1
|
Kavalenia TA, Lapshina EA, Ilyich TV, Zhao HC, Zavodnik IB. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin. Mol Cell Biochem 2024; 479:3329-3340. [PMID: 38332449 DOI: 10.1007/s11010-024-04935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
The function of mitochondria as a regulator of myocyte calcium homeostasis has been extensively discussed. The aim of the present work was further clarification of the details of modulation of the functional activity of rat cardiac mitochondria by exogenous Ca2+ ions either in the absence or in the presence of the plant flavonoid naringin. Low free Ca2+ concentrations (40-250 nM) effectively inhibited the respiratory activity of heart mitochondria, remaining unaffected the efficacy of oxygen consumption. In the presence of high exogenous Ca2+ ion concentrations (Ca2+ free was 550 µM), we observed a dramatic increase in mitochondrial heterogeneity in size and electron density, which was related to calcium-induced opening of the mitochondrial permeability transition pores (MPTP) and membrane depolarization (Ca2+free ions were from 150 to 750 µM). Naringin partially prevented Ca2+-induced cardiac mitochondrial morphological transformations (200 µM) and dose-dependently inhibited the respiratory activity of mitochondria (10-75 µM) in the absence or in the presence of calcium ions. Our data suggest that naringin (75 µM) promoted membrane potential dissipation, diminishing the potential-dependent accumulation of calcium ions by mitochondria and inhibiting calcium-induced MPTP formation. The modulating effect of the flavonoid on Ca2+-induced mitochondria alterations may be attributed to the weak-acidic nature of the flavonoid and its protonophoric/ionophoric properties. Our results show that the sensitivity of rat heart mitochondria to Ca2+ ions was much lower in the case of MPTP opening and much higher in the case of respiration inhibition as compared to liver mitochondria.
Collapse
Affiliation(s)
- T A Kavalenia
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - E A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - T V Ilyich
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - I B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola, 5, 230009, Grodno, Belarus.
| |
Collapse
|
2
|
Haroon S, Yoon H, Seiler C, Osei-Frimpong B, He J, Nair RM, Mathew ND, Burg L, Kose M, Venkata CRM, Anderson VE, Nakamaru-Ogiso E, Falk MJ. N-acetylcysteine and cysteamine bitartrate prevent azide-induced neuromuscular decompensation by restoring glutathione balance in two novel surf1-/- zebrafish deletion models of Leigh syndrome. Hum Mol Genet 2023; 32:1988-2004. [PMID: 36795052 PMCID: PMC10244219 DOI: 10.1093/hmg/ddad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1-/- zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1-/- mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1-/- larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1-/- larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1-/- animals. Overall, two novel surf1-/- zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.
Collapse
Affiliation(s)
- Suraiya Haroon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heeyong Yoon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christoph Seiler
- Zebrafish Core, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bruce Osei-Frimpong
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonard Burg
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melis Kose
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chavali R M Venkata
- Scheie Eye Center, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vernon E Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23042252. [PMID: 35216368 PMCID: PMC8876605 DOI: 10.3390/ijms23042252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
Collapse
|
4
|
Krstic AM, Power AS, Ward ML. Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes. Front Physiol 2022; 12:808798. [PMID: 35140632 PMCID: PMC8818789 DOI: 10.3389/fphys.2021.808798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023] Open
Abstract
BackgroundCardiomyocyte contraction requires a constant supply of ATP, which varies depending on work rate. Maintaining ATP supply is particularly important during excitation-contraction coupling, where cytosolic Ca2+ fluxes drive repeated cycles of contraction and relaxation. Ca2+ is one of the key regulators of ATP production, and its uptake into the mitochondrial matrix occurs via the mitochondrial calcium uniporter. Fluorescent indicators are commonly used for detecting cytosolic Ca2+ changes. However, visualizing mitochondrial Ca2+ fluxes using similar methods is more difficult, as the fluorophore must be permeable to both the sarcolemma and the inner mitochondrial membrane. Our aim was therefore to optimize a method using the fluorescent Ca2+ indicator Rhod-2 to visualize beat-to-beat mitochondrial calcium fluxes in rat cardiomyocytes.MethodsHealthy, adult male Wistar rat hearts were isolated and enzymatically digested to yield rod-shaped, quiescent ventricular cardiomyocytes. The fluorescent Ca2+ indicator Rhod-2 was reduced to di-hydroRhod-2 and confocal microscopy was used to validate mitochondrial compartmentalization. Cardiomyocytes were subjected to various pharmacological interventions, including caffeine and β-adrenergic stimulation. Upon confirmation of mitochondrial Rhod-2 localization, loaded myocytes were then super-fused with 1.5 mM Ca2+ Tyrodes containing 1 μM isoproterenol and 150 μM spermine. Myocytes were externally stimulated at 0.1, 0.5 and 1 Hz and whole cell recordings of both cytosolic ([Ca2+]cyto) and mitochondrial calcium ([Ca2+]mito) transients were made.ResultsMyocytes loaded with di-hydroRhod-2 revealed a distinct mitochondrial pattern when visualized by confocal microscopy. Application of 20 mM caffeine revealed no change in fluorescence, confirming no sarcoplasmic reticulum compartmentalization. Myocytes loaded with di-hydroRhod-2 also showed a large increase in fluorescence within the mitochondria in response to β-adrenergic stimulation (P < 0.05). Beat-to-beat mitochondrial Ca2+ transients were smaller in amplitude and had a slower time to peak and maximum rate of rise relative to cytosolic calcium transients at all stimulation frequencies (P < 0.001).ConclusionMyocytes loaded with di-hydroRhod-2 revealed mitochondrial specific compartmentalization. Mitochondrial Ca2+ transients recorded from di-hydroRhod-2 loaded myocytes were distinct in comparison to the large and rapid Rhod-2 cytosolic transients, indicating different kinetics between [Ca2+]cyto and [Ca2+]mito transients. Overall, our results showed that di-hydroRhod-2 loading is a quick and suitable method for measuring beat-to-beat [Ca2+]mito transients in intact myocytes.
Collapse
Affiliation(s)
- Anna Maria Krstic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Amelia Sally Power
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- *Correspondence: Marie-Louise Ward,
| |
Collapse
|
5
|
Joseph LC, Reyes MV, Homan EA, Gowen B, Avula UMR, Goulbourne CN, Wan EY, Elrod JW, Morrow JP. The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet. Sci Rep 2021; 11:17808. [PMID: 34497331 PMCID: PMC8426388 DOI: 10.1038/s41598-021-97449-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.
Collapse
Affiliation(s)
- Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Michael V Reyes
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Edwin A Homan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Blake Gowen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - Uma Mahesh R Avula
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Elaine Y Wan
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
| | - John W Elrod
- Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA.
- College of Physicians and Surgeons of Columbia University, PH10-203, 650 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep 2021; 11:3319. [PMID: 33558594 PMCID: PMC7870882 DOI: 10.1038/s41598-021-82884-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Giant mitochondria are peculiarly shaped, extremely large mitochondria in hepatic parenchymal cells, the internal structure of which is characterised by atypically arranged cristae, enlarged matrix granules and crystalline inclusions. The presence of giant mitochondria in human tissue biopsies is often linked with cellular adversity, caused by toxins such as alcohol, xenobiotics, anti-cancer drugs, free-radicals, nutritional deficiencies or as a consequence of high fat Western diets. To date, non-alcoholic fatty liver disease is the most prevalent liver disease in lipid dysmetabolism, in which mitochondrial dysfunction plays a crucial role. It is not well understood whether the morphologic characteristics of giant mitochondria are an adaption or caused by such dysfunction. In the present study, we employ a complementary multimodal imaging approach involving array tomography and transmission electron tomography in order to comparatively analyse the structure and morphometric parameters of thousands of normal- and giant mitochondria in four patients diagnosed with non-alcoholic fatty liver disease. In so doing, we reveal functional alterations associated with mitochondrial gigantism and propose a mechanism for their formation based on our ultrastructural findings.
Collapse
Affiliation(s)
- Gerald J Shami
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Pauline Verhaegh
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ger Koek
- Department of Internal Medicine Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eddie Wisse
- Maastricht MultiModal Molecular Imaging Institute, Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology), The University of Sydney, Camperdown, NSW, 2006, Australia
- Sydney Microscopy & Microanalysis, The University of Sydney, Camperdown, NSW, 2006, Australia
- Cellular Imaging Facility, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
7
|
Jegal HG, Park HJ, Kim JW, Yang SG, Kim MJ, Koo DB. Ruthenium red improves blastocyst developmental competence by regulating mitochondrial Ca 2+ and mitochondrial functions in fertilized porcine oocytes in vitro. J Reprod Dev 2020; 66:377-386. [PMID: 32321875 PMCID: PMC7470902 DOI: 10.1262/jrd.2020-013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ruthenium red (RR) inhibits calcium (Ca2+) entry from the cytoplasm to the mitochondria, and is involved in maintenance of Ca2+ homeostasis in mammalian
cells. Ca2+ homeostasis is very important for further embryonic development of fertilized oocytes. However, the effect of RR on mitochondria-Ca2+
(mito-Ca2+) levels during in vitro fertilization (IVF) on subsequent blastocyst developmental capacity in porcine is unclear. The present study
explored the regulation of mito-Ca2+ levels using RR and/or histamine in fertilized oocytes and their influence on blastocyst developmental capacity in pigs. Red
fluorescence intensity by the mito-Ca2+ detection dye Rhod-2 was significantly increased (P < 0.05) in zygotes 6 h after IVF compared to mature oocytes. Based on
these results, we investigated the changes in mito-Ca2+ by RR (10 and 20 μM) in presumptive zygotes using Rhod-2 staining and mito-Ca2+ uptake 1 (MICU1)
protein levels as an indicator of mito-Ca2+ uptake using western blot analysis. As expected, RR-treated zygotes displayed decreased protein levels of MICU1 and Rhod-2
red fluorescence intensity compared to non-treated zygotes 6 h after IVF. Blastocyst development rate of 20 μM RR-treated zygotes was significantly increased 6 h after IVF (P <
0.05) due to improved mitochondrial functions. Conversely, the blastocyst development rate was significantly decreased in histamine (mito-Ca2+ inhibitor, 100 nM) treated
zygotes (P < 0.05). The collective results demonstrate that RR improves blastocyst development in porcine embryos by regulating mito-Ca2+ and MICU1 expression
following IVF.
Collapse
Affiliation(s)
- Ho-Geun Jegal
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Jin-Woo Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Min-Ji Kim
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea.,Institute of Infertility, Daegu University, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
8
|
Joseph LC, Reyes MV, Lakkadi KR, Gowen BH, Hasko G, Drosatos K, Morrow JP. PKCδ causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. Am J Physiol Heart Circ Physiol 2020; 318:H778-H786. [PMID: 32142354 DOI: 10.1152/ajpheart.00749.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sepsis-induced cardiomyopathy (SIC) is associated with increased patient mortality. At present, there are no specific therapies for SIC. Previous studies have reported increased reactive oxygen species (ROS) and mitochondrial dysfunction during SIC. However, a unifying mechanism remains to be defined. We hypothesized that PKCδ is required for abnormal calcium handling and cardiac mitochondrial dysfunction during sepsis and that genetic deletion of PKCδ would be protective. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) surgery decreased the ejection fraction of wild-type (WT) mice but not PKCδ knockout (KO) mice. Similarly, WT cardiomyocytes exposed to lipopolysaccharide (LPS) demonstrated decreases in contractility and calcium transient amplitude that were not observed in PKCδ KO cardiomyocytes. LPS treatment decreased sarcoplasmic reticulum calcium stores in WT cardiomyocytes, which correlated with increased ryanodine receptor-2 oxidation in WT hearts but not PKCδ KO hearts after sepsis. LPS exposure increased mitochondrial ROS and decreased mitochondrial inner membrane potential in WT cardiomyocytes. This corresponded to morphologic changes consistent with mitochondrial dysfunction such as decreased overall size and cristae disorganization. Increased cellular ROS and changes in mitochondrial morphology were not observed in PKCδ KO cardiomyocytes. These data show that PKCδ is required in the pathophysiology of SIC by generating ROS and promoting mitochondrial dysfunction. Thus, PKCδ is a potential target for cardiac protection during sepsis.NEW & NOTEWORTHY Sepsis is often complicated by cardiac dysfunction, which is associated with a high mortality rate. Our work shows that the protein PKCδ is required for decreased cardiac contractility during sepsis. Mice with deletion of PKCδ are protected from cardiac dysfunction after sepsis. PKCδ causes mitochondrial dysfunction in cardiac myocytes, and reducing mitochondrial oxidative stress improves contractility in wild-type cardiomyocytes. Thus, PKCδ is a potential target for cardiac protection during sepsis.
Collapse
Affiliation(s)
- Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Michael V Reyes
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Kundanika R Lakkadi
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Blake H Gowen
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Gyorgy Hasko
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| |
Collapse
|
9
|
The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel) 2019; 8:antiox8100454. [PMID: 31590423 PMCID: PMC6826663 DOI: 10.3390/antiox8100454] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023] Open
Abstract
Mitochondria play a critical role in maintaining cellular function by ATP production. They are also a source of reactive oxygen species (ROS) and proapoptotic factors. The role of mitochondria has been established in many aspects of cell physiology/pathophysiology, including cell signaling. Mitochondria may deteriorate under various pathological conditions, including ischemia-reperfusion (IR) injury. Mitochondrial injury can be one of the main causes for cardiac and other tissue injuries by energy stress and overproduction of toxic reactive oxygen species, leading to oxidative stress, elevated calcium and apoptotic and necrotic cell death. However, the interplay among these processes in normal and pathological conditions is still poorly understood. Mitochondria play a critical role in cardiac IR injury, where they are directly involved in several pathophysiological mechanisms. We also discuss the role of mitochondria in the context of mitochondrial dynamics, specializations and heterogeneity. Also, we wanted to stress the existence of morphologically and functionally different mitochondrial subpopulations in the heart that may have different sensitivities to diseases and IR injury. Therefore, various cardioprotective interventions that modulate mitochondrial stability, dynamics and turnover, including various pharmacologic agents, specific mitochondrial antioxidants and uncouplers, and ischemic preconditioning can be considered as the main strategies to protect mitochondrial and cardiovascular function and thus enhance longevity.
Collapse
|
10
|
Lu X, Thai PN, Lu S, Pu J, Bers DM. Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. J Mol Cell Cardiol 2019; 136:72-84. [PMID: 31491377 DOI: 10.1016/j.yjmcc.2019.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Mitochondria are involved in multiple cellular functions, in addition to their core role in energy metabolism. Mitochondria localized in different cellular locations may have different morphology, Ca2+ handling and biochemical properties and may interact differently with other intracellular structures, causing functional specificity. However, most prior studies have utilized isolated mitochondria, removed from their intracellular environment. Mitochondria in cardiac ventricular myocytes are highly organized, with a majority squeezed between the myofilaments in longitudinal chains (intrafibrillar mitochondria, IFM). There is another population of perinuclear mitochondria (PNM) around and between the two nuclei typical in myocytes. Here, we take advantage of live myocyte imaging to test for quantitative morphological and functional differences between IFM and PNM with respect to calcium fluxes, membrane potential, sensitivity to oxidative stress, shape and dynamics. Our findings show higher mitochondrial Ca2+ uptake and oxidative stress sensitivity for IFM vs. PNM, which may relate to higher local energy demand supporting the contractile machinery. In contrast to IFM which are remarkably static, PNM are relatively mobile, appear to participate readily in fission/fusion dynamics and appear to play a central role in mitochondrial genesis and turnover. We conclude that while IFM may be physiologically tuned to support local myofilament energy demands, PNM may be more critical in mitochondrial turnover and regulation of nuclear function and import/export. Thus, important functional differences are present in intrafibrillar vs. perinuclear mitochondrial subpopulations.
Collapse
Affiliation(s)
- Xiyuan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China; Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Shan Lu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Liu T, Huang C, Li H, Wu F, Luo J, Lu W, Lan F. A net-shaped multicellular formation facilitates the maturation of hPSC-derived cardiomyocytes through mechanical and electrophysiological stimuli. Aging (Albany NY) 2019; 10:532-548. [PMID: 29661985 PMCID: PMC5940117 DOI: 10.18632/aging.101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
The use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Although many approaches have been reported to improve the maturation of hiPSC-CMs, the elucidation of the process of maturation is crucial. We applied a small-molecule-based differentiation method to generate cardiomyocytes (CMs) with multiple aggregation forms. The motion analysis revealed significant physical differences in the differently shaped CMs, and the net-shaped CMs had larger motion amplitudes and faster velocities than the sheet-shaped CMs. The net-shaped CMs displayed accelerated maturation at the transcriptional level and were more similar to CMs with a prolonged culture time (30 days) than to sheet-d15. Ion channel genes and gap junction proteins were up-regulated in net-shaped CMs, indicating that robust contraction was coupled with enhanced ion channel and connexin expression. The net-shaped CMs also displayed improved myofibril ultrastructure under transmission electron microscopy. In conclusion, different multicellular hPSC-CM structures, such as the net-shaped pattern, are formed using the conditioned induction method, providing a useful tool to improve cardiac maturation.
Collapse
Affiliation(s)
- Taoyan Liu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Hongxia Li
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.,Center for Biomedical Imaging Research, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| |
Collapse
|
12
|
Cheung JY, Wang J, Zhang XQ, Song J, Tomar D, Madesh M, Judenherc-Haouzi A, Haouzi P. Methylene blue counteracts cyanide cardiotoxicity: cellular mechanisms. J Appl Physiol (1985) 2018; 124:1164-1176. [PMID: 29420146 PMCID: PMC6050200 DOI: 10.1152/japplphysiol.00967.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/22/2022] Open
Abstract
In adult left ventricular mouse myocytes, exposure to sodium cyanide (NaCN) in the presence of glucose dose-dependently reduced contraction amplitude, with ~80% of maximal inhibitory effect attained at 100 µM. NaCN (100 µM) exposure for 10 min significantly decreased contraction and intracellular Ca2+ concentration ([Ca2+]i) transient amplitudes, systolic but not diastolic [Ca2+]i, and maximal L-type Ca2+ current ( ICa) amplitude, indicating acute alteration of [Ca2+]i homeostasis largely accounted for the observed excitation-contraction abnormalities. In addition, NaCN depolarized resting membrane potential ( Em), reduced action potential (AP) amplitude, prolonged AP duration at 50% (APD50) and 90% repolarization (APD90), and suppressed depolarization-activated K+ currents but had no effect on Na+-Ca2+ exchange current ( INaCa). NaCN did not affect cellular adenosine triphosphate levels but depolarized mitochondrial membrane potential (ΔΨm) and increased superoxide (O2·-) levels. Methylene blue (MB; 20 µg/ml) added 3 min after NaCN restored contraction and [Ca2+]i transient amplitudes, systolic [Ca2+]i, Em, AP amplitude, APD50, APD90, ICa, depolarization-activated K+ currents, ΔΨm, and O2·- levels toward normal. We conclude that MB reversed NaCN-induced cardiotoxicity by preserving intracellular Ca2+ homeostasis and excitation-contraction coupling ( ICa), minimizing risks of arrhythmias ( Em, AP configuration, and depolarization-activated K+ currents), and reducing O2·- levels. NEW & NOTEWORTHY Cyanide poisoning due to industrial exposure, smoke inhalation, and bioterrorism manifests as cardiogenic shock and requires rapidly effective antidote. In the early stage of cyanide exposure, adenosine triphosphate levels are normal but myocyte contractility is reduced, largely due to alterations in Ca2+ homeostasis because of changes in oxidation-reduction environment of ion channels. Methylene blue, a drug approved by the U.S. Food and Drug Administration, ameliorates cyanide toxicity by normalizing oxidation-reduction state and Ca2+ channel function.
Collapse
Affiliation(s)
- Joseph Y Cheung
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
- Department of Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - JuFang Wang
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Xue-Qian Zhang
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Jianliang Song
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Dhanendra Tomar
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Muniswamy Madesh
- Center of Translational Medicine, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | - Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
13
|
Yang C, Qin Y, Jiang D, Chen HY. Continuous Fluorescence Imaging of Intracellular Calcium by Use of Ion-Selective Nanospheres with Adjustable Spectra. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19892-19898. [PMID: 27408988 DOI: 10.1021/acsami.6b05406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Continuous fluorescence imaging of intracellular ions in various spectral ranges is important for biological studies. In this paper, fluorescent calcium-selective nanospheres, including calix[4]arene-functionalized bodipy (CBDP) or 9-(diethylamino)-5-[(2-octyldecyl)imino]benzo[a]phenoxazine (ETH 5350) as the chromoionophore, were prepared to demonstrate intracellular calcium imaging in visible or near-IR regions, respectively. The fluorescence of the nanospheres was controlled by the chromoionophore, and thus the spectral range for detection was adjustable by choosing the proper chromoionophore. The response time of the nanospheres to calcium was typically 1 s, which allowed accurate measurement of intracellular calcium. These nanospheres were loaded into cells through free endocytosis and exhibited fluorescence for 24 h, and their intensity was correlated with the elevation of intracellular calcium upon stimulation. The successful demonstration of calcium imaging by use of ion-selective nanospheres within two spectral ranges in 24 h supported that these nanospheres could be applied for continuous imaging of intracellular ions with adjustable spectra.
Collapse
Affiliation(s)
- Chenye Yang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Yu Qin
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing, Jiangsu 210093, China
| |
Collapse
|
14
|
Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes. PLoS One 2016; 11:e0145750. [PMID: 26756466 PMCID: PMC4710525 DOI: 10.1371/journal.pone.0145750] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.
Collapse
|
15
|
An imaging flow cytometry-based approach to measuring the spatiotemporal calcium mobilisation in activated T cells. J Immunol Methods 2015; 423:120-30. [PMID: 25967946 DOI: 10.1016/j.jim.2015.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/22/2015] [Accepted: 04/30/2015] [Indexed: 11/22/2022]
Abstract
Calcium ions (Ca(2+)) are a ubiquitous transducer of cellular signals controlling key processes such as proliferation, differentiation, secretion and metabolism. In the context of T cells, stimulation through the T cell receptor has been shown to induce the release of Ca(2+) from intracellular stores. This sudden elevation within the cytoplasm triggers the opening of ion channels in the plasma membrane allowing an influx of extracellular Ca(2+) that in turn activates key molecules such as calcineurin. This cascade ultimately results in gene transcription and changes in the cellular state. Traditional methods for measuring Ca(2+) include spectrophotometry, conventional flow cytometry (CFC) and live cell imaging techniques. While each method has strengths and weaknesses, none can offer a detailed picture of Ca(2+) mobilisation in response to various agonists. Here we report an Imaging Flow Cytometry (IFC)-based method that combines the throughput and statistical rigour of CFC with the spatial information of a microscope. By co-staining cells with Ca(2+) indicators and organelle-specific dyes we can address the spatiotemporal patterns of Ca(2+) flux in Jurkat cells after stimulation with anti-CD3. The multispectral, high-throughput nature of IFC means that the organelle co-staining functions to direct the measurement of Ca(2+) indicator fluorescence to either the endoplasmic reticulum (ER) or the mitochondrial compartments without the need to treat cells with detergents such as digitonin to eliminate cytoplasmic background. We have used this system to look at the cellular localisation of Ca(2+) after stimulating cells with CD3, thapsigargin or ionomycin in the presence or absence of extracellular Ca(2+). Our data suggest that there is a dynamic interplay between the ER and mitochondrial compartments and that mitochondria act as a sink for both intracellular and extracellular derived Ca(2+). Moreover, by generating an NFAT-GFP expressing Jurkat line, we were able to combine mitochondrial Ca(2+) measurements with nuclear translocation. In conclusion, this method enables the high throughput study of spatiotemporal patterns of Ca2(+) signals in T cells responding to different stimuli.
Collapse
|
16
|
Wang L, Lu K, Hao H, Li X, Wang J, Wang K, Wang J, Yan Z, Zhang S, Du Y, Liu H. Decreased autophagy in rat heart induced by anti-β1-adrenergic receptor autoantibodies contributes to the decline in mitochondrial membrane potential. PLoS One 2013; 8:e81296. [PMID: 24278413 PMCID: PMC3835737 DOI: 10.1371/journal.pone.0081296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2013] [Indexed: 12/19/2022] Open
Abstract
It has been recognized that changes in mitochondrial structure plays a key role in development of cardiac dysfunction, and autophagy has been shown to exert maintenance of mitochondrial homeostasis effects. Our previous study found that anti-β1-adrenergic receptor autoantibodies (β1-AABs) could lead to cardiac dysfunction along with abnormalities in mitochondrial structure. The present study tested the hypothesis that β1-AABs may induce the decline in mitochondrial membrane potential (ΔΨm) by suppression of cardiac autophagy, which contributed to cardiac dysfunction. Male adult rats were randomized to receive a vehicle or peptide corresponding to the second extracellular loop of the β1 adrenergic receptor (β1-AAB group, 0.4 μg/g every two weeks for 12 weeks) and treated with rapamycin (RAPA, an autophagy agonist) at 5 mg/kg/day for two days before detection. At the 4th week, 8th week and 12th week of active immunization, the rats were sacrificed and cardiac function and the levels of cardiac LC3 and Beclin-1 were detected. ΔΨm in cardiac myocytes was determined by myocardial radionuclide imaging technology and JC-1 staining. In the present study, β1-AABs caused cardiac dysfunction, reduced ΔΨm and decreased cardiac autophagy. Treatment with RAPA markedly attenuated β1-AABs-induced cardiac injury evidenced by recovered ΔΨm. Taken together, these results suggested that β1-AABs exerted significant decreased ΔΨm, which may contribute to cardiac dysfunction, most likely by decreasing cardiac autophagy in vivo. Moreover, myocardial radionuclide imaging technology may be needed to assess the risk in developing cardiac dysfunction for the people who have β1-AABs in their blood.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Keyi Lu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Haihu Hao
- Department of Orthopaedics, Shanxi Dayi Hospital (Shanxi Academy of Medical Sciences), Taiyuan, Shanxi, P. R. China
| | - Xiaoyu Li
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Jie Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Ke Wang
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Zi Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
| | - Suli Zhang
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Yunhui Du
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
| | - Huirong Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, P. R. China
- Department of Pathophysiology, Capital Medical University, School of Basic Medical Sciences, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Shannon JA, John SM, Parihar HS, Allen SN, Ferrara JJ. A Clinical Review of Statin-Associated Myopathy. J Pharm Technol 2013. [DOI: 10.1177/8755122513500915] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective: To review the epidemiology, clinical features, proposed mechanisms, risk factors, and management of statin-associated myopathy. Data Sources: Literature searches were conducted in PubMed (1948 to April 2013), TOXLINE, International Pharmaceutical Abstracts (1970 to April 2013), and Google Scholar using the terms statin, hydroxymethylglutaryl-coenzyme A reductase inhibitors, myopathy, myalgia, safety, and rhabdomyolysis. Results were limited to English publications. Study Selection and Data Extraction: All relevant original studies, guidelines, meta-analyses, and reviews of statin-associated myopathy and safety of statins were assessed for inclusion. References from selected articles were reviewed to identify additional citations. Data Synthesis: The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors remain one of the most effective medications for reducing low-density-lipoprotein cholesterol. Statins are well tolerated by most patients; however, it is estimated that 10% to 15% of patients develop statin-related muscle adverse effects known as statin-associated myopathy. Although clinicians may be aware of statin-associated myopathy, they may not be aware of its clinical presentation. Providers should assess individual patient risk factors before choosing the appropriate statin. A variety of skeletal muscle aches that may not present as a danger to the patient, may affect patient adherence and quality of life. There are several steps that providers can take to properly treat and manage patients with myalgia complaints. Conclusions: Statin-associated myopathy is a clinical problem that contributes to statin therapy discontinuation. Patients who are statin intolerant may be treated with alternative treatment options such as low-dose statins, switching statins, using alternative dosing strategies in statins with longer half-lives, non-statin lipid-lowering agents, and complementary therapies.
Collapse
Affiliation(s)
| | - Samuel M. John
- Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA
| | | | - Shari N. Allen
- Philadelphia College of Osteopathic Medicine, Suwanee, GA, USA
| | | |
Collapse
|
18
|
Saunders JE, Beeson CC, Schnellmann RG. Characterization of functionally distinct mitochondrial subpopulations. J Bioenerg Biomembr 2012; 45:87-99. [PMID: 23080405 DOI: 10.1007/s10863-012-9478-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/23/2012] [Indexed: 01/01/2023]
Abstract
Mitochondrial stress results in changes in mitochondrial function, morphology and homeostasis (biogenesis, fission/fusion, mitophagy) and may lead to changes in mitochondrial subpopulations. While flow cytometric techniques have been developed to quantify features of individual mitochondria related to volume, Ca(2+) concentration, mtDNA content, respiratory capacity and oxidative damage, less information is available concerning the identification and characterization of mitochondrial subpopulations, particularly in epithelial cells. Mitochondria from rabbit kidneys were stained with molecular probes for cardiolipin content (nonyl acridine orange, NAO) and membrane potential (tetramethylrhodamine, TMRM) and analyzed using flow cytometry. We validated that side scatter was a better indicator of volume and that as side scatter (SSC) decreased mitochondrial volume increased. Furthermore, those mitochondria with the highest NAO content had greater side scattering and were most highly charged. Mitochondria with average NAO content were of average side scattering and maintained an intermediate charge. Those mitochondria with low NAO content had minimal side scattering and exhibited minimal charge. Upon titration with the uncoupler carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), it was found that the high NAO content subpopulations were more resistant to uncoupling than lower NAO content populations. Ca(2+)-induced swelling of mitochondria was evaluated using probability binning (PB) analyses of SSC. Interestingly, only 30% of the mitochondria showed changes in response to Ca(2+), which was blocked by cyclosporine A. In addition, the small, high NAO content mitochondria swelled differentially in response to Ca(2+) over time. Our results demonstrate that flow cytometry can be used to identify mitochondrial subpopulations based on high, mid and low NAO content and/or volume/complexity. These subpopulations showed differences in membrane potential, volume, and responses to uncoupling and Ca(2+)-induced swelling.
Collapse
Affiliation(s)
- Janet E Saunders
- Center for Cell Death, Injury, and Regeneration, Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
19
|
Si D, Epstein T, Lee YEK, Kopelman R. Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions. Anal Chem 2012; 84:978-86. [PMID: 22122409 DOI: 10.1021/ac202521e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca(2+) is a universal second messenger and plays a major role in intracellular signaling, metabolism, and a wide range of cellular processes. To date, one of the most successful approaches for intracellular Ca(2+) measurement involves the introduction of optically sensitive Ca(2+) indicators into living cells, combined with digital imaging microscopy. However, the use of free Ca(2+) indicators for intracellular sensing and imaging has several limitations, such as nonratiometric measurement for the most-sensitive indicators, cytotoxicity of the indicators, interference from nonspecific binding caused by cellular biomacromolecules, challenging calibration, and unwanted sequestration of the indicator molecules. These problems are minimized when the Ca(2+) indicators are encapsulated inside porous and inert polyacrylamide nanoparticles. We present PEBBLE nanosensors encapsulated with rhodamine-based Ca(2+) fluorescence indicators. The rhod-2-containing PEBBLEs presented here show a stable sensing range at near-neutral pH (pH 6-9). Because of the protection of the PEBBLE matrix, the interference of protein-nonspecific binding to the indicator is minimal. The rhod-2 PEBBLEs give a nanomolar dynamic sensing range for both in-solution (K(d) = 478 nM) and intracellular (K(d) = 293 nM) measurements. These nanosensors are useful quantitative tools for the measurement and imaging of the cytosolic nanomolar free Ca(2+) levels.
Collapse
Affiliation(s)
- Di Si
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | |
Collapse
|
20
|
Mizuno M, Takeba Y, Matsumoto N, Tsuzuki Y, Asoh K, Takagi M, Kobayashi S, Yamamoto H. Antenatal glucocorticoid therapy accelerates ATP production with creatine kinase increase in the growth-enhanced fetal rat heart. Circ J 2009; 74:171-80. [PMID: 19952437 DOI: 10.1253/circj.cj-09-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous study has demonstrated the increase of several cardiac function-related proteins, including creatine kinase (CK) as an important enzyme in the process of ATP synthesis in the fetal heart of rats administered glucocorticoid (GC) antenatally. In the present study the effect of antenatal GC administration on the CK expression in fetal and neonatal hearts was demonstrated. METHODS AND RESULTS Dexamethasone was administered to pregnant rats on days 19 and 20 of gestation. The mRNA levels of the CK isoforms, CK-M and Mi-CK, in 21-day-old fetal and 1-day-old neonatal hearts were significantly increased after antenatal GC administration. CK protein levels were also increased in both cultured cardiomyocytes and the mitochondria of the hearts. Uptake of 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl-benzimidazolocarbocyanine iodide by mitochondria was significantly increased. An increased ATP level accompanied the CK increase in the neonatal hearts. Furthermore, in vitro these effects were mediated though the GC receptor of cardiomyocytes. Peroxisome proliferator-activated receptor gamma as the upstream transcription factor of CK was significantly increased in fetal hearts. CONCLUSIONS These results suggest that antenatal GC administration accelerates ATP synthesis through increased CK and may contribute to maturation of the premature heart so that it is ready for preterm delivery. (Circ J 2010; 74: 171 - 180).
Collapse
Affiliation(s)
- Masanori Mizuno
- Department of Pediatrics, St Marianna University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pozzan T, Rudolf R. Measurements of mitochondrial calcium in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1317-23. [DOI: 10.1016/j.bbabio.2008.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
|
22
|
Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol 2009; 41:1957-71. [PMID: 19703657 PMCID: PMC3522519 DOI: 10.1016/j.biocel.2009.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/20/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Ca(2+) signaling is of vital importance to cardiac cell function and plays an important role in heart failure. It is based on sarcolemmal, sarcoplasmic reticulum and mitochondrial Ca(2+) cycling. While the first two are well characterized, the latter remains unclear, controversial and technically challenging. In mammalian cardiac myocytes, Ca(2+) influx through L-type calcium channels in the sarcolemmal membrane triggers Ca(2+) release from the nearby junctional sarcoplasmic reticulum to produce Ca(2+) sparks. When this triggering is synchronized by the cardiac action potential, a global [Ca(2+)](i) transient arises from coordinated Ca(2+) release events. The ends of intermyofibrillar mitochondria are located within 20 nm of the junctional sarcoplasmic reticulum and thereby experience a high local [Ca(2+)] during the Ca(2+) release process. Both local and global Ca(2+) signals may thus influence calcium signaling in mitochondria and, reciprocally, mitochondria may contribute to the local control of calcium signaling. In addition to the intermyofibrillar mitochondria, morphologically distinct mitochondria are also located in the perinuclear and subsarcolemmal regions of the cardiomyocyte and thus experience a different local [Ca(2+)]. Here we review the literature in regard to several issues of broad interest: (1) the ultrastructural basis for mitochondrion - sarcoplasmic reticulum cross-signaling; (2) mechanisms of sarcoplasmic reticulum signaling; (3) mitochondrial calcium signaling; and (4) the possible interplay of calcium signaling between the sarcoplasmic reticulum and adjacent mitochondria. Finally, this review discusses experimental findings and mathematical models of cardiac calcium signaling between the sarcoplasmic reticulum and mitochondria, identifies weaknesses in these models, and suggests strategies and approaches for future investigations.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
23
|
Mahara H, Okada K, Nomura A, Miike H, Sakurai T. Chemical activity induces dynamical force with global structure in a reaction-diffusion-convection system. Phys Rev E 2009; 80:015306. [PMID: 19658764 DOI: 10.1103/physreve.80.015306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Indexed: 11/07/2022]
Abstract
We found a rotating global structure induced by the dynamical force of local chemical activity in a thin solution layer of excitable Belousov-Zhabotinsky reaction coupled with diffusion. The surface flow and deformation associated with chemical spiral waves (wavelength about 1 mm) represents a global unidirectional structure and a global tilt in the entire Petri dish (100 mm in diameter), respectively. For these observations, we scanned the condition of hierarchal pattern selection. From this result, the bromomalonic acid has an important role to induce the rotating global structure. An interaction between a reaction-diffusion process and a surface-tension-driven effect leads to such hierarchal pattern with different scales.
Collapse
Affiliation(s)
- Hitoshi Mahara
- Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | | | | | | | | |
Collapse
|
24
|
What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 2009; 41:1914-27. [PMID: 19549572 DOI: 10.1016/j.biocel.2009.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 01/19/2023]
Abstract
A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components may be unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool.
Collapse
|
25
|
Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 2009; 10:1911-1929. [PMID: 19468346 PMCID: PMC2680654 DOI: 10.3390/ijms10041911] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/14/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022] Open
Abstract
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important cellular functions. However, the interplay among these various roles of mitochondria is still poorly understood, and the underlying mechanisms can be related to system level properties. Importantly, mitochondria localized in different regions of a cell may display different morphology, dissimilar biochemical properties, or may differently interact with other intracellular structures. Recent advances in live imaging techniques have also revealed a functional heterogeneity of mitochondria with respect to mitochondrial redox state, membrane potential, respiratory activity, uncoupling proteins, mitochondrial ROS and calcium. An important and still unresolved question is how the heterogeneity of mitochondrial function and the regional specializations of mitochondria are mechanistically realized in the cell and to what extent this could be dependent on environmental aspects. Distinct mitochondrial subsets may also exhibit different responses to substrates and inhibitors and may vary in their sensitivity to pathology, resistance to apoptosis, oxidative stress, thus also demonstrating heterogeneous behavior. All these observations strongly suggest that the intracellular position, organization and the specific surroundings of mitochondria within the cell define their functional features, while also implying that different mitochondrial subpopulations, clusters or even single mitochondrion may execute diverse processes in a cell. The heterogeneity of mitochondrial function demonstrates an additional level of mitochondrial complexity and is a new, challenging area in mitochondrial research that potentially leads to the integration of mitochondrial bioenergetics and cell physiology with various physiological and pathophysiological implications.
Collapse
|
26
|
Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R. The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:1928-39. [PMID: 19703655 DOI: 10.1016/j.biocel.2009.03.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 03/07/2009] [Indexed: 12/22/2022]
Abstract
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
27
|
Walsh C, Barrow S, Voronina S, Chvanov M, Petersen OH, Tepikin A. Modulation of calcium signalling by mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1374-82. [PMID: 19344663 DOI: 10.1016/j.bbabio.2009.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 02/07/2023]
Abstract
In this review we will attempt to summarise the complex and sometimes contradictory effects that mitochondria have on different forms of calcium signalling. Mitochondria can influence Ca(2+) signalling indirectly by changing the concentration of ATP, NAD(P)H, pyruvate and reactive oxygen species - which in turn modulate components of the Ca(2+) signalling machinery i.e. buffering, release from internal stores, influx from the extracellular solution, uptake into cellular organelles and extrusion by plasma membrane Ca(2+) pumps. Mitochondria can directly influence the calcium concentration in the cytosol of the cell by importing Ca(2+) via the mitochondrial Ca(2+) uniporter or transporting Ca(2+) from the interior of the organelle into the cytosol by means of Na+/Ca(2+) or H+/Ca(2+) exchangers. Considerable progress in understanding the relationship between Ca(2+) signalling cascades and mitochondrial physiology has been accumulated over the last few years due to the development of more advanced optical techniques and electrophysiological approaches.
Collapse
Affiliation(s)
- Ciara Walsh
- Department of Physiology, School of Biomedical Sciences, The University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | |
Collapse
|
28
|
Stachowska E, Baśkiewicz-Masiuk M, Dziedziejko V, Gutowska I, Baranowska-Bosiacka I, Marchlewicz M, Dołęgowska B, Wiszniewska B, Machaliński B, Chlubek D. Conjugated linoleic acid increases intracellular ROS synthesis and oxygenation of arachidonic acid in macrophages. Nutrition 2008; 24:187-99. [DOI: 10.1016/j.nut.2007.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 07/29/2007] [Accepted: 10/26/2007] [Indexed: 11/17/2022]
|
29
|
Belmonte S, Morad M. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. J Physiol 2008; 586:1379-97. [PMID: 18187469 DOI: 10.1113/jphysiol.2007.149294] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac myocytes, in the intact heart, are exposed to shear/fluid forces during each cardiac cycle. Here we describe a novel Ca(2+) signalling pathway, generated by 'pressurized flows' (PFs) of solutions, resulting in the activation of slowly developing ( approximately 300 ms) Ca(2+) transients lasting approximately 1700 ms at room temperature. Though subsequent PFs (applied some 10-30 s later) produced much smaller or undetectable responses, such transients could be reactivated following caffeine- or KCl-induced Ca(2+) releases, suggesting that a small, but replenishable, Ca(2+) pool serves as the source for their activation. PF-triggered Ca(2+) transients could be activated in Ca(2+)-free solutions or in solutions that block voltage-gated Ca(2+) channels, stretch-activated channels (SACs), or the Na(+)-Ca(2+) exchanger (NCX), using Cd(2+), Gd(3+), or Ni(2+), respectively. PF-triggered Ca(2+) transients were significantly smaller in quiescent than in electrically paced myocytes. Paced Ca(2+) transients activated at the peak of PF-triggered Ca(2+) transients were not significantly smaller than those produced normally, suggesting functionally separate Ca(2+) pools for paced and PF-triggered transients. Suppression of nitric oxide (NO) or IP(3) signalling pathways did not alter the PF-triggered Ca(2+) transients. On the other hand, mitochondrial metabolic uncoupler FCCP, in the presence of oligomycin (to prevent ATP depletion), reversibly suppressed PF-triggered Ca(2+) transients, as did the mitochondrial Ca(2+) uniporter (mCU) blocker, Ru360. Reducing agent DTT and reactive oxygen species (ROS) scavenger tempol, as well as mitochondrial NCX (mNCX) blocker CGP-37157, inhibited PF-triggered Ca(2+) transients. In rhod-2 AM-loaded and permeabilized cells, confocal imaging of mitochondrial Ca(2+) showed a transient increase in Ca(2+) on caffeine exposure and a decrease in mitochondrial Ca(2+) on application of PF pulses of solution. These signals were strongly suppressed by either Na(+)-free or CGP-37157-containing solutions, implicating mNCX in mediating the Ca(2+) release process. We conclude that subjecting rat cardiac myocytes to pressurized flow pulses of solutions triggers the release of Ca(2+) from a store that appears to access mitochondrial Ca(2+).
Collapse
Affiliation(s)
- Stephen Belmonte
- Department of Pharmacology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
30
|
Gangwar M, Cole R, Ramani R, Sheehan DJ, Chaturvedi V. Application of fluorescent probes to study structural changes in Aspergillus fumigatus exposed to amphotericin B, itraconazole, and voriconazole. Mycopathologia 2006; 162:103-9. [PMID: 16897588 DOI: 10.1007/s11046-006-0040-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
The broad objective of this study was to document patterns of structural changes following antifungal treatment, and to determine any relationship with minimum inhibitory concentration (MIC) of an antifungal. Three clinical isolates of Aspergillus fumigatus, with high, intermediate, and low amphotericin B (AB), itraconazole (IZ), and voriconazole (VZ) MICs were studied in 24-well plates with cover slips. The fluorescent probes used were Calcofluor White (cell wall), propidium iodide (nucleus), and MitoTracker Green FM (mitochondria). Fluorescent microscopy as early as 3-h after exposure revealed that AB treated hyphae had intact cell wall with deformed mitochondria and nuclei while IZ and VZ treated hyphae revealed no intact cell wall, and deformation of mitochondria and nuclei. At 48 h, AB treated cells revealed rupture of hyphae and disintegration of mitochondria, and nuclei, IZ treated hyphae were swollen with disintegration of mitochondria, and nuclei while VZ treated hyphae showed rupture and disintegration of mitochondria and nuclei. The structural changes for the three strains studied were similar in fluorescent microscopy as long as the incubation time and their respective MICs were used. Thus, AB, IZ, and VZ induced gross organelle defects in A. fumigatus nuclei, mitochondria, and cell wall, which were consistent with respective MICs of antifungals used.
Collapse
Affiliation(s)
- Madhurama Gangwar
- Mycology Laboratory, Wadsworth Center, NYSDOH, 120 New Scotland Ave., Albany, NY 12208 - 2002, USA
| | | | | | | | | |
Collapse
|
31
|
Davidson SM, Duchen MR. Calcium microdomains and oxidative stress. Cell Calcium 2006; 40:561-74. [PMID: 17049598 DOI: 10.1016/j.ceca.2006.08.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 01/05/2023]
Abstract
The phenomenon of calcium microdomains is firmly established in the field of subcellular physiology. These regions of localized, transient calcium increase are exemplified by the spontaneous 'sparks' released through the ryanodine receptor in myocytes, but include subplasmalemmal microdomains, focal calcium oscillations and microdomains enclosed within organelles, such as the endoplasmic reticulum, golgi and mitochondria. Increasing evidence suggests that oxidative stress regulates both the formation and disappearance of microdomains. Calcium release channels and transporters are all modulated by redox state, while several mechanisms that generate oxidative or nitrosative stress are regulated by calcium. Here, we discuss the evidence for the regulation of calcium microdomains by redox state, and, by way of example, demonstrate that the frequency of calcium sparks in cardiomyocytes is increased in response to oxidative stress. We consider the evidence for the existence of analogous microdomains of reactive oxygen and nitrogen species and suggest that the refinement of imaging techniques for these species might lead to similar concepts. The interaction between Ca(2+) microdomains and proteins that modulate their formation results in a complex and dynamic, spatial signaling mechanism, which is likely to be broadly applicable to different cell types, adding new dimensions to the calcium signaling 'toolkit'.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Royal Free and University College Medical School, London, Department of Medicine, 67 Chenies Mews, London, UK.
| | | |
Collapse
|
32
|
Lax A, Soler F, Fernández-Belda F. Cytoplasmic Ca2+ signals and cellular death by apoptosis in myocardiac H9c2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:937-47. [PMID: 16887208 DOI: 10.1016/j.bbamcr.2006.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/04/2006] [Accepted: 05/12/2006] [Indexed: 11/29/2022]
Abstract
The incubation of H9c2 cells with 10 microM thapsigargin (TG) was associated with the appearance of a two-component cytoplasmic Ca2+ peak. Experiments performed in a Ca2+-free medium indicated that both components came from intracellular sources. The first component of the signal corresponded to the discharge of the sarco-endoplasmic reticulum (SER) Ca2+ store. The appearance of the second component was prevented by cell preincubation with cyclosporin A (CsA) and gave rise to a clear and permanent depolarization of the mitochondrial inner membrane. These features were indication of a mitochondrial origin. The observed release of mitochondrial Ca2+ was related with opening of the permeability transition pore (PTP). The two-component cytoplasmic Ca2+ peak, i.e., treatment with 10 microM TG, as compared with the first component alone, i.e., treatment with 3 microM TG, was associated with a faster process of cellular death. In both cases, chromatin fragmentation and condensation at the nuclear periphery were observed. Other prominent apoptotic events such as loss of DNA content and cleavage of poly(ADP-ribose) polymerase (PARP) were also dependent on TG concentration and occurred in different time windows. PTP opening induced by 10 microM TG was responsible for the faster apoptotic death.
Collapse
Affiliation(s)
- Antonio Lax
- Departamento de Bioquímica y Biología Molecular A, Edificio de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain
| | | | | |
Collapse
|
33
|
Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R. Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:686-91. [PMID: 16712778 DOI: 10.1016/j.bbabio.2006.03.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 02/16/2006] [Accepted: 03/16/2006] [Indexed: 11/23/2022]
Abstract
Heterogeneity of mitochondria has been reported for a number of various cell types. Distinct mitochondrial subpopulations may be present in the cell and may be differently involved in physiological and pathological processes. However, the origin and physiological roles of mitochondrial heterogeneity are still unknown. In mice skeletal muscle, a much higher oxidized state of subsarcolemmal mitochondria as compared with intermyofibrillar mitochondria has been demonstrated. Using confocal imaging technique, we present similar phenomenon for rat soleus and gastrocnemius muscles, where higher oxidative state of mitochondrial flavoproteins correlates also with elevated mitochondrial calcium. Moreover, subsarcolemmal mitochondria demonstrate distinct arrangement and organization. In HL-1 cardiomyocytes, long thread mitochondria and small grain mitochondria are observed irrespective of a particular cellular region, showing also heterogeneous membrane potential and ROS production. Possible physiological roles of intracellular mitochondrial heterogeneity and specializations are discussed.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Innsbruck Medical University, Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Lax A, Soler F, Fernández-Belda F. Intracellular ca(2+) pools and fluxes in cardiac muscle-derived h9c2 cells. J Bioenerg Biomembr 2005; 37:249-59. [PMID: 16167180 DOI: 10.1007/s10863-005-6635-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 05/09/2005] [Indexed: 01/27/2023]
Abstract
Relevant Ca(2+) pools and fluxes in H9c2 cells have been studied using fluorescent indicators and Ca(2+)-mobilizing agents. Vasopressin produced a cytoplasmic Ca(2+) peak with half-maximal effective concentration of 6 nM, whereas thapsigargin-induced Ca(2+) increase showed half-maximal effect at 3 nM. Depolarization of the mitochondrial inner membrane by protonophore was also associated with an increase in cytoplasmic Ca(2+). Ionomycin induced a small and sustained depolarization, while thapsigargin had a small but transient effect. The thapsigargin-sensitive Ca(2+) pool was also sensitive to ionomycin, whereas the protonophore-sensitive Ca(2+) pool was not. The vasopressin-induced cytoplasmic Ca(2+) signal, which caused a reversible discharge of the sarco-endoplasmic reticulum Ca(2+) pool, was sensed as a mitochondrial Ca(2+) peak but was unaffected by the permeability transition pore inhibitor cyclosporin A. The mitochondrial Ca(2+) peak was affected by cyclosporin A when the Ca(2+) signal was induced by irreversible discharge of the intracellular Ca(2+) pool, i.e., adding thapsigargin. These observations indicate that the mitochondria interpret the cytoplasmic Ca(2+) signals generated in the reticular store.
Collapse
Affiliation(s)
- Antonio Lax
- Departamento de Bioquímica y Biología Molecular A, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
35
|
Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ. Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 2005; 95:239-52. [PMID: 15297386 DOI: 10.1161/01.res.0000137875.42385.8e] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescence microscopy imaging has become one of the most useful techniques to assess the activity of individual cells, subcellular trafficking of signals to and between organelles, and to appreciate how organelle function is regulated. The past 2 decades have seen a tremendous advance in the rational design and development in the nature and selectivity of probes to serve as reporters of the intracellular environment in live cells. These probes range from small organic fluorescent molecules to fluorescent biomolecules and photoproteins ingeniously engineered to follow signaling traffic, sense ionic and nonionic second messengers, and report various kinase activities. These probes, together with recent advances in imaging technology, have enabled significantly enhanced spatial and temporal resolution. This review summarizes some of these developments and their applications to assess intracellular organelle function.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Laboratories of Cardiovascular Sciences, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Md 21224-6825, USA
| | | | | | | |
Collapse
|
36
|
Kuznetsov AV, Schneeberger S, Renz O, Meusburger H, Saks V, Usson Y, Margreiter R. Functional heterogeneity of mitochondria after cardiac cold ischemia and reperfusion revealed by confocal imaging. Transplantation 2004; 77:754-6. [PMID: 15021841 DOI: 10.1097/01.tp.0000115346.85679.34] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mitochondria play a critical role in ischemia-reperfusion injury of the heart. The purpose of the present study was to analyze the intracellular region-specific functional state of mitochondria after cold ischemia-reperfusion in a rat heart transplant model. METHODS Imaging of the mitochondrial functional state in situ in nonfixed myocardial fibers was performed by confocal microscopy of mitochondrial flavoprotein autofluorescence as redox state indicator; fluorescence of Rhod-2, a specific probe for mitochondrial calcium; and of tetramethylrhodamine ethyl ester fluorescence to monitor the mitochondrial membrane potential. RESULTS This imaging demonstrated that, in contrast to control fibers, 10-hr heart cold storage, heterotopic cardiac transplantation, and 24-hr reperfusion result in a highly heterogeneous mitochondrial functional state (mitochondrial calcium content, redox state, and inner membrane potential), thus suggesting local permeability transitions and heterogeneous mitochondrial damage. CONCLUSIONS Imaging of in situ mitochondria allows topologic assessment of mitochondrial defects and heterogeneity, consequently providing new insights into the mechanisms of cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Transplant Surgery, D. Swarovski Research Laboratory, University Hospital Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
37
|
O'Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV. Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release. Am J Physiol Cell Physiol 2004; 286:C1139-51. [PMID: 15075213 DOI: 10.1152/ajpcell.00371.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial membrane potential (DeltaPsi(m)) underlies many mitochondrial functions, including Ca(2+) influx into the mitochondria, which allows them to serve as buffers of intracellular Ca(2+). Spontaneous depolarizations of DeltaPsi(m), flickers, have been observed in isolated mitochondria and intact cells using the fluorescent cationic lipophile tetramethylrhodamine ethyl ester (TMRE), which distributes across the inner mitochondrial membrane in accordance with the Nernst equation. Flickers in cardiomyocytes have been attributed to uptake of Ca(2+) released from the sarcoplasmic reticulum (SR) via ryanodine receptors in focal transients called Ca(2+) sparks. We have shown previously that an increase in global Ca(2+) in smooth muscle cells causes an increase in mitochondrial Ca(2+) and depolarization of DeltaPsi(m). Here we sought to determine whether flickers in smooth muscle cells are caused by uptake of Ca(2+) released focally in Ca(2+) sparks. High-speed three-dimensional imaging was used to monitor DeltaPsi(m) in freshly dissociated myocytes from toad stomach that were simultaneously voltage clamped at 0 mV to ensure the cytosolic TMRE concentration was constant and equal to the low level in the bath (2.5 nM). This approach allows quantitative analysis of flickers as we have previously demonstrated. Depletion of SR Ca(2+) not only failed to eliminate flickers but rather increased their magnitude and frequency somewhat. Flickers were not altered in magnitude or frequency by ryanodine or xestospongin C, inhibitors of intracellular Ca(2+) release, or by cyclosporin A, an inhibitor of the permeability transition pore. Focal Ca(2+) release from the SR does not cause flickers in the cells employed here.
Collapse
Affiliation(s)
- Catherine M O'Reilly
- Dept. of Physiology, Univ. of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
38
|
Baron KT, Wang GJ, Padua RA, Campbell C, Thayer SA. NMDA-evoked consumption and recovery of mitochondrially targeted aequorin suggests increased Ca2+ uptake by a subset of mitochondria in hippocampal neurons. Brain Res 2003; 993:124-32. [PMID: 14642837 DOI: 10.1016/j.brainres.2003.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of NMDA receptors produces large increases in cytosolic Ca(2+) that are taken up into mitochondria. We used recombinant aequorin targeted to mitochondria to report changes in matrix Ca(2+) in rat hippocampal neurons in culture. Upon binding Ca(2+), aequorin emits a photon in a one-shot reaction that consumes the indicator. Here we show that stimulation with NMDA produced a mitochondrial Ca(2+) response that rapidly inactivated. However, following a 30-min recovery period the response was restored, suggesting the presence of a pool of indicator that was not exposed to high Ca(2+) during the initial stimulus. We speculate that aequorin distant from the Ca(2+) source was protected from microdomains of high Ca(2+) near the plasmalemma and that this aequorin moved, either by movement of individual mitochondria or via the mitochondrial tubular network, to replenish consumed indicator during the recovery time. A large Ca(2+) increase in a subset of mitochondria could produce local changes in energy metabolism, regional Ca(2+) buffering, and foci that initiate neurotoxic processes.
Collapse
Affiliation(s)
- Kyle T Baron
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455-0217, USA
| | | | | | | | | |
Collapse
|
39
|
Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 2003; 35:367-71. [PMID: 14625552 DOI: 10.1038/ng1270] [Citation(s) in RCA: 390] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 10/27/2003] [Indexed: 11/08/2022]
Abstract
Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy. We previously generated collagen VI-deficient (Col6a1-/-) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1-/- muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1-/- mice on incubation with the selective F1F(O)-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1-/- myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1-/- mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- William A Irwin
- Department of Histology, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rubart M, Wang E, Dunn KW, Field LJ. Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts. Am J Physiol Cell Physiol 2003; 284:C1654-68. [PMID: 12584115 DOI: 10.1152/ajpcell.00469.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca(2+)](i) transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca(2+)](i) transients were recorded at depths </=100 microm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca(2+)](i) transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50% (t(90-50%)) and from 50 to 10% (t(50-10%)) of the peak [Ca(2+)](i) were (means +/- SE) 73 +/- 4 and 126 +/- 10 ms, respectively, and at 2 Hz, 62 +/- 3 and 94 +/- 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca(2+)](i) decay was markedly slower in fura-2-loaded hearts (t(90-50%) at 1 Hz, 128 +/- 9 ms and at 2 Hz, 88 +/- 5 ms; t(50-10%) at 1 Hz, 214 +/- 18 ms and at 2 Hz, 163 +/- 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of [Ca(2+)](i) decline resulted from increased cytosolic Ca(2+) buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca(2+) chelator BAPTA. Propagating calcium waves and [Ca(2+)](i) amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging.
Collapse
Affiliation(s)
- Michael Rubart
- Wells Center for Pediatric Research, Indianapolis, Indiana 46202, USA.
| | | | | | | |
Collapse
|
41
|
Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, Kaambre T, Sikk P, Lemba M, Vendelin M. Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 2003; 84:3436-56. [PMID: 12719270 PMCID: PMC1302901 DOI: 10.1016/s0006-3495(03)70065-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Heterogeneity of ADP diffusion and regulation of respiration were studied in permeabilized cardiomyocytes and cardiac fibers in situ and in silico. Regular arrangement of mitochondria in cells was altered by short-time treatment with trypsin and visualized by confocal microscopy. Manipulation of matrix volumes by changing K(+) and sucrose concentrations did not affect the affinity for ADP either in isolated heart mitochondria or in skinned fibers. Pyruvate kinase (PK)-phosphoenolpyruvate (PEP) were used to trap ADP generated in Ca,MgATPase reactions. Inhibition of respiration by PK-PEP increased 2-3 times after disorganization of regular mitochondrial arrangement in cells. ADP produced locally in the mitochondrial creatine kinase reaction was not accessible to PK-PEP in intact permeabilized fibers, but some part of it was released from mitochondria after short proteolysis due to increased permeability of outer mitochondrial membrane. In in silico studies we show by mathematical modeling that these results can be explained by heterogeneity of ADP diffusion due to its restrictions at the outer mitochondrial membrane and in close areas, which is changed after proteolysis. Localized restrictions and heterogeneity of ADP diffusion demonstrate the importance of mitochondrial functional complexes with sarcoplasmic reticulum and myofibrillar structures and creatine kinase in regulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, 2280 Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hajnóczky G, Csordás G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 2002; 32:363-77. [PMID: 12543096 DOI: 10.1016/s0143416002001872] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In many cell types, IP(3) and ryanodine receptor (IP(3)R/RyR)-mediated Ca(2+) mobilization from the sarcoendoplasmic reticulum (ER/SR) results in an elevation of mitochondrial matrix [Ca(2+)]. Although delivery of the released Ca(2+) to the mitochondria has been established as a fundamental signaling process, the molecular mechanism underlying mitochondrial Ca(2+) uptake remains a challenge for future studies. The Ca(2+) uptake can be divided into the following three steps: (1) Ca(2+) movement from the IP(3)R/RyR to the outer mitochondrial membrane (OMM); (2) Ca(2+) transport through the OMM; and (3) Ca(2+) transport through the inner mitochondrial membrane (IMM). Evidence has been presented that Ca(2+) delivery to the OMM is facilitated by a local coupling between closely apposed regions of the ER/SR and mitochondria. Recent studies of the dynamic changes in mitochondrial morphology and visualization of the subcellular pattern of the calcium signal provide important clues to the organization of the ER/SR-mitochondrial interface. Interestingly, key steps of phospholipid synthesis and transfer to the mitochondria have also been confined to subdomains of the ER tightly associated with the mitochondria, referred as mitochondria-associated membranes (MAMs). Through the OMM, the voltage-dependent anion channels (VDAC, porin) have been thought to permit free passage of ions and other small molecules. However, recent studies suggest that the VDAC may represent a regulated step in Ca(2+) transport from IP(3)R/RyR to the IMM. A novel proposal regarding the IMM Ca(2+) uptake site is a mitochondrial RyR that would mediate rapid Ca(2+) uptake by mitochondria in excitable cells. An overview of the progress in these directions is described in the present paper.
Collapse
Affiliation(s)
- G Hajnóczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 19107, Philadelphia, PA, USA.
| | | | | |
Collapse
|
43
|
Bowser DN, Petrou S, Panchal RG, Smart ML, Williams DA. Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake. FASEB J 2002; 16:1105-7. [PMID: 12039849 DOI: 10.1096/fj.01-0828fje] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regulatory interactions between the endoplasmic reticulum (ER) and the mitochondria in the control of intracellular free Ca2+ concentration ([Ca2+]I), may be of importance in the control of many cell functions, and particularly those involved in initiating cell death. We used targeted Ca2+ sensors (cameleons) to investigate the movement of Ca2+ between the ER and mitochondria of intact cells and focused on the role of the mitochondrial permeability transition (MPT) in this interaction. We hypothesized that release of Ca2+ from mitochondria in response to a known MPT agonist (atractyloside) would cause release of ER Ca2+, perpetuating cellular Ca2+ overload, and cell death. Targeted cameleons (mitochondria and ER) were imaged with confocal microscopy 2-3 days following transient transfection of human embryonic kidney 293 cells. Opening of the MPT resulted in specific loss of mitochondrial Ca2+ (blocked by cyclosporin A), which was sequestered initially by ER. The ER subsequently released this Ca2+ load, leading to a global Ca2+ elevation, a response that was not observed when ER Ca2+-ATPases were blocked with cyclopiazonic acid. Thus, ER plays an important role in moderating changes in intracellular Ca2+ following MPT and may play a key role in cell death initiated by mitochondrial mechanisms.
Collapse
Affiliation(s)
- David N Bowser
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
44
|
Yuhki KI, Miyauchi T, Kakinuma Y, Murakoshi N, Maeda S, Goto K, Yamaguchi I, Suzuki T. Endothelin-1 production is enhanced by rotenone, a mitochondrial complex I inhibitor, in cultured rat cardiomyocytes. J Cardiovasc Pharmacol 2001; 38:850-8. [PMID: 11707688 DOI: 10.1097/00005344-200112000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In chronic heart failure and acute myocardial infarction, the tissue level of endothelin (ET)-1 in the heart, as well as its plasma level, has been reported to increase markedly. There is, however, little information about what in these pathologic conditions leads to increased production of ET-1, and which type of cell in the heart produces ET-1. We examined the mRNA and peptide expression of ET-1 using cultured rat neonatal cardiomyocytes, in which mitochondrial dysfunction was induced by rotenone, a mitochondrial respiratory chain complex I inhibitor, because one of the common features in failing or ischemic hearts is an alteration in energy metabolism due to mitochondrial dysfunction. Rotenone increased glucose use by the culture cells within 12 h of addition without affecting cell viability, and depressed the mitochondrial membrane potential after 72 h, indicating the induction of mitochondrial dysfunction in cardiomyocytes. Rotenone induced significant increase in the expression level of mRNA for ET-1 within 1 h of addition. In accordance with this finding, immunoreactive ET-1 in culture medium increased 3 times after 24 h of incubation, suggesting active secretion of ET-1 from cultured cells treated with rotenone. Immunocytochemical analysis verified significant increase of ET-1 peptide in cardiomyocytes, confirming the production of ET-1 by cardiomyocytes. These results suggest that derangement of mitochondrial function in cardiomyocytes itself could lead to the increased production of ET-1 in cardiomyocytes, and that this mechanism may contribute to the increased production of ET-1 in failing and ischemic hearts.
Collapse
Affiliation(s)
- K I Yuhki
- Cardiovascular Division, Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ. MitoTracker labeling in primary neuronal and astrocytic cultures: influence of mitochondrial membrane potential and oxidants. J Neurosci Methods 2001; 104:165-76. [PMID: 11164242 DOI: 10.1016/s0165-0270(00)00340-x] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MitoTracker dyes are fluorescent mitochondrial markers that covalently bind free sulfhydryls. The impact of alterations in mitochondrial membrane potential (Delta Psi(m)) and oxidant stress on MitoTracker staining in mitochondria in cultured neurons and astrocytes has been investigated. p-(Trifluoromethoxy) phenyl-hydrazone (FCCP) significantly decreased MitoTracker loading, except with MitoTracker Green in neurons and MitoTracker Red in astrocytes. Treatment with FCCP after loading increased fluorescence intensity and caused a relocalization of the dyes. The magnitude of these effects was contingent on which MitoTracker, cell type and dye concentration were used. H(2)O(2) pretreatment led to a consistent increase in neuronal MitoTracker Orange and Red and astrocytic MitoTracker Green and Orange fluorescence intensity. H(2)O(2) exposure following loading increased MitoTracker Red fluorescence in astrocytes. In rat brain mitochondria, high concentrations of MitoTracker dyes uncoupled respiration in state 4 and inhibited maximal respiration. Thus, loading and mitochondrial localization of the MitoTracker dyes can be influenced by loss of Delta Psi(m) and increased oxidant burden. These dyes can also directly inhibit respiration. Care must be taken in interpreting data collected using MitoTrackers dyes as these dyes have several potential limitations. Although MitoTrackers may have some value in identifying the location of mitochondria within cultured neurons and astrocytes, their sensitivity to Delta Psi(m) and oxidation negates their use as markers of mitochondrial dynamics in healthy cultures.
Collapse
Affiliation(s)
- J F Buckman
- Department of Pharmacology, University of Pittsburgh, E1351 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192:1001-14. [PMID: 11015441 PMCID: PMC2193314 DOI: 10.1084/jem.192.7.1001] [Citation(s) in RCA: 1315] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 07/24/2000] [Indexed: 11/04/2022] Open
Abstract
We sought to understand the relationship between reactive oxygen species (ROS) and the mitochondrial permeability transition (MPT) in cardiac myocytes based on the observation of increased ROS production at sites of spontaneously deenergized mitochondria. We devised a new model enabling incremental ROS accumulation in individual mitochondria in isolated cardiac myocytes via photoactivation of tetramethylrhodamine derivatives, which also served to report the mitochondrial transmembrane potential, DeltaPsi. This ROS accumulation reproducibly triggered abrupt (and sometimes reversible) mitochondrial depolarization. This phenomenon was ascribed to MPT induction because (a) bongkrekic acid prevented it and (b) mitochondria became permeable for calcein ( approximately 620 daltons) concurrently with depolarization. These photodynamically produced "triggering" ROS caused the MPT induction, as the ROS scavenger Trolox prevented it. The time required for triggering ROS to induce the MPT was dependent on intrinsic cellular ROS-scavenging redox mechanisms, particularly glutathione. MPT induction caused by triggering ROS coincided with a burst of mitochondrial ROS generation, as measured by dichlorofluorescein fluorescence, which we have termed mitochondrial "ROS-induced ROS release" (RIRR). This MPT induction/RIRR phenomenon in cardiac myocytes often occurred synchronously and reversibly among long chains of adjacent mitochondria demonstrating apparent cooperativity. The observed link between MPT and RIRR could be a fundamental phenomenon in mitochondrial and cell biology.
Collapse
Affiliation(s)
- D B Zorov
- Laboratory of Cardiovascular Sciences, Gerontology Research Center, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | |
Collapse
|
47
|
Petrou S, Bowser DN, Nicholls RA, Panchal RG, Smart ML, Reilly AM, Williams DA. Genetically targeted calcium sensors enhance the study of organelle function in living cells. Clin Exp Pharmacol Physiol 2000; 27:738-44. [PMID: 10972543 DOI: 10.1046/j.1440-1681.2000.03327.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Understanding the regulation of calcium (Ca2+), the most common of the mineral ions within the human body, has always been of extreme interest to physiologists. While the importance of Ca2+ in contributing to physiological events through regulation of levels has been significantly established, seldom is consideration given to the intricacies of this ion and its mechanics in producing such diverse physiological responses in different regions of the cell. 2. The present review will summarize new methodologies used in our laboratories for the study of two major intracellular organelles, mitochondria and the nucleus. These techniques are based predominantly on the use of molecular biological approaches to both create and then target protein-based sensor molecules to specific intracellular locations. 3. The regulation of Ca2+ in the mitochondria and nucleus is of particular interest to us because of the central involvement of these organelles in: (i) cardiac cell responses during ischaemia/reperfusion; and (ii) the control of gene expression, respectively.
Collapse
Affiliation(s)
- S Petrou
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Trollinger DR, Cascio WE, Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores. Biophys J 2000; 79:39-50. [PMID: 10866936 PMCID: PMC1300914 DOI: 10.1016/s0006-3495(00)76272-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence.
Collapse
Affiliation(s)
- D R Trollinger
- Department of Cell Biology and Anatomy, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7090 USA
| | | | | |
Collapse
|
49
|
Szalai G, Csordás G, Hantash BM, Thomas AP, Hajnóczky G. Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem 2000; 275:15305-13. [PMID: 10809765 DOI: 10.1074/jbc.275.20.15305] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of energy metabolism by increases of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) may represent a fundamental mechanism to meet the ATP demand imposed by heart contractions, but the machinery underlying propagation of [Ca(2+)] signals from ryanodine receptor Ca(2+) release channels (RyR) to the mitochondria remains elusive. Using permeabilized cardiac (H9c2) cells we investigated the cytosolic [Ca(2+)] ([Ca(2+)](c)) and [Ca(2+)](m) signals elicited by activation of RyR. Caffeine, Ca(2+), and ryanodine evoked [Ca(2+)](c) spikes that often appeared as frequency-modulated [Ca(2+)](c) oscillations in these permeabilized cells. Rapid increases in [Ca(2+)](m) and activation of the Ca(2+)-sensitive mitochondrial dehydrogenases were synchronized to the rising phase of the [Ca(2+)](c) spikes. The RyR-mediated elevations of global [Ca(2+)](c) were in the submicromolar range, but the rate of [Ca(2+)](m) increases was as large as it was in the presence of 30 microm global [Ca(2+)](c). Furthermore, RyR-dependent increases of [Ca(2+)](m) were relatively insensitive to buffering of [Ca(2+)](c) by EGTA. Therefore, RyR-driven rises of [Ca(2+)](m) appear to result from large and rapid increases of perimitochondrial [Ca(2+)]. The falling phase of [Ca(2+)](c) spikes was followed by a rapid decay of [Ca(2+)](m). CGP37157 slowed down relaxation of [Ca(2+)](m) spikes, whereas cyclosporin A had no effect, suggesting that activation of the mitochondrial Ca(2+) exchangers accounts for rapid reversal of the [Ca(2+)](m) response with little contribution from the permeability transition pore. Thus, rapid activation of Ca(2+) uptake sites and Ca(2+) exchangers evoked by RyR-mediated local [Ca(2+)](c) signals allow mitochondria to respond rapidly to single [Ca(2+)](c) spikes in cardiac cells.
Collapse
Affiliation(s)
- G Szalai
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death; mitochondria play a pivotal role in the regulation of such cytosolic Ca2+ ([Ca2+]c) signals. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. These transport processes function to regulate local and global [Ca2+]c, thereby regulating a number of Ca2+-sensitive cellular mechanisms. The permeability transition pore (PTP) forms the major Ca2+ efflux pathway from mitochondria. In addition, Ca2+ efflux from the mitochondrial matrix occurs by the reversal of the uniporter and through the inner membrane Na+/Ca2+ exchanger. During cellular Ca2+ overload, mitochondria take up [Ca2+]c, which, in turn, induces opening of PTP, disruption of mitochondrial membrane potential (delta(psi)m) and cell death. In apoptosis signaling, collapse of delta(psi)m and cytochrome c release from mitochondria occur followed by activation of caspases, DNA fragmentation, and cell death. Translocation of Bax, an apoptotic signaling protein from the cytosol to the mitochondrial membrane, is another step during this apoptosis-signaling pathway. The role of permeability transition in the context of cell death in relation to Bcl-2 family of proteins is discussed.
Collapse
Affiliation(s)
- S S Smaili
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4495, USA
| | | | | | | |
Collapse
|