1
|
Kaya C, Esin B, Akar M, Can C, Çevik M. Investigation of the efficacy of different cryoprotectants in the freezing of testicular tissue and epididymal sperm: Spermatological parameters, tissue viability and PARP-1 gene expression. Cryobiology 2024; 117:104982. [PMID: 39427698 DOI: 10.1016/j.cryobiol.2024.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The presented study covers testicular tissue and epididymal spermatozoa cryopreservation processes in bulls and aims to investigate the effects of these applications on spermatological parameters, cell viability in testicular tissue, and the expression of the PARP-1 gene, a DNA repair enzyme. Testes of 20 bulls over 2 years old, slaughtered in a slaughterhouse, were used in the study. After spermatological evaluations, the semen obtained from the cauda epididymis was frozen in liquid nitrogen vapor according to the straw method and stored in liquid nitrogen (-196 °C). Testicular tissue pieces obtained from the testicles were frozen by the slow freezing method in cryotubes in diluents containing Dimethylsulfoxide (DMSO) and Ethylene Glycol (EG) cryoprotectants and stored in liquid nitrogen (-196 °C). The total motility (TM) (85.89 ± 12.83 %), progressive motility (PM) (54.02 ± 15.77 %), and kinematic parameter values of fresh sperm were significantly higher compared to the TM (57.62 ± 13.13 %), PM (29.60 ± 10.76 %), and kinematic parameter values after thawing (P < 0.05). Significant decreases in plasma membrane integrity (PMI) and viability and an increase in chromatin condensation and morphological disorders in the head, middle part, and tail regions were observed in post-thaw semen samples (P < 0.05). When the effects of DMSO and EG on cell viability after thaw in frozen testicular tissue were evaluated, it was observed that the cell viability values of testicular tissues frozen with EG (45.70 ± 10.00) were statistically significantly lower than those frozen with DMSO (51.20 ± 7.70) (P < 0.05). When the effects of both cryoprotectants on gene expression in tissue and semen samples were examined, it was determined that gene expression increased on average 0.19 ± 0.27 times in the tissue samples in the DMSO group compared to fresh tissue samples and 0.17 ± 0.19 times in the tissue samples in the EG group. It was determined that gene expression levels increased by an average of 1.20 ± 1.08 times in post-thaw epididymal spermatozoa samples compared to fresh semen samples. The results show that cryopreservation can activate cellular repair mechanisms by stimulating PARP-1 gene expression and affect gene expression by activating specific pathways in tissues and cells.
Collapse
Affiliation(s)
- Cumali Kaya
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| | - Burcu Esin
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| | - Melih Akar
- University of Helsinki, Department of Production Animal Medicine, Faculty of Veterinary Medicine, Helsinki Saarentaus, 00014, Finland.
| | - Cansu Can
- University of Ondokuz Mayis, Department of Medical Biology, Faculty of Medicine, Samsun, 55200, Turkey.
| | - Mesut Çevik
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| |
Collapse
|
2
|
Caliskan S, Liu D, Oldenhof H, Sieme H, Wolkers WF. Use of membrane transport models to design cryopreservation procedures for oocytes. Anim Reprod Sci 2024; 267:107536. [PMID: 38908169 DOI: 10.1016/j.anireprosci.2024.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Oocyte cryopreservation is increasingly being used in reproductive technologies for conservation and breeding purposes. Further development of oocyte cryopreservation techniques requires interdisciplinary insights in the underlying principles of cryopreservation. This review aims to serve this purpose by: (1) highlighting that preservation strategies can be rationally designed, (2) presenting mechanistic insights in volume and osmotic stress responses associated with CPA loading strategies and cooling, and (3) giving a comprehensive listing of oocyte specific biophysical membrane characteristics and commonly used permeation model equations. It is shown how transport models can be used to simulate the behavior of oocytes during cryopreservation processing steps, i.e., during loading of cryoprotective agents (CPAs), cooling with freezing as well as vitrification, warming and CPA unloading. More specifically, using defined cellular and membrane characteristics, the responses of oocytes during CPA (un)loading were simulated in terms of temperature- and CPA type-and-concentration-dependent changes in cell volume and intracellular solute concentration. In addition, in order to determine the optimal cooling rate for slow programmable cooling cryopreservation, the freezing-induced cell volume response was simulated at various cooling rates to estimate rates with tolerable limits. For vitrification, special emphasis was on prediction of the timing of reaching osmotic tolerance limits during CPA exposure, and the need to use step-wise CPA addition/removal protocols. In conclusion, we present simulations and schematic illustrations that explain the timing of events during slow cooling cryopreservation as well as vitrification, important for rationally designing protocols taking into account how different CPA types, concentrations and temperatures affect the oocyte.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Dejia Liu
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany; Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
3
|
Amiri F, Benson JD. A three-dimensional lattice-free agent-based model of intracellular ice formation and propagation and intercellular mechanics in liver tissues. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231337. [PMID: 39021779 PMCID: PMC11252675 DOI: 10.1098/rsos.231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/20/2024]
Abstract
A successful cryopreservation of tissues and organs is crucial for medical procedures and drug development acceleration. However, there are only a few instances of successful tissue cryopreservation. One of the main obstacles to successful cryopreservation is intracellular ice damage. Understanding how ice spreads can accelerate protocol development and enable model-based decision-making. Previous models of intracellular ice formation in individual cells have been extended to one-cell-wide arrays to establish the theory of intercellular ice propagation in tissues. The current lattice-based ice propagation models do not account for intercellular forces resulting from cell solidification, which could lead to mechanical disruption of tissue structures during freezing. Moreover, these models have not been expanded to include more realistic tissue architectures. In this article, we discuss the development and validation of a stochastic model for the formation and propagation of ice in small tissues using lattice-free agent-based model. We have improved the existing model by incorporating the mechanical effects of water crystallization within cells. Using information from previous research, we have also created a new model that accounts for ice growth in tissue slabs, spheroids and hepatocyte discs. Our model demonstrates that individual cell freezing can have mechanical consequences and is consistent with earlier findings.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Dey MK, Devireddy RV. Adult Stem Cells Freezing Processes and Cryopreservation Protocols. Methods Mol Biol 2024; 2783:53-89. [PMID: 38478226 DOI: 10.1007/978-1-0716-3762-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.
Collapse
Affiliation(s)
- Mohan Kumar Dey
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Ram V Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
5
|
Amir A, Yehudit N, Pasquale P, Roy A. The Effect of Cryoprotectants Concentration on Ice Crystal Propagation Velocity. Biopreserv Biobank 2023; 21:547-553. [PMID: 36383132 DOI: 10.1089/bio.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Two physicochemical effects occur during vitrification: nucleation and crystallization. Nucleation is a statistical occurrence by its nature. Thus, the more water molecules that are present the higher are the chances for nucleation to occur. Crystallization is a first-order transition where a water molecule is incorporated into ice crystal. Intracellular viscosity, which is the combination of water, salts, and cryoprotectants (CPs), affects both the nucleation and crystal growth rates. Ice velocity is inversely correlated with the viscosity and directly proportional to the function of the system's supercooling. However, little is known about the speed of ice crystal propagation in vitrification solutions containing different concentrations of CPs. Methods: This article describes the ice crystal propagation velocity while referring to vitrification. Ice crystal propagation velocity was measured in solutions containing different CP (dimethyl sulfoxide [DMSO], propylene glycol [PG], ethylene glycol [EG], and glycerol) concentrations at a supercooled temperature. The different CPs solutions were inserted into 0.25 mL straws and placed in different temperatures of an alcohol bath (Tc) at supercooling temperatures of -8°C to -10°C. Results: We found that ice crystal propagation is inversely correlated to CP concentrations. Interestingly, PG showed, with statistically significant results, lower ice crystal growth velocities up to concentrations of 30% (v/v), compared with DMSO, and EG at the same concentrations. The combination of EG with PG showed better results (0.25 mm/s) than EG with DMSO (0.39 mm/s) in terms of decreasing the ice crystal growth velocity. When the concentration was increased to 40% (v/v), EG showed the lowest ice crystal propagation velocity (0.09 mm/s), although not significantly different than PG and glycerol but significantly lower than DMSO (0.13 mm/s). Conclusion: These results suggest that current vitrification solutions are not optimized. Based on our results, we suggest that combining PG with EG has advantages over the combination of DMSO and EG, which might promote successful cell and tissue vitrification.
Collapse
Affiliation(s)
| | | | - Patrizio Pasquale
- Division Reproductive Endocrinology & Infertility, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Arav Roy
- A.A. Technology, Tel Aviv, Israel
| |
Collapse
|
6
|
Liu XL, Li CX, Zhai X, Sun X, Chen K, Liu L, Wang BD. Spatial distributions and environmentally-mediated factors of dimethylsulfoxide off the northern Antarctic Peninsula in summer. MARINE POLLUTION BULLETIN 2023; 196:115632. [PMID: 37826908 DOI: 10.1016/j.marpolbul.2023.115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Spatial distributions of dissolved and particulate dimethylsulfoxide (DMSOd and DMSOp) were investigated off the northern Antarctic Peninsula during the austral summer of 2018, an ecologically and climatically important region of the world. In the upper waters, DMSOd was concentrated in the ice-melt zone because DMSO functions physiologically as an intracellular osmolyte and cryoprotectant. DMSOd concentrations had a weak positive correlation with temperature but a negative correlation with nutrients. This highlighted the importance of temperature-dependent biological activities and photolysis in DMSOd production and the important role of the intracellular antioxidation system in phytoplankton cells. The decrease of average DMSOp:Chl-a ratios in upper waters from west to east, along with decreasing temperatures and increasing diatoms proportions in the phytoplankton, illustrates how seawater DMSO production capacities depend on ambient temperatures and the composition of phytoplankton assemblages. DMSOp were accumulated in deep waters through bio-debris accumulation and microbial activity.
Collapse
Affiliation(s)
- Xuan-Li Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Cheng-Xuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| | - Xing Zhai
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xia Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kan Chen
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lu Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bao-Dong Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
7
|
Barbosa BB, Evangelista ITA, Soares ARB, Leão DL, Pereira RJG, Domingues SFS. Kinetic vitrification: concepts and perspectives in animal sperm cryopreservation. Anim Reprod 2023; 20:e20220096. [PMID: 37228692 PMCID: PMC10205064 DOI: 10.1590/1984-3143-ar2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Sperm cryopreservation is an important tool for genetic diversity management programs and the conservation of endangered breeds and species. The most widely used method of sperm conservation is slow freezing, however, during the process, sperm cells suffer from cryoinjury, which reduces their viability and fertility rates. One of the alternatives to slow freezing is vitrification, that consist on rapid freezing, in which viable cells undergo glass-like solidification. This technology requires large concentrations of permeable cryoprotectants (P- CPA's) which increase the viscosity of the medium to prevent intracellular ice formation during cooling and warming, obtaining successful results in vitrification of oocytes and embryos. Unfortunately, this technology failed when applied to vitrification of sperm due to its higher sensitivity to increasing concentrations of P-CPAs. Alternatively, a technique termed 'kinetic sperm vitrification' has been used and consists in a technique of permeant cryoprotectant-free cryopreservation by direct plunging of a sperm suspension into liquid nitrogen. Some of the advantages of kinetic vitrification are the speed of execution and no rate-controlled equipment required. This technique has been used successfully and with better results for motility in human (50-70% motility recovery), dog (42%), fish (82%) and donkey (21.7%). However, more studies are required to improve sperm viability after devitrification, especially when it comes to motility recovery. The objective of this review is to present the principles of kinetic vitrification, the main findings in the literature, and the perspectives for the utilization of this technique as a cryopreservation method.
Collapse
Affiliation(s)
- Bianca Barreto Barbosa
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, PA, Brasil.
| | - Inara Tayná Alves Evangelista
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
| | - Airton Renan Bastos Soares
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
| | - Danuza Leite Leão
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Instituto de Desenvolvimento Sustentável Mamirauá, Tefé, AM, Brasil.
| | - Ricardo José Garcia Pereira
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.
| | - Sheyla Farhayldes Souza Domingues
- Laboratório de Biotecnologia e Medicina de Animais da Amazônia, Universidade Federal do Pará, Castanhal, PA, Brasil.
- Programa de Pós-graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia, Belém, PA, Brasil.
| |
Collapse
|
8
|
Zhang M, Qiu Z, Yang K, Zhou W, Liu W, Lu J, Guo L. Design, synthesis and antifreeze properties of biomimetic peptoid oligomers. Chem Commun (Camb) 2023. [PMID: 37128894 DOI: 10.1039/d3cc01062g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ice crystals can cause great damage. The utilization of antifreeze agents is an efficient method to prevent or reduce ice crystal formation and growth. Synthetic antifreeze agents are toxic and have low efficiency, and natural antifreeze proteins suffer from high cost and low stability. Here, we have designed and synthesized a series of peptoid oligomers by mimicking the antifreeze protein structure, and the structure-property relationship was also studied. The reported peptoids here have excellent antifreeze properties and are nontoxic to cells. These novel peptoid materials have great potential to replace current commonly used antifreeze agents, such as dimethyl sulfoxide, and become a new generation of antifreeze agents applied in cryopreservation.
Collapse
Affiliation(s)
- Min Zhang
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Zhifeng Qiu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Kang Yang
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wencheng Zhou
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wenqi Liu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jianwei Lu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| |
Collapse
|
9
|
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater 2023; 155:35-56. [PMID: 36323355 DOI: 10.1016/j.actbio.2022.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/02/2023]
Abstract
The cryopreservation of biomaterials is fundamental to modern biotechnology and biomedicine, but the biggest challenge is the formation of ice, resulting in fatal cryoinjury to biomaterials. To date, abundant ice control strategies have been utilized to inhibit ice formation and thus improve cryopreservation efficiency. This review focuses on the mechanisms of existing control strategies regulating ice formation and the corresponding applications to biomaterial cryopreservation, which are of guiding significance for the development of ice control strategies. Herein, basics related to biomaterial cryopreservation are introduced first. Then, the theoretical bases of ice nucleation, growth, and recrystallization are presented, from which the key factors affecting each process are analyzed, respectively. Ice nucleation is mainly affected by melting temperature, interfacial tension, shape factor, and kinetic prefactor, and ice growth is mainly affected by solution viscosity and cooling/warming rate, while ice recrystallization is inhibited by adsorption or diffusion mechanisms. Furthermore, the corresponding research methods and specific control strategies for each process are summarized. The review ends with an outlook of the current challenges and future perspectives in cryopreservation. STATEMENT OF SIGNIFICANCE: Ice formation is the major limitation of cryopreservation, which causes fatal cryoinjury to cryopreserved biomaterials. This review focuses on the three processes related to ice formation, called nucleation, growth, and recrystallization. The theoretical models, key influencing factors, research methods and corresponding ice control strategies of each process are summarized and discussed, respectively. The systematic introduction on mechanisms and control strategies of ice formation is instructive for the cryopreservation development.
Collapse
Affiliation(s)
- Min Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China.
| | - Junming Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
A screening support method of cryoprotective agents for regenerative medical products considering environmental impacts. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Huang Y, Dong Y, Gao B, Ma R, Gao FL, Shen L. Transmembrane Water Transport and Intracellular Ice Formation of Human Umbilical Vein Endothelial Cells During Freezing. Biopreserv Biobank 2022; 20:311-316. [PMID: 35984940 DOI: 10.1089/bio.2022.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term cryopreservation of human umbilical vein endothelial cells (HUVECs) is important and beneficial for a variety of biomedical research and applications. In this study, we investigated HUVEC's cryobiological characteristics and parameters that are indispensable for predicting and determining an optimal cooling rate to prevent lethal intracellular ice formation (IIF) and severe cell dehydration during the cryopreservation processes. The parameters include cell membrane hydraulic conductivity (i.e., cell membrane water permeability), Lp, cell membrane water permeability activation energy, Elp, and osmotically inactive volume of a cell Vb. Cryomicroscopy was used to study the IIF phenomena and cell volume excursion at various cooling rates, 1, 10, and 20°C/min, respectively, based on which the cryobiological parameters were determined using biophysical and mathematical models. Results from this research work laid an important cryobiological foundation for the optimization of HUVEC's cryopreservation conditions.
Collapse
Affiliation(s)
- Yu Huang
- School of Medical Imaging, Bengbu Medical College, Bengbu, China.,Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Ying Dong
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), Hefei, China
| | - Brian Gao
- The College of Medicine, California Northstate University, Elk Grove, California, USA
| | - Ruidong Ma
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Frank Liu Gao
- School of Public Affairs, University of Science and Technology of China, Hefei, China
| | - Lingxiao Shen
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Insights into the crystallization and vitrification of cryopreserved cells. Cryobiology 2022; 106:13-23. [DOI: 10.1016/j.cryobiol.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/05/2022] [Accepted: 04/30/2022] [Indexed: 12/11/2022]
|
13
|
Arav A. Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs. Cells 2022; 11:1072. [PMID: 35406636 PMCID: PMC8997870 DOI: 10.3390/cells11071072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
The cryopreservation of cells has been in routine use for decades. However, despite the extensive research in the field, cryopreservation of large tissues and organs is still experimental. The present review highlights the major studies of directional freezing and vitrification of large tissues and whole organs and describes the different parameters that impact the success rate of large tissue and organ cryopreservation. Key factors, such as mass and heat transfer, cryoprotectant toxicity, nucleation, crystal growth, and chilling injury, which all have a significant influence on whole-organ cryopreservation outcomes, are reviewed. In addition, an overview of the principles of directional freezing and vitrification is given and the manners in which cryopreservation impacts large tissues and organs are described in detail.
Collapse
Affiliation(s)
- Amir Arav
- A.A Cash Technology, 59 Shlomzion Hamalca, Tel Aviv 62266, Israel
| |
Collapse
|
14
|
Xu L, Zhang J, Zhao J, Liu C, Li N, Zhang S, Wang Z, Xi M. Plasmonic Cu xS Nanocages for Enhanced Solar Photothermal Cell Warming. ACS APPLIED BIO MATERIALS 2022; 5:1658-1669. [PMID: 35289599 DOI: 10.1021/acsabm.2c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly efficient plasmonic photothermal nanomaterials are benefitial to the successful resuscitation of cells. Copper sulfide (CuxS) is a type of plasmonic solar photothermal semiconductor material that expands the light collecting range by altering its localized surface plasmonic resonance (LSPR) to the near- to mid-infrared (IR) spectral region. Particularly, nanocages (or nanoshells) have hybridized plasmon resonances as the result of superpositioned nanospheres and nanocavities, which extend their receiving range for the solar spectrum and increase light-to-heat conversion rate. In this work, for the first time, we applied colloidal hollow CuxS nanocages to revive cryopreserved HeLa cells via photothermal warming, which showed improved cell warming rate and cell viability after cell resuscitation. Moreover, we tested the photothermal performance of CuxS nanocages with concentrated light illumination, which exhibited extraordinary photothermal performance due to localized and enhanced illumination. We further quantified each band's contribution during the cell warming process via evaluating the warming rate of cryopreserved cell solution with illumination by monochromatic UV, visible, and NIR lasers. We studied the biosafety and toxicity of CuxS nanocages by analyzing the generated copper ion residue during cell warming and cell incubation, respectively. Our study shows that CuxS nanocages have huge potential for cell warming and are promising for vast range of applications, such as nanomedicine, life science, biology, energy saving, etc.
Collapse
Affiliation(s)
- Longchang Xu
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China.,The Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China.,Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jun Zhao
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Cui Liu
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nian Li
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shudong Zhang
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenyang Wang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
| | - Min Xi
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,The Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
15
|
Yamatoya K, Nagai Y, Teramoto N, Kang W, Miyado K, Nakata K, Yagi T, Miyamoto Y. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen Ther 2022; 19:58-68. [PMID: 35059480 PMCID: PMC8749124 DOI: 10.1016/j.reth.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The effective use of human-derived cells that are difficult to freeze, such as parenchymal cells and differentiated cells from stem cells, is crucial. A stable supply of damage-sensitive cells, such as differentiated neuronal cells, neurons, and glial cells can contribute considerably to cell therapy. We developed a serum-free freezing solution that is effective for the cryopreservation of differentiated neuronal cells. The quality of the differentiated and undifferentiated SK-N-SH cells was determined based on cell viability, live-cell recovery rate, and morphology of cultured cells, to assess the efficacy of the freezing solutions. The viability and recovery rate of the differentiated SK-N-SH neuronal cells were reduced by approximately 1.5-folds compared to that of the undifferentiated SK-N-SH cells. The viability and recovery rate of the differentiated SK-N-SH cells were remarkably different between the freezing solutions containing 10% DMSO and that containing 10% glycerol. Cryoprotectants such as fetal bovine serum (FBS), antifreeze proteins (sericin), and sugars (maltose), are essential for protecting against freeze damage in differentiated neuronal cells and parenchymal cells. Serum-free alternatives (sericin and maltose) could increase safety during cell transplantation and regenerative medicine. Considering these, we propose an effective freezing solution for the cryopreservation of neuronal cells. The timing of freezing during cell differentiation. More effective serum-free freezing solution for differentiated neuronal cells. Improving the quality of damage-sensitive cells, such as differentiated neuronal cells.
Collapse
|
16
|
Tessier SN, Bookstaver LD, Angpraseuth C, Stannard CJ, Marques B, Ho UK, Muzikansky A, Aldikacti B, Reátegui E, Rabe DC, Toner M, Stott SL. Isolation of intact extracellular vesicles from cryopreserved samples. PLoS One 2021; 16:e0251290. [PMID: 33983964 PMCID: PMC8118530 DOI: 10.1371/journal.pone.0251290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2021] [Indexed: 01/23/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as promising candidates in biomarker discovery and diagnostics. Protected by the lipid bilayer, the molecular content of EVs in diverse biofluids are protected from RNases and proteases in the surrounding environment that may rapidly degrade targets of interests. Nonetheless, cryopreservation of EV-containing samples to -80°C may expose the lipid bilayer to physical and biological stressors which may result in cryoinjury and contribute to changes in EV yield, function, or molecular cargo. In the present work, we systematically evaluate the effect of cryopreservation at -80°C for a relatively short duration of storage (up to 12 days) on plasma- and media-derived EV particle count and/or RNA yield/quality, as compared to paired fresh controls. On average, we found that the plasma-derived EV concentration of stored samples decreased to 23% of fresh samples. Further, this significant decrease in EV particle count was matched with a corresponding significant decrease in RNA yield whereby plasma-derived stored samples contained only 47-52% of the total RNA from fresh samples, depending on the extraction method used. Similarly, media-derived EVs showed a statistically significant decrease in RNA yield whereby stored samples were 58% of the total RNA from fresh samples. In contrast, we did not obtain clear evidence of decreased RNA quality through analysis of RNA traces. These results suggest that samples stored for up to 12 days can indeed produce high-quality RNA; however, we note that when directly comparing fresh versus cryopreserved samples without cryoprotective agents there are significant losses in total RNA. Finally, we demonstrate that the addition of the commonly used cryoprotectant agent, DMSO, alongside greater control of the rate of cooling/warming, can rescue EVs from damaging ice formation and improve RNA yield.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Lauren D. Bookstaver
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cindy Angpraseuth
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Cleo J. Stannard
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Beatriz Marques
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Uyen K. Ho
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States of America
| | - Berent Aldikacti
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Eduardo Reátegui
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Daniel C. Rabe
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Shriners Hospitals for Children—Boston, Boston, MA, United States of America
| | - Shannon L. Stott
- Department of Surgery, Center for Engineering in Medicine and BioMEMS Resource Center Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fukuda Y, Higashiya M, Obata T, Basaki K, Yano M, Matsumura K, Ono K, Ohba T, Okamoto Y, Nishijima K, Seki S. Small-volume vitrification and rapid warming yield high survivals of one-cell rat embryos in cryotubes†. Biol Reprod 2021; 105:258-266. [PMID: 33783478 DOI: 10.1093/biolre/ioab059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 01/28/2023] Open
Abstract
To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20-40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol (EG), 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18 467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.
Collapse
Affiliation(s)
- Yasuyoshi Fukuda
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Keita Basaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | | | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Kazutoshi Nishijima
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Experimental Animals, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| |
Collapse
|
18
|
Hayashi Y, Nakajima Y, Sugiyama H. Computational screening of cryoprotective agents for regenerative medical products using quantum chemistry and molecular dynamics simulations. Cryobiology 2021; 100:101-109. [PMID: 33766526 DOI: 10.1016/j.cryobiol.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Cryoprotective agents (CPAs) are essential for the cryopreservation of cells. Thus far, dimethyl sulfoxide (DMSO) has been widely used as a CPA; however, DMSO is known to be toxic to cells. The damaged cells by the toxicity can present abnormal conditions, and should not be used for regenerative medical products because the cells/products are implanted directly into human bodies. With the aim of searching for an alternative CPA to DMSO, this work presents a computational screening of CPA candidate compounds using quantum chemistry and molecular dynamics (MD) simulations. Forty compounds were evaluated in regard to the solvation free energy and partition coefficient by quantum chemistry simulation and the root mean square deviation (RMSD) of a phospholipid bilayer which composes a cell membrane by MD simulation. The solvation free energy, partition coefficient, and RMSD were defined as indicators of osmoregulatory ability, affinity with a cell membrane, and ability to spread a cell membrane, respectively. The quantum chemistry simulation elucidated that the six compounds of trimethylglycine, formamide, urea, thiourea, diethylene glycol, and dulcitol were better than DMSO in either or both of the physical properties considered. This finding is based on the inherent physical property and is thus case-independent. Further characterization with the MD simulation suggested that formamide, thiourea, and urea should be the first candidates to investigate, although the result was valid only in the simulated condition. This work serves as the first step of multi-faceted computational evaluation of multiple compounds in the search for an effective CPA compound after DMSO.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Yuka Nakajima
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan.
| |
Collapse
|
19
|
Abstract
Cryobiology is a multiscale and interdisciplinary field. The scope and scale of interactions limit the gains that can be made by one theory or experiment alone. Because of this, modeling has played a critical role in both explaining cryobiological phenomena and predicting improved protocols. Modeling facilitates understanding of the biophysical and some of the biochemical mechanisms of damage during all phases of cryopreservation including CPA equilibration and cooling and warming. Moreover, as a tool for optimization of cryopreservation protocols, modeling has yielded many successes. Modern cryobiological modeling includes very detailed descriptions of the physical phenomena that occur during freezing, including ice growth kinetics and spatial gradients that define heat and mass transport models. Here we reduce the complexity and approach only a small but classic subset of these problems. Namely, here we describe the process of building and using a mathematical model of a cell in suspension where spatial homogeneity is assumed for all quantities. We define the models that describe the critical cell quantities used to describe optimal and suboptimal protocols and then give an overview of classical methods of how to determine optimal protocols using these models. We include practical considerations of modeling in cryobiology, including fitting transport models to cell volume data, performing optimization with cell volume constraints, and a look at expanding cost functions to cooling regimes.
Collapse
Affiliation(s)
- James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Measurement of grouped intracellular solute osmotic virial coefficients. Cryobiology 2020; 97:198-216. [DOI: 10.1016/j.cryobiol.2019.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 02/04/2023]
|
21
|
William N, Acker JP. Cryoprotectant-dependent control of intracellular ice recrystallization in hepatocytes using small molecule carbohydrate derivatives. Cryobiology 2020; 97:123-130. [PMID: 33007287 DOI: 10.1016/j.cryobiol.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
To promote the recovery of cells that undergo intracellular ice formation (IIF), it is imperative that the recrystallization of intracellular ice is minimized. Hepatocytes are more prone to IIF than most mammalian cells, and thus we assessed the ability of novel small molecule carbohydrate-based ice recrystallization inhibitors (IRIs) to permeate and function within hepatocytes. HepG2 monolayers were treated with N-(4-chlorophenyl)-d-gluconamide (IRI 1), N-(2-fluorophenyl)-d-gluconamide (IRI 2), or para-methoxyphenyl-β-D-glycoside (IRI 3) and fluorescent cryomicroscopy was used for real time visualization of intracellular ice recrystallization. Both IRI 2 and IRI 3 reduced rates of intracellular recrystallization, whereas IRI 1 did not. IRI 2 and IRI 3, however, demonstrated a marked reduction in efficiency in the presence of the most frequently used permeating cryoprotectants (CPAs): glycerol, propylene glycol (PG), dimethyl sulfoxide (DMSO), and ethylene glycol (EG). Nevertheless, IRI 3 reduced rates of intracellular recrystallization relative to CPA-only controls in the presence of glycerol, PG, and DMSO. Interestingly, IRI preparation in trehalose, a commonly used non-permeating CPA, did not impact the activity of IRI 3. However, trehalose did increase the activity of IRI 1 while decreasing that of IRI 2. While this study suggests that each of these compounds could prove relevant in hepatocyte cryopreservation protocols where IIF would be prominent, CPA-mediated modulation of intracellular IRI activity is apparent and warrants further investigation.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2R3, Canada; Centre for Innovation, Canadian Blood Services, 8249 114th Street, Edmonton, AB, T6G 2R8, Canada.
| |
Collapse
|
22
|
Arav A. From cryo-preservation to dry-preservation of reproductive cells. Theriogenology 2020; 150:263-267. [PMID: 32088027 DOI: 10.1016/j.theriogenology.2020.01.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Amir Arav
- FertileSafe, 11 Haharash, Ness Ziona, Israel.
| |
Collapse
|
23
|
Numerical solution of inward solidification of a dilute ternary solution towards a semi-permeable spherical cell. Math Biosci 2019; 316:108240. [PMID: 31465730 DOI: 10.1016/j.mbs.2019.108240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022]
Abstract
Modeling a cell's response to encroaching ice has informed the development of cryopreservation protocols for four decades. It has been well documented that knowledge of the cellular state as a function of media and cooling rate faciliate informed cryopreservation protocol design and explain mechanisms of damage. However, previous efforts have neglected the interaction between solutes and the encroaching ice front and their effects on the cell state. To address this, here we examine the cryobiologically relevant setting of a spherically-symmetric model of a biological cell separated by a ternary fluid mixture from an encroaching solid-liquid interface. The cell and liquid regions contain cell membrane impermeable intracellular and extracellular salts, respectively, a cell membrane permeable solute commonly used in cryopreservation protocols known as a cryoprotective agent (CPA), and water as a membrane permeable solvent. As cooling and solidification proceed the extracellular chemical environment evolves and leads to mass transport across the cell membrane. Consequently, both the solidification front and the cell membrane are free boundaries whose dynamics are coupled through transport processes in the solid, liquid and cell regions. We describe a numerical procedure to solve this coupled free-boundary problem based on a domain transformation and method of lines approach. We also investigate how the thermal and chemical states inside the cell are influenced by different cooling protocols at the external boundary. Finally, we observe that the previously unaccounted-for partial solute rejection at the advancing solid-liquid interface increases the CPA and salt concentrations in the extracellular liquid as a function of the interface speed and segregation coefficients, suggesting that previous model predictions of the cell state during cryopreservation were inaccurate.
Collapse
|
24
|
Jeon O, Bin Lee Y, Hinton TJ, Feinberg AW, Alsberg E. Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues. MATERIALS TODAY. CHEMISTRY 2019; 12:61-70. [PMID: 30778400 PMCID: PMC6377241 DOI: 10.1016/j.mtchem.2018.11.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cell-laden microgels have been used as tissue building blocks to create three-dimensional (3D) tissues and organs. However, traditional assembly methods can not be used to fabricate functional tissue constructs with biomechanical and structural complexity. In this study, we present directed assembly of cell-laden dual-crosslinkable alginate microgels comprised of oxidized and methacrylated alginate (OMA). Cell-laden OMA microgels can be directly assembled into well-defined 3D shapes and structures under low-level ultraviolet light. Stem cell-laden OMA microgels can be successfully cryopreserved for long-term storage and on-demand applications, and the recovered encapsulated cells maintained equivalent viability and functionality to the freshly processed stem cells. Finally, we have successfully demonstrated that cell-laden microgels can be assembled into complicated 3D tissue structures via freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting. This highly innovative bottom-up strategy using FRESH 3D bioprinting of cell-laden OMA microgels, which are cryopreservable, provides a powerful and highly scalable tool for fabrication of customized and biomimetic 3D tissue constructs.
Collapse
Affiliation(s)
- Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University
| | - Yu Bin Lee
- Department of Biomedical Engineering, Case Western Reserve University
| | - Thomas J Hinton
- Materials Science & Engineering and Biomedical Engineering, Carnegie Mellon University
| | - Adam W Feinberg
- Materials Science & Engineering and Biomedical Engineering, Carnegie Mellon University
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University
- Department of Orthopaedic Surgery, Case Western Reserve University
| |
Collapse
|
25
|
Arav A, Natan Y. The Near Future of Vitrification of Oocytes and Embryos: Looking into Past Experience and Planning into the Future. Transfus Med Hemother 2019; 46:182-187. [PMID: 31244586 DOI: 10.1159/000497749] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/03/2019] [Indexed: 11/19/2022] Open
Abstract
Currently vitrification is the method of choice for low-temperature preservation of oocytes and embryos. However, that was not the case until about 10 years ago when freezing methods were used relatively successfully for embryos and investigated (unsuccessfully) for oocyte preservation. In this paper we will review the history of oocyte and embryo cryopreservation and look into ways and methods for overcoming and improving the vitrification method since it suffers from inherent disadvantages since it is a cumbersome, time-consuming and costly procedure.
Collapse
|
26
|
Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology 2019; 86:1-9. [DOI: 10.1016/j.cryobiol.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/22/2022]
|
27
|
Corral A, López R, Balcerzyk M, Parrado-Gallego Á, Fernández-Gómez I, Olmo A, Risco R. Use of X-Ray Computed Tomography for Ice Detection Applied to Organ Cryopreservation. Biopreserv Biobank 2018; 17:119-128. [PMID: 30489143 DOI: 10.1089/bio.2018.0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the main problems in the cryopreservation of biological samples is the formation of ice and the consequent mechanical damage to cells and tissues, due to the crystalline structure of ice and its associated mechanical damage. It is necessary to detect this deleterious formation of ice, especially in tissues and organs, because of their large volume and the complexity of their vascular system in the case of bulky organs. In this work, we propose the use of X-ray Computed Tomography (CT) to detect this ice formation inside tissues and organs. To achieve this aim, rabbit kidneys were loaded with cryoprotectant solutions containing Me2SO at low temperatures (below -140°C). Drops of water with a volume between 2 and 8 μL were then introduced inside the organs. Finally, the rabbit kidneys were cooled to -196°C. Volumes of ice of up to 1 μL were detected in our CT device, with a resolution of up to 50 μm, validating the proposed technology. On the contrary, we analyzed bovine ovarian tissues cryopreserved with a controlled-rate slow-cooling protocol. CT images showed the different structure on the extracellular ice formation according to the procedure, and even the intracellular ice that can be formed in the tissues. These positive results have a straightforward application in the control of the formation of ice, of significant importance for the creation of biobanks.
Collapse
Affiliation(s)
- Ariadna Corral
- 1 Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla, Spain
| | - Reyes López
- 2 Departamento de Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| | - Marcin Balcerzyk
- 1 Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla, Spain
| | - Ángel Parrado-Gallego
- 1 Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla, Spain
| | - Isabel Fernández-Gómez
- 1 Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla, Spain
| | - Alberto Olmo
- 3 Instituto de Microelectrónica de Sevilla, IMSE, CNM (CSIC, Universidad de Sevilla), Sevilla, Spain.,4 Escuela Técnica Superior de Ingeniería Informática, Departamento de Tecnología Electrónica, Universidad de Sevilla, Sevilla, Spain
| | - Ramón Risco
- 1 Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla, Spain.,2 Departamento de Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
28
|
Onofre J, Faes K, Kadam P, Vicini E, van Pelt AMM, Goossens E. What is the best protocol to cryopreserve immature mouse testicular cell suspensions? Reprod Biomed Online 2018; 37:6-17. [PMID: 29776850 DOI: 10.1016/j.rbmo.2018.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
RESEARCH QUESTION From a clinical perspective, which parameters grant optimal cryopreservation of mouse testicular cell suspensions? DESIGN We studied the effect of different cryopreservation rates, the addition of sugars, different vessels and the addition of an apoptotic inhibitor on the efficiency of testicular cell suspension cryopreservation. After thawing and warming, testicular cell suspensions were transplanted to recipient mice for further functional assay. After selecting the optimal cryopreservation procedure, a second experiment compared the transplantation efficiency between the selected freezing protocol and fresh testicular cell suspensions. RESULTS Multiple- and single-step freezing did not differ significantly in terms of recovered viable cells (RVC) (33 ± 28% and 38 ± 25%). The addition of sucrose did not result in a higher RVC (33 ± 20%). Cells frozen in vials recovered better than those frozen in straws (52 ± 20% versus 33 ± 20%; P = 0.0049). The inclusion of an apoptosis inhibitor (z-VAD[Oe]-FMK) significantly increased the RVC after thawing (61 ± 18% versus 50 ± 17%; P = 0.0480). When comparing the optimal cryopreservation procedure with fresh testicular cell suspensions, a lower RVC (63 ± 11% versus 92 ± 4%; P < 0.0001) and number of donor-derived spermatogonial stem cell colonies per testis (34.04 ± 2.34 versus 16.78 ± 7.76; P = 0.0051) were observed. CONCLUSION Upon freeze-thawing or vitrification-warming, and assessment of donor-derived spermatogenesis after transplantation, Dulbecco's modified Eagle's medium supplemented with 1.5M dimethyl-sulphoxide, 10% fetal calf serum and 60 µM of Z-VAD-(OMe)-FMK in vials at a freezing rate of -1°C/min was optimal.
Collapse
Affiliation(s)
- Jaime Onofre
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
| | - Katrien Faes
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Prashant Kadam
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Elena Vicini
- Department of Histology and Medical Embryology, University of Rome 'La Sapienza', Via A. Scarpa, 14 00161 Rome, Rome, Italy
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Amsterdam, The Netherlands
| | - Ellen Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
29
|
Improved in vitro models for preclinical drug and formulation screening focusing on 2D and 3D skin and cornea constructs. Eur J Pharm Biopharm 2017; 126:57-66. [PMID: 29191717 DOI: 10.1016/j.ejpb.2017.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 01/15/2023]
Abstract
The present overview deals with current approaches for the improvement of in vitro models for preclinical drug and formulation screening which were elaborated in a joint project at the Center of Pharmaceutical Engineering of the TU Braunschweig. Within this project a special focus was laid on the enhancement of skin and cornea models. For this reason, first, a computation-based approach for in silico modeling of dermal cell proliferation and differentiation was developed. The simulation should for example enhance the understanding of the performed 2D in vitro tests on the antiproliferative effect of hyperforin. A second approach aimed at establishing in vivo-like dynamic conditions in in vitro drug absorption studies in contrast to the commonly used static conditions. The reported Dynamic Micro Tissue Engineering System (DynaMiTES) combines the advantages of in vitro cell culture models and microfluidic systems for the emulation of dynamic drug absorption at different physiological barriers and, later, for the investigation of dynamic culture conditions. Finally, cryopreserved shipping was investigated for a human hemicornea construct. As the implementation of a tissue-engineering laboratory is time-consuming and cost-intensive, commercial availability of advanced 3D human tissue is preferred from a variety of companies. However, for shipping purposes cryopreservation is a challenge to maintain the same quality and performance of the tissue in the laboratory of both, the provider and the customer.
Collapse
|
30
|
Zhao G, Liu X, Zhu K, He X. Hydrogel Encapsulation Facilitates Rapid-Cooling Cryopreservation of Stem Cell-Laden Core-Shell Microcapsules as Cell-Biomaterial Constructs. Adv Healthc Mater 2017; 6:10.1002/adhm.201700988. [PMID: 29178480 PMCID: PMC5729581 DOI: 10.1002/adhm.201700988] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/30/2017] [Indexed: 01/08/2023]
Abstract
Core-shell structured stem cell microencapsulation in hydrogel has wide applications in tissue engineering, regenerative medicine, and cell-based therapies because it offers an ideal immunoisolative microenvironment for cell delivery and 3D culture. Long-term storage of such microcapsules as cell-biomaterial constructs by cryopreservation is an enabling technology for their wide distribution and ready availability for clinical transplantation. However, most of the existing studies focus on cryopreservation of single cells or cells in microcapsules without a core-shell structure (i.e., hydrogel beads). The goal of this study is to achieve cryopreservation of stem cells encapsulated in core-shell microcapsules as cell-biomaterial constructs or biocomposites. To this end, a capillary microfluidics-based core-shell alginate hydrogel encapsulation technology is developed to produce porcine adipose-derived stem cell-laden microcapsules for vitreous cryopreservation with very low concentration (2 mol L-1 ) of cell membrane penetrating cryoprotective agents (CPAs) by suppressing ice formation. This may provide a low-CPA and cost-effective approach for vitreous cryopreservation of "ready-to-use" stem cell-biomaterial constructs, facilitating their off-the-shelf availability and widespread applications.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Kaixuan Zhu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
31
|
Oldenhof H, Bigalk J, Hettel C, de Oliveira Barros L, Sydykov B, Bajcsy ÁC, Sieme H, Wolkers WF. Stallion Sperm Cryopreservation Using Various Permeating Agents: Interplay Between Concentration and Cooling Rate. Biopreserv Biobank 2017; 15:422-431. [PMID: 28805449 DOI: 10.1089/bio.2017.0061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, modeling and experimental approaches were used to investigate the interplay between cooling rate and protectant concentration for cryopreservation of stallion sperm. Glycerol (GLY), ethylene glycol (EG), dimethylformamide (DMF), propylene glycol (PG), and dimethyl sulfoxide (DMSO) were tested as cryoprotective agents (CPAs), using concentrations up to 1500 mM and cooling rates ranging from 5°C to 55°C min-1. Modeling of the extent of sperm dehydration during freezing was done using previously determined values of the sperm membrane permeability to water to predict optimal cooling rates for cryopreservation. Sperm cryosurvival was experimentally determined through flow cytometric assessments on membrane intactness and using computer-assisted analysis of motility. Sperm could withstand exposure to 1500 mM concentrations prefreeze for all CPAs tested. The overall highest cryosurvival rates were obtained with DMF, followed by GLY and EG, whereas the use of PG and DMSO resulted in poor cryosurvival rates. Cryosurvival with DMF increased with increasing concentration, reaching a plateau at 500 mM, whereas for GLY and EG, an optimum concentration between 250 and 500 mM resulted in maximal survival. An optimal cooling rate was only observed at low CPA concentrations, whereas at higher concentrations, cryosurvival rates were not affected by the cooling rate. In the case of DMF, survival remained relatively high in the investigated range of concentrations and cooling rates, whereas with GLY and EG, a much narrower combination of CPA concentration and cooling rate resulted in optimal cryosurvival. Sperm cryopreserved with DMF showed altered motility characteristics indicating hyperactivation, which was not observed with GLY and EG. Optimal cooling rates that were predicted from calculated dehydration curves did not match experimentally determined optimal cooling rates.
Collapse
Affiliation(s)
- Harriëtte Oldenhof
- 1 Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Judith Bigalk
- 1 Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Christiane Hettel
- 2 Clinic for Cattle, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Lawrence de Oliveira Barros
- 1 Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Bulat Sydykov
- 3 Institute of Multiphase Processes , Leibniz Universität Hannover, Hannover, Germany
| | - Á Csaba Bajcsy
- 2 Clinic for Cattle, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Harald Sieme
- 1 Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover , Hannover, Germany
| | - Willem F Wolkers
- 3 Institute of Multiphase Processes , Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
32
|
Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy 2017; 18:697-711. [PMID: 27173747 DOI: 10.1016/j.jcyt.2016.03.295] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/28/2022]
Abstract
The field of cellular therapeutics has immense potential, affording an exciting array of applications in unmet medical needs. One of several key issues is an emphasis on getting these therapies from bench to bedside without compromising safety and efficacy. The successful commercialization of cellular therapeutics will require many to extend the shelf-life of these therapies beyond shipping "fresh" at ambient or chilled temperatures for "just in time" infusion. Cryopreservation is an attractive option and offers potential advantages, such as storing and retaining patient samples in case of a relapse, banking large quantities of allogeneic cells for broader distribution and use and retaining testing samples for leukocyte antigen typing and matching. However, cryopreservation is only useful if cells can be reanimated to physiological life with negligible loss of viability and functionality. Also critical is the logistics of storing, processing and transporting cells in clinically appropriate packaging systems and storage devices consistent with quality and regulatory standards. Rationalized approaches to develop commercial-scale cell therapies require an efficient cryopreservation system that provides the ability to inventory standardized products with maximized shelf life for later on-demand distribution and use, as well as a method that is scientifically sound and optimized for the cell of interest. The objective of this review is to bridge this gap between the basic science of cryobiology and its application in this context by identifying several key aspects of cryopreservation science in a format that may be easily integrated into mainstream cell therapy manufacture.
Collapse
Affiliation(s)
- Erik J Woods
- Cook Regentec, Indianapolis, IN, USA; Indiana University School of Medicine, Indianapolis, IN, USA; Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada.
| | | | | | - Dominic Clarke
- Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada; Charter Medical Ltd, Winston-Salem, NC, USA
| | - Aby J Mathew
- Process and Product Development Subcommittee, International Society for Cellular Therapy, Vancouver, BC, Canada; BioLife Solutions, Bothell, WA, USA
| |
Collapse
|
33
|
MacDonald MJ, Cornejo NR, Gellman SH. Inhibition of Ice Recrystallization by Nylon-3 Polymers. ACS Macro Lett 2017; 6:695-699. [PMID: 35650872 DOI: 10.1021/acsmacrolett.7b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nontoxic cryoprotectants are needed for storage of tissues and food preservation. Frozen tissue is particularly susceptible to damage caused by formation of large ice crystals during the thawing process. The current practice of using 5 wt % DMSO for cryopreservation does not produce 100% cell viability post-thaw, at least in part because of DMSO toxicity that is manifested during the freezing and thawing stages of the process. Recently, poly(vinyl alcohol) (PVA) has shown promise in inhibiting ice recrystallization, an activity that is critical for cryoprotection. Inspired by this discovery, we have evaluated nylon-3 polymers for ice recrystallization inhibition activity and for toxicity toward mammalian cells. A survey of homo- and heteropolymers, with side chains bearing variable functionality, has identified new nylon-3 materials that display excellent ice recrystallization inhibition activity and low toxicity.
Collapse
Affiliation(s)
- Melissa J. MacDonald
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Natasha R. Cornejo
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
34
|
Abstract
The cellular response of isolated hepatocytes from pigs, humans, and human hepatoblastoma cells to freezing was characterized using cryomicroscopy and analyzed using a thermodynamic model for water transport and Intracellular Ice Formation (IIF). The value for the reference permeability, Lpg, was found to be 5.8(10)-13, 1.62(10)13, and 2.7(10)-14 m/Ns for pig, human, and Hep G2/C3A cells, respectively. The activation energy, Elp, was found to be 480 kJ/mol for pig hepatocytes, 216 kJ/mol for human, and 121 kJ/mol for Hep G2/C3A cells. The average temperature at which IIF (TavgIIF) occurs was calculated to be -7.24 + 2.3°C for pig hepatocytes, -8.5 + 2.6°C for human hepatocytes, and -9.6 + 4.5°C for Hep G2/C3A cells. These results indicate that the freezing characteristics of pig and human cells are distinct and that the specific freezing characteristics need to be understood for the development of appropriate freezing protocols.
Collapse
Affiliation(s)
- T B Darr
- Biomedical Engineering Center, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
35
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Lauterboeck L, Wolkers W, Glasmacher B. Cryobiological parameters of multipotent stromal cells obtained from different sources. Cryobiology 2017; 74:93-102. [DOI: 10.1016/j.cryobiol.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Accepted: 11/26/2016] [Indexed: 11/26/2022]
|
37
|
Wang S, Elliott GD. Synergistic Development of Biochips and Cell Preservation Methodologies: A Tale of Converging Technologies. CURRENT STEM CELL REPORTS 2017; 3:45-53. [PMID: 28966905 DOI: 10.1007/s40778-017-0074-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF THE REVIEW Over the past several decades, cryopreservation has been widely used to preserve cells during long term storage, but advances in stem cell therapies, regenerative medicine, and miniaturized cell-based diagnostics and sensors are providing new targets of opportunity for advancing preservation methodologies. The advent of microfluidics-based devices is an interesting case in which the technology has been used to improve preservation processing, but as the devices have evolved to also include cells, tissues, and simulated organs as part of the architecture, the biochip itself is a desirable target for preservation. In this review, we will focus on the synergistic co-development of preservation methods and biochip technologies, while identifying where the challenges and opportunities lie in developing methods to place on-chip biologics on the shelf, ready for use. RECENT FINDINGS Emerging studies are demonstrating that the cost of some biochips have been reduced to the extent that they will have high utility in point-of-care settings, especially in low resource environments where diagnostic capabilities are limited. Ice-free low temperature vitrification and anhydrous vitrification technologies will likely emerge as the preferred strategy for long-term preservation of bio-chips. SUMMARY The development of preservation methodologies for partially or fully assembled biochips would enable the widespread distribution of these technologies and enhance their application.
Collapse
Affiliation(s)
- Shangping Wang
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223
| | - Gloria D Elliott
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223
| |
Collapse
|
38
|
Batnyam O, Suye SI, Fujita S. Direct cryopreservation of adherent cells on an elastic nanofiber sheet featuring a low glass-transition temperature. RSC Adv 2017. [DOI: 10.1039/c7ra10604a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electrospun nanofibers, featured a lower glass-transition temperature than the freezing temperature and a loose mesh structure, allows the direct cryopreservation of adherent cells towards the investigation of cell-material composites.
Collapse
Affiliation(s)
- Onon Batnyam
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui-city
- Japan
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui-city
- Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science
- Graduate School of Engineering
- University of Fukui
- Fukui-city
- Japan
| |
Collapse
|
39
|
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 2016; 22:744-761. [PMID: 27566839 PMCID: PMC5099994 DOI: 10.1093/humupd/dmw029] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Germ cell depletion caused by chemical or physical toxicity, disease or genetic predisposition can occur at any age. Although semen cryopreservation is the first reflex for preserving male fertility, this cannot help out prepubertal boys. Yet, these boys do have spermatogonial stem cells (SSCs) that able to produce sperm at the start of puberty, which allows them to safeguard their fertility through testicular tissue (TT) cryopreservation. SSC transplantation (SSCT), TT grafting and recent advances in in vitro spermatogenesis have opened new possibilities to restore fertility in humans. However, these techniques are still at a research stage and their efficiency depends on the amount of SSCs available for fertility restoration. Therefore, maintaining the number of SSCs is a critical step in human fertility preservation. Standardizing a successful cryopreservation method for TT and testicular cell suspensions (TCSs) is most important before any clinical application of fertility restoration could be successful. OBJECTIVE AND RATIONALE This review gives an overview of existing cryopreservation protocols used in different animal models and humans. Cell recovery, cell viability, tissue integrity and functional assays are taken into account. Additionally, biosafety and current perspectives in male fertility preservation are discussed. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies linked to the topic were identified by the search terms: cryopreservation, male fertility preservation, (immature)testicular tissue, testicular cell suspension, spermatogonial stem cell, gonadotoxicity, radiotherapy and chemotherapy. OUTCOMES The feasibility of fertility restoration techniques using frozen-thawed TT and TCS has been proven in animal models. Efficient protocols for cryopreserving human TT exist and are currently applied in the clinic. For TCSs, the highest post-thaw viability reported after vitrification is 55.6 ± 23.8%. Yet, functional proof of fertility restoration in the human is lacking. In addition, few to no data are available on the safety aspects inherent to offspring generation with gametes derived from frozen-thawed TT or TCSs. Moreover, clarification is needed on whether it is better to cryopreserve TT or TCS. WIDER IMPLICATIONS Fertility restoration techniques are very promising and expected to be implemented in the clinic in the near future. However, inter-center variability needs to be overcome and the gametes produced for reproduction purposes need to be subjected to safety studies. With the perspective of a future clinical application, there is a dire need to optimize and standardize cryopreservation and safety testing before using frozen-thawed TT of TCSs for fertility restoration.
Collapse
Affiliation(s)
- J Onofre
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Faes
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
40
|
Deller RC, Pessin JE, Vatish M, Mitchell DA, Gibson MI. Enhanced non-vitreous cryopreservation of immortalized and primary cells by ice-growth inhibiting polymers. Biomater Sci 2016; 4:1079-84. [PMID: 27152370 PMCID: PMC4918798 DOI: 10.1039/c6bm00129g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022]
Abstract
Cell cryopreservation is an essential tool in modern biotechnology and medicine. The ability to freeze, store and distribute materials underpins basic cell biology and enables storage of donor cells needed for transplantation and regenerative medicine. However, many cell types do not survive freezing and the current state-of-the-art involves the addition of significant amounts of organic solvents as cryoprotectants, which themselves can be cytotoxic, or simply interfere with assays. A key cause of cell death in cryopreservation is ice recrystallization (growth), which primarily occurs during thawing. Here it is demonstrated that the addition of ice recrystalization inhibiting polymers to solutions containing low (non vitrifying) concentrations of DMSO enhance cell recovery rates by up to 75%. Cell functionality is also demonstrated using a placental cell line, and enhanced cryopreservation of primary rat hepatocytes is additionally shown. The crucial role of the polymers architecture (chain length) is shown, with shorter polymers being more effective than longer ones.
Collapse
|
41
|
Zhang M, Oldenhof H, Sieme H, Wolkers WF. Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1400-9. [PMID: 27003129 DOI: 10.1016/j.bbamem.2016.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate if membrane-impermeable molecules are taken up by fibroblasts when exposing the cells to membrane phase transitions and/or freezing-induced osmotic forces. The membrane-impermeable fluorescent dye lucifer yellow (LY) was used to visualize and quantify uptake during endocytosis, and after freezing-thawing. In addition, trehalose uptake after freezing and thawing was studied. Fourier transform infrared spectroscopic studies showed that fibroblasts display a minor non-cooperative phase transition during cooling at suprazero temperatures, whereas cells display strong highly cooperative fluid-to-gel membrane phase transitions during freezing, both in the absence and presence of protectants. Cells do not show uptake of LY upon passing the suprazero membrane phase transition at 30-10°C, whereas after freezing and thawing cells show intracellular LY equally distributed within the cell. Both, LY and trehalose are taken up by fibroblasts after freezing and thawing with loading efficiencies approaching 50%. When using 250 mM extracellular trehalose during cryopreservation, intracellular concentrations greater than 100 mM were determined after thawing. A plot of cryosurvival versus the cooling rate showed a narrow inverted-'U'-shaped curve with an optimal cooling rate of 40°C min(-1). Diluting cells cryopreserved with trehalose in isotonic cell culture medium resulted in a loss of cell viability, which was attributed to intracellular trehalose causing an osmotic imbalance. Taken together, mammalian cells can be loaded with membrane-impermeable compounds, including the protective agent trehalose, by subjecting the cells to freezing-induced osmotic stress.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Multiphase Processes, Leibniz Universität Hannover, Germany
| | - Harriëtte Oldenhof
- Clinic for Horses, Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Germany
| | - Harald Sieme
- Clinic for Horses, Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Germany
| | - Willem F Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Germany.
| |
Collapse
|
42
|
Adamo RF, Fishbein I, Zhang K, Wen J, Levy RJ, Alferiev IS, Chorny M. Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J Control Release 2015; 222:169-75. [PMID: 26704936 DOI: 10.1016/j.jconrel.2015.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/27/2023]
Abstract
Arterial injury and disruption of the endothelial layer are an inevitable consequence of interventional procedures used for treating obstructive vascular disease. The slow and often incomplete endothelium regrowth after injury is the primary cause of serious short- and long-term complications, including thrombosis, restenosis and neoatherosclerosis. Rapid endothelium restoration has the potential to prevent these sequelae, providing a rationale for developing strategies aimed at accelerating the reendothelialization process. The present studies focused on magnetically guided delivery of endothelial cells (EC) functionalized with biodegradable magnetic nanoparticles (MNP) as an experimental approach for achieving rapid and stable cell homing and expansion in stented arteries. EC laden with polylactide-based MNP exhibited strong magnetic responsiveness, capacity for cryopreservation and rapid expansion, and the ability to disintegrate internalized MNP in both proliferating and contact-inhibited states. Intracellular decomposition of BODIPY558/568-labeled MNP monitored non-invasively based on assembly state-dependent changes in the emission spectrum demonstrated cell proliferation rate-dependent kinetics (average disassembly rates: 6.6±0.8% and 3.6±0.4% per day in dividing and contact-inhibited EC, respectively). With magnetic guidance using a transient exposure to a uniform 1-kOe field, stable localization and subsequent propagation of MNP-functionalized EC, markedly enhanced in comparison to non-magnetic delivery conditions, were observed in stented rat carotid arteries. In conclusion, magnetically guided delivery is a promising experimental strategy for accelerating endothelial cell repopulation of stented blood vessels after angioplasty.
Collapse
Affiliation(s)
- Richard F Adamo
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ilia Fishbein
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kehan Zhang
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Justin Wen
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert J Levy
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ivan S Alferiev
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Chorny
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, Pingguan-Murphy B, Lu TJ, Xu F. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing. Sci Rep 2015; 5:17928. [PMID: 26655688 PMCID: PMC4677291 DOI: 10.1038/srep17928] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
Collapse
Affiliation(s)
- Meng Shi
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Kai Ling
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Kar Wey Yong
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Shangsheng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xiaohui Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P.R. China.,MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
44
|
Lauterboeck L, Hofmann N, Mueller T, Glasmacher B. Active control of the nucleation temperature enhances freezing survival of multipotent mesenchymal stromal cells. Cryobiology 2015; 71:384-90. [PMID: 26499840 DOI: 10.1016/j.cryobiol.2015.10.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 02/03/2023]
Abstract
Cryopreservation is a technique that has been extensively used for storage of multipotent mesenchymal stromal cells (MSCs) in regenerative medicine. Therefore, improving current cryopreservation procedures in terms of increasing cell viability and functionality is important. In this study, we optimized the cryopreservation protocol of MSCs derived from the common marmoset Callithrix jacchus (cj), which can be used as a non-human primate model in various pathological and transplantation studies and have a great potential for regenerative medicine. We have investigated the effect of the active control of the nucleation temperature using induced nucleation at a broad range of temperatures and two different dimethylsulfoxide concentrations (Me2SO, 5% (v/v) and 10%, (v/v)) to evaluate the overall effect on the viability, metabolic activity and recovery of cells after thawing. Survival rate and metabolic activity displayed an optimum when ice formation was induced at -10 °C. Cryomicroscopy studies indicated differences in ice crystal morphologies as well as differences in intracellular ice formation with different nucleation temperatures. High subzero nucleation temperatures resulted in larger extracellular ice crystals and cellular dehydration, whereas low subzero nucleation temperatures resulted in smaller ice crystals and intracellular ice formation.
Collapse
Affiliation(s)
- L Lauterboeck
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| | - N Hofmann
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| | - T Mueller
- Service Unit Embryonic Stem Cells, Institute for Transfusion Medicine, Medical School Hannover, Germany.
| | - B Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
45
|
The effects of over expressing aquaporins on the cryopreservation of hepatocytes. Cryobiology 2015; 71:273-8. [PMID: 26247402 DOI: 10.1016/j.cryobiol.2015.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 06/09/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022]
Abstract
During cryopreservation, aquaporins are critical in regulating water transport across cellular membranes and preventing osmotic damages. Hepatocytes express aquaporin (AQP) 0, 8, 9, 11, and 12; this study investigates whether increasing the localization of AQP8 on the cellular membrane would improve cell viability by increasing water transport during cryopreservation. Primary rat hepatocytes were cultured and treated with dibutyryl cAMP (Bt(2)cAMP) or glucagon to increase the expression of AQP8 at the cellular membrane via translocation. This phenomenon is verified through two experiments - confocal immunofluorescence microscopy and cell shrinkage analysis. The immunofluorescence results showed increase in AQP8 on the cellular membrane of treated cells, and cell shrinkage analysis showed an increase in water transport of treated cells compared to controls. Primary rat hepatocytes were treated with Bt(2)cAMP or glucagon and cryopreserved using standard protocols in a controlled rate freezer. This resulted in a significant increase in the cell viability on warming. These results indicate that Bt(2)cAMP or glucagon treated hepatocytes had increased expression of aquaporin in the cellular membrane, increased water transport during cryopreservation, and increased post-thaw viability.
Collapse
|
46
|
Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE. Effect of supercooling and cell volume on intracellular ice formation. Cryobiology 2015; 70:156-63. [DOI: 10.1016/j.cryobiol.2015.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
|
47
|
Abstract
Modeling plays a critical role in understanding the biophysical processes behind cryopreservation. It facilitates understanding of the biophysical and some of the biochemical mechanisms of damage during all phases of cryopreservation including CPA equilibration, cooling, and warming. Modeling also provides a tool for optimization of cryopreservation protocols and has yielded a number of successes in this regard. While modern cryobiological modeling includes very detailed descriptions of the physical phenomena that occur during freezing, including ice growth kinetics and spatial gradients that define heat and mass transport models, here we reduce the complexity and approach only a small but classic subset of these problems. Namely, here we describe the process of building and using a mathematical model of a cell in suspension where spatial homogeneity is assumed for all quantities. We define the models that describe the critical cell quantities used to describe optimal and suboptimal protocols and then give an overview of classical methods of how to determine optimal protocols using these models.
Collapse
Affiliation(s)
- James D Benson
- Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL, 60115, USA,
| |
Collapse
|
48
|
Anderson DM, Benson JD, Kearsley AJ. Foundations of modeling in cryobiology-I: concentration, Gibbs energy, and chemical potential relationships. Cryobiology 2014; 69:349-60. [PMID: 25240602 DOI: 10.1016/j.cryobiol.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 11/16/2022]
Abstract
Mathematical modeling plays an enormously important role in understanding the behavior of cells, tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of phenomena, exploration of potential theories of damage or success, development of equipment, and refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been a considerable amount of work in bio-heat and mass-transport, and these models and theories have been readily and repeatedly applied to cryobiology with much success. However, there are significant gaps between experimental and theoretical results that suggest missing links in models. One source for these potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport theory: it couples multi-component, moving boundary, multiphase solutions that interact through a semipermeable elastic membrane with multicomponent solutions in a second time-varying domain, during a two-hundred Kelvin temperature change with multi-molar concentration gradients and multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point to future directions in modeling and experimental research, we present a three part series to build from first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be made about the importance of key assumptions, perhaps pointing to areas of future research or model development, but importantly, lending weight to standard simplification arguments that are often made in heat and mass transport. In this first part, we review concentration variable relationships, their impact on choices for Gibbs energy models, and their impact on chemical potentials.
Collapse
Affiliation(s)
- Daniel M Anderson
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, United States; Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, United States.
| | - James D Benson
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, United States; Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115-2888, United States.
| | - Anthony J Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, United States.
| |
Collapse
|
49
|
Abstract
Cryoablation is increasingly being used as a primary treatment for localized cancers and as a salvage therapy for metastatic cancers. Anecdotal clinical reports and animal experiments have confirmed an induction of systemic antitumor immune response by tumor cryoablation. To capitalize on the stimulatory effects of cryoablation for cancer immunotherapy, this response must be intensified using other immunomodulatory agents. This article reviews the preclinical and clinical evidence and discusses the mechanism of the antitumor immune response generated by cryoablation. The rationale and evidence behind several immunotherapy approaches that can be combined with cryoablation to devise a cryoimmunotherapeutic strategy with a potential to impact the progression of metastatic disease are described.
Collapse
Affiliation(s)
- Abhinav Sidana
- Division of Urology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Suite 2513, Cincinnati, OH 45229, USA.
| |
Collapse
|
50
|
Reinhardt A, Doye JPK. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model. J Chem Phys 2014; 141:084501. [DOI: 10.1063/1.4892804] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aleks Reinhardt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Jonathan P. K. Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|