1
|
Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J. Eu 3+ detects two functionally distinct luminal Ca 2+ binding sites in ryanodine receptors. Biophys J 2023; 122:3516-3531. [PMID: 37533257 PMCID: PMC10502479 DOI: 10.1016/j.bpj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels, gated by Ca2+ in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca2+ regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore. In this study, we used Eu3+, an impermeable agonist of Ca2+ binding sites, as a probe to avoid this complication and to gain more specific information about the function of the luminal Ca2+ sensor. Single-channel currents were measured from skeletal muscle and cardiac RyRs (RyR1 and RyR2) using the lipid bilayer technique. We show that RyR2 is activated by the luminal addition of Ca2+, whereas RyR1 is inhibited. These results were qualitatively reproducible using Eu3+. The luminal regulation of RyR1 carrying a mutation associated with malignant hyperthermia was not different from that of the wild-type. RyR1 inhibition by Eu3+ was extremely voltage dependent, whereas RyR2 activation did not depend on the membrane potential. These results suggest that the RyR1 inhibition site is in the membrane's electric field (channel pore), whereas the RyR2 activation site is outside. Using in silico analysis and previous results, we predicted putative Ca2+ binding site sequences. We propose that RyR2 bears an activation site, which is missing in RyR1, but both isoforms share the same inhibitory Ca2+ binding site near the channel gate.
Collapse
Affiliation(s)
- Zsuzsanna É Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jacob Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - István Jóna
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - János Almássy
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Functional Characterization of the Ryanodine Receptor Gene in Diaphorina citri. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122005. [PMID: 36556370 PMCID: PMC9785964 DOI: 10.3390/life12122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.
Collapse
|
3
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
4
|
Gherardi G, De Mario A, Mammucari C. The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:209-259. [PMID: 34253296 DOI: 10.1016/bs.ircmb.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
5
|
Liu C, Zhang A, Yan N, Song C. Atomistic Details of Charge/Space Competition in the Ca 2+ Selectivity of Ryanodine Receptors. J Phys Chem Lett 2021; 12:4286-4291. [PMID: 33909426 DOI: 10.1021/acs.jpclett.1c00681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ryanodine receptors (RyRs) are ion channels responsible for the fast release of Ca2+ from the sarco/endoplasmic reticulum to the cytosol and show a selectivity of Ca2+ over monovalent cations. By utilizing a recently developed multisite Ca2+ model in molecular dynamic simulations, we show that multiple cations accumulate in the upper selectivity filter of RyRs, and the small size and high valence of Ca2+ make it preferable to K+ in competition for space in this confined region of negative electrostatic potential. The presence of Ca2+ in the upper selectivity filter significantly increases the energy barrier of K+ permeation, while the presence of K+ has little impact on the Ca2+ permeation. Our results provide the atomistic details of the charge/space competition mechanism for the ion selectivity of RyRs, which ensures the robustness of their Ca2+ release function. The mechanism could be utilized in protein- and nanoengineering for valence selectivity of ion species.
Collapse
Affiliation(s)
- Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Aihua Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Xu L, Harms FL, Chirasani VR, Pasek DA, Kortüm F, Meinecke P, Dokholyan NV, Kutsche K, Meissner G. Single-channel properties of skeletal muscle ryanodine receptor pore Δ 4923FF 4924 in two brothers with a lethal form of fetal akinesia. Cell Calcium 2020; 87:102182. [PMID: 32097819 DOI: 10.1016/j.ceca.2020.102182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Abstract
Ryanodine receptor ion channels (RyR1s) release Ca2+ ions from the sarcoplasmic reticulum to regulate skeletal muscle contraction. By whole-exome sequencing, we identified the heterozygous RYR1 variant c.14767_14772del resulting in the in-frame deletion p.(Phe4923_Phe4924del) in two brothers with a lethal form of the fetal akinesia deformation syndrome (FADS). The two deleted phenylalanines (RyR1-Δ4923FF4924) are located in the S6 pore-lining helix of RyR1. Clinical features in one of the two siblings included severe hypotonia, thin ribs, swallowing inability, and respiratory insufficiency that caused early death. Functional consequences of the RyR1-Δ4923FF4924 variant were determined using recombinant 2,200-kDa homotetrameric and heterotetrameric RyR1 channel complexes that were expressed in HEK293 cells and characterized by cellular, electrophysiological, and computational methods. Cellular Ca2+ release in response to caffeine indicated that the homotetrameric variant formed caffeine-sensitive Ca2+ conducting channels in HEK293 cells. In contrast, the homotetrameric channel complex was not activated by Ca2+ and did not conduct Ca2+ based on single-channel measurements. The computational analysis suggested decreased protein stability and loss of salt bridge interactions between RyR1-R4944 and RyR1-D4938, increasing the electrostatic interaction energy of Ca2+ in a region 20 Å from the mutant site. Co-expression of wild-type and mutant RyR1s resulted in Ca2+-dependent channel activities that displayed intermediate Ca2+ conductances and suggested maintenance of a reduced Ca2+ release in the two patients. Our findings reveal that the RYR1 pore variant p.(Phe4923_Phe4924del) attenuates the flow of Ca2+ through heterotetrameric channels, but alone was not sufficient to cause FADS, indicating additional genetic factors to be involved.
Collapse
Affiliation(s)
- Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Venkat R Chirasani
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nikolay V Dokholyan
- Departments of Pharmacology, and Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, United States
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States.
| |
Collapse
|
8
|
Parker R, Schiemann AH, Langton E, Bulger T, Pollock N, Bjorksten A, Gillies R, Hutchinson D, Roxburgh R, Stowell KM. Functional Characterization of C-terminal Ryanodine Receptor 1 Variants Associated with Central Core Disease or Malignant Hyperthermia. J Neuromuscul Dis 2019; 4:147-158. [PMID: 28527222 PMCID: PMC5467713 DOI: 10.3233/jnd-170210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Central core disease and malignant hyperthermia are human disorders of skeletal muscle resulting from aberrant Ca2+ handling. Most malignant hyperthermia and central core disease cases are associated with amino acid changes in the type 1 ryanodine receptor (RyR1), the skeletal muscle Ca2+-release channel. Malignant hyperthermia exhibits a gain-of-function phenotype, and central core disease results from loss of channel function. For a variant to be classified as pathogenic, functional studies must demonstrate a correlation with the pathophysiology of malignant hyperthermia or central core disease. Objective: We assessed the pathogenicity of four C-terminal variants of the ryanodine receptor using functional analysis. The variants were identified in families affected by either malignant hyperthermia or central core disease. Methods: Four variants were introduced separately into human cDNA encoding the skeletal muscle ryanodine receptor. Following transient expression in HEK-293T cells, functional studies were carried out using calcium release assays in response to an agonist. Two previously characterized variants and wild-type skeletal muscle ryanodine receptor were used as controls. Results: The p.Met4640Ile variant associated with central core disease showed no difference in calcium release compared to wild-type. The p.Val4849Ile variant associated with malignant hyperthermia was more sensitive to agonist than wild-type but did not reach statistical significance and two variants (p.Phe4857Ser and p.Asp4918Asn) associated with central core disease were completely inactive. Conclusions: The p.Val4849Ile variant should be considered a risk factor for malignant hyperthermia, while the p.Phe4857Ser and p.Asp4918Asn variants should be classified as pathogenic for central core disease.
Collapse
Affiliation(s)
- Remai Parker
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Anja H Schiemann
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Terasa Bulger
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Neil Pollock
- Department of Anaesthesia and Intensive Care, Palmerston North Hospital, Palmerston North, New Zealand
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, Royal Melbourne Hospital, Melbourne
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn M Stowell
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Chirasani VR, Xu L, Addis HG, Pasek DA, Dokholyan NV, Meissner G, Yamaguchi N. A central core disease mutation in the Ca 2+-binding site of skeletal muscle ryanodine receptor impairs single-channel regulation. Am J Physiol Cell Physiol 2019; 317:C358-C365. [PMID: 31166712 DOI: 10.1152/ajpcell.00052.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.
Collapse
Affiliation(s)
- Venkat R Chirasani
- Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Hannah G Addis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Departments of Pharmacology and Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, South Carolina
| |
Collapse
|
10
|
Miranda WE, Ngo VA, Wang R, Zhang L, Chen SRW, Noskov SY. Molecular Mechanism of Conductance Enhancement in Narrow Cation-Selective Membrane Channels. J Phys Chem Lett 2018; 9:3497-3502. [PMID: 29886737 DOI: 10.1021/acs.jpclett.8b01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane proteins known as ryanodine receptors (RyRs) display large conductance of ∼1 nS and nearly ideal charge selectivity. Both properties are inversely correlated in other large-conductance but nonselective biological nanopores (i.e., α-hemolysin) used as industrial biosensors. Although recent cryo-electron microscopy structures of RyR2 show similarities to K+- and Na+-selective channels, it remains unclear whether similar ion conduction mechanisms occur in RyR2. Here, we combine microseconds of all-atom molecular dynamics (MD) simulations with mutagenesis and electrophysiology experiments to investigate large K+ conductance and charge selectivity (cation vs anion) in an open-state structure of RyR2. Our results show that a water-mediated knock-on mechanism enhances the cation permeation. The polar Q4863 ring may function as a confinement zone amplifying charge selectivity, while the cytoplasmic vestibule can contribute to the efficiency of the cation attraction. We also provide direct evidence that the rings of acidic residues at the channel vestibules are critical for both conductance and charge discrimination in RyRs.
Collapse
Affiliation(s)
- Williams E Miranda
- Centre for Molecular Simulations and Department of Biological Sciences , University of Calgary , Alberta T2N 1N4 , Canada
| | - Van A Ngo
- Centre for Molecular Simulations and Department of Biological Sciences , University of Calgary , Alberta T2N 1N4 , Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta , University of Calgary , Alberta T2N 1N4 , Canada
| | - Lin Zhang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta , University of Calgary , Alberta T2N 1N4 , Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta , University of Calgary , Alberta T2N 1N4 , Canada
| | - Sergei Yu Noskov
- Centre for Molecular Simulations and Department of Biological Sciences , University of Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
11
|
Heinz LP, Kopec W, de Groot BL, Fink RHA. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways. Sci Rep 2018; 8:6886. [PMID: 29720700 PMCID: PMC5932038 DOI: 10.1038/s41598-018-25061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba2+, Ca2+, Mg2+, K+, Na+ and Cl- ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.
Collapse
Affiliation(s)
- Leonard P Heinz
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany.
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rainer H A Fink
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
12
|
Xu L, Mowrey DD, Chirasani VR, Wang Y, Pasek DA, Dokholyan NV, Meissner G. G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca 2. J Biol Chem 2017; 293:2015-2028. [PMID: 29255089 DOI: 10.1074/jbc.m117.803247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor ion channel RyR1 is present in skeletal muscle and has a large cytoplasmic N-terminal domain and smaller C-terminal pore-forming domain comprising six transmembrane helices, a pore helix, and a selectivity filter. The RyR1 S6 pore-lining helix has two conserved glycines, Gly-4934 and Gly-4941, that facilitate RyR1 channel gating by providing S6 flexibility and minimizing amino acid clashes. Here, we report that substitution of Gly-4941 with Asp or Lys results in functional channels as indicated by caffeine-induced Ca2+ release response in HEK293 cells, whereas a low response of the corresponding Gly-4934 variants suggested loss of function. Following purification, the RyR1 mutants G4934D, G4934K, and G4941D did not noticeably conduct Ca2+ in single-channel measurements. Gly-4941 replacement with Lys resulted in channels having reduced K+ conductance and reduced selectivity for Ca2+ compared with wildtype. RyR1-G4941K did not fully close at nanomolar cytosolic Ca2+ concentrations and nearly fully opened at 2 μm cytosolic or sarcoplasmic reticulum luminal Ca2+, and Ca2+- and voltage-dependent regulation of RyR1-G4941K mutant channels was demonstrated. Computational methods and single-channel recordings indicated that the open G4941K variant results in the formation of a salt bridge to Asp-4938. In contrast, wildtype RyR1 was closed and not activated by luminal Ca2+ at low cytosolic Ca2+ levels. A model suggested that luminal Ca2+ activates RyR1 by accessing a recently identified cytosolic Ca2+-binding site in the open channel as the Ca2+ ions pass through the pore.
Collapse
Affiliation(s)
- Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Venkat R Chirasani
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
14
|
Yuan GR, Wang KY, Mou X, Luo RY, Dou W, Wang JJ. Molecular cloning, mRNA expression and alternative splicing of a ryanodine receptor gene from the citrus whitefly, Dialeurodes citri (Ashmead). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:59-66. [PMID: 29107248 DOI: 10.1016/j.pestbp.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Insect ryanodine receptors are the main targets of diamide insecticides that have highly selective insecticidal activity but are less toxic to mammals. Therefore, these insecticides are ideal for pest control. Ryanodine receptors (RyRs) play a critical role in Ca2+ signaling in muscle and non-muscle cells. In this study, we cloned the complete cDNA (DcRyR) of the RyR from the citrus whitefly, Dialeurodes citri, a serious pest of citrus orchards in China. The open reading frame of RyR is 15,378bp long and encodes a protein with 5126 amino acids with a computed molecular weight of 579.523kDa. DcRyR shows a high amino acid sequence identity to RyRs from other insects (76%-95%) and low identity to those from nematodes and mammals (44%-52%). DcRyR shares many features of insect and vertebrate RyRs, including a MIR domain, two RIH domains, three SPRY domains, four copies of RyR repeat domain, RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands and six transmembrane domains at the C-terminus. The expression of DcRyR mRNA was the highest in the nymphs and lowest in eggs; DcRyR mRNA was 1.85-fold higher in the nymphs than in the eggs. Among the tissues, DcRyR mRNA expression was 4.18- and 4.02-fold higher in the adult head and thorax than in the abdomen. DcRyR had three alternative splice sites and the splice variants showed body part-specific expression and were developmentally regulated. These results may help investigate target-based resistance to diamide insecticides in D. citri.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ke-Yi Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xing Mou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ruo-Yu Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
15
|
Peng YC, Sheng CW, Casida JE, Zhao CQ, Han ZJ. Ryanodine receptor genes of the rice stem borer, Chilo suppressalis: Molecular cloning, alternative splicing and expression profiling. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:69-77. [PMID: 28043334 DOI: 10.1016/j.pestbp.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 05/14/2023]
Abstract
The ryanodine receptor (RyR) of the calcium release channel is the main target of anthranilic and phthalic diamide insecticides which have high selective insecticidal activity relative to mammalian toxicity. In this study, the full-length cDNA of Chilo suppressalis RyR (CsRyR) was isolated and characterized. The CsRyR mRNA has an open reading frame (ORF) of 15,387bp nucleotides, which encodes 5128 amino acids with GenBank ID: KR088972. Comparison of protein sequences showed that CsRyR shared high identities with other insects of 77-96% and lower identity to mammals and nematodes with only 42-45%. One alternative splicing site (KENLG) unique to Lepidoptera was found and two exclusive exons of CsRyR (I /II) were revealed. Spatial and temporal expression of CsRyR mRNA was at the highest relative level in 3rd instar larvae and head (including brain and muscle), and at the lowest expression level in egg and fat body. The expression levels of whole body CsRyR mRNA were increased remarkably after injection of 4th instar larvae with chlorantraniliprole at 0.004 to 0.4μg/g. This structural and functional information on CsRyR provides the basis for further understanding the selective action of chlorantraniliprole and possibly other diamide insecticides.
Collapse
Affiliation(s)
- Y C Peng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - C W Sheng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
| | - John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3112, USA
| | - C Q Zhao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Z J Han
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
16
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Schilling R, Fink RHA, Fischer WB. Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors. J Mol Model 2016; 22:37. [PMID: 26781665 DOI: 10.1007/s00894-015-2906-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels, and are of central importance for the release of Ca(2+) from the sarco/endoplasmic reticulum (SR/ER) in a variety of cells. In cardiac and skeletal muscle cells, contraction is triggered by the release of Ca(2+) into the cytoplasm and thus depends crucially on correct RyR function. In this work, in silico mutants of the RyR pore were generated and MD simulations were conducted to examine the impact of the mutations on the Ca(2+) distribution. The Ca(2+) distribution pattern on the luminal side of the RyR was most affected by G4898R, D4899Q, E4900Q, R4913E, and D4917A mutations. MD simulations with our wild-type model and various ion species showed a preference for Ca(2+) over other cations at the luminal pore entrance. This Ca(2+)-accumulating characteristic of the luminal RyR side may be essential to the conductance properties of the channel.
Collapse
Affiliation(s)
- Roman Schilling
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Rainer H A Fink
- Medical Biophysics Group, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, 155, Li-Non St., Sec. 2, Taipei, 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
18
|
Mei Y, Xu L, Mowrey DD, Mendez Giraldez R, Wang Y, Pasek DA, Dokholyan NV, Meissner G. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor. J Biol Chem 2015; 290:17535-45. [PMID: 25998124 DOI: 10.1074/jbc.m115.659672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 02/04/2023] Open
Abstract
Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.
Collapse
Affiliation(s)
- Yingwu Mei
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Le Xu
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raul Mendez Giraldez
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ying Wang
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel A Pasek
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gerhard Meissner
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
19
|
Alzayady KJ, Sebé-Pedrós A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI. Tracing the Evolutionary History of Inositol, 1, 4, 5-Trisphosphate Receptor: Insights from Analyses of Capsaspora owczarzaki Ca2+ Release Channel Orthologs. Mol Biol Evol 2015; 32:2236-53. [PMID: 25911230 DOI: 10.1093/molbev/msv098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular Ca(2+) homeostasis is tightly regulated and is pivotal to life. Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are the major ion channels that regulate Ca(2+) release from intracellular stores. Although these channels have been extensively investigated in multicellular organisms, an appreciation of their evolution and the biology of orthologs in unicellular organisms is largely lacking. Extensive phylogenetic analyses reveal that the IP3R gene superfamily is ancient and diverged into two subfamilies, IP3R-A and IP3R-B/RyR, at the dawn of Opisthokonta. IP3R-B/RyR further diversified into IP3R-B and RyR at the stem of Filozoa. Subsequent evolution and speciation of Holozoa is associated with duplication of IP3R-A and RyR genes, and loss of IP3R-B in the vertebrate lineages. To gain insight into the properties of IP3R important for the challenges of multicellularity, the IP3R-A and IP3R-B family orthologs were cloned from Capsaspora owczarzaki, a close unicellular relative to Metazoa (designated as CO.IP3R-A and CO.IP3R-B). Both proteins were targeted to the endoplasmic reticulum. However, CO.IP3R-A, but strikingly not CO.IP3R-B, bound IP3, exhibited robust Ca(2+) release activity and associated with mammalian IP3Rs. These data indicate strongly that CO.IP3R-A as an exemplar of ancestral IP3R-A orthologs forms bona fide IP3-gated channels. Notably, however, CO.IP3R-A appears not to be regulated by Ca(2+), ATP or Protein kinase A-phosphorylation. Collectively, our findings explore the origin, conservation, and diversification of IP3R gene families and provide insight into the functionality of ancestral IP3Rs and the added specialization of these proteins in Metazoa.
Collapse
Affiliation(s)
- Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester
| | - Arnau Sebé-Pedrós
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Catalonia, Spain
| | | | - Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Catalonia, Spain Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester
| |
Collapse
|
20
|
Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 2014; 517:50-55. [PMID: 25517095 PMCID: PMC4338550 DOI: 10.1038/nature14063] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
The ryanodine receptors (RyRs) are high-conductance intracellular Ca2+ channels that play a pivotal role in the excitation-contraction coupling of skeletal and cardiac muscles. RyRs are the largest known ion channels, with a homotetrameric organization and approximately 5000 residues in each protomer. Here we report the structure of the rabbit RyR1 in complex with its modulator FKBP12 at an overall resolution of 3.8 Å, determined by single-particle electron cryo-microscopy. Three previously uncharacterized domains, named Central, Handle, and Helical domains, display the armadillo repeat fold. These domains, together with the amino-terminal domain, constitute a network of superhelical scaffold for binding and propagation of conformational changes. The channel domain exhibits the voltage-gated ion channel superfamily fold with distinct features. A negative charge-enriched hairpin loop connecting S5 and the pore helix is positioned above the entrance to the selectivity filter vestibule. The four elongated S6 segments form a right-handed helical bundle that closes the pore at the cytoplasmic border of the membrane. Allosteric regulation of the pore by the cytoplasmic domains is mediated through extensive interactions between the Central domains and the channel domain. These structural features explain high ion conductance by RyRs and the long-range allosteric regulation of channel activities.
Collapse
|
21
|
Gillespie D, Xu L, Meissner G. Selecting ions by size in a calcium channel: the ryanodine receptor case study. Biophys J 2014; 107:2263-73. [PMID: 25418295 PMCID: PMC4241444 DOI: 10.1016/j.bpj.2014.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022] Open
Abstract
Many calcium channels can distinguish between ions of the same charge but different size. For example, when cations are in direct competition with each other, the ryanodine receptor (RyR) calcium channel preferentially conducts smaller cations such as Li(+) and Na(+) over larger ones such as K(+) and Cs(+). Here, we analyze the physical basis for this preference using a previously established model of RyR permeation and selectivity. Like other calcium channels, RyR has four aspartate residues in its GGGIGDE selectivity filter. These aspartates have their terminal carboxyl group in the pore lumen, which take up much of the available space for permeating ions. We find that small ions are preferred by RyR because they can fit into this crowded environment more easily.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois.
| | - Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Liu Y, Li C, Gao J, Wang W, Huang L, Guo X, Li B, Wang J. Comparative characterization of two intracellular Ca²⁺-release channels from the red flour beetle, Tribolium castaneum. Sci Rep 2014; 4:6702. [PMID: 25330781 PMCID: PMC4204029 DOI: 10.1038/srep06702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca2+-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval–pupal and pupal–adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.
Collapse
Affiliation(s)
- Yaping Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingkun Gao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Wenlong Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuezhu Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
23
|
Shirvanyants D, Ramachandran S, Mei Y, Xu L, Meissner G, Dokholyan NV. Pore dynamics and conductance of RyR1 transmembrane domain. Biophys J 2014; 106:2375-84. [PMID: 24896116 PMCID: PMC4052289 DOI: 10.1016/j.bpj.2014.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
Ryanodine receptors (RyR) are calcium release channels, playing a major role in the regulation of muscular contraction. Mutations in skeletal muscle RyR (RyR1) are associated with congenital diseases such as malignant hyperthermia and central core disease (CCD). The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Previously, we have reported a hypothetical structure of the RyR1 pore-forming region, obtained by homology modeling and supported by mutational scans, electrophysiological measurements, and cryo-electron microscopy. Here, we utilize the expanded model encompassing six transmembrane helices to calculate the RyR1 pore region conductance, to analyze its structural stability, and to hypothesize the mechanism of the Ile4897 CCD-associated mutation. The calculated conductance of the wild-type RyR1 suggests that the proposed pore structure can sustain ion currents measured in single-channel experiments. We observe a stable pore structure on timescales of 0.2 μs, with multiple cations occupying the selectivity filter and cytosolic vestibule, but not the inner chamber. We further suggest that stability of the selectivity filter critically depends on the interactions between the I4897 residue and several hydrophobic residues of the neighboring subunit. Loss of these interactions in the case of polar substitution I4897T results in destabilization of the selectivity filter, a possible cause of the CCD-specific reduced Ca(2+) conductance.
Collapse
Affiliation(s)
- David Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yingwu Mei
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Le Xu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
24
|
Yuan GR, Shi WZ, Yang WJ, Jiang XZ, Dou W, Wang JJ. Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One 2014; 9:e95199. [PMID: 24740254 PMCID: PMC3989282 DOI: 10.1371/journal.pone.0095199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/24/2014] [Indexed: 01/13/2023] Open
Abstract
Ryanodine receptors (RyRs) are a distinct class of ligand-gated channels controlling the release of calcium from intracellular stores. The emergence of diamide insecticides, which selectively target insect RyRs, has promoted the study of insect RyRs. In the present study, the full-length RyR cDNA (BdRyR) was cloned and characterized from the oriental fruit fly, Bactrocera dorsalis (Hendel), a serious pest of fruits and vegetables throughout East Asia and the Pacific Rim. The cDNA of BdRyR contains a 15,420-bp open reading frame encoding 5,140 amino acids with a predicted molecular weight of 582.4 kDa and an isoelectric point of 5.38. BdRyR shows a high level of amino acid sequence identity (78 to 97%) to other insect RyR isoforms. All common structural features of the RyRs are present in the BdRyR, including a well-conserved C-terminal domain containing consensus calcium-binding EF-hands and six transmembrane domains, and a large N-terminal domain. Quantitative real-time PCR analyses revealed that BdRyR was expressed at the lowest and highest levels in egg and adult, respectively, and that the BdRyR expression levels in the third instar larva, pupa and adult were 166.99-, 157.56- and 808.56-fold higher, respectively, than that in the egg. Among different adult body parts, the highest expression level was observed in the thorax compared with the head and abdomen. In addition, four alternative splice sites were identified in the BdRyR gene, with the first, ASI, being located in the central part of the predicted second spore lysis A/RyR domain. Diagnostic PCR analyses revealed that alternative splice variants were generated not only in a tissue-specific manner but also in a developmentally regulated manner. These results lay the foundation for further understanding the structural and functional properties of BdRyR, and the molecular mechanisms for target site resistance in B. dorsalis.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Zhi Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wen-Jia Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Schilling R, Fink RH, Fischer WB. MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1122-31. [DOI: 10.1016/j.bbamem.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/16/2013] [Accepted: 12/12/2013] [Indexed: 02/08/2023]
|
26
|
The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med 2014; 20:184-92. [PMID: 24441828 DOI: 10.1038/nm.3440] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/03/2013] [Indexed: 12/12/2022]
Abstract
Spontaneous Ca(2+) release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload-induced Ca(2+) release (SOICR) can result in Ca(2+) waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca(2+) activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni(2+)-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca(2+)-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca(2+), explaining the regulation of RyR2 by luminal Ca(2+), the initiation of Ca(2+) waves and Ca(2+)-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.
Collapse
|
27
|
Boda D. Monte Carlo Simulation of Electrolyte Solutions in Biology. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63378-1.00005-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
29
|
Cui L, Yang D, Yan X, Rui C, Wang Z, Yuan H. Molecular cloning, characterization and expression profiling of a ryanodine receptor gene in Asian corn borer, Ostrinia furnacalis (Guenée). PLoS One 2013; 8:e75825. [PMID: 24098400 PMCID: PMC3787966 DOI: 10.1371/journal.pone.0075825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
Ryanodine receptor (RyR) Ca(2+) release channel is the target of diamide insecticides, which show selective insecticidal activity against lepidopterous insects. To study the molecular mechanisms underlying the species-specific action of diamide insecticides, we have cloned and characterized the entire cDNA sequence of RyR from Ostrinia furnacalis (named as OfRyR). The OfRyR mRNA has an Open Reading Frame of 15324 bp nucleotides and encodes a 5108 amino acid polypeptide that displays 79-97% identity with other insects RyR proteins and shows the greatest identity with Cnaphalocrocis medinalis RyR (97%). Quantitative real-time PCR showed that the OfRyR was expressed at the lowest level in egg and the highest level in adult. The relative expression level of OfRyR in first, third and fifth-instar larva were 1.28, 1.19 and 1.99 times of that in egg. Moreover, two alternative splicing sites were identified in the OfRyR gene. One pair of mutually exclusive exons (a/b) were present in the central part of the predicted SPRY domain, and an optional exon (c) was located between the third and fourth RyR domains. Diagnostic PCR demonstrated that exons a and b existed in all developmental stages of OfRyR cDNA, but exon c was not detected in the egg cDNA. And the usage frequencies of these exons showed a significant difference between different developmental stages. These results provided the crucial basis for the functional expression of OfRyR and for the discovery of compound with potentially selective insect activtity.
Collapse
Affiliation(s)
- Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daibin Yang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Yan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Wu S, Wang F, Huang J, Fang Q, Shen Z, Ye G. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:1-10. [PMID: 23603125 DOI: 10.1016/j.dci.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are a distinct class of ligand-gated calcium channels controlling the release of calcium from intracellular stores. Intracellular calcium level has a definite role in innate and adaptive immune signaling. However, very few information are accessible about calcium transients of invertebrate immunocytes, especially of insect hemocytes, the effector cells of insect immunity. In this study, we show that the RyR-stimulating agent flubendiamide inhibit hemocyte spreading and phagocytosis in the cabbage white butterfly, Pieris rapae. Furthermore, we cloned a cDNA encoding a ryanodine receptor (PrRyR) from the hemocytes of P. rapae. It encodes 5107 amino acids with a predicted molecular weight of 578.2 kDa. PrRyR shares a common feature with known RyRs: a well-conserved COOH-terminal domain with two consensus calcium-binding EF-hands and six transmembrane domains, and a large hydrophilic NH2-terminal domain. In the larval stage, PrRyR was highly expressed in epidermis tissue and also expressed in hemocytes at a moderate level. In the adult stage, PrRyR was expressed at high levels in thoraces and legs, while low levels in abdomens and antennae. Quantitative real-time PCR analysis showed that its expression did not display any significant change in response to bacterial challenge. Western blot analysis and immunohistochemistry assay displayed that PrRyR was detected and presented on hemocytes. We also showed that flubendiamide, a RyR-activating insecticide, induced Ca(2+) release and thereby confirmed functional expression of the PrRyR in the hemocytes of P. rapae.
Collapse
Affiliation(s)
- Shunfan Wu
- State Key Laboratory of Rice Biology, Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
31
|
Mak DOD, Vais H, Cheung KH, Foskett JK. Patch-clamp electrophysiology of intracellular Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:787-97. [PMID: 24003191 DOI: 10.1101/pdb.top066217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
32
|
Gaash R, Elazar M, Mizrahi K, Avramov-Mor M, Berezin I, Shaul O. Phylogeny and a structural model of plant MHX transporters. BMC PLANT BIOLOGY 2013; 13:75. [PMID: 23634958 PMCID: PMC3679957 DOI: 10.1186/1471-2229-13-75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/13/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND The Arabidopsis thaliana MHX gene (AtMHX) encodes a Mg²⁺/H⁺ exchanger. Among non-plant proteins, AtMHX showed the highest similarity to mammalian Na⁺/Ca²⁺ exchanger (NCX) transporters, which are part of the Ca²⁺/cation (CaCA) exchanger superfamily. RESULTS Sequences showing similarity to AtMHX were searched in the databases or sequenced from cDNA clones. Phylogenetic analysis showed that the MHX family is limited to plants, and constitutes a sixth family within the CaCA superfamily. Some plants include, besides a full MHX gene, partial MHX-related sequences. More than one full MHX gene was currently identified only in Oryza sativa and Mimulus guttatus, but an EST for more than one MHX was identified only in M. guttatus. MHX genes are not present in the currently available chlorophyte genomes. The prevalence of upstream ORFs in MHX genes is much higher than in most plant genes, and can limit their expression. A structural model of the MHXs, based on the resolved structure of NCX1, implies that the MHXs include nine transmembrane segments. The MHXs and NCXs share 32 conserved residues, including a GXG motif implicated in the formation of a tight-turn in a reentrant-loop. Three residues differ between all MHX and NCX proteins. Altered mobility under reducing and non-reducing conditions suggests the presence of an intramolecular disulfide-bond in AtMHX. CONCLUSIONS The absence of MHX genes in non-plant genomes and in the currently available chlorophyte genomes, and the presence of an NCX in Chlamydomonas, are consistent with the suggestion that the MHXs evolved from the NCXs after the split of the chlorophyte and streptophyte lineages of the plant kingdom. The MHXs underwent functional diploidization in most plant species. De novo duplication of MHX occurred in O. sativa before the split between the Indica and Japonica subspecies, and was apparently followed by translocation of one MHX paralog from chromosome 2 to chromosome 11 in Japonica. The structural analysis presented and the identification of elements that differ between the MHXs and the NCXs, or between the MHXs of specific plant groups, can contribute to clarification of the structural basis of the function and ion selectivity of MHX transporters.
Collapse
Affiliation(s)
- Rachel Gaash
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Meirav Elazar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Keren Mizrahi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Meital Avramov-Mor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
33
|
Ramachandran S, Chakraborty A, Xu L, Mei Y, Samsó M, Dokholyan NV, Meissner G. Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem 2013; 288:6154-65. [PMID: 23319589 DOI: 10.1074/jbc.m112.433789] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptor type 1 (RyR1) releases Ca(2+) from intracellular stores upon nerve impulse to trigger skeletal muscle contraction. Effector binding at the cytoplasmic domain tightly controls gating of the pore domain of RyR1 to release Ca(2+). However, the molecular mechanism that links effector binding to channel gating is unknown due to lack of structural data. Here, we used a combination of computational and electrophysiological methods and cryo-EM densities to generate structural models of the open and closed states of RyR1. Using our structural models, we identified an interface between the pore-lining helix (Tyr-4912-Glu-4948) and a linker helix (Val-4830-Val-4841) that lies parallel to the cytoplasmic membrane leaflet. To test the hypothesis that this interface controls RyR1 gating, we designed mutations in the linker helix to stabilize either the open (V4830W and T4840W) or closed (H4832W and G4834W) state and validated them using single channel experiments. To further confirm this interface, we designed mutations in the pore-lining helix to stabilize the closed state (Q4947N, Q4947T, and Q4947S), which we also validated using single channel experiments. The channel conductance and selectivity of the mutations that we designed in the linker and pore-lining helices were indistinguishable from those of WT RyR1, demonstrating our ability to modulate RyR1 gating without affecting ion permeation. Our integrated computational and experimental approach significantly advances the understanding of the structure and function of an unusually large ion channel.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Lefebvre R, Legrand C, Groom L, Dirksen RT, Jacquemond V. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants. PLoS One 2013; 8:e54042. [PMID: 23308296 PMCID: PMC3538700 DOI: 10.1371/journal.pone.0054042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/05/2012] [Indexed: 12/17/2022] Open
Abstract
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.
Collapse
Affiliation(s)
- Romain Lefebvre
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
| | - Claude Legrand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Vincent Jacquemond
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534 – Université Lyon 1, Villeurbanne, France
- * E-mail:
| |
Collapse
|
35
|
Kopil CM, Siebert AP, Foskett JK, Neumar RW. Calpain-cleaved type 1 inositol 1,4,5-trisphosphate receptor impairs ER Ca(2+) buffering and causes neurodegeneration in primary cortical neurons. J Neurochem 2012; 123:147-58. [PMID: 22762283 DOI: 10.1111/j.1471-4159.2012.07859.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disruption of neuronal Ca(2+) homeostasis plays a well-established role in cell death in a number of neurodegenerative disorders. Recent evidence suggests that proteolysis of the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1), a Ca(2+) release channel on the endoplasmic reticulum, generates a dysregulated channel, which may contribute to aberrant Ca(2+) signaling and neurodegeneration in disease states. However, the specific effects of InsP(3)R1 proteolysis on neuronal Ca(2+) homeostasis are unknown, as are the functional contributions of this pathway to neuronal death. This study evaluates the consequences of calpain-mediated InsP(3)R1 proteolysis on neuronal Ca(2+) signaling and survival using adeno-associated viruses to express a recombinant cleaved form of the channel (capn-InsP(3)R1) in rat primary cortical neurons. Here, we demonstrate that expression of capn-InsP(3)R1 in cortical cultures reduced cellular viability. This effect was associated with increased resting cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), increased [Ca(2+)](i) response to glutamate, and enhanced sensitivity to excitotoxic stimuli. Together, our results demonstrate that InsP(3)R1 proteolysis disrupts neuronal Ca(2+) homeostasis, and potentially acts as a feed-forward pathway to initiate or execute neuronal death.
Collapse
Affiliation(s)
- Catherine M Kopil
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
36
|
Wang J, Li Y, Han Z, Zhu Y, Xie Z, Wang J, Liu Y, Li X. Molecular characterization of a ryanodine receptor gene in the rice leaffolder, Cnaphalocrocis medinalis (Guenée). PLoS One 2012; 7:e36623. [PMID: 22567170 PMCID: PMC3342285 DOI: 10.1371/journal.pone.0036623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/03/2012] [Indexed: 11/25/2022] Open
Abstract
Ryanodine receptors (RyRs) are the targets of two novel classes of synthetic insecticidal chemicals, phthalic acid diamides and anthranilic diamides. Isolation of full-length RyR cDNAs is a critical step towards the structural and functional characterization of insect RyRs and an understanding of the molecular mechanisms underlying the species selective toxicity of diamide insecticides. However, there has been little research on the insect RyR genes due to the high molecular weight of the RyR proteins. In this study, we isolated a full-length RyR cDNA (named as CmRyR) from Cnaphalocrocis medinalis, an important rice pest throughout Southeast Asia. The composite CmRyR gene contains an ORF of 15264 bp encoding a protein of 5087 amino acid residues, which shares 79% overall identity with its Drosophila melanogaster homologue. All hallmarks of the RyR proteins are conserved in the CmRyR protein, suggesting that CmRyR is a structural and functional analogue of known RyRs. A multiple sequence alignment illustrates that the insect RyRs share high levels of amino acid sequence identity at the the COOH-terminal region. However, the amino acid residues analogous to the CmRyR residues N4922, N4924, N4935, L4950, L4981, N5013 and T5064 are unique to lepidopteran RyRs compared with non-lepidopteran insect RyRs. This finding suggests that these residues may be involved in the differences in channel properties between lepidopteran and non-lepidopteran insect RyRs and in the species selective toxicity of diamide insecticides. Furthermore, two alternative splicing sites were identified in the CmRyR gene, one of which was located in the central part of the predicted second SPRY domain. Diagnostic PCR showed that the inclusion frequencies of two mutually exclusive exons (a/b) and one optional exon (c) differed between developmental stages or adult anatomical regions. Our results imply that alternative splicing may be a major means of generating functional diversity in C. medinalis RyR channel.
Collapse
Affiliation(s)
- Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gillespie D, Chen H, Fill M. Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release. Cell Calcium 2012; 51:427-33. [PMID: 22387011 DOI: 10.1016/j.ceca.2012.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 11/19/2022]
Abstract
The ryanodine receptor (RyR) is a poorly selective channel that mediates Ca(2+) release from intracellular Ca(2+) stores. How RyR's selectivity between the physiological cations K(+), Mg(2+), and Ca(2+) affects single-channel Ca(2+) current amplitude is examined using a recent model of RyR permeation. It is found that K(+) provides the vast majority of the countercurrent (through RyR itself) that is needed to prevent the sarcoplasmic reticulum (SR) membrane potential from changing and stopping Ca(2+) release. Moreover, intra-pore competition between Ca(2+) and Mg(2+) defines single RyR Ca(2+) current amplitude. Since both [Mg(2+)] and [Ca(2+)](SR) can change during pathophysiological conditions, the RyR unitary Ca(2+) current amplitude during Ca(2+) release may change significantly due to this Ca(2+)/Mg(2+) competition. Compared to the classic action of Mg(2+) on RyR open probability, these Ca(2+) current amplitude changes have as large or larger effects on overall RyR Ca(2+) mobilization. A new aspect of RyR divalent versus monovalent selectivity is also identified where this kind of selectivity decreases as divalent concentration increases.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Section of Cellular Signaling, Rush University Medical Center, Chicago, IL 60612, United States.
| | | | | |
Collapse
|
38
|
Thomas NL, Williams AJ. Pharmacology of ryanodine receptors and Ca2+-induced Ca2+ release. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:183-215. [DOI: 10.1007/978-94-007-2888-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
41
|
|
42
|
Haraki T, Yasuda T, Mukaida K, Migita T, Hamada H, Kawamoto M. Mutated p.4894 RyR1 function related to malignant hyperthermia and congenital neuromuscular disease with uniform type 1 fiber (CNMDU1). Anesth Analg 2011; 113:1461-7. [PMID: 21926372 DOI: 10.1213/ane.0b013e318232053e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Ryanodine receptor 1 (RyR1) is a Ca(2+) release channel located in the sarcoplasmic reticulum membrane of skeletal muscle. More than 200 variants in RyR1 have been identified in DNA from patients with malignant hyperthermia (MH) and congenital myopathies; only 30 have been sufficiently studied so as to be identified as MH-causative mutations. The Ala4894Thr RyR1 variant was found in a Japanese patient with susceptibility to MH, and the Ala4894Pro variant in a rare case of myopathy: congenital neuromuscular disease with uniform type 1 fiber (CNMDU1). We hypothesized that different Ala4894 variants of RyR1 cause different pathophysiological changes that are identifiable by having differing pharmacological sensitivities to RYR1 agonists. METHODS Expression vector with a mutation in RYR1 corresponding to the Ala4894Thr, Ala4894Pro, Ala4894Ser, or Ala 4894Gly variant of human RyR1 was transfected into human embryonic kidney 293 cells. At 72 hours after transfection, we determined the intracellular Ca(2+) changes induced by caffeine and 4-chloro-m-cresol (4CmC), in the presence or absence of dantrolene. RESULTS Ala4894Thr-transfected cells and Ala4894Ser-transfected cells were more sensitive to caffeine than the wild type, and Ala4894Thr-transfected cells were also more sensitive to 4CmC than the wild type, whereas Ala4894Pro-transfected cells had no response to caffeine or 4CmC. Ala4894Gly-transfected cells were significantly less sensitive to caffeine than the wild type. In addition, the responses of Ala4894Thr-transfected cells and Ala4894Ser-transfected cells to caffeine were suppressed by dantrolene. CONCLUSION We concluded that different Ala4894 variants of RyR1 lead to different agonist/antagonist sensitivities, which may predict differing RYR1 functionality during excitation-contraction coupling and sensitivity to MH. The hypersensitive Ala4894Thr-RyR1 is associated with MH and the poorly functional Ala4894Pro-RyR1 with CNMDU1.
Collapse
Affiliation(s)
- Toshiaki Haraki
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Vega AV, Ramos-Mondragón R, Calderón-Rivera A, Zarain-Herzberg A, Avila G. Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1. J Physiol 2011; 589:4649-69. [PMID: 21825032 DOI: 10.1113/jphysiol.2011.210765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Central core disease (CCD) is a congenital human myopathy associated with mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), resulting in skeletal muscle weakness and lower limb deformities. The muscle weakness can be at least partially explained by a reduced magnitude of voltage-gated Ca(2+) release (VGCR). To date, only a few studies have focused on identifying potential therapeutic agents for CCD. Therefore, in this work we investigated the potential use of the calcitonin gene related peptide (CGRP) to restore VGCR in myotubes expressing CCD RyR1 mutants. We also examined the influence of CCD mutants on Ca(2+)-dependent processes involved in myogenesis (myoblast fusion and sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) gene expression). C2C12 cells were transfected with cDNAs encoding either wild-type RyR1 or CCD mutants, and then exposed to CGRP (100 nm, 1-4 h). Expression of the I4897T mutant significantly inhibited SERCA2 gene expression and myoblast fusion, whereas the Y523S mutant exerted the opposite effect. Interestingly, both mutants clearly inhibited VGCR (50%), due to a reduction in SR Ca(2+) content. However, no major changes due to CGRP or CCD mutants were observed in I(CaL). Our data suggest that the Y523S mutant results in store depletion via decompensated SR Ca(2+) leak, while the I4897T mutant inhibits SERCA2 gene expression. Remarkably, in both cases CGRP restored VGCR, likely to have been by enhancing phospholamban (PLB) phosphorylation, SERCA activity and SR Ca(2+) content. Taken together, our data show that in the C2C12 model system, changes in excitation-contraction coupling induced by the expression of RyR1 channels bearing CCD mutations Y523S or I4897T can be reversed by CGRP.
Collapse
|
44
|
MacLennan DH, Zvaritch E. Mechanistic models for muscle diseases and disorders originating in the sarcoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:948-64. [DOI: 10.1016/j.bbamcr.2010.11.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 11/29/2022]
|
45
|
Petrotchenko EV, Yamaguchi N, Pasek DA, Borchers CH, Meissner G. Mass spectrometric analysis and mutagenesis predict involvement of multiple cysteines in redox regulation of the skeletal muscle ryanodine receptor ion channel complex. ACTA ACUST UNITED AC 2011; 2011:13-21. [PMID: 21603587 DOI: 10.2147/rrb.s15776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tetrameric skeletal muscle ryanodine receptor ion channel complex (RyR1) contains a large number of free cysteines that are potential targets for redox-active molecules. Here, we report the mass spectrometric analysis of free thiols in RyR1 using the lipophilic, thiol-specific probe monobromobimane (MBB). In the presence of reduced glutathione, MBB labeled 14 cysteines per RyR1 subunit in tryptic peptides in five of five experiments. Forty-six additional MBB-labeled cysteines per RyR1 subunit were detected with lower frequency in tryptic peptides, bringing the total number of MBB-labeled cysteines to 60 per RyR1 subunit. A combination of fluorescence detection and mass spectrometry of RyR1, labeled in the presence of reduced and oxidized glutathione, identified two redox-sensitive cysteines (C1040 and C1303). Regulation of RyR activity by reduced and oxidized glutathione was investigated in skeletal muscle mutant RyR1s in which 18 cysteines were substituted with serine or alanine, using a [(3)H]ryanodine ligand binding assay. Three single-site RyR1 mutants (C1781S, C2436S, and C2606S) and two multisite mutants with five and seven substituted cysteines exhibited a reduced redox response compared with wild-type RyR1. The results suggest that multiple cysteines determine the redox state and activity of RyR1.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
46
|
Loy RE, Orynbayev M, Xu L, Andronache Z, Apostol S, Zvaritch E, MacLennan DH, Meissner G, Melzer W, Dirksen RT. Muscle weakness in Ryr1I4895T/WT knock-in mice as a result of reduced ryanodine receptor Ca2+ ion permeation and release from the sarcoplasmic reticulum. ACTA ACUST UNITED AC 2010; 137:43-57. [PMID: 21149547 PMCID: PMC3010056 DOI: 10.1085/jgp.201010523] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The type 1 isoform of the ryanodine receptor (RYR1) is the Ca(2+) release channel of the sarcoplasmic reticulum (SR) that is activated during skeletal muscle excitation-contraction (EC) coupling. Mutations in the RYR1 gene cause several rare inherited skeletal muscle disorders, including malignant hyperthermia and central core disease (CCD). The human RYR1(I4898T) mutation is one of the most common CCD mutations. To elucidate the mechanism by which RYR1 function is altered by this mutation, we characterized in vivo muscle strength, EC coupling, SR Ca(2+) content, and RYR1 Ca(2+) release channel function using adult heterozygous Ryr1(I4895T/+) knock-in mice (IT/+). Compared with age-matched wild-type (WT) mice, IT/+ mice exhibited significantly reduced upper body and grip strength. In spite of normal total SR Ca(2+) content, both electrically evoked and 4-chloro-m-cresol-induced Ca(2+) release were significantly reduced and slowed in single intact flexor digitorum brevis fibers isolated from 4-6-mo-old IT/+ mice. The sensitivity of the SR Ca(2+) release mechanism to activation was not enhanced in fibers of IT/+ mice. Single-channel measurements of purified recombinant channels incorporated in planar lipid bilayers revealed that Ca(2+) permeation was abolished for homotetrameric IT channels and significantly reduced for heterotetrameric WT:IT channels. Collectively, these findings indicate that in vivo muscle weakness observed in IT/+ knock-in mice arises from a reduction in the magnitude and rate of RYR1 Ca(2+) release during EC coupling that results from the mutation producing a dominant-negative suppression of RYR1 channel Ca(2+) ion permeation.
Collapse
Affiliation(s)
- Ryan E Loy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Boncompagni S, Loy RE, Dirksen RT, Franzini-Armstrong C. The I4895T mutation in the type 1 ryanodine receptor induces fiber-type specific alterations in skeletal muscle that mimic premature aging. Aging Cell 2010; 9:958-70. [PMID: 20961389 DOI: 10.1111/j.1474-9726.2010.00623.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The I4898T (IT) mutation in type 1 ryanodine receptor (RyR1), the Ca(2+) release channel of the sarcoplasmic reticulum (SR) is linked to a form of central core disease (CCD) in humans and results in a nonleaky channel and excitation-contraction uncoupling. We characterized age-dependent and fiber-type-dependent alterations in muscle ultrastructure, as well as the magnitude and spatiotemporal properties of evoked Ca(2+) release in heterozygous Ryr1(I4895T/WT) (IT/+) knock-in mice on a mixed genetic background. The results indicate a classical but mild CCD phenotype that includes muscle weakness and the presence of mitochondrial-deficient areas in type I fibers. Electrically evoked Ca(2+) release is significantly reduced in single flexor digitorum brevis (FDB) fibers from young and old IT/+ mice. Structural changes are strongly fiber-type specific, affecting type I and IIB/IIX fibers in very distinct ways, and sparing type IIA fibers. Ultrastructural alterations in our IT/+ mice are also present in wild type, but at a lower frequency and older ages, suggesting that the disease mutation on the mixed background promotes an acceleration of normal age-dependent changes. The observed functional and structural alterations and their similarity to age-associated changes are entirely consistent with the known properties of the mutated channel, which result in reduced calcium release as is also observed in normal aging muscle. In strong contrast to these observations, a subset of patients with the analogous human heterozygous mutation and IT/+ mice on an inbred 129S2/SvPasCrl background exhibit a more severe disease phenotype, which is not directly consistent with the mutated channel properties.
Collapse
Affiliation(s)
- Simona Boncompagni
- IIM - Interuniversitary Institute of Myology, DNI - Department of Neuroscience and Imaging, Ce.S.I.- Centro Scienze dell'Invecchiamento, University of Studi G. d'Annunzio, 66013 Chieti, Italy.
| | | | | | | |
Collapse
|
48
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
49
|
Vais H, Foskett JK, Daniel Mak DO. Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. J Gen Physiol 2010; 136:687-700. [PMID: 21078871 PMCID: PMC2995152 DOI: 10.1085/jgp.201010513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Don-On Daniel Mak
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
50
|
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996. [PMID: 20961976 DOI: 10.1101/cshperspect.a003996] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.
Collapse
Affiliation(s)
- Johanna T Lanner
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas 77030,USA
| | | | | | | |
Collapse
|