaging) and functional connectivity. RESULTS In ASD, a pattern of early brain overgrowth in the first few years of life is followed by dysmaturation in adolescence. Functional analyses have suggested impaired long-range connectivity as well as increased local and/or subcortical connectivity in this condition. In COS, deficits in cerebral volume, cortical thickness, and white matter maturation seem most pronounced in childhood and adolescence, and may level off in adulthood. Deficits in local connectivity, with increased long-range connectivity have been proposed, in keeping with exaggerated cortical thinning. CONCLUSION The neuroimaging literature supports a neurodevelopmental origin of both ASD and COS and provides evidence for dynamic changes in both conditions that vary across space and time in the developing brain. Looking forward, imaging studies which capture the early post natal period, which are longitudinal and prospective, and which maximize the signal to noise ratio across heterogeneous conditions will be required to translate research findings into a clinical environment.
Collapse
Affiliation(s)
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
33
|
Lim S, Han CE, Uhlhaas PJ, Kaiser M. Preferential detachment during human brain development: age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data. ACTA ACUST UNITED AC 2013; 25:1477-89. [PMID: 24343892 PMCID: PMC4428296 DOI: 10.1093/cercor/bht333] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human brain maturation is characterized by the prolonged development of structural and functional properties of large-scale networks that extends into adulthood. However, it is not clearly understood which features change and which remain stable over time. Here, we examined structural connectivity based on diffusion tensor imaging (DTI) in 121 participants between 4 and 40 years of age. DTI data were analyzed for small-world parameters, modularity, and the number of fiber tracts at the level of streamlines. First, our findings showed that the number of fiber tracts, small-world topology, and modular organization remained largely stable despite a substantial overall decrease in the number of streamlines with age. Second, this decrease mainly affected fiber tracts that had a large number of streamlines, were short, within modules and within hemispheres; such connections were affected significantly more often than would be expected given their number of occurrences in the network. Third, streamline loss occurred earlier in females than in males. In summary, our findings suggest that core properties of structural brain connectivity, such as the small-world and modular organization, remain stable during brain maturation by focusing streamline loss to specific types of fiber tracts.
Collapse
Affiliation(s)
- Sol Lim
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul 151-747, South Korea School of Computing Science and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Cheol E Han
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul 151-747, South Korea Department of Biomedical Engineering, Korea University, Seoul 136-703, South Korea
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK Department of Neurophysiology, Max-Planck Institute for Brain Research, 60438 Frankfurt a. M., Germany Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstr. 46, Frankfurt am Main, 60528, Germany
| | - Marcus Kaiser
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul 151-747, South Korea School of Computing Science and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
34
|
Developmental changes in the acute ethanol sensitivity of glutamatergic and GABAergic transmission in the BNST. Alcohol 2013; 47:531-7. [PMID: 24103431 DOI: 10.1016/j.alcohol.2013.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.
Collapse
|
35
|
Abstract
Cognitive impairment is recognized as a central feature of schizophrenia. Early-onset schizophrenia (EOS) represents a more severe variant of the disorder associated with onset in childhood or adolescence. Examination of the cognitive abnormalities of EOS offers the opportunity to explore how disease-related mechanisms may affect facets of cognitive development. This article summarizes and synthesizes available data with regards to the profile of cognitive impairments in EOS, their severity, and their evolution over the course of the disorder.
Collapse
|
36
|
Brent BK, Thermenos HW, Keshavan MS, Seidman LJ. Gray Matter Alterations in Schizophrenia High-Risk Youth and Early-Onset Schizophrenia: A Review of Structural MRI Findings. Child Adolesc Psychiatr Clin N Am 2013; 22:689-714. [PMID: 24012081 PMCID: PMC3767930 DOI: 10.1016/j.chc.2013.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the literature on structural magnetic resonance imaging findings in pediatric and young adult populations at clinical or genetic high-risk for schizophrenia and early-onset schizophrenia. The implications of this research are discussed for understanding the pathophysiology of schizophrenia and for early intervention strategies. The evidence linking brain structural changes in prepsychosis development and early-onset schizophrenia with disruptions of normal neurodevelopmental processes during childhood or adolescence is described. Future directions are outlined for research to address knowledge gaps regarding the neurobiological basis of brain structural abnormalities in schizophrenia and to improve the usefulness of these abnormalities for preventative interventions.
Collapse
Affiliation(s)
- Benjamin K Brent
- Harvard Medical School, Boston, MA 02115, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, 75 Fenwood Road, Boston, MA 02115, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
37
|
Moran ME, Hulshoff Pol H, Gogtay N. A family affair: brain abnormalities in siblings of patients with schizophrenia. ACTA ACUST UNITED AC 2013; 136:3215-26. [PMID: 23698280 DOI: 10.1093/brain/awt116] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development.
Collapse
Affiliation(s)
- Marcel E Moran
- 1 Child Psychiatry Branch, National Institute of Mental Health, NIH, Bethesda Maryland, USA
| | | | | |
Collapse
|
38
|
The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 2013; 18:443-50. [PMID: 23459466 DOI: 10.1038/mp.2013.17] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We examined the influence of the genome-wide significant schizophrenia risk variant rs1625579 near the microRNA (miRNA)-137 (MIR137) gene on well-established sources of phenotypic variability in schizophrenia: age-at-onset of psychosis and brain structure. We found that the MIR137 risk genotype strongly predicts an earlier age-at-onset of psychosis across four independently collected samples of patients with schizophrenia (n=510; F1,506=17.7, P=3.1 × 10(-5)). In an imaging-genetics subsample that included additional matched controls (n=213), patients with schizophrenia who had the MIR137 risk genotype had reduced white matter integrity (F3,209=13.6, P=3.88 × 10(-8)) throughout the brain as well as smaller hippocampi and larger lateral ventricles; the brain structure of patients who were carriers of the protective allele was no different from healthy control subjects on these neuroimaging measures. Our findings suggest that MIR137 substantially influences variation in phenotypes that are thought to have an important role in clinical outcome and treatment response. Finally, the possible consequences of genetic risk factors may be distinct in patients with schizophrenia compared with healthy controls.
Collapse
|
39
|
Differences in subcortical structures in young adolescents at familial risk for schizophrenia: a preliminary study. Psychiatry Res 2012; 204:68-74. [PMID: 23146250 PMCID: PMC3518556 DOI: 10.1016/j.pscychresns.2012.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/23/2012] [Accepted: 04/24/2012] [Indexed: 11/23/2022]
Abstract
Schizophrenia has been associated with reduced volumes of subcortical structures on magnetic resonance imaging (MRI), but the relation of these reductions to familial risk for the disorder is unclear. We investigated the effect of familial risk for schizophrenia on regional subcortical volumes during adolescence, a period marked by steep maturational changes in brain structure and the emergence of psychotic symptoms. A group of 26 non-help-seeking, first-degree relatives of patients with schizophrenia and 43 matched healthy comparisons, between 9 and 18 years of age, underwent MRI scanning and were rated for the presence of prodromal symptoms. Five subcortical regions-of-interest were tested for group differences and group by age interactions, as well as correlations with low-level prodromal symptoms in the familial risk group. Relative to comparisons, familial risk subjects demonstrated greater positive volume-age relationships in hippocampus, putamen, and globus pallidus. These results suggest that relatives of individuals with schizophrenia exhibit structural abnormalities in the subcortex as early as pre-adolescence, which may reflect altered neurodevelopment of these regions.
Collapse
|
40
|
Confounders of excessive brain volume loss in schizophrenia. Neurosci Biobehav Rev 2012; 37:2418-23. [PMID: 23000300 DOI: 10.1016/j.neubiorev.2012.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 11/23/2022]
Abstract
There is convincing evidence that schizophrenia is characterised by progressive brain volume changes during the course of the illness. In a large longitudinal study it was shown that different age-related trajectories of brain tissue loss are present in patients compared to healthy subjects, suggesting that brain maturation that occurs in the third and fourth decade of life is abnormal in schizophrenia. However, studies show that medication intake and cannabis use are important confounding factors when interpreting brain volume (change) abnormalities. Indeed, continues use of cannabis, but not cigarette smoking, is associated to a more pronounced loss of grey matter in the anterior cingulated and the prefrontal cortex. Atypical antipsychotics have been found to be related to smaller decreases in tissue loss. Moreover, independent of antipsychotic medication intake, the brain volume abnormalities appear associated to the outcome of the illness.
Collapse
|
41
|
Bramon E, Murray RM. A plausible model of schizophrenia must incorporate psychological and social, as well as neuro developmental, risk factors. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033679 PMCID: PMC3181665 DOI: 10.31887/dcns.2001.3.4/ebramon] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Subtle alterations in brain development caused by genes or early environmental hazards, such as obstetric complications, play a role in projecting some individuals on a trajectory toward schizophrenia. High-risk and cohort studies demonstrate that children destined to develop schizophrenia tend to have delayed milestones and subtle neuromotor and cognitive impairments (particularly in coordination and language). These neurocognitive problems lead to difficulties in interpersonal relations, and their progressive alienation makes these at-risk children more likely to harbor odd or paranoid ideas. This cascade of increasingly deviant development may then be compounded by brain maturational changes during adolescence with a resultant lability of the dopaminergic response to stress. As a result, the individual is more susceptible to the effects of the abuse of dopamine-releasing drugs, and to other risk factors such as migration or stressful life events; social isolation may be a common pathway underlying several of the social risk factors.
Collapse
Affiliation(s)
- E Bramon
- Division of Psychological Medicine, Institute of Psychiatry, London, UK
| | | |
Collapse
|
42
|
Kyriakopoulos M, Dima D, Roiser JP, Corrigall R, Barker GJ, Frangou S. Abnormal functional activation and connectivity in the working memory network in early-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 2012; 51:911-20.e2. [PMID: 22917204 DOI: 10.1016/j.jaac.2012.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Disruption within the working memory (WM) neural network is considered an integral feature of schizophrenia. The WM network, and the dorsolateral prefrontal cortex (DLPFC) in particular, undergo significant remodeling in late adolescence. Potential interactions between developmental changes in the WM network and disease-related processes for schizophrenia remain unclear. The aim of this study was to determine whether DLPFC activation and functional connectivity are impaired during WM in patients with early-onset schizophrenia (EOS; age of onset <18 years). METHOD We used functional magnetic resonance imaging and psychophysiological interaction analysis to respectively measure blood oxygenation level-dependent signal and to derive functional connectivity estimates in response to the two-back WM task from 25 youths with EOS and 20 matched healthy adolescents. RESULTS Compared with healthy adolescents, patients with EOS showed reduced engagement of the DLPFC, the anterior cingulate cortex (ACC), and frontal operculum, and had reduced DLPFC connectivity within the WM network. Patients with EOS showed abnormal reduction in the coupling of the DLPFC with the ACC, the inferior parietal lobule, and the middle occipital gyrus. In contrast to healthy adolescents, patients with EOS expressed age-related decrease in the activity of the DLPFC and an increase in its connectivity with the ACC. CONCLUSIONS Patients with EOS show dysfunctional engagement and reduced integration within the WM neural network. The pattern of abnormal age-related correlations in DLPFC activity and connectivity suggests that schizophrenia-related processes have an impact on brain regions that show significant late developmental changes.
Collapse
Affiliation(s)
- Marinos Kyriakopoulos
- Institute of Psychiatry, King's College London and Child and Adolescent Mental Health Services, Maudsley Hospital, UK
| | | | | | | | | | | |
Collapse
|
43
|
van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. The course of brain abnormalities in schizophrenia: can we slow the progression? J Psychopharmacol 2012; 26:8-14. [PMID: 21730018 DOI: 10.1177/0269881111408964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is convincing evidence that schizophrenia is characterized by progressive brain volume changes during the course of the illness. In a large longitudinal study it was shown that different age-related trajectories of brain tissue loss are present in patients compared with healthy subjects, suggesting that brain maturation that occurs in the third and fourth decade of life is abnormal in schizophrenia. Studies show that medication intake is an important confounding factor when interpreting brain volume (change) abnormalities. Atypical antipsychotics have been found to be related to smaller decreases in tissue loss. Moreover, independent of antipsychotic medication intake, the brain volume abnormalities appear associated to the outcome of the illness. Before being able to intervene with therapies and prevent the brain from shrinking, one has to understand the underlying mechanism of the progressive changes in the brains of schizophrenia patients.
Collapse
Affiliation(s)
- N E van Haren
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Su S, White T, Schmidt M, Kao CY, Sapiro G. Geometric computation of human gyrification indexes from magnetic resonance images. Hum Brain Mapp 2012; 34:1230-44. [PMID: 22331577 DOI: 10.1002/hbm.21510] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
Human brains are highly convoluted surfaces with multiple folds. To characterize the complexity of these folds and their relationship with neurological and psychiatric conditions, different techniques have been developed to quantify the folding patterns, also known as the surface complexity or gyrification of the brain. In this study, the authors propose a new geometric approach to measure the gyrification of human brains from magnetic resonance images. This approach is based on intrinsic 3D measurements that relate the local brain surface area to the corresponding area of a tightly wrapped sheet. The authors also present an adaptation of this technique in which the geodesic depth is incorporated into the gyrification computation. These gyrification measures are efficiently and accurately computed by solving geometric partial differential equations. The presentation of the geometric framework is complemented with experimental results for brain complexity in typically developing children and adolescents. Using this novel approach, the authors provide evidence for a gradual decrease in brain surface complexity throughout childhood and adolescence. These developmental differences occur earlier in the occipital lobe and move anterior as children progress into young adulthood.
Collapse
Affiliation(s)
- Shu Su
- Department of Mathematics, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
45
|
Lam M, Collinson SL, Sim K, Mackay CE, James ACD, Crow TJ. Asymmetry of lexico-semantic processing in schizophrenia changes with disease progression. Schizophr Res 2012; 134:125-30. [PMID: 22138046 DOI: 10.1016/j.schres.2011.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/04/2011] [Accepted: 10/29/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Are anomalies of cerebral asymmetry integral to the disease process? Here, we examined the influence of age, chronicity and age of onset of illness in 34 patients with early onset schizophrenia and 20 controls in relation to structural asymmetries of the temporal lobe and performance asymmetries on a semantic language lexical decision task. METHODS Volumetric MRI and a novel divided visual field probe of lateralised lexico-semantic language were assessed in patients with early onset schizophrenia (EOS) and controls. Novel ratios of age-illness overlap and directional asymmetry were developed in order to examine the association of chronicity factors to asymmetry. RESULTS Loss of laterality on the lexical decision task and discordant structural asymmetry were correlated with duration of illness but were not seen in younger, less chronic patients. Reduced lateral processing speed, and discordant structural asymmetry were associated with greater proportion of lifetime schizophrenia. CONCLUSION Although the conclusions are limited by the cross sectional nature of the study, anomalies of cerebral asymmetry in early onset patients may be an index of disease progression, and reflect directly on the disease process.
Collapse
Affiliation(s)
- M Lam
- Research Division, Institute of Mental Health, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol Psychiatry 2011; 70:672-9. [PMID: 21784414 PMCID: PMC3496792 DOI: 10.1016/j.biopsych.2011.05.017] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Schizophrenia has a characteristic onset during adolescence or young adulthood but also tends to persist throughout life. Structural magnetic resonance studies indicate that brain abnormalities are present at onset, but longitudinal studies to assess neuroprogression have been limited by small samples and short or infrequent follow-up intervals. METHODS The Iowa Longitudinal Study is a prospective study of 542 first-episode patients who have been followed up to 18 years. In this report, we focus on those patients (n = 202) and control subjects (n = 125) for whom we have adequate structural magnetic resonance data (n = 952 scans) to provide a relatively definitive determination of whether progressive brain change occurs over a time interval of up to 15 years after intake. RESULTS A repeated-measures analysis showed significant age-by-group interaction main effects that represent a significant decrease in multiple gray matter regions (total cerebral, frontal, thalamus), multiple white matter regions (total cerebral, frontal, temporal, parietal), and a corresponding increase in cerebrospinal fluid (lateral ventricles and frontal, temporal, and parietal sulci). These changes were most severe during the early years after onset. They occur at severe levels only in a subset of patients. They are correlated with cognitive impairment but only weakly with other clinical measures. CONCLUSIONS Progressive brain change occurs in schizophrenia, affects both gray matter and white matter, is most severe during the early stages of the illness, and occurs only in a subset of patients. Measuring severity of progressive brain change offers a promising new avenue for phenotype definition in genetic studies of schizophrenia.
Collapse
|
47
|
Hedman AM, van Haren NEM, Schnack HG, Kahn RS, Hulshoff Pol HE. Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 2011; 33:1987-2002. [PMID: 21915942 DOI: 10.1002/hbm.21334] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/10/2011] [Accepted: 03/31/2011] [Indexed: 11/08/2022] Open
Abstract
There is consistent evidence that brain volume changes in early and late life. Most longitudinal studies usually only span a few years and include a limited number of participants. In this review, we integrate findings from 56 longitudinal magnetic resonance imaging (MRI) studies on whole brain volume change in healthy individuals. The individual longitudinal MRI studies describe only the development in a limited age range. In total, 2,211 participants were included. Age at first measurement varied between 4 and 88 years of age. The studies included in this review were performed using a large range of methods (e.g., different scanner protocols and different acquisition parameters). We applied a weighted regression analysis to estimate the age dependency of the rate of relative annual brain volume change across studies. The results indicate that whole brain volume changes throughout the life span. A wave of growth occurs during childhood/adolescence, where around 9 years of age a 1% annual brain growth is found which levels off until at age 13 a gradual volume decrease sets in. During young adulthood, between ∼18 and 35 years of age, possibly another wave of growth occurs or at least a period of no brain tissue loss. After age 35 years, a steady volume loss is found of 0.2% per year, which accelerates gradually to an annual brain volume loss of 0.5% at age 60. The brains of people over 60 years of age show a steady volume loss of more than 0.5%. Understanding the mechanisms underlying these plastic brain changes may contribute to distinguishing progressive brain changes in psychiatric and neurological diseases from healthy aging processes. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna M Hedman
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Centre Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Mattai AA, Weisinger B, Greenstein D, Stidd R, Clasen L, Miller R, Tossell JW, Rapoport JL, Gogtay N. Normalization of cortical gray matter deficits in nonpsychotic siblings of patients with childhood-onset schizophrenia. J Am Acad Child Adolesc Psychiatry 2011; 50:697-704. [PMID: 21703497 PMCID: PMC3289252 DOI: 10.1016/j.jaac.2011.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to "normalize" by age 17 years. Here we present a replication with nonoverlapping groups of healthy full siblings and healthy controls. METHOD Using an automated measure and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in nonpsychotic full siblings (n = 43, 68 scans; ages 5 through 26 years) of patients with COS, contrasting them with age-, gender-, and scan interval-matched healthy controls (n = 86, 136 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. RESULTS As in our previous study, young nonpsychotic siblings (<17 years) showed significant GM deficits in bilateral prefrontal and left temporal cortices and, in addition, smaller deficits in the parietal and right inferior temporal cortices. These deficits in nonpsychotic siblings normalized with age with minimal abnormalities remaining by age 17. CONCLUSIONS Our results support previous findings showing nonpsychotic siblings of COS probands to have early GM deficits that ameliorate with time. At early ages, prefrontal and/or temporal loss may serve as a familial/trait marker for COS. Late adolescence appears to be a critical period for greatest localization of deficits in probands or normalization in nonpsychotic siblings.
Collapse
Affiliation(s)
- Anand A Mattai
- Child Psychiatry Branch, National Institute of Mental Health/NIH, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Piontkewitz Y, Arad M, Weiner I. Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 2011; 62:1273-89. [PMID: 21703648 DOI: 10.1016/j.neuropharm.2011.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder manifested symptomatically after puberty whose pharmacotherapy remains unsatisfactory. In recent years, longitudinal structural neuroimaging studies have revealed that neuroanatomical aberrations occur in this disorder and in fact precede symptom onset, raising the exciting possibility that SCZ can be prevented. There is some evidence that treatment with atypical antipsychotic drugs (APDs) prior to the development of the full clinical phenotype reduces the risk of transition to psychosis, but results remain controversial. It remains unknown whether progressive structural brain aberrations can be halted. Given the diagnostic, ethical, clinical and methodological problems of pharmacological and imaging studies in patients, getting such information remains a major challenge. Animal neurodevelopmental models of SCZ are invaluable for investigating such questions because they capture the notion that the effects of early brain damage are progressive. In recent years, data derived from such models have converged on key neuropathological and behavioral deficits documented in SCZ attesting to their strong validity, and making them ideal tools for evaluating progression of pathology following in-utero insults as well as its prevention. We review here our recent studies that use longitudinal in vivo structural imaging to achieve this aim in the prenatal immune stimulation model that is based on the association of prenatal infection and increased risk for SCZ. Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Male and female offspring were imaged and tested behaviorally on postnatal days (PNDs) 35, 46, 56, 70 and 90. In other experiments, offspring of poly I:C- and saline-treated dams received the atypical antipsychotic drugs (APDs) clozapine or risperidone in two developmental windows: PND 34-47 and PND 48-61, and underwent behavioral testing and imaging at adulthood. Prenatal poly I:C-induced interference with fetal brain development led to aberrant postnatal brain development as manifested in structural abnormalities in the hippocampus, the striatum, the prefrontal cortex and lateral ventricles (LV), as seen in SCZ. The specific trajectories were region-, age- and sex-specific, with females having delayed onset of pathology compared to males. Brain pathology was accompanied by development of behavioral abnormalities phenotypic of SCZ, attentional deficit and hypersensitivity to amphetamine, with same sex difference. Hippocampal volume loss and LV volume expansion as well as behavioral abnormalities were prevented in the offspring of poly I:C mothers who received clozapine or risperidone during the asymptomatic period of adolescence (PND 34-47). Administration at a later window, PNDs 48-61, exerted sex-, region- and drug- specific effects. Our data show that prenatal insult leads to progressive postnatal brain pathology, which gradually gives rise to "symptoms"; that treatment with atypical APDs can prevent both brain and behavioral pathology; and that the earlier the intervention, the more pathological outcomes can be prevented.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
50
|
Mattai A, Hosanagar A, Weisinger B, Greenstein D, Stidd R, Clasen L, Lalonde F, Rapoport J, Gogtay N. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am J Psychiatry 2011; 168:427-35. [PMID: 21245087 PMCID: PMC3289129 DOI: 10.1176/appi.ajp.2010.10050681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Previous anatomic studies have established a reduction in hippocampal volume in schizophrenia, but few have investigated the progressive course of these changes and whether they are trait markers. In the present study, the authors examined hippocampal volumes in relation to age for patients with childhood-onset schizophrenia, their nonpsychotic healthy siblings, and healthy comparison subjects. METHOD Anatomic brain magnetic resonance scans were obtained in childhood-onset schizophrenia probands (N=89, 198 scans), their nonpsychotic full siblings (N=78, 172 scans), and matched healthy comparison subjects (N=79, 198 scans) between the ages of 10 and 29 years. Total, left, and right hippocampal volumes were measured using FreeSurfer software and analyzed using a linear mixed-model regression covarying for sex and intracranial volume. RESULTS Childhood-onset schizophrenia probands had a fixed reduction in hippocampal volumes (total, left, and right) relative to both nonpsychotic siblings and healthy comparison subjects, whereas there were no significant volumetric or trajectory differences between nonpsychotic siblings and healthy comparison subjects. CONCLUSIONS Fixed hippocampal volume loss seen in childhood-onset schizophrenia, which is not shared by healthy siblings, appears to be related to the illness. Decreased hippocampal volume is not strongly genetically related but represents an important intermediate disease phenotype.
Collapse
Affiliation(s)
- Anand Mattai
- Child Psychiatry Branch, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|