1
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Xue R, Zhang E, Wang Y. Pre-fusion motion state determines the heterogeneity of membrane fusion dynamics for large dense-core vesicles. Acta Physiol (Oxf) 2024; 240:e14115. [PMID: 38353019 DOI: 10.1111/apha.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
AIM In neuroendocrine cells, large dense-core vesicles (LDCVs) undergo highly regulated pre-fusion processes before releasing hormones via membrane fusion. Significant heterogeneity has been found for LDCV population based on the dynamics of membrane fusion. However, how the pre-fusion status impacts the heterogeneity of LDCVs still remains unclear. Hence, we explored pre-fusion determinants of heterogeneous membrane fusion procedure of LDCV subpopulations. METHODS We assessed the pre-fusion motion of two LDCV subpopulations with distinct membrane fusion dynamics individually, using total internal reflection fluorescence microscopy. These two subpopulations were isolated by blocking Rho GTPase-dependent actin reorganization using Clostridium difficile toxin B (ToxB), which selectively targets the fast fusion vesicle pool. RESULTS We found that the fast fusion subpopulation was in an active motion mode prior to release, termed "active" LDCV pool, while vesicles from the slow fusion subpopulation were also moving but in a significantly more confined status, forming an "inert" pool. The depletion of the active pool by ToxB also eliminated fast fusion vesicles and was not rescued by pre-treatment with phorbol ester. A mild actin reorganization blocker, latrunculin A, that partially disrupted the active pool, only slightly attenuated the fast fusion subpopulation. CONCLUSION The pre-fusion motion state of LDCVs also exhibits heterogeneity and dictates the heterogeneous fusion pore dynamics. Rearrangement of F-actin network mediates vesicle pre-fusion motion and subsequently determines the membrane fusion kinetics.
Collapse
Affiliation(s)
- Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Kai F, Ou G, Tourdot RW, Stashko C, Gaietta G, Swift MF, Volkmann N, Long AF, Han Y, Huang HH, Northey JJ, Leidal AM, Viasnoff V, Bryant DM, Guo W, Wiita AP, Guo M, Dumont S, Hanein D, Radhakrishnan R, Weaver VM. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J 2022; 41:e109205. [PMID: 35880301 PMCID: PMC9434103 DOI: 10.15252/embj.2021109205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022] Open
Abstract
Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.
Collapse
Affiliation(s)
- FuiBoon Kai
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Guanqing Ou
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard W Tourdot
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Connor Stashko
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Niels Volkmann
- Scintillon InstituteSan DiegoCAUSA
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Alexandra F Long
- Tetrad Graduate ProgramUniversity of California San FranciscoSan FranciscoCAUSA
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
| | - Yulong Han
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hector H Huang
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Jason J Northey
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
| | - Andrew M Leidal
- Department of PathologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Virgile Viasnoff
- Mechanobiology InstituteNational University of SingaporeSingapore CitySingapore
| | | | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Arun P Wiita
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ming Guo
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sophie Dumont
- Department of Bioengineering and Therapeutic SciencesDepartment of Cell & Tissue Biology, University of California San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Dorit Hanein
- Scintillon InstituteSan DiegoCAUSA
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut PasteurUniversité Paris Cité, CNRS UMR3528ParisFrance
| | - Ravi Radhakrishnan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue RegenerationUniversity of California San FranciscoSan FranciscoCAUSA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCAUSA
- UCSF Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
4
|
Müller M, Glombek M, Powitz J, Brüning D, Rustenbeck I. A Cellular Automaton Model as a First Model-Based Assessment of Interacting Mechanisms for Insulin Granule Transport in Beta Cells. Cells 2020; 9:E1487. [PMID: 32570905 PMCID: PMC7348896 DOI: 10.3390/cells9061487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022] Open
Abstract
In this paper a first model is derived and applied which describes the transport of insulin granules through the cell interior and at the membrane of a beta cell. A special role is assigned to the actin network, which significantly influences the transport. For this purpose, microscopically measured actin networks are characterized and then further ones are artificially generated. In a Cellular Automaton model, phenomenological laws for granule movement are formulated and implemented. Simulation results are compared with experiments, primarily using TIRF images and secretion rates. In this respect, good similarities are already apparent. The model is a first useful approach to describe complex granule transport processes in beta cells, and offers great potential for future extensions. Furthermore, the model can be used as a tool to validate hypotheses and associated mechanisms regarding their effect on exocytosis or other processes. For this purpose, the source code for the model is provided online.
Collapse
Affiliation(s)
- Michael Müller
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Mathias Glombek
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Jeldrick Powitz
- Institute of Dynamics and Vibrations, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (M.G.); (J.P.)
| | - Dennis Brüning
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany;
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany;
| |
Collapse
|
5
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|
6
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Pons-Vizcarra M, Kurps J, Tawfik B, Sørensen JB, van Weering JRT, Verhage M. MUNC18-1 regulates the submembrane F-actin network, independently of syntaxin1 targeting, via hydrophobicity in β-sheet 10. J Cell Sci 2019; 132:jcs.234674. [PMID: 31719162 DOI: 10.1242/jcs.234674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
MUNC18-1 (also known as STXBP1) is an essential protein for docking and fusion of secretory vesicles. Mouse chromaffin cells (MCCs) lacking MUNC18-1 show impaired secretory vesicle docking, but also mistargeting of SNARE protein syntaxin1 and an abnormally dense submembrane F-actin network. Here, we tested the contribution of both these phenomena to docking and secretion defects in MUNC18-1-deficient MCCs. We show that an abnormal F-actin network and syntaxin1 targeting defects are not observed in Snap25- or Syt1-knockout (KO) MCCs, which are also secretion deficient. We identified a MUNC18-1 mutant (V263T in β-sheet 10) that fully restores syntaxin1 targeting but not F-actin abnormalities in Munc18-1-KO cells. MUNC18-2 and -3 (also known as STXBP2 and STXBP3, respectively), which lack the hydrophobic residue at position 263, also did not restore a normal F-actin network in Munc18-1-KO cells. However, these proteins did restore the normal F-actin network when a hydrophobic residue was introduced at the corresponding position. Munc18-1-KO MCCs expressing MUNC18-1(V263T) showed normal vesicle docking and exocytosis. These results demonstrate that MUNC18-1 regulates the F-actin network independently of syntaxin1 targeting via hydrophobicity in β-sheet 10. The abnormally dense F-actin network in Munc18-1-deficient cells is not a rate-limiting barrier in secretory vesicle docking or fusion.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Maria Pons-Vizcarra
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Julia Kurps
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Bassam Tawfik
- Neurosecretion group, Signaling Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion group, Signaling Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Amsterdam UMC, location VUmc, de Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam 1081 HV, The Netherlands .,Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Amsterdam UMC, location VUmc, de Boelelaan 1085, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
8
|
Katoh K. Software-Based Three-Dimensional Deconvolution Microscopy of Cytoskeletal Proteins in Cultured Fibroblast Using Open-Source Software and Open Hardware. J Imaging 2019; 5:jimaging5120088. [PMID: 34460602 PMCID: PMC8321150 DOI: 10.3390/jimaging5120088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires "deconvolution." Therefore, a microscope system's individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.
Collapse
Affiliation(s)
- Kazuo Katoh
- Faculty of Health Sciences, Tsukuba University of Technology, Laboratory of Human Anatomy and Cell Biology, 4-12-7 Kasuga, Tsukuba-city, Ibaraki 305-8521, Japan
| |
Collapse
|
9
|
Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A. Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. Compr Physiol 2019; 9:1443-1502. [PMID: 31688964 DOI: 10.1002/cphy.c190003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chromaffin cells (CCs) of the adrenal gland and the sympathetic nervous system produce the catecholamines (epinephrine and norepinephrine; EPI and NE) needed to coordinate the bodily "fight-or-flight" response to fear, stress, exercise, or conflict. EPI and NE release from CCs is regulated both neurogenically by splanchnic nerve fibers and nonneurogenically by hormones (histamine, corticosteroids, angiotensin, and others) and paracrine messengers [EPI, NE, adenosine triphosphate, opioids, γ-aminobutyric acid (GABA), etc.]. The "stimulus-secretion" coupling of CCs is a Ca2+ -dependent process regulated by Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ pumps, and exchangers and intracellular organelles (RE and mitochondria) and diffusible buffers that provide both Ca2+ -homeostasis and Ca2+ -signaling that ultimately trigger exocytosis. CCs also express Na+ and K+ channels and ionotropic (nAChR and GABAA ) and metabotropic receptors (mACh, PACAP, β-AR, 5-HT, histamine, angiotensin, and others) that make CCs excitable and responsive to autocrine and paracrine stimuli. To maintain high rates of E/NE secretion during stressful conditions, CCs possess a large number of secretory chromaffin granules (CGs) and members of the soluble NSF-attachment receptor complex protein family that allow docking, fusion, and exocytosis of CGs at the cell membrane, and their recycling. This article attempts to provide an updated account of well-established features of the molecular processes regulating CC function, and a survey of the as-yet-unsolved but important questions relating to CC function and dysfunction that have been the subject of intense research over the past 15 years. Examples of CCs as a model system to understand the molecular mechanisms associated with neurodegenerative diseases are also provided. Published 2019. Compr Physiol 9:1443-1502, 2019.
Collapse
Affiliation(s)
- Emilio Carbone
- Laboratory of Cellular and Molecular Neuroscience, Department of Drug Science, N.I.S. Centre, University of Torino, Torino, Italy
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Antonio G García
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Arturo Hernández-Cruz
- Departamento de Neurociencia Cognitiva and Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
10
|
Xia A, Yang S, Zhang R, Ni L, Xing X, Jin F. Imaging the Separation Distance between the Attached Bacterial Cells and the Surface with a Total Internal Reflection Dark-Field Microscope. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8860-8866. [PMID: 31194567 DOI: 10.1021/acs.langmuir.9b01378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The attachment of bacterial cells to a surface is implicated in the formation of biofilms. Although the surface-related behaviors in this process, such as single cell motility and surface sensing, have been investigated intensively, the precise information of separation distance between the attached cells and the surface has remained unclear. Here, we set a prism-based total internal reflection dark-field microscope (p-TIRDFM) combined with the microfluidic method to image the separation distance of single attached cells. We directly observed that bacterial cells attached to the surface with one nearest touchpoint, and it gradually changed to two touchpoints, respectively, for the two offspring with the cell division. We first monitored the fluctuation of the relative distance on nanometer scale when cells twitch on a surface and further established the relationship between the twitching velocity and the separation distance. The results indicated that the moving cells are a considerable distance apart from the surface and the separation distance fluctuated more widely than immobile cells.
Collapse
|
11
|
Noguez P, Rubí JM, De-Miguel FF. Thermodynamic Efficiency of Somatic Exocytosis of Serotonin. Front Physiol 2019; 10:473. [PMID: 31214038 PMCID: PMC6554442 DOI: 10.3389/fphys.2019.00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
Through somatic exocytosis neurons liberate immense amounts of transmitter molecules that modulate the functioning of the nervous system. A stream of action potentials triggers an ATP-dependent transport of transmitter-containing vesicles to the plasma membrane, that ends with a large-scale exocytosis. It is commonly assumed that biological processes use metabolic energy with a high thermodynamic efficiency, meaning that most energy generates work with minor dissipation. However, the intricate ultrastructure underlying the pathway for the vesicle flow necessary for somatic exocytosis challenges this possibility. To study this problem here we first applied thermodynamic theory to quantify the efficiency of somatic exocytosis of the vital transmitter serotonin. Then we correlated the efficiency to the ultrastructure of the transport pathway of the vesicles. Exocytosis was evoked in cultured Retzius neurons of the leech by trains of 10 impulses delivered at 20 Hz. The kinetics of exocytosis was quantified from the gradual fluorescence increase of FM1-43 dye as it became incorporated into vesicles that underwent their exo-endocytosis cycle. By fitting a model of the vesicle transport carried by motor forces to the kinetics of exocytosis, we calculated the thermodynamic efficiency of the ATP expenses per vesicle, as the power of the transport divided by total energy ideally produced by the hydrolysis of ATP during the process. The efficiency was remarkably low (0.1-6.4%) and the values formed a W-shape distribution with the transport distances of the vesicles. Electron micrographs and fluorescent staining of the actin cortex indicated that the slopes of the W chart could be explained by the interaction of vesicles with the actin cortex and the calcium-releasing endoplasmic reticulum. We showed that the application of thermodynamic theory permitted to predict aspects of the intracellular structure. Our results suggest that the distribution of subcellular structures that are essential for somatic exocytosis abates the thermodynamic efficiency of the transport by hampering vesicle mobilization. It is remarkable that the modulation of the nervous system occurs at the expenses of an efficient use of metabolic energy.
Collapse
Affiliation(s)
- Paula Noguez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Miguel Rubí
- Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Francisco F De-Miguel
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
Mikuličić S, Finke J, Boukhallouk F, Wüstenhagen E, Sons D, Homsi Y, Reiss K, Lang T, Florin L. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. eLife 2019; 8:44345. [PMID: 31107240 PMCID: PMC6557631 DOI: 10.7554/elife.44345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/17/2019] [Indexed: 01/23/2023] Open
Abstract
Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jérôme Finke
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Fatima Boukhallouk
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elena Wüstenhagen
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yahya Homsi
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Karina Reiss
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Hassanzadeh A, Saedi S, Mohammadnezhad M, Saeed SR. Rigorous electromagnetic theory for waveguide evanescent field fluorescence microscopy. APPLIED OPTICS 2018; 57:9129-9139. [PMID: 30461903 DOI: 10.1364/ao.57.009129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
Recently, waveguide evanescent field fluorescence (WEFF) microscopy was introduced and used to image and analyze cell-substrate contacts. Here, we establish a comprehensive electromagnetic theory in a seven-layer structure as a model for a typical waveguide-cell structure appropriate for WEFF microscopy and apply it to quantify cell-waveguide separation distances. First, electromagnetic fields at the various layers of a model waveguide-cell system are derived. Then, we obtain the dispersion relation or characteristic equation for TE modes with a stratified media as a cover. Waveguides supporting a defined number of modes are theoretically designed for conventional, reverse, and symmetric waveguide structures and then various waveguide parameters and the penetration depths of the evanescent fields are obtained. We show that the penetration depth of the evanescent field in a three-layer waveguide-cell structure is always lower than that of a seven-layer structure. Using the derived electromagnetic fields, the background and the excited fluorescence in the waveguide-cell gap, filled with water-soluble fluorophores, are analytically formulated. The effect of the waveguide structures on the fluorescence and the background are investigated for various modes. Numerical results are presented for the background and the stimulated fluorescence as functions of the water gap width for various waveguide structures, which can be used to find the water gap width. The results indicate that the background and excited fluorescence increase by increasing the penetration depth of the evanescent field. In addition, we show that for various guided modes of a conventional waveguide, the electric fields in the cell membrane and the cytoplasm are evanescent and they do not depend on the waveguide structure and the mode number. However, for the reverse symmetry and symmetric waveguide structures, the waves are sinusoidal in the cell membrane and the cytoplasm for the highest-order modes.
Collapse
|
14
|
Gimenez-Molina Y, Villanueva J, Francés MDM, Viniegra S, Gutiérrez LM. Multiple Mechanisms Driving F-actin-Dependent Transport of Organelles to and From Secretory Sites in Bovine Chromaffin Cells. Front Cell Neurosci 2018; 12:344. [PMID: 30356839 PMCID: PMC6190647 DOI: 10.3389/fncel.2018.00344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 01/12/2023] Open
Abstract
Neuroendocrine chromaffin cells represent an excellent model to study the molecular mechanisms associated with the exo-endocytotic cycle of neurotransmitter release. In this study, EGFP-Lifeact and confocal microscopy has been used to analyze the re-organization of the cortical F-actin cytoskeleton associated to organelle transport during secretion with unprecedented detail. In these cells secretory events accumulate in temperature-sensitive and myosin II-dependent F-actin expansions and retractions affecting specific regions of the sub-membrane space. Interestingly, not only vesicles but also mitochondria are transported toward the plasmalemma during these expansions. Simultaneously, we found F-actin cytoskeletal retraction withdraws vesicles from the sub-plasmalemmal space, forming novel empty internal spaces into which organelles can be transported. In addition to these well-coordinated, F-actin-myosin II dependent processes that drive the transport of the majority of vesicles, fast transport of chromaffin vesicles was observed, albeit less frequently, which used F-actin comet tails nucleated from the granular membrane. Thus, upon cell stimulation F-actin structures use diverse mechanisms to transport organelles to and from the membrane during the exo-endocytotic cycle taking place in specific areas of cell periphery.
Collapse
Affiliation(s)
- Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - José Villanueva
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Maria Del Mar Francés
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
15
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Ashdown GW, Williamson DJ, Soh GHM, Day N, Burn GL, Owen DM. Membrane lipid order of sub-synaptic T cell vesicles correlates with their dynamics and function. Traffic 2017; 19:29-35. [PMID: 28981993 DOI: 10.1111/tra.12532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
During an immune response, T cells survey antigen presenting cells for antigenic peptides via the formation of an interface known as an immunological synapse. Among the complex and dynamic biophysical phenomena occurring at this interface is the trafficking of sub-synaptic vesicles carrying a variety of proximal signalling molecules. Here, we show that rather than being a homogeneous population, these vesicles display a diversity of membrane lipid order profiles, as measured using the environmentally sensitive dye di-4-ANEPPDHQ and multi-spectral TIRF microscopy. Using live-cell imaging, vesicle tracking and a variety of small molecule drugs to manipulate components of the actin and tubulin cytoskeleton, we show that the membrane lipid order of these vesicles correlate with their dynamics. Furthermore, we show that the key proximal signalling molecule Linker for Activation of T cells (LAT) is enriched in specific vesicle populations as defined by their higher membrane order. These results imply that vesicle lipid order may represent a novel regulatory mechanism for the sorting and trafficking of signalling molecules at the immunological synapse, and, potentially, other cellular structures.
Collapse
Affiliation(s)
- George W Ashdown
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - David J Williamson
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Gary H M Soh
- Friedrich Miescher Laboratory, University of Tübingen, Tübingen, Germany
| | - Nathan Day
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Garth L Burn
- Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Dylan M Owen
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
17
|
Wang J, Richards DA. The actin binding protein scinderin acts in PC12 cells to tether dense-core vesicles prior to secretion. Mol Cell Neurosci 2017; 85:12-18. [PMID: 28823945 DOI: 10.1016/j.mcn.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanistic understanding of the control of vesicle motion from within a secretory cell to the site of exocytosis remains incomplete. In this work, we have used total internal reflection (TIRF) microscopy to examine the mobility of secretory vesicles at the plasma membrane. Under resting conditions, we found vesicles showed little lateral mobility. Anchoring of vesicles in this membrane proximal compartment could be disrupted with latrunculin A, indicating an apparent actin dependent process. A candidate intermediary between vesicles and the actin skeleton is the actin binding protein scinderin. Co-transfection of an shRNA construct against scinderin blocked secretion, and also increased the mobility of vesicles in the membrane-proximal section of the cell, indicating a dual role for scinderin in secretion; tethering vesicles to the cytoskeleton, as well as liberating them following stimulation through the previously described calcium dependent actin severing activity. Analysis of lipid dependence indicates that scinderin exhibits calcium dependent binding to phosphatidyl-inositol monophosphate, providing a possible mechanism for vesicle binding.
Collapse
Affiliation(s)
- J Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - D A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, 1 College Circle, Bangor, ME 04401, United States.
| |
Collapse
|
18
|
Gutiérrez LM, Villanueva J. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective. Pflugers Arch 2017; 470:181-186. [PMID: 28730385 PMCID: PMC5748413 DOI: 10.1007/s00424-017-2040-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022]
Abstract
Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more “native” configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Alicante, Spain.
| | - José Villanueva
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Alicante, Spain
| |
Collapse
|
19
|
Ramadass M, Catz SD. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation. Immunol Rev 2017; 273:249-65. [PMID: 27558339 DOI: 10.1111/imr.12452] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio D Catz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
20
|
Fan F, Matsunaga K, Wang H, Ishizaki R, Kobayashi E, Kiyonari H, Mukumoto Y, Okunishi K, Izumi T. Exophilin-8 assembles secretory granules for exocytosis in the actin cortex via interaction with RIM-BP2 and myosin-VIIa. eLife 2017; 6. [PMID: 28673385 PMCID: PMC5496739 DOI: 10.7554/elife.26174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/04/2017] [Indexed: 12/15/2022] Open
Abstract
Exophilin-8 has been reported to play a role in anchoring secretory granules within the actin cortex, due to its direct binding activities to Rab27 on the granule membrane and to F-actin and its motor protein, myosin-Va. Here, we show that exophilin-8 accumulates granules in the cortical F-actin network not by direct interaction with myosin-Va, but by indirect interaction with a specific form of myosin-VIIa through its previously unknown binding partner, RIM-BP2. RIM-BP2 also associates with exocytic machinery, Cav1.3, RIM, and Munc13-1. Disruption of the exophilin-8-RIM-BP2-myosin-VIIa complex by ablation or knockdown of each component markedly decreases both the peripheral accumulation and exocytosis of granules. Furthermore, exophilin-8-null mouse pancreatic islets lose polarized granule localization at the β-cell periphery and exhibit impaired insulin secretion. This newly identified complex acts as a physical and functional scaffold and provides a mechanism supporting a releasable pool of granules within the F-actin network beneath the plasma membrane.
Collapse
Affiliation(s)
- Fushun Fan
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Yoshiko Mukumoto
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan.,Research Program for Signal Transduction, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| |
Collapse
|
21
|
Liu YL, Perillo EP, Liu C, Yu P, Chou CK, Hung MC, Dunn AK, Yeh HC. Segmentation of 3D Trajectories Acquired by TSUNAMI Microscope: An Application to EGFR Trafficking. Biophys J 2017; 111:2214-2227. [PMID: 27851944 DOI: 10.1016/j.bpj.2016.09.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022] Open
Abstract
Whereas important discoveries made by single-particle tracking have changed our view of the plasma membrane organization and motor protein dynamics in the past three decades, experimental studies of intracellular processes using single-particle tracking are rather scarce because of the lack of three-dimensional (3D) tracking capacity. In this study we use a newly developed 3D single-particle tracking method termed TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) to investigate epidermal growth factor receptor (EGFR) trafficking dynamics in live cells at 16/43 nm (xy/z) spatial resolution, with track duration ranging from 2 to 10 min and vertical tracking depth up to tens of microns. To analyze the long 3D trajectories generated by the TSUNAMI microscope, we developed a trajectory analysis algorithm, which reaches 81% segment classification accuracy in control experiments (termed simulated movement experiments). When analyzing 95 EGF-stimulated EGFR trajectories acquired in live skin cancer cells, we find that these trajectories can be separated into three groups-immobilization (24.2%), membrane diffusion only (51.6%), and transport from membrane to cytoplasm (24.2%). When EGFRs are membrane-bound, they show an interchange of Brownian diffusion and confined diffusion. When EGFRs are internalized, transitions from confined diffusion to directed diffusion and from directed diffusion back to confined diffusion are clearly seen. This observation agrees well with the model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Evan P Perillo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Cong Liu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Peter Yu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Chao-Kai Chou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
22
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
23
|
Villanueva J, Gimenez-Molina Y, Viniegra S, Gutiérrez LM. F-actin cytoskeleton and the fate of organelles in chromaffin cells. J Neurochem 2016; 137:860-6. [PMID: 26843469 DOI: 10.1111/jnc.13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss the role of transport systems and the existence of an F-actin cortical structure as the main factors behind the formation of organelle subpopulations in this neuroendocrine cell model. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015). Cover image for this issue: doi: 10.1111/jnc.13322.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| |
Collapse
|
24
|
Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TFJ. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell 2016; 27:654-68. [PMID: 26700319 PMCID: PMC4750925 DOI: 10.1091/mbc.e15-07-0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | - Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
25
|
Yamaga M, Kielar-Grevstad DM, Martin TFJ. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin. J Biol Chem 2015; 290:29010-21. [PMID: 26432644 PMCID: PMC4661413 DOI: 10.1074/jbc.m115.658328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/30/2015] [Indexed: 02/02/2023] Open
Abstract
PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca(2+)-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca(2+)-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca(2+)-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca(2+) levels to ~400 or ~800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K(+) preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K(+) preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K(+) but not with 56 mm K(+) activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca(2+)-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca(2+)-dependent regulator of F-actin dynamics and vesicle trafficking.
Collapse
Affiliation(s)
- Masaki Yamaga
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Thomas F J Martin
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
26
|
Young PA, Leonard S, Martin DSD, Findlay JBC. Analysis of the effect of a novel therapeutic for type 2 diabetes on the proteome of a muscle cell line. Proteomics 2015; 16:70-9. [PMID: 26573124 DOI: 10.1002/pmic.201500050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 01/18/2023]
Abstract
Elevated serum retinol-binding protein (RBP) concentration has been implicated in the development of insulin resistance and type 2 diabetes. Two series of small molecules have been designed to lower serum levels by reducing secretion of the transthyretin-RBP complex from the liver and enhancing RBP clearance through the kidney. These small molecules were seen to improve glucose and insulin tolerance tests and to reduce body weight gain in mice rendered diabetic through a high fat diet. A proteomics study was conducted to better understand the effects of these compounds in muscle cells, muscle being the primary site for energy expenditure. One lead compound, RTC-15, is seen to have a significant effect on proteins involved in fat and glucose metabolism. This could indicate that the compound is having a direct effect on muscle tissue to improve energy homeostasis as well as a whole body effect on circulating RBP levels. This newly characterized group of antidiabetic compounds may prove useful in the treatment and prevention of insulin resistance and obesity.
Collapse
Affiliation(s)
- Pamela A Young
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Siobhán Leonard
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Darren S D Martin
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - John B C Findlay
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
27
|
Seriani R, Junqueira MDS, de Toledo AC, Martins MA, Seckler M, Alencar AM, Negri EM, Silva LFF, Mauad T, Saldiva PHN, Macchione M. Diesel exhaust particulates affect cell signaling, mucin profiles, and apoptosis in trachea explants of Balb/C mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1297-1308. [PMID: 24777914 DOI: 10.1002/tox.22000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 01/10/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 μg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 μg/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 μg/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 μg/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 μg/mL DEP for 30 min or 60 min showed a significant increase (p < 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases.
Collapse
Affiliation(s)
- Robson Seriani
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mara de Souza Junqueira
- Central Biotery Laboratory, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Choqueta de Toledo
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Milton Arruda Martins
- Experimental Therapeutics Laboratory, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Seckler
- Department of Chemistry Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Adriano Mesquita Alencar
- Department of General Physics - Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
| | - Elnara Marcia Negri
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Fernando Ferraz Silva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Thaís Mauad
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Mariangela Macchione
- Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells. Biophys J 2015; 108:251-60. [PMID: 25606674 DOI: 10.1016/j.bpj.2014.11.3462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.
Collapse
|
29
|
Fan F, Ji C, Wu Y, Ferguson SM, Tamarina N, Philipson LH, Lou X. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. J Clin Invest 2015; 125:4026-41. [PMID: 26413867 DOI: 10.1172/jci80652] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus.
Collapse
|
30
|
Adenylyl cyclase localization to the uropod of aggregating Dictyostelium cells requires RacC. Biochem Biophys Res Commun 2015; 465:613-9. [PMID: 26315268 DOI: 10.1016/j.bbrc.2015.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
Abstract
The localization of adenylyl cyclase A (ACA) to uropod of cells is required for the stream formation during Dictyostelium development. RacC is a Dictyostelium orthologue of Cdc42. We identified a streaming defect of racC(-) cells as they are clearly less polarized and form smaller and fragmented streams. ACA-YFP is mainly associated with intracellular vesicular structures, but not with the plasma membrane in racC(-) cells. racC(-) cells have a slightly higher number of vesicles than Ax3 cells, suggesting that the defect of ACA trafficking is not simply due to the lack of vesicle formation. While the ACA-YFP vesicles traveled with an average velocity of 9.1 μm/min in Ax3 cells, a slow and diffusional movement without direction with an average velocity of 4 μm/min was maintained in racC(-) cells. Images acquired by using total internal reflection fluorescence (TIRF) microscopy and fluorescence recovery after photobleaching (FRAP) analysis revealed that a significantly decreased number of ACA-YFP vesicles appeared near the cell membrane, indicating a defect in ACA-YFP vesicle trafficking. These results suggest an important role of RacC in the rapid and directional movements of ACA vesicles on microtubules to the plasma membrane, especially to the back of polarized cell.
Collapse
|
31
|
Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C, Moghadam PK, Bost A, Schirra C, Rettig J, Reim K, Brose N, Mohrmann R, Bruns D. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. ACTA ACUST UNITED AC 2014; 204:1123-40. [PMID: 24687280 PMCID: PMC3971750 DOI: 10.1083/jcb.201311085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
ComplexinII and SynaptotagminI coordinately transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus. ComplexinII (CpxII) and SynaptotagminI (SytI) have been implicated in regulating the function of SNARE proteins in exocytosis, but their precise mode of action and potential interplay have remained unknown. In this paper, we show that CpxII increases Ca2+-triggered vesicle exocytosis and accelerates its secretory rates, providing two independent, but synergistic, functions to enhance synchronous secretion. Specifically, we demonstrate that the C-terminal domain of CpxII increases the pool of primed vesicles by hindering premature exocytosis at submicromolar Ca2+ concentrations, whereas the N-terminal domain shortens the secretory delay and accelerates the kinetics of Ca2+-triggered exocytosis by increasing the Ca2+ affinity of synchronous secretion. With its C terminus, CpxII attenuates fluctuations of the early fusion pore and slows its expansion but is functionally antagonized by SytI, enabling rapid transmitter discharge from single vesicles. Thus, our results illustrate how key features of CpxII, SytI, and their interplay transform the constitutively active SNARE-mediated fusion mechanism into a highly synchronized, Ca2+-triggered release apparatus.
Collapse
Affiliation(s)
- Madhurima Dhara
- Institute for Physiology, University of Saarland, 66424 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Large dense core vesicle (LDCV) exocytosis in chromaffin cells follows a well characterized process consisting of docking, priming, and fusion. Total internal reflection fluorescence microscopy (TIRFM) studies suggest that some LDCVs, although being able to dock, are resistant to calcium-triggered release. This phenomenon termed dead-end docking has not been investigated until now. We characterized dead-end vesicles using a combination of membrane capacitance measurement and visualization of LDCVs with TIRFM. Stimulation of bovine chromaffin cells for 5 min with 6 μm free intracellular Ca2+ induced strong secretion and a large reduction of the LDCV density at the plasma membrane. Approximately 15% of the LDCVs were visible at the plasma membrane throughout experiments, indicating they were permanently docked dead-end vesicles. Overexpression of Munc18-2 or SNAP-25 reduced the fraction of dead-end vesicles. Conversely, expressing open-syntaxin increased the fraction of dead-end vesicles. These results indicate the existence of the unproductive target soluble N-ethylmaleimide-sensitive factor attachment protein receptor acceptor complex composed of 2:1 syntaxin-SNAP-25 in vivo. More importantly, they define a novel function for this acceptor complex in mediating dead-end docking.
Collapse
|
33
|
Gu Y, Wang G, Fang N. Simultaneous single-particle superlocalization and rotational tracking. ACS NANO 2013; 7:1658-1665. [PMID: 23363388 DOI: 10.1021/nn305640y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Superlocalization of single molecules and nanoparticles has become an essential procedure to bring new insights into nanoscale structures and dynamics of biological systems. In the present study, superlocalization is combined with the newly introduced differential interference contrast (DIC) microscopy-based single-particle orientation and rotational tracking. The new technique overcomes the difficulty in localization of the antisymmetric DIC point spread function by using a dual-modality microscope configuration for simultaneous rotational tracking and localization of single gold nanorods with nanometer-scale precision. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment. This technique has great potential in the study of biological processes where both localization and rotational information are required.
Collapse
Affiliation(s)
- Yan Gu
- Ames Laboratory, U.S. Department of Energy, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
34
|
Wollman R, Meyer T. Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat Cell Biol 2012; 14:1261-9. [PMID: 23143397 PMCID: PMC3777337 DOI: 10.1038/ncb2614] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/04/2012] [Indexed: 01/10/2023]
Abstract
The actin cortex both facilitates and hinders exocytosis of secretory granules. How cells consolidate these two opposing roles was not well understood. Here we show that antigen activation of mast cells induces oscillations in Ca2+ and PI(4,5)P2 lipids that in turn drive cyclic recruitment of N-WASP and cortical actin oscillations. Experimental and computational analysis argues that vesicle fusion correlates with the observed actin and Ca2+ oscillations. A vesicle secretion cycle starts with the capture of vesicles by actin when cortical F-actin is high, followed by vesicle passage through the cortex when F-actin levels are low, and vesicle fusion with the plasma membrane when Ca2+ levels subsequently increase. Thus, cells employ oscillating levels of Ca2+, PI(4,5)P2 and cortical F-actin to increase secretion efficiency, explaining how the actin cortex can function as a carrier as well as barrier for vesicle secretion.
Collapse
Affiliation(s)
- R Wollman
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
35
|
MacQueen LA, Thibault M, Buschmann MD, Wertheimer MR. Electromechanical deformation of mammalian cells in suspension depends on their cortical actin thicknesses. J Biomech 2012; 45:2797-803. [DOI: 10.1016/j.jbiomech.2012.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/07/2023]
|
36
|
Elias S, Delestre C, Ory S, Marais S, Courel M, Vazquez-Martinez R, Bernard S, Coquet L, Malagon MM, Driouich A, Chan P, Gasman S, Anouar Y, Montero-Hadjadje M. Chromogranin A induces the biogenesis of granules with calcium- and actin-dependent dynamics and exocytosis in constitutively secreting cells. Endocrinology 2012; 153:4444-56. [PMID: 22851679 DOI: 10.1210/en.2012-1436] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromogranins are a family of acidic glycoproteins that play an active role in hormone and neuropeptide secretion through their crucial role in secretory granule biogenesis in neuroendocrine cells. However, the molecular mechanisms underlying their granulogenic activity are still not fully understood. Because we previously demonstrated that the expression of the major component of secretory granules, chromogranin A (CgA), is able to induce the formation of secretory granules in nonendocrine COS-7 cells, we decided to use this model to dissect the mechanisms triggered by CgA leading to the biogenesis and trafficking of such granules. Using quantitative live cell imaging, we first show that CgA-induced organelles exhibit a Ca(2+)-dependent trafficking, in contrast to native vesicle stomatitis virus G protein-containing constitutive vesicles. To identify the proteins that confer such properties to the newly formed granules, we developed CgA-stably-expressing COS-7 cells, purified their CgA-containing granules by subcellular fractionation, and analyzed the granule proteome by liquid chromatography-tandem mass spectrometry. This analysis revealed the association of several cytosolic proteins to the granule membrane, including GTPases, cytoskeleton-based molecular motors, and other proteins with actin- and/or Ca(2+)-binding properties. Furthermore, disruption of cytoskeleton affects not only the distribution and the transport but also the Ca(2+)-evoked exocytosis of the CgA-containing granules, indicating that these granules interact with microtubules and cortical actin for the regulated release of their content. These data demonstrate for the first time that the neuroendocrine factor CgA induces the recruitment of cytoskeleton-, GTP-, and Ca(2+)-binding proteins in constitutively secreting COS-7 cells to generate vesicles endowed with typical dynamics and exocytotic properties of neuroendocrine secretory granules.
Collapse
Affiliation(s)
- Salah Elias
- Institut National de la Santé et de la Recherche Médicale (Inserm) U982, University of Rouen, Mont-Saint-Aignan 76821, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Butler CE, Tyler KM. Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi. Cell Microbiol 2012; 14:1345-53. [PMID: 22646288 PMCID: PMC3428839 DOI: 10.1111/j.1462-5822.2012.01818.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 12/24/2022]
Abstract
It is widely accepted that Trypanosoma cruzi can exploit the natural exocytic response of the host to cell damage, utilizing host cell lysosomes as important effectors. It is, though, increasingly clear that the parasite also exploits endocytic mechanisms which allow for incorporation of plasma membrane into the parasitophorous vacuole. Further, that these endocytic mechanisms are involved in cross-talk with the exocytic machinery, in the recycling of vesicles and in the manipulation of the cytoskeleton. Here we review the mechanisms by which T. cruzi exploits features of the exocytic and endocytic pathways in epithelial and endothelial cells and the evidence for cross-talk between these pathways.
Collapse
Affiliation(s)
- Claire E Butler
- Biomedical Research Centre, Norwich School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK
| | | |
Collapse
|
38
|
Scalettar BA, Jacobs C, Fulwiler A, Prahl L, Simon A, Hilken L, Lochner JE. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking. Dev Neurobiol 2012; 72:1181-95. [PMID: 21976424 DOI: 10.1002/dneu.20984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/29/2023]
Abstract
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.
Collapse
Affiliation(s)
- B A Scalettar
- Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Villanueva J, Torres V, Torregrosa-Hetland CJ, Garcia-Martinez V, López-Font I, Viniegra S, Gutiérrez LM. F-actin-myosin II inhibitors affect chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex. J Mol Neurosci 2012; 48:328-38. [PMID: 22588981 DOI: 10.1007/s12031-012-9800-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/30/2012] [Indexed: 11/25/2022]
Abstract
Chromaffin cell catecholamines are released when specialized secretory vesicles undergo exocytotic membrane fusion. Evidence indicates that vesicle supply and fusion are controlled by the activity of the cortical F-actin-myosin II network. To study in detail cell cortex and vesicle interactions, we use fluorescent labeling with GFP-lifeact and acidotropic dyes in confocal and evanescent wave microscopy. These techniques provide structural details and dynamic images of chromaffin granules caged in a complex cortical structure. Both the movement of cortical structures and granule motion appear to be linked, and this motion can be restricted by the myosin II-specific inhibitor, blebbistatin, and the F-actin stabilizer, jasplakinolide. These treatments also affect the position of the vesicles in relation to the plasma membrane, increasing the distance between them and the fusion sites. Consequently, we observed slower single vesicle fusion kinetics in treated cells after neutralization of acridine orange-loaded granules during exocytosis. Increasing the distance between the granules and the fusion sites appears to be linked to the retraction of the F-actin cytoskeleton when treated with jasplakinolide. Thus, F-actin-myosin II inhibitors appear to slow granule fusion kinetics by altering the position of vesicles after relaxation of the cortical network.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante 03550, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Jung SR, Seo JB, Shim D, Hille B, Koh DS. Actin cytoskeleton controls movement of intracellular organelles in pancreatic duct epithelial cells. Cell Calcium 2012; 51:459-69. [PMID: 22579052 DOI: 10.1016/j.ceca.2012.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 12/01/2022]
Abstract
In most eukaryotic cells, microtubules and filamentous actin (F-actin) provide tracks on which intracellular organelles move using molecular motors. Here we report that cytoplasmic movement of both mitochondria and lysosomes is slowed by F-actin meshwork formation in pancreatic duct epithelial cells (PDEC). Mitochondria and lysosomes were labeled with fluorescent Mitotracker Red CMXRos and Lysotracker Red DND-99, respectively, and their movements were monitored using epi-fluorescence and confocal microscopy. Mitochondria and lysosomes moving actively at rest stopped rapidly within several seconds after an intracellular Ca(2+) rise induced by activation of P2Y(2) purinergic receptors. The 'freezing' of the organelles was inhibited by blocking the Ca(2+) rise or by pretreatment with latrunculin B, an inhibitor of F-actin formation. Indeed, this freezing effect on the organelles was accompanied by the formation of F-actin in the whole cytoplasm as stained with Alexa 488-phalloidin in fixed PDEC. For real-time monitoring of F-actin formation in live cells, we expressed sGFP-fimbrin actin binding domain2 (fABD2) in PDEC. Rapid recruitment of the fluorescent probe near the nucleus and lysosomes suggested dense F-actin formation around intracellular structures. The development of F-actin paralleled that of organelle freezing. We conclude that rapid Ca(2+)-dependent F-actin formation physically restrains intracellular organelles and reduces their mobility non-selectively in PDEC.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, United States
| | | | | | | | | |
Collapse
|
41
|
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol 2012; 107:3479-92. [PMID: 22457456 DOI: 10.1152/jn.00789.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated actin's function in vesicle recycling and exocytosis at lamprey synapses and show that FM1-43 puncta and phalloidin-labeled filamentous actin (F-actin) structures are colocalized, yet recycling vesicles are not contained within F-actin clusters. Additionally, phalloidin also labels a plasma membrane-associated cortical actin. Injection of fluorescent G-actin revealed activity-independent dynamic actin incorporation into presynaptic synaptic vesicle clusters but not into cortical actin. Latrunculin-A, which sequesters G-actin, dispersed vesicle-associated actin structures and prevented subsequent labeled G-actin and phalloidin accumulation at presynaptic puncta, yet cortical phalloidin labeling persisted. Dispersal of presynaptic F-actin structures by latrunculin-A did not disrupt vesicle clustering or recycling or alter the amplitude or kinetics of excitatory postsynaptic currents (EPSCs). However, it slightly enhanced release during repetitive stimulation. While dispersal of presynaptic actin puncta with latrunculin-A failed to disperse synaptic vesicles or inhibit synaptic transmission, presynaptic phalloidin injection blocked exocytosis and reduced endocytosis measured by action potential-evoked FM1-43 staining. Furthermore, phalloidin stabilization of only cortical actin following pretreatment with latrunculin-A was sufficient to inhibit synaptic transmission. Conversely, treatment of axons with jasplakinolide, which induces F-actin accumulation but disrupts F-actin structures in vivo, resulted in increased synaptic transmission accompanied by a loss of phalloidin labeling of cortical actin but no loss of actin labeling within vesicle clusters. Marked synaptic deficits seen with phalloidin stabilization of cortical F-actin, in contrast to the minimal effects of disruption of a synaptic vesicle-associated F-actin, led us to conclude that two structurally and functionally distinct pools of actin exist at presynaptic sites.
Collapse
Affiliation(s)
- Adam Bleckert
- Dept. of Biological Sciences, Univ. of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
42
|
Johnson JL, Monfregola J, Napolitano G, Kiosses WB, Catz SD. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol Biol Cell 2012; 23:1902-16. [PMID: 22438581 PMCID: PMC3350554 DOI: 10.1091/mbc.e11-12-1001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mechanism of cytoskeleton remodeling during exocytosis is not well defined. A combination of vesicular dynamics and functional studies shows that the Rab27a effector JFC1 and the RhoA-GTPase–activating protein Gem-interacting protein are necessary for RhoA regulation, actin depolymerization, and vesicular transport through the actin cortex during exocytosis. Cytoskeleton remodeling is important for the regulation of vesicular transport associated with exocytosis, but a direct association between granular secretory proteins and actin-remodeling molecules has not been shown, and this mechanism remains obscure. Using a proteomic approach, we identified the RhoA-GTPase–activating protein Gem-interacting protein (GMIP) as a factor that associates with the Rab27a effector JFC1 and modulates vesicular transport and exocytosis. GMIP down-regulation induced RhoA activation and actin polymerization. Importantly, GMIP-down-regulated cells showed impaired vesicular transport and exocytosis, while inhibition of the RhoA-signaling pathway induced actin depolymerization and facilitated exocytosis. We show that RhoA activity polarizes around JFC1-containing secretory granules, suggesting that it may control directionality of granule movement. Using quantitative live-cell microscopy, we show that JFC1-containing secretory organelles move in areas near the plasma membrane deprived of polymerized actin and that dynamic vesicles maintain an actin-free environment in their surroundings. Supporting a role for JFC1 in RhoA inactivation and actin remodeling during exocytosis, JFC1 knockout neutrophils showed increased RhoA activity, and azurophilic granules were unable to traverse cortical actin in cells lacking JFC1. We propose that during exocytosis, actin depolymerization commences near the secretory organelle, not the plasma membrane, and that secretory granules use a JFC1- and GMIP-dependent molecular mechanism to traverse cortical actin.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
43
|
Sato M, Kitaguchi T, Numano R, Ikematsu K, Kakeyama M, Murata M, Sato K, Tsuboi T. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells. Biochem Biophys Res Commun 2012; 420:417-21. [PMID: 22426478 DOI: 10.1016/j.bbrc.2012.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/02/2012] [Indexed: 11/27/2022]
Abstract
Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.
Collapse
Affiliation(s)
- Mai Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Actin-dependent rapid recruitment of reluctant synaptic vesicles into a fast-releasing vesicle pool. Proc Natl Acad Sci U S A 2012; 109:E765-74. [PMID: 22393020 DOI: 10.1073/pnas.1114072109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic synaptic terminals harbor reluctant synaptic vesicles (SVs) that contribute little to synchronous release during action potentials but are release competent when stimulated by sucrose or by direct intracellular application of calcium. It has been noted that the proximity of a release-competent SV to the calcium source is one of the primary factors that differentiate reluctant SVs from fast-releasing ones at the calyx of Held synapse. It has not been known whether reluctant SVs can be converted into fast-releasing ones. Here we show that reluctant SVs are recruited rapidly in an actin-dependent manner to become fast-releasing SVs once the pool of fast-releasing SVs is depleted by a short depolarization. Recovery of the pool of fast-releasing SVs was accompanied by a parallel reduction in the number of reluctant SVs. Quantitative analysis of the time course of depletion of fast-releasing SVs during high-frequency stimulation revealed that in the early phase of stimulation reluctant SVs are converted rapidly into fast-releasing ones, thereby counteracting short-term depression. During the late phase, however, after reluctant vesicles have been used up, another process of calmodulin-dependent recruitment of fast-releasing SVs is activated. These results document that reluctant SVs have a role in short-term plasticity and support the hypothesis of positional priming, which posits that reluctant vesicles are converted into fast-releasing ones via relocation closer to Ca(2+)-channels.
Collapse
|
45
|
Gutiérrez LM. New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:109-37. [PMID: 22449488 DOI: 10.1016/b978-0-12-394306-4.00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cortical cytoskeleton is a dense network of filamentous actin (F-actin) that participates in the events associated with secretion from neuroendocrine cells. This filamentous web traps secretory vesicles, acting as a retention system that blocks the access of vesicles to secretory sites during the resting state, and it mediates their active directional transport during stimulation. The changes in the cortical cytoskeleton that drive this functional transformation have been well documented, particularly in cultured chromaffin cells. At the biochemical level, alterations in F-actin are governed by the activity of molecular motors like myosins II and V and by other calcium-dependent proteins that influence the polymerization and cross-linking of F-actin structures. In addition to modulating vesicle transport, the F-actin cortical network and its associated motor proteins also influence the late phases of the secretory process, including membrane fusion and the release of active substances through the exocytotic fusion pore. Here, we discuss the potential interactions between the F-actin cortical web and proteins such as SNAREs during secretion. We also discuss the role of the cytoskeleton in organizing the molecular elements required to sustain regulated exocytosis, forming a molecular structure that foments the efficient release of neurotransmitters and hormones.
Collapse
Affiliation(s)
- Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Alicante, Spain
| |
Collapse
|
46
|
Yang HJ, Sugiura Y, Ikegami K, Konishi Y, Setou M. Axonal gradient of arachidonic acid-containing phosphatidylcholine and its dependence on actin dynamics. J Biol Chem 2011; 287:5290-300. [PMID: 22207757 DOI: 10.1074/jbc.m111.316877] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine (PC) is the most abundant component of lipid bilayers and exists in various molecular forms, through combinations of two acylated fatty acids. Arachidonic acid (AA)-containing PC (AA-PC) can be a source of AA, which is a crucial mediator of synaptic transmission and intracellular signaling. However, the distribution of AA-PC within neurons has not been indicated. In the present study, we used imaging mass spectrometry to characterize the distribution of PC species in cultured neurons of superior cervical ganglia. Intriguingly, PC species exhibited a unique distribution that was dependent on the acyl chains at the sn-2 position. In particular, we found that AA-PC is enriched within the axon and is distributed across a proximal-to-distal gradient. Inhibitors of actin dynamics (cytochalasin D and phallacidin) disrupted this gradient. This is the first report of the gradual distribution of AA-PC along the axon and its association with actin dynamics.
Collapse
Affiliation(s)
- Hyun-Jeong Yang
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
47
|
Wang J, Richards DA. Spatial regulation of exocytic site and vesicle mobilization by the actin cytoskeleton. PLoS One 2011; 6:e29162. [PMID: 22195014 PMCID: PMC3237607 DOI: 10.1371/journal.pone.0029162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/22/2011] [Indexed: 01/31/2023] Open
Abstract
Numerous studies indicate a role for the actin cytoskeleton in secretion. Here, we have used evanescent wave and widefield fluorescence microscopy to study the involvement of the actin cytoskeleton in secretion from PC12 cells. Secretion was assayed as loss of ANF-EmGFP in widefield mode. Under control conditions, depolarization induced secretion showed two phases: an initial rapid rate of loss of vesicular cargo (tau = 1.4 s), followed by a slower, sustained drop in fluorescence (tau = 34.1 s). Pretreatment with Latrunculin A changed the kinetics to a single exponential, slightly faster than the fast component of control cells (1.2 s). Evanescent wave microscopy allowed us to examine this at the level of individual events, and revealed equivalent changes in the rates of vesicular arrival at the plasma membrane immediately following and during the sustained phase of release. Co-transfection of mCherry labeled β-actin and ANF-EmGFP demonstrated that sites of exocytosis had an inverse relationship with sites of actin enrichment. Disruption of visualized actin at the membrane resulted in the loss of specificity of exocytic site.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David A. Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC. Gelsolin associates with the N terminus of syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2011; 26:128-41. [PMID: 22108804 DOI: 10.1210/me.2011-1112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.
Collapse
Affiliation(s)
- Michael A Kalwat
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
49
|
Majewski Ł, Sobczak M, Wasik A, Skowronek K, Rędowicz MJ. Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion. J Muscle Res Cell Motil 2011; 32:291-302. [PMID: 22105702 PMCID: PMC3230755 DOI: 10.1007/s10974-011-9279-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/14/2011] [Indexed: 11/28/2022]
Abstract
Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments and is believed to play distinct role(s) than other myosins. We addressed a role of this unique motor in secretory PC12 cells, derived from rat adrenal medulla pheochromocytoma using cell lines with reduced MVI synthesis (produced by means of siRNA). Decrease of MVI expression caused severe changes in cell size and morphology, and profound defects in actin cytoskeleton organization and Golgi structure. Also, significant inhibition of cell migration as well as cell proliferation was observed. Flow cytometric analysis revealed that MVI-deficient cells were arrested in G0/G1 phase of the cell cycle but did not undergo increased senescence as compared with control cells. Also, neither polyploidy nor aneuploidy were detected. Surprisingly, no significant effect on noradrenaline secretion was observed. These data indicate that in PC12 cells MVI is involved in cell migration and proliferation but is not crucial for stimulation-dependent catecholamine release.
Collapse
Affiliation(s)
- Łukasz Majewski
- Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | |
Collapse
|
50
|
Figge C, Loers G, Schachner M, Tilling T. Neurite outgrowth triggered by the cell adhesion molecule L1 requires activation and inactivation of the cytoskeletal protein cofilin. Mol Cell Neurosci 2011; 49:196-204. [PMID: 22019611 DOI: 10.1016/j.mcn.2011.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/09/2011] [Accepted: 10/05/2011] [Indexed: 01/29/2023] Open
Abstract
Neurite outgrowth, an essential process for constructing nervous system connectivity, requires molecular cues which promote neurite extension and guide growing neurites. The neural cell adhesion molecule L1 is one of the molecules involved in this process. Growth of neurites depends on actin remodeling, but actin-remodeling proteins which act downstream of L1 signaling are not known. In this study, we investigated whether the actin-remodeling protein cofilin, which can be activated by dephosphorylation, is involved in neurite outgrowth stimulated by L1. Upon stimulation with an L1 monoclonal antibody which specifically triggers L1-dependent neurite outgrowth, cofilin phosphorylation in cultured cerebellar granule neurons and isolated growth cones was reduced to 47 ± 13% or 58 ± 9% of IgG control levels, respectively. We therefore investigated whether cofilin phosphorylation plays a role in L1-stimulated neurite outgrowth. Inhibition of calcineurin, a phosphatase acting upstream of cofilin dephosphorylation, impaired L1-dependent neurite extension in cultures of cerebellar granule neurons and led to an increase in cofilin phosphorylation. Moreover, when peptide S3, a competitive inhibitor of cofilin phosphorylation, or peptide pS3, a competitive inhibitor of cofilin dephosphorylation, were transferred into cerebellar neurons in culture, L1-stimulated neurite outgrowth was reduced from 173 ± 15% to 103 ± 4% of poly-L-lysine control levels in the presence of either peptide. Our findings suggest that both activation of cofilin by dephosphorylation and inactivation of cofilin by phosphorylation are essential for L1-stimulated neurite outgrowth. These results are in accordance with a cofilin activity cycle recently proposed for invasive tumor cells and inflammatory cells, indicating that a similar regulatory mechanism might be involved in neurite outgrowth. As L1 is expressed by invasive tumor cells, cofilin might also be a downstream actor of L1 in metastasis.
Collapse
Affiliation(s)
- Carina Figge
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|