1
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Dong J, Wang B, Wang J, Wang X, Wang X, Wang R, Yu T, Wang Z. Analysis of the contractile work of a single cardiomyocyte by atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1326-1333. [PMID: 39835351 DOI: 10.1039/d4ay01912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Atomic force microscopy (AFM) is widely used for the imaging and characterization of biological cells because of its nanoscale spatial resolution and force resolution. However, in the previous studies, the inability to effectively detect the contractile work of cardiomyocytes and the 3D dynamic expressions of their contraction and relaxation behaviors posed significant challenges. Therefore, this work presents a method for the analysis of the contractile work of a single cardiomyocyte by AFM. Two different contractile work measurement modes of cardiomyocytes are proposed, which are the constant height contact mode and the constant force contact mode. The differences in the contractile work were analyzed in two measurement modes. The changes in the contractile work of a single cardiomyocyte in the two measurement modes were studied, and the accuracies of the two measuring models were verified using ginseng extract. After the action of drugs, the contraction force of cardiomyocytes and the work done by contraction force increased. The experimental results indicated that the detection results of the ginseng water extract acting on the same cardiomyocyte by nanomanipulation technology were consistent with its pharmacological effects. Thus, it is reliable to detect the mechanical properties of cardiomyocytes using the nanomanipulation system. This study provides a new method for measuring the contraction force and contractile work of a single cardiomyocyte.
Collapse
Affiliation(s)
- Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Junxi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xingyue Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Rui Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianzhu Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- China Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- JR3CN, IRAC, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
3
|
Orii R, Tanimoto H. Structural response of microtubule and actin cytoskeletons to direct intracellular load. J Cell Biol 2025; 224:e202403136. [PMID: 39545874 PMCID: PMC11572716 DOI: 10.1083/jcb.202403136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Microtubule and actin are the two major cytoskeletal polymers that form organized functional structures in the interior of eukaryotic cells. Although the structural mechanics of the cytoskeleton has been extensively studied by direct manipulations in in vitro reconstitution systems, such unambiguous characterizations inside the living cell are sparse. Here, we report a comprehensive analysis of how the microtubule and actin cytoskeletons structurally respond to direct intracellular load. Ferrofluid-based intracellular magnetic tweezers reveal rheological properties of the microtubule complex primarily determined by filamentous actin. The strain fields of the microtubule complex and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. The structural responses of single microtubules to contact and remote forces further evidence that the individual microtubules are enclosed by the elastic medium of actin. These results, directly characterizing the microtubule and actin cytoskeletons as an interacting continuum throughout the cytoplasm, serve as a cornerstone for the physical understanding of intracellular organization.
Collapse
Affiliation(s)
- Ryota Orii
- Department of Science, Yokohama City University, Yokohama, Japan
| | | |
Collapse
|
4
|
Lane K, Dow LP, Castillo EA, Boros R, Feinstein SD, Pardon G, Pruitt BL. Cell Architecture and Dynamics of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) on Hydrogels with Spatially Patterned Laminin and N-Cadherin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:174-186. [PMID: 39680735 PMCID: PMC11783353 DOI: 10.1021/acsami.4c11934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Controlling cellular shape with micropatterning extracellular matrix (ECM) proteins on hydrogels has been shown to improve the reproducibility of the cell structure, enhancing our ability to collect statistics on single-cell behaviors. Patterning methods have advanced efforts in developing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a promising human model for studies of the heart structure, function, and disease. Patterned single hiPSC-CMs have exhibited phenotypes closer to mature, primary CMs across several metrics, including sarcomere alignment and contractility, area and aspect ratio, and force production. Micropatterning of hiPSC-CM pairs has shown further improvement of hiPSC-CM contractility compared to patterning single cells, suggesting that CM-CM interactions improve hiPSC-CM function. However, whether patterning single hiPSC-CMs on a protein associated with CM-CM adhesion, like N-cadherin, can drive similar enhancement of the hiPSC-CM structure and function has not been tested. To address this, we developed a novel dual-protein patterning process featuring covalent binding of proteins at the hydrogel surface to ensure robust force transfer and force sensing. The patterns comprised rectangular laminin islands for attachment across the majority of the cell area, with N-cadherin "end caps" to imitate CM-CM adherens junctions. We used this method to geometrically control single-cell CMs on deformable hydrogels suitable for traction force microscopy (TFM) to observe cellular dynamics. We seeded α-actinin::GFP-tagged hiPSC-CMs on dual-protein patterned hydrogels and verified the interaction between hiPSC-CMs and N-cadherin end caps via immunofluorescent staining. We found that hiPSC-CMs on dual-protein patterns exhibited higher cell area and contractility in the direction of sarcomere organization than those on laminin-only patterns but no difference in sarcomere organization or total force production. This work demonstrates a method for covalent patterning of multiple proteins on polyacrylamide hydrogels for mechanobiological studies. However, we conclude that N-cadherin only modestly improves single-cell patterned hiPSC-CM models and is not sufficient to elicit increases in contractility observed in hiPSC-CM pairs.
Collapse
Affiliation(s)
- Kerry
V. Lane
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Liam P. Dow
- Biomolecular
Science and Engineering Program, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Erica A. Castillo
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rémi Boros
- Department
of Physics, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Samuel D. Feinstein
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Bioengineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Gaspard Pardon
- AGORA Cancer
Research Center, Swiss Federal Institute
of Technology of Lausanne, Lausanne CH-1011, Switzerland
| | - Beth L. Pruitt
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Biomolecular
Science and Engineering Program, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Bioengineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Amouzadeh Tabrizi M, Ali AA, Singuru MMR, Mi L, Bhattacharyya P, You M. A portable and sensitive DNA-based electrochemical sensor for detecting piconewton-scale cellular forces. Anal Chim Acta 2025; 1333:343392. [PMID: 39615910 PMCID: PMC11609405 DOI: 10.1016/j.aca.2024.343392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Cell-generated forces are a key player in cell biology, especially during cellular shape formation, migration, cancer development, and immune response. The measurement of forces exerted and experienced by cells is fundamental in understanding these mechanosensitive cellular behaviors. While cell-generated forces can now be detected based on techniques like fluorescence microscopy, atomic force microscopy, optical/magnetic tweezers, however, most of these approaches rely on complicated instruments or materials, as well as skilled operators, which could limit their potential broad applications in regular biological laboratories. RESULTS A new type of smartphone-based electrochemical sensor is developed here for cellular force measurement. In this system, a double-stranded DNA-based force probe, known as tension gauge tether, is attached to the surface of a gold screen-printed electrode, which is then incorporated into a portable smartphone-based electrochemical device. Cellular force-induced DNA detachment on the sensor surface results in multiple redox reporters to reach the surface of the electrode and generate enhanced electrochemical signals. To further improve the sensitivity, a CRISPR-Cas12a system has also been incorporated to cleave the remaining surface-attached anchor DNA strand. Using integrin-mediated tension as an example, piconewton-scale adhesion forces generated by ≤ 10 HeLa cells could now be reliably detected. Meanwhile, the threshold forces of these electrochemical sensors can also be modularly tuned to detect different levels of cellular forces. SIGNIFICANCE These novel DNA-based highly sensitive, portable, cost-efficient, and easy-to-use electrochemical sensors can be potentially powerful tools for detecting different cell-generated molecular forces. Functioning as complementary tools with traction force microscopy and fluorescent probes, these electrochemical sensors can be straightforwardly applied in regular biological laboratories for understanding the basic mechanical principles of cell signaling and for developing novel strategies and materials in tissue engineering, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Lan Mi
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Xu Y, Yang C, Zeng Y, Xu C, Liu W. Traction Force Microscopy for Studying B Lymphocyte Mechanosensing. Methods Mol Biol 2025; 2909:63-72. [PMID: 40029515 DOI: 10.1007/978-1-0716-4442-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
B lymphocytes (B cells) are effector cells in humoral immunity. B cells recognize membrane-bound antigens through B-cell receptors in vivo, triggering signaling cascades and resulting in B-cell activation. During this process, cells exert myosin II-mediated traction to discriminate between different antigen densities and affinities. Traction force microscopy (TFM) allows for the quantitative measurement of dynamic traction generated by B cells. Experimental conditions must be optimized when conducting B-cell TFM tests. Here, we describe the general procedures for using TFM to profile the origin, dynamics, and the function of traction force during B-cell activation. Detailed experimental conditions have been listed, which instruct investigators to obtain high-quality TFM data for B-cell studies.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chun Yang
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yingyue Zeng
- School of Life Sciences, Liaoning University, Shenyang, Liaoning, China
| | - Chenguang Xu
- Institute of Molecular Immunology, Department of Biotechnology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
7
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Pal K. Unravelling molecular mechanobiology using DNA-based fluorogenic tension sensors. J Mater Chem B 2024; 13:37-53. [PMID: 39564891 DOI: 10.1039/d4tb01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Investigations of the biological system have revealed many principles that govern regular life processes. Recently, the analysis of tiny mechanical forces associated with many biological processes revealed their significance in understanding biological functions. Consequently, this piqued the interest of researchers, and a series of technologies have been developed to understand biomechanical cues at the molecular level. Notable techniques include single-molecule force spectroscopy, traction force microscopy, and molecular tension sensors. Well-defined double-stranded DNA structures could possess programmable mechanical characteristics, and hence, they have become one of the central molecules in molecular tension sensor technology. With the advancement of DNA technology, DNA or nucleic acid-based robust tension sensors offer the possibility of understanding mechanobiology in the bulk to single-molecule level range with desired spatiotemporal resolution. This review presents a comprehensive account of molecular tension sensors with a special emphasis on DNA-based fluorogenic tension sensors. Along with a detailed discussion on irreversible and reversible DNA-based tension sensors and their application in super-resolution microscopy, a discussion on biomolecules associated with cellular mechanotransduction and key findings in the field are included. This review ends with an elaborate discussion on the current challenges and future prospects of molecular tension sensors.
Collapse
Affiliation(s)
- Kaushik Pal
- Biophysical Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, Tirupati, AP-517619, India.
| |
Collapse
|
9
|
Faure LM, Gómez‐González M, Baguer O, Comelles J, Martínez E, Arroyo M, Trepat X, Roca‐Cusachs P. 3D Micropatterned Traction Force Microscopy: A Technique to Control 3D Cell Shape While Measuring Cell-Substrate Force Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406932. [PMID: 39443837 PMCID: PMC11633470 DOI: 10.1002/advs.202406932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Cell shape and function are intimately linked, in a way that is mediated by the forces exerted between cells and their environment. The relationship between cell shape and forces has been extensively studied for cells seeded on flat 2D substrates, but not for cells in more physiological 3D settings. Here, a technique called 3D micropatterned traction force microscopy (3D-µTFM) to confine cells in 3D wells of defined shape, while simultaneously measuring the forces transmitted between cells and their microenvironment is demonstrated. This technique is based on the 3D micropatterning of polyacrylamide wells and on the calculation of 3D traction force from their deformation. With 3D-µTFM, it is shown that MCF10A breast epithelial cells exert defined, reproducible patterns of forces on their microenvironment, which can be both contractile and extensile. Cells switch from a global contractile to extensile behavior as their volume is reduced are further shown. The technique enables the quantitative study of cell mechanobiology with full access to 3D cellular forces while having accurate control over cell morphology and the mechanical conditions of the microenvironment.
Collapse
Affiliation(s)
- Laura M. Faure
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Manuel Gómez‐González
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
| | - Ona Baguer
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| | - Jordi Comelles
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Electronics and Biomedical EngineeringUniversity of BarcelonaC. Martí Franquès 1Barcelona08028Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC)Jordi Girona 1‐3Barcelona08036Spain
- Institut de Matemàtiques de la UPC–BarcelonaTech (IMTech)Pau Gargallo 14Barcelona08028Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)Gran Capità S/NBarcelona08034Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
- Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Avenida Monforte de Lemos 3‐5Madrid28029Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Lluis Companys 23Barcelona08010Spain
| | - Pere Roca‐Cusachs
- Institute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)C. Baldiri Reixac 10‐12Barcelona08028Spain
- Department of Biomedical SciencesUniversity of BarcelonaC. Casanova 143Barcelona08034Spain
| |
Collapse
|
10
|
Yang C, Cai W, Xiang P, Liu Y, Xu H, Zhang W, Han F, Luo Z, Liang T. Viscoelastic hydrogel combined with dynamic compression promotes osteogenic differentiation of bone marrow mesenchymal stem cells and bone repair in rats. Regen Biomater 2024; 12:rbae136. [PMID: 39845143 PMCID: PMC11751691 DOI: 10.1093/rb/rbae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025] Open
Abstract
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous. In addition, TRPV4 is involved in bone development. Therefore, this study aims to construct a viscoelastic hydrogel combined with dynamic compressive loading and investigate the effect of the dynamic mechanical environment on the osteogenic differentiation of stem cells and bone repair in vivo. The role of TRPV4 in the mechanobiology process was also assessed. A sodium alginate-gelatine hydrogel with adjustable viscoelasticity and good cell adhesion ability was obtained. The osteogenic differentiation of BMSCs was obtained using the fast stress relaxation hydrogel and a smaller compression strain of 1.5%. TRPV4 was activated in the hydrogel with fast stress relaxation time, followed by the increase in intracellular Ca2+ level and the activation of the Wnt/β-catenin pathway. The inhibition of TRPV4 induced a decrease in the intracellular Ca2+ level, down-regulation of β-catenin and reduced osteogenesis differentiation of BMSCs, suggesting that TRPV4 might be the key mechanism in the regulation of BMSC osteogenic differentiation in the viscoelastic dynamic mechanical environment. The fast stress relaxation hydrogel also showed a good osteogenic promotion effect in the rat femoral defect model. The dynamic viscoelastic mechanical environment significantly induced the osteogenic differentiation of BMSCs and bone regeneration, which TRPV4 being involved in this mechanobiological process. Our study not only provided important guidance for the mechanical design of new biomaterials, but also provided a new perspective for the understanding of the interaction between cells and materials, the role of mechanical loading in tissue regeneration and the use of mechanical regulation in tissue engineering.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wenbin Cai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Pan Xiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Yu Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Hao Xu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wen Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Zongping Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Ting Liang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| |
Collapse
|
11
|
Dong Y, Wang C, Ding X, Ma X, Huang R, Li M, Yang Q. The characterization of cell traction force on nonflat surfaces with different curvature by elastic hydrogel microspheres. Biotechnol Bioeng 2024; 121:3537-3550. [PMID: 38978386 DOI: 10.1002/bit.28802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
It is of great importance to study the detachment/attachment behaviors of cells (cancer cell, immune cell, and epithelial cell), as they are closely related with tumor metastasis, immunoreaction, and tissue development at variety scales. To characterize the detachment/attachment during the interaction between cells and substrate, some researchers proposed using cell traction force (CTF) as the indicator. To date, various strategies have been developed to measure the CTF. However, these methods only realize the measurements of cell passive forces on flat cases. To quantify the active CTF on nonflat surfaces, which can better mimic the in vivo case, we employed elastic hydrogel microspheres as a force sensor. The microspheres were fabricated by microfluidic chips with controllable size and mechanical properties to mimic substrate. Cells were cultured on microsphere and the CTF led to the deformation of microsphere. By detecting the morphology information, the CTF exerted by attached cells can be calculated by the in-house numerical code. Using these microspheres, the CTF of various cells (including tumor cell, immunological cell, and epithelium cell) were successfully obtained on nonflat surfaces with different curvature radii. The proposed method provides a versatile platform to measure the CTF with high precision and to understand the detachment/attachment behaviors during physiology processes.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xingquan Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an, P.R. China
| | - Rong Huang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
12
|
Schunk CT, Wang W, Sabo LN, Taufalele PV, Reinhart-King CA. Matrix stiffness increases energy efficiency of endothelial cells. Matrix Biol 2024; 133:77-85. [PMID: 39147247 DOI: 10.1016/j.matbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
To form blood vessels, endothelial cells rearrange their cytoskeleton, generate traction stresses, migrate, and proliferate, all of which require energy. Despite these energetic costs, stiffening of the extracellular matrix promotes tumor angiogenesis and increases cell contractility. However, the interplay between extracellular matrix, cell contractility, and cellular energetics remains mechanistically unclear. Here, we utilized polyacrylamide substrates with various stiffnesses, a real-time biosensor of ATP, and traction force microscopy to show that endothelial cells exhibit increasing traction forces and energy usage trend as substrate stiffness increases. Inhibition of cytoskeleton reorganization via ROCK inhibition resulted in decreased cellular energy efficiency, and an opposite trend was found when cells were treated with manganese to promote integrin affinity. Altogether, our data reveal a link between matrix stiffness, cell contractility, and cell energetics, suggesting that endothelial cells on stiffer substrates can better convert intracellular energy into cellular traction forces. Given the critical role of cellular metabolism in cell function, our study also suggests that not only energy production but also the efficiency of its use plays a vital role in regulating cell behaviors and may help explain how increased matrix stiffness promotes angiogenesis.
Collapse
Affiliation(s)
- Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lindsey N Sabo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
13
|
Santos ARMP, Kirkpatrick BE, Kim M, Anseth KS, Park Y. 2D co-culture model reveals a biophysical interplay between activated fibroblasts and cancer cells. Acta Biomater 2024:S1742-7061(24)00623-8. [PMID: 39476995 DOI: 10.1016/j.actbio.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The tumor microenvironment (TME) comprises diverse cell types within an altered extracellular matrix (ECM) and plays a pivotal role in metastasis through intricate cell-cell and cell-ECM interactions. Fibroblasts, as key constituents of the TME, contribute significantly to cancer metastasis through their involvement in matrix deposition and remodeling mechanisms, modulated by their quiescent or activated states. Despite their recognized importance, the precise role of fibroblasts in cancer cell invasion remains incompletely understood. In this study, we investigated the impact of fibroblast activity on cancer cell progression using a 2D co-culture model. Michigan Cancer Foundation-7 (MCF7) breast cancer cells were co-cultured with normal human lung fibroblasts (NHLF), both with and without transforming growth factor β (TGFβ) treatment. Traction force microscopy (TFM) was employed to quantify traction and velocity forces associated with cellular migration. We observed that TGFβ-activated fibroblasts form a distinctive ring around cancer cells in co-culture, with increased traction and tension at the cell island boundary. This force distribution is associated with the localization of force-related proteins at these boundary regions, including vinculin and E-cadherin. Metabolic profiling revealed a strong OXPHOS signal specific to the activated fibroblasts, in contrast to normal fibroblasts, which primarily display migratory behavior and a more heterogeneous pattern of forces and metabolic activity in co-culture. Our findings offer valuable insights into the mechanical forces and metabolic dynamics governing cellular migration in the tumor microenvironment, where our co-culture model could complement in vivo studies and enable researchers to explore specific microenvironmental cues for a deeper understanding of TME mechanisms. STATEMENT OF SIGNIFICANCE: Cancer models mimicking the dynamics of tumor microenvironment (TME) are an ideal tool to study cancer mechanisms and treatment. However, the full understanding of how cancer cells interact with their surroundings and other cells is still unknown. To tackle this, we developed a simple yet effective 2D co-culture model that allows us to control the arrangement of cell cultures precisely and use various imaging techniques to study interactions between cancer cells and fibroblasts. Here we could measure cell movements, force distribution, metabolic activity, and protein localization and interplay those factors in vitro. Our model helps us observe the underlying mechanisms between cancer cells and fibroblasts, contributing to our understanding of the dynamics in the TME.
Collapse
Affiliation(s)
- Ana Rita M P Santos
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303. USA.
| | - Mirim Kim
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering and the BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303. USA.
| | - Yongdoo Park
- Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells use focal adhesions to pull themselves through confined environments. J Cell Biol 2024; 223:e202310067. [PMID: 38889096 PMCID: PMC11187980 DOI: 10.1083/jcb.202310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical compositions. Their migration has classically been defined as amoeboid under the assumption that it is integrin independent. Here, we show that activated primary Th1 T cells require both confinement and extracellular matrix proteins to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal cell focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cells preferentially follow tracks of other T cells, suggesting that these adhesions modify the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated focal adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah J. Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick W. Oakes
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
15
|
Liu J, Prahl LS, Huang AZ, Hughes AJ. Measurement of adhesion and traction of cells at high yield reveals an energetic ratchet operating during nephron condensation. Proc Natl Acad Sci U S A 2024; 121:e2404586121. [PMID: 39292750 PMCID: PMC11441508 DOI: 10.1073/pnas.2404586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Developmental biology-inspired strategies for tissue-building have extraordinary promise for regenerative medicine, spurring interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here, we present multiplexed adhesion and traction of cells at high yield (MATCHY). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and a semiautomated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for rearranged during transfection (RET) tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We then use MATCHY to create a biophysical atlas of mouse embryonic kidney primary cells and identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an "energetic ratchet" that accounts for spatial trends in nephron progenitor cell condensation as they differentiate into early nephron structures, which we validate through agent-based computational simulation. MATCHY offers semiautomated cell biophysical characterization at >10,000-cell throughput, an advance benefiting fundamental studies and new synthetic tissue strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA19104
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA19104
- Materials Research Science and Engineering Center, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
16
|
Tao Y, Ghagre A, Molter CW, Clouvel A, Al Rahbani J, Brown CM, Nowrouzezahrai D, Ehrlicher AJ. Inferring cellular contractile forces and work using deep morphology traction microscopy. Biophys J 2024; 123:3217-3230. [PMID: 39033326 PMCID: PMC11427771 DOI: 10.1016/j.bpj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Clayton W Molter
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Jalal Al Rahbani
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Claire M Brown
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada; Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | - Derek Nowrouzezahrai
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, Quebec, Canada; Centre for Structural Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
17
|
Zhang X, Burattini M, Duru J, Chala N, Wyssen N, Cofiño-Fabres C, Rivera-Arbeláez JM, Passier R, Poulikakos D, Ferrari A, Tringides C, Vörös J, Luciani GB, Miragoli M, Zambelli T. Multimodal Mapping of Electrical and Mechanical Latency of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Layers. ACS NANO 2024; 18:24060-24075. [PMID: 39172696 DOI: 10.1021/acsnano.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a β-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Margherita Burattini
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Department of Maternity, Surgery and Dentistry, University of Verona, 37134 Verona, Italy
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Nino Wyssen
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - José Manuel Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, 8600 Dübendorf, Switzerland
| | - Christina Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | | | - Michele Miragoli
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital ─ IRCCS, 20089 Rozzano, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| |
Collapse
|
18
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
19
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
20
|
Kandasamy A, Yeh YT, Serrano R, Mercola M, Del Álamo JC. Uncertainty-Aware Traction Force Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602172. [PMID: 39026786 PMCID: PMC11257441 DOI: 10.1101/2024.07.05.602172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Traction Force Microscopy (TFM) is a versatile tool to quantify cell-exerted forces by imaging and tracking fiduciary markers embedded in elastic substrates. The computations involved in TFM are ill-conditioned, and data smoothing or regularization is required to avoid overfitting the noise in the tracked substrate displacements. Most TFM calculations depend critically on the heuristic selection of regularization (hyper)parameters affecting the balance between overfitting and smoothing. However, TFM methods rarely estimate or account for measurement errors in substrate deformation to adjust the regularization level accordingly. Moreover, there is a lack of tools to quantify how these errors propagate to the recovered traction stresses. These limitations make it difficult to interpret TFM readouts and hinder comparing different experiments. This manuscript presents an uncertainty-aware TFM technique that estimates the variability in the magnitude and direction of the traction stress vector recovered at each point in space and time of each experiment. In this technique, substrate deformation and its uncertainty are quantified using a non-parametric bootstrap PIV method by resampling the microscopy image pixels (PIV-UQ). This information is passed to a hierarchical Bayesian framework that automatically selects its hyperparameters to perform spatially adaptive regularization conditioned on image quality and propagates the uncertainty to the traction stress readouts (TFM-UQ). We validate the performance of PIV-UQ and TFM-UQ using synthetic datasets with prescribed image quality variations and demonstrate the application of PIV-UQ and TFM-UQ to experimental datasets. These studies show that TFM-UQ locally adapts the level of smoothing, outperforming traditional regularization methods. They also illustrate how uncertainty-aware TFM tools can be used to objectively choose key image analysis parameters like PIV-UQ interrogation window size. We anticipate that these tools will allow for decoupling biological heterogeneity from measurement variability and facilitate automating the analysis of large datasets by parameter-free, input data-based regularization.
Collapse
|
21
|
Kołodziej T, Mrózek M, Sengottuvel S, Głowacki MJ, Ficek M, Gawlik W, Rajfur Z, Wojciechowski AM. Multimodal analysis of traction forces and the temperature dynamics of living cells with a diamond-embedded substrate. BIOMEDICAL OPTICS EXPRESS 2024; 15:4024-4043. [PMID: 39022544 PMCID: PMC11249686 DOI: 10.1364/boe.524293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
Cells and tissues are constantly exposed to chemical and physical signals that regulate physiological and pathological processes. This study explores the integration of two biophysical methods: traction force microscopy (TFM) and optically detected magnetic resonance (ODMR) to concurrently assess cellular traction forces and the local relative temperature. We present a novel elastic substrate with embedded nitrogen-vacancy microdiamonds that facilitate ODMR-TFM measurements. Optimization efforts focused on minimizing sample illumination and experiment duration to mitigate biological perturbations. Our hybrid ODMR-TFM technique yields TFM maps and achieves approximately 1 K precision in relative temperature measurements. Our setup employs a simple wide-field fluorescence microscope with standard components, demonstrating the feasibility of the proposed technique in life science laboratories. By elucidating the physical aspects of cellular behavior beyond the existing methods, this approach opens avenues for a deeper understanding of cellular processes and may inspire the development of diverse biomedical applications.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Jagiellonian University Medical School, Faculty of Pharmacy, Kraków, Poland
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Mariusz Mrózek
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Saravanan Sengottuvel
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Maciej J Głowacki
- Gdansk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Department of Metrology and Optoelectronics, Gdańsk, Poland
| | - Mateusz Ficek
- Gdansk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Department of Metrology and Optoelectronics, Gdańsk, Poland
| | - Wojciech Gawlik
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Zenon Rajfur
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| | - Adam M Wojciechowski
- Jagiellonian University , Faculty of Physics, Astronomy, and Applied Computer Science, Kraków, Poland
| |
Collapse
|
22
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Chen H, Wang S, Cao Y, Lei H. Molecular Force Sensors for Biological Application. Int J Mol Sci 2024; 25:6198. [PMID: 38892386 PMCID: PMC11173168 DOI: 10.3390/ijms25116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanical forces exerted by cells on their surrounding microenvironment are known as cellular traction forces. These forces play crucial roles in various biological processes, such as tissue development, wound healing and cell functions. However, it is hard for traditional techniques to measure cellular traction forces accurately because their magnitude (from pN to nN) and the length scales over which they occur (from nm to μm) are extremely small. In order to fully understand mechanotransduction, highly sensitive tools for measuring cellular forces are needed. Current powerful techniques for measuring traction forces include traction force microscopy (TFM) and fluorescent molecular force sensors (FMFS). In this review, we elucidate the force imaging principles of TFM and FMFS. Then we highlight the application of FMFS in a variety of biological processes and offer our perspectives and insights into the potential applications of FMFS.
Collapse
Affiliation(s)
- Huiyan Chen
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Shouhan Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (H.C.); (S.W.)
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Jang I, Menon S, Indra I, Basith R, Beningo KA. Calpain Small Subunit Mediated Secretion of Galectin-3 Regulates Traction Stress. Biomedicines 2024; 12:1247. [PMID: 38927454 PMCID: PMC11200796 DOI: 10.3390/biomedicines12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4-/- mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4-/- MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by β1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; (I.J.)
| |
Collapse
|
25
|
Amouzadeh Tabrizi M, Bhattacharyya P, Zheng R, You M. Electrochemical DNA-based sensors for measuring cell-generated forces. Biosens Bioelectron 2024; 253:116185. [PMID: 38457863 PMCID: PMC10947853 DOI: 10.1016/j.bios.2024.116185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surface of a smartphone-based electrochemical device to detect piconewton-scale cellular forces at tunable levels. Upon experiencing cellular tension, the unfolding of DNA probes induces the separation of redox reporters from the surface of the electrode, which results in detectable electrochemical signals. Using integrin-mediated cell adhesion as an example, our results indicated that these electrochemical sensors can be used for highly sensitive, robust, simple, and portable measurements of cell-generated forces.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA, 01003, USA.
| | - Priyanka Bhattacharyya
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA, 01003, USA
| | - Ru Zheng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA, 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA, 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
26
|
Rieu JP, Delanoë-Ayari H, Barentin C, Nakagaki T, Kuroda S. Dynamics of centipede locomotion revealed by large-scale traction force microscopy. J R Soc Interface 2024; 21:20230439. [PMID: 38807527 DOI: 10.1098/rsif.2023.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
We present a novel approach to traction force microscopy (TFM) for studying the locomotion of 10 cm long walking centipedes on soft substrates. Leveraging the remarkable elasticity and ductility of kudzu starch gels, we use them as a deformable gel substrate, providing resilience against the centipedes' sharp leg tips. By optimizing fiducial marker size and density and fine-tuning imaging conditions, we enhance measurement accuracy. Our TFM investigation reveals traction forces along the centipede's longitudinal axis that effectively counterbalance inertial forces within the 0-10 mN range, providing the first report of non-vanishing inertia forces in TFM studies. Interestingly, we observe waves of forces propagating from the head to the tail of the centipede, corresponding to its locomotion speed. Furthermore, we discover a characteristic cycle of leg clusters engaging with the substrate: forward force (friction) upon leg tip contact, backward force (traction) as the leg pulls the substrate while stationary, and subsequent forward force as the leg tip detaches to reposition itself in the anterior direction. This work opens perspectives for TFM applications in ethology, tribology and robotics.
Collapse
Affiliation(s)
- J P Rieu
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - H Delanoë-Ayari
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - C Barentin
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS , Villeurbanne 69622, France
| | - T Nakagaki
- Research Institute for Electronic Science, Hokkaido University, N20W10 , Kita-ku, Hokkaido 001-0020, Japan
| | - S Kuroda
- Faculty of Software and Information Technology, Aomori University, Koubata 2-3-1 , Aomori 030-0943, Japan
| |
Collapse
|
27
|
Karimi A, Aga M, Khan T, D'costa SD, Thaware O, White E, Kelley MJ, Gong H, Acott TS. Comparative analysis of traction forces in normal and glaucomatous trabecular meshwork cells within a 3D, active fluid-structure interaction culture environment. Acta Biomater 2024; 180:206-229. [PMID: 38641184 PMCID: PMC11095374 DOI: 10.1016/j.actbio.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Omkar Thaware
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States
| | - Elizabeth White
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
28
|
Nejad MR, Ruske LJ, McCord M, Zhang J, Zhang G, Notbohm J, Yeomans JM. Stress-shape misalignment in confluent cell layers. Nat Commun 2024; 15:3628. [PMID: 38684651 PMCID: PMC11059169 DOI: 10.1038/s41467-024-47702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
In tissue formation and repair, the epithelium undergoes complex patterns of motion driven by the active forces produced by each cell. Although the principles governing how the forces evolve in time are not yet clear, it is often assumed that the contractile stresses within the cell layer align with the axis defined by the body of each cell. Here, we simultaneously measured the orientations of the cell shape and the cell-generated contractile stresses, observing correlated, dynamic domains in which the stresses were systematically misaligned with the cell body. We developed a continuum model that decouples the orientations of contractile stress and cell body. The model recovered the spatial and temporal dynamics of the regions of misalignment in the experiments. These findings reveal that the cell controls its contractile forces independently from its shape, suggesting that the physical rules relating cell forces and cell shape are more flexible than previously thought.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
| | - Liam J Ruske
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Molly McCord
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jun Zhang
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Guanming Zhang
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Jacob Notbohm
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom.
| |
Collapse
|
29
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
30
|
Tabrizi MA, Ali AA, Singuru MMR, Mi L, Bhattacharyya P, You M. A portable electrochemical DNA sensor for sensitive and tunable detection of piconewton-scale cellular forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586508. [PMID: 38585754 PMCID: PMC10996547 DOI: 10.1101/2024.03.24.586508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell-generated forces are a key player in cell biology, especially during cellular shape formation, migration, cancer development, and immune response. A new type of label-free smartphone-based electrochemical DNA sensor is developed here for cellular force measurement. When cells apply tension forces to the DNA sensors, the rapid rupture of DNA duplexes allows multiple redox reporters to reach the electrode and generate highly sensitive electrochemical signals. The sensitivity of these portable sensors can be further enhanced by incorporating a CRISPR-Cas12a system. Meanwhile, the threshold force values of these DNA-based sensors can be rationally tuned based on the force application geometries and also DNA intercalating agents. Overall, these highly sensitive, portable, cost-efficient, and easy-to-use electrochemical sensors can be powerful tools for detecting different cell-generated molecular forces.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Murali Mohana Rao Singuru
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Lan Mi
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Priyanka Bhattacharyya
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Yang Y, Han K, Huang S, Wang K, Wang Y, Ding S, Zhang L, Zhang M, Xu B, Ma S, Wang Y, Wu S, Wang X. Revelation of adhesive proteins affecting cellular contractility through reference-free traction force microscopy. J Mater Chem B 2024; 12:3249-3261. [PMID: 38466580 DOI: 10.1039/d4tb00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.
Collapse
Affiliation(s)
- Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
| | - Kuankuan Han
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Siyuan Huang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Kai Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yuchen Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Le Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
- Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| | - Shengli Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
32
|
Liu R, Ma R, Yan X. Balanced activation of Nrf-2/ARE mediates the protective effect of sulforaphane on keratoconus in the cell mechanical microenvironment. Sci Rep 2024; 14:6937. [PMID: 38521828 PMCID: PMC10960822 DOI: 10.1038/s41598-024-57596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Keratoconus (KC) is a progressive degenerative disease that usually occurs bilaterally and is characterized by corneal thinning and apical protrusion of the cornea. Oxidative stress is an indicator of the accumulation of reactive oxygen species (ROS), and KC keratocytes exhibit increased ROS production compared with that of normal keratocytes. Therefore, oxidative stress in KC keratocytes may play a major role in the development and progression of KC. Here, we investigated the protective effect of sulforaphane (SF) antioxidants using a hydrogel-simulated model of the cell mechanical microenvironment of KC. The stiffness of the KC matrix microenvironment in vitro was 16.70 kPa and the stiffness of the normal matrix microenvironment was 34.88 kPa. Human keratocytes (HKs) were cultured for 24 h before observation or drug treatment with H2O2 in the presence or absence of SF. The levels of oxidative stress, nuclear factor E2-related factor 2 (Nrf-2) and antioxidant response element (ARE) were detected. The high-stress state of HKs in the mechanical microenvironment of KC cells compensates for the activation of the Nrf-2/ARE signaling pathway. H2O2 leads to increased oxidative stress and decreased levels of antioxidant proteins in KC. In summary, SF can reduce endogenous and exogenous oxidative stress and increase the antioxidant capacity of cells.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Ruojun Ma
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, 450003, People's Republic of China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, 100034, People's Republic of China.
| |
Collapse
|
33
|
Ni K, Che B, Gu R, Wang C, Xu H, Li H, Cen S, Luo M, Deng L. BitterDB database analysis plus cell stiffness screening identify flufenamic acid as the most potent TAS2R14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation. Theranostics 2024; 14:1744-1763. [PMID: 38389834 PMCID: PMC10879871 DOI: 10.7150/thno.92492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional β-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 μM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional β-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
34
|
Liu J, Prahl LS, Huang A, Hughes AJ. Measurement of adhesion and traction of cells at high yield (MATCHY) reveals an energetic ratchet driving nephron condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579368. [PMID: 38370771 PMCID: PMC10871361 DOI: 10.1101/2024.02.07.579368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Engineering of embryonic strategies for tissue-building has extraordinary promise for regenerative medicine. This has led to a resurgence in interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here we present MATCHY (multiplexed adhesion and traction of cells at high yield). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and an automated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for RET tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We go on to create a biophysical atlas of primary cells dissociated from the mouse embryonic kidney and use MATCHY to identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an 'energetic ratchet' that explains spatial nephron progenitor cell condensation from the niche as they differentiate, which we validate through agent-based computational simulation. MATCHY offers automated cell biophysical characterization at >104-cell throughput, a highly enabling advance for fundamental studies and new synthetic tissue design strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Aria Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
35
|
Yeh YT, Del Álamo JC, Caffrey CR. Biomechanics of parasite migration within hosts. Trends Parasitol 2024; 40:164-175. [PMID: 38172015 DOI: 10.1016/j.pt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dissemination of protozoan and metazoan parasites through host tissues is hindered by cellular barriers, dense extracellular matrices, and fluid forces in the bloodstream. To overcome these diverse biophysical impediments, parasites implement versatile migratory strategies. Parasite-exerted mechanical forces and upregulation of the host's cellular contractile machinery are the motors for these strategies, and these are comparably better characterized for protozoa than for helminths. Using the examples of the protozoans, Toxoplasma gondii and Plasmodium, and the metazoan, Schistosoma mansoni, we highlight how quantitative tools such as traction force and reflection interference contrast microscopies have improved our understanding of how parasites alter host mechanobiology to promote their migration.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 93093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0657, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Karimi A, Aga M, Khan T, D'costa SD, Cardenas-Riumallo S, Zelenitz M, Kelley MJ, Acott TS. Dynamic traction force in trabecular meshwork cells: A 2D culture model for normal and glaucomatous states. Acta Biomater 2024; 175:138-156. [PMID: 38151067 PMCID: PMC10843681 DOI: 10.1016/j.actbio.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Glaucoma, which is associated with intraocular pressure (IOP) elevation, results in trabecular meshwork (TM) cellular dysfunction, leading to increased rigidity of the extracellular matrix (ECM), larger adhesion forces between the TM cells and ECM, and higher resistance to aqueous humor drainage. TM cells sense the mechanical forces due to IOP dynamic and apply multidimensional forces on the ECM. Recognizing the importance of cellular forces in modulating various cellular activities and development, this study is aimed to develop a 2D in vitro cell culture model to calculate the 3D, depth-dependent, dynamic traction forces, tensile/compressive/shear strain of the normal and glaucomatous human TM cells within a deformable polyacrylamide (PAM) gel substrate. Normal and glaucomatous human TM cells were isolated, cultured, and seeded on top of the PAM gel substrate with embedded FluoSpheres, spanning elastic moduli of 1.5 to 80 kPa. Sixteen-hour post-seeding live confocal microscopy in an incubator was conducted to Z-stack image the 3D displacement map of the FluoSpheres within the PAM gels. Combined with the known PAM gel stiffness, we ascertained the 3D traction forces in the gel. Our results revealed meaningfully larger traction forces in the glaucomatous TM cells compared to the normal TM cells, reaching depths greater than 10-µm in the PAM gel substrate. Stress fibers in TM cells increased with gel rigidity, but diminished when stiffness rose from 20 to 80 kPa. The developed 2D cell culture model aids in understanding how altered mechanical properties in glaucoma impact TM cell behavior and aqueous humor outflow resistance. STATEMENT OF SIGNIFICANCE: Glaucoma, a leading cause of irreversible blindness, is intricately linked to elevated intraocular pressures and their subsequent cellular effects. The trabecular meshwork plays a pivotal role in this mechanism, particularly its interaction with the extracellular matrix. This research unveils an advanced 2D in vitro cell culture model that intricately maps the complex 3D forces exerted by trabecular meshwork cells on the extracellular matrix, offering unparalleled insights into the cellular biomechanics at play in both healthy and glaucomatous eyes. By discerning the changes in these forces across varying substrate stiffness levels, we bridge the gap in understanding between cellular mechanobiology and the onset of glaucoma. The findings stand as a beacon for potential therapeutic avenues, emphasizing the gravity of cellular/extracellular matrix interactions in glaucoma's pathogenesis and setting the stage for targeted interventions in its early stages.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Mini Aga
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Taaha Khan
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Siddharth Daniel D'costa
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | | | - Meadow Zelenitz
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Integrative Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA; Department Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
37
|
Fujikawa R, Okimura C, Kozawa S, Ikeda K, Inagaki N, Iwadate Y, Sakumura Y. Bayesian traction force estimation using cell boundary-dependent force priors. Biophys J 2023; 122:4542-4554. [PMID: 37915171 PMCID: PMC10719052 DOI: 10.1016/j.bpj.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the principles of cell migration necessitates measurements of the forces generated by cells. In traction force microscopy (TFM), fluorescent beads are placed on a substrate's surface and the substrate strain caused by the cell traction force is observed as displacement of the beads. Mathematical analysis can estimate traction force from bead displacement. However, most algorithms estimate substrate stresses independently of cell boundary, which results in poor estimation accuracy in low-density bead environments. To achieve accurate force estimation at low density, we proposed a Bayesian traction force estimation (BTFE) algorithm that incorporates cell-boundary-dependent force as a prior. We evaluated the performance of the proposed algorithm using synthetic data generated with mathematical models of cells and TFM substrates. BTFE outperformed other methods, especially in low-density bead conditions. In addition, the BTFE algorithm provided a reasonable force estimation using TFM images from the experiment.
Collapse
Affiliation(s)
- Ryosuke Fujikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Chika Okimura
- Department of Biology, Yamaguchi University, Yamaguchi, Japan
| | - Satoshi Kozawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kazushi Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Naoyuki Inagaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
38
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
39
|
Nauryzgaliyeva Z, Goux Corredera I, Garreta E, Montserrat N. Harnessing mechanobiology for kidney organoid research. Front Cell Dev Biol 2023; 11:1273923. [PMID: 38077999 PMCID: PMC10704179 DOI: 10.3389/fcell.2023.1273923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 10/16/2024] Open
Abstract
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
Collapse
Affiliation(s)
- Zarina Nauryzgaliyeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Noerr PS, Zamora Alvarado JE, Golnaraghi F, McCloskey KE, Gopinathan A, Dasbiswas K. Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proc Natl Acad Sci U S A 2023; 120:e2301555120. [PMID: 37910554 PMCID: PMC10636364 DOI: 10.1073/pnas.2301555120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cells self-organize into functional, ordered structures during tissue morphogenesis, a process that is evocative of colloidal self-assembly into engineered soft materials. Understanding how intercellular mechanical interactions may drive the formation of ordered and functional multicellular structures is important in developmental biology and tissue engineering. Here, by combining an agent-based model for contractile cells on elastic substrates with endothelial cell culture experiments, we show that substrate deformation-mediated mechanical interactions between cells can cluster and align them into branched networks. Motivated by the structure and function of vasculogenic networks, we predict how measures of network connectivity like percolation probability and fractal dimension as well as local morphological features including junctions, branches, and rings depend on cell contractility and density and on substrate elastic properties including stiffness and compressibility. We predict and confirm with experiments that cell network formation is substrate stiffness dependent, being optimal at intermediate stiffness. We also show the agreement between experimental data and predicted cell cluster types by mapping a combined phase diagram in cell density substrate stiffness. Overall, we show that long-range, mechanical interactions provide an optimal and general strategy for multicellular self-organization, leading to more robust and efficient realizations of space-spanning networks than through just local intercellular interactions.
Collapse
Affiliation(s)
- Patrick S. Noerr
- Department of Physics, University of California, Merced, CA95343
| | - Jose E. Zamora Alvarado
- Department of Materials and Biomaterials Science and Engineering, University of California, Merced, CA95343
| | | | - Kara E. McCloskey
- Department of Materials and Biomaterials Science and Engineering, University of California, Merced, CA95343
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, CA95343
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, CA95343
| |
Collapse
|
41
|
Caillier A, Oleksyn D, Fowell DJ, Miller J, Oakes PW. T cells Use Focal Adhesions to Pull Themselves Through Confined Environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562587. [PMID: 37904911 PMCID: PMC10614902 DOI: 10.1101/2023.10.16.562587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Immune cells are highly dynamic and able to migrate through environments with diverse biochemical and mechanical composition. Their migration has classically been defined as amoeboid under the assumption that it is integrin-independent. Here we show that activated primary Th1 T cells require both confinement and extracellular matrix protein to migrate efficiently. This migration is mediated through small and dynamic focal adhesions that are composed of the same proteins associated with canonical mesenchymal focal adhesions, such as integrins, talin, and vinculin. These focal adhesions, furthermore, localize to sites of contractile traction stresses, enabling T cells to pull themselves through confined spaces. Finally, we show that Th1 T cell preferentially follows tracks of other T cells, suggesting that these adhesions are modifying the extracellular matrix to provide additional environmental guidance cues. These results demonstrate not only that the boundaries between amoeboid and mesenchymal migration modes are ambiguous, but that integrin-mediated adhesions play a key role in T cell motility.
Collapse
Affiliation(s)
- Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - David Oleksyn
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jim Miller
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
42
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
43
|
SubramanianBalachandar V, Islam MM, Steward RL. A machine learning approach to predict cellular mechanical stresses in response to chemical perturbation. Biophys J 2023; 122:3413-3424. [PMID: 37496269 PMCID: PMC10502424 DOI: 10.1016/j.bpj.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Mechanical stresses generated at the cell-cell level and cell-substrate level have been suggested to be important in a host of physiological and pathological processes. However, the influence various chemical compounds have on the mechanical stresses mentioned above is poorly understood, hindering the discovery of novel therapeutics, and representing a barrier in the field. To overcome this barrier, we implemented two approaches: 1) monolayer boundary predictor and 2) discretized window predictor utilizing either stepwise linear regression or quadratic support vector machine machine learning model to predict the dose-dependent response of tractions and intercellular stresses to chemical perturbation. We used experimental traction and intercellular stress data gathered from samples subject to 0.2 or 2 μg/mL drug concentrations along with cell morphological properties extracted from the bright-field images as predictors to train our model. To demonstrate the predictive capability of our machine learning models, we predicted tractions and intercellular stresses in response to 0 and 1 μg/mL drug concentrations which were not utilized in the training sets. Results revealed the discretized window predictor trained just with four samples (292 images) to best predict both intercellular stresses and tractions using the quadratic support vector machine and stepwise linear regression models, respectively, for the unseen sample images.
Collapse
Affiliation(s)
- VigneshAravind SubramanianBalachandar
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida; Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Md Mydul Islam
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida
| | - R L Steward
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Central Florida, Orlando, Florida; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|
44
|
Kratz FS, Möllerherm L, Kierfeld J. Enhancing robustness, precision, and speed of traction force microscopy with machine learning. Biophys J 2023; 122:3489-3505. [PMID: 37525464 PMCID: PMC10502481 DOI: 10.1016/j.bpj.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/14/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Traction patterns of adherent cells provide important information on their interaction with the environment, cell migration, or tissue patterns and morphogenesis. Traction force microscopy is a method aimed at revealing these traction patterns for adherent cells on engineered substrates with known constitutive elastic properties from deformation information obtained from substrate images. Conventionally, the substrate deformation information is processed by numerical algorithms of varying complexity to give the corresponding traction field via solution of an ill-posed inverse elastic problem. We explore the capabilities of a deep convolutional neural network as a computationally more efficient and robust approach to solve this inversion problem. We develop a general purpose training process based on collections of circular force patches as synthetic training data, which can be subjected to different noise levels for additional robustness. The performance and the robustness of our approach against noise is systematically characterized for synthetic data, artificial cell models, and real cell images, which are subjected to different noise levels. A comparison with state-of-the-art Bayesian Fourier transform traction cytometry reveals the precision, robustness, and speed improvements achieved by our approach, leading to an acceleration of traction force microscopy methods in practical applications.
Collapse
Affiliation(s)
- Felix S Kratz
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Lars Möllerherm
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Jan Kierfeld
- Department of Physics, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
45
|
Shi X, Janmey PA. Large Polyacrylamide Hydrogels for Large-Batch Cell Culture and Mechanobiological Studies. Macromol Biosci 2023; 23:e2300042. [PMID: 37128976 PMCID: PMC10524403 DOI: 10.1002/mabi.202300042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
The rigidity of a cell's substrate or extracellular matrix plays a vital role in regulating cell and tissue functions. Polyacrylamide (PAAm) hydrogels are one of the most widely used cell culture substrates that provide a physiologically relevant range of stiffness. However, it is still arduous and time-consuming to prepare PAAm substrates in large batches for high-yield or multiscale cell cultures. In this communication, a simple method to prepare PAAm hydrogels with less time cost and easily accessible materials is presented. The hydrogel is mechanically uniform and supports cell culture in a large batch. It is further shown that the stiffness of the hydrogel covers a large range of Young's modulus and is sensed by cells, regulating various cell features including changes in cell morphology, proliferation, and contractility. This method improves the reproducibility of mechanobiology studies and can be easily applied for mechanobiology research requiring large numbers of cells or experimental groups.
Collapse
Affiliation(s)
- Xuechen Shi
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
46
|
Alonso-Matilla R, Provenzano PP, Odde DJ. Optimal cell traction forces in a generalized motor-clutch model. Biophys J 2023; 122:3369-3385. [PMID: 37475213 PMCID: PMC10465728 DOI: 10.1016/j.bpj.2023.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Cells exert forces on mechanically compliant environments to sense stiffness, migrate, and remodel tissue. Cells can sense environmental stiffness via myosin-generated pulling forces acting on F-actin, which is in turn mechanically coupled to the environment via adhesive proteins, akin to a clutch in a drivetrain. In this "motor-clutch" framework, the force transmitted depends on the complex interplay of motor, clutch, and environmental properties. Previous mean-field analysis of the motor-clutch model identified the conditions for optimal stiffness for maximal force transmission via a dimensionless number that combines motor-clutch parameters. However, in this and other previous mean-field analyses, the motor-clutch system is assumed to have balanced motors and clutches and did not consider force-dependent clutch reinforcement and catch bond behavior. Here, we generalize the motor-clutch analytical framework to include imbalanced motor-clutch regimes, with clutch reinforcement and catch bonding, and investigate optimality with respect to all parameters. We found that traction force is strongly influenced by clutch stiffness, and we discovered an optimal clutch stiffness that maximizes traction force, suggesting that cells could tune their clutch mechanical properties to perform a specific function. The results provide guidance for maximizing the accuracy of cell-generated force measurements via molecular tension sensors by designing their mechanosensitive linker peptide to be as stiff as possible. In addition, we found that, on rigid substrates, the mean-field analysis identifies optimal motor properties, suggesting that cells could regulate their myosin repertoire and activity to maximize force transmission. Finally, we found that clutch reinforcement shifts the optimum substrate stiffness to larger values, whereas the optimum substrate stiffness is insensitive to clutch catch bond properties. Overall, our work reveals novel features of the motor-clutch model that can affect the design of molecular tension sensors and provide a generalized analytical framework for predicting and controlling cell adhesion and migration in immunotherapy and cancer.
Collapse
Affiliation(s)
- Roberto Alonso-Matilla
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
47
|
Delanoë-Ayari H, Hiraiwa T, Marcq P, Rieu JP, Saw TB. 2.5D Traction Force Microscopy: Imaging three-dimensional cell forces at interfaces and biological applications. Int J Biochem Cell Biol 2023; 161:106432. [PMID: 37290687 DOI: 10.1016/j.biocel.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
The forces that cells, tissues, and organisms exert on the surface of a soft substrate can be measured using Traction Force Microscopy (TFM), an important and well-established technique in Mechanobiology. The usual TFM technique (two-dimensional, 2D TFM) treats only the in-plane component of the traction forces and omits the out-of-plane forces at the substrate interfaces (2.5D) that turn out to be important in many biological processes such as tissue migration and tumour invasion. Here, we review the imaging, material, and analytical tools to perform "2.5D TFM" and explain how they are different from 2D TFM. Challenges in 2.5D TFM arise primarily from the need to work with a lower imaging resolution in the z-direction, track fiducial markers in three-dimensions, and reliably and efficiently reconstruct mechanical stress from substrate deformation fields. We also discuss how 2.5D TFM can be used to image, map, and understand the complete force vectors in various important biological events of various length-scales happening at two-dimensional interfaces, including focal adhesions forces, cell diapedesis across tissue monolayers, the formation of three-dimensional tissue structures, and the locomotion of large multicellular organisms. We close with future perspectives including the use of new materials, imaging and machine learning techniques to continuously improve the 2.5D TFM in terms of imaging resolution, speed, and faithfulness of the force reconstruction procedure.
Collapse
Affiliation(s)
- Hélène Delanoë-Ayari
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore; Institute of Physics, Academia Sinica, Taipei, Taiwan.
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, CNRS UMR 7636, ESPCI, Université Paris Cité, Paris, France.
| | - Jean-Paul Rieu
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France.
| | - Thuan Beng Saw
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Zhu Y, Zhang M, Sun Q, Wang X, Li X, Li Q. Advanced Mechanical Testing Technologies at the Cellular Level: The Mechanisms and Application in Tissue Engineering. Polymers (Basel) 2023; 15:3255. [PMID: 37571149 PMCID: PMC10422338 DOI: 10.3390/polym15153255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Mechanics, as a key physical factor which affects cell function and tissue regeneration, is attracting the attention of researchers in the fields of biomaterials, biomechanics, and tissue engineering. The macroscopic mechanical properties of tissue engineering scaffolds have been studied and optimized based on different applications. However, the mechanical properties of the overall scaffold materials are not enough to reveal the mechanical mechanism of the cell-matrix interaction. Hence, the mechanical detection of cell mechanics and cellular-scale microenvironments has become crucial for unraveling the mechanisms which underly cell activities and which are affected by physical factors. This review mainly focuses on the advanced technologies and applications of cell-scale mechanical detection. It summarizes the techniques used in micromechanical performance analysis, including atomic force microscope (AFM), optical tweezer (OT), magnetic tweezer (MT), and traction force microscope (TFM), and analyzes their testing mechanisms. In addition, the application of mechanical testing techniques to cell mechanics and tissue engineering scaffolds, such as hydrogels and porous scaffolds, is summarized and discussed. Finally, it highlights the challenges and prospects of this field. This review is believed to provide valuable insights into micromechanics in tissue engineering.
Collapse
Affiliation(s)
- Yingxuan Zhu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengqi Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Teo YX, Lee KY, Goh CJH, Wang LC, Sobota RM, Chiam KH, Du C, Wan ACA. Fungus-derived protein particles as cell-adhesive matrices for cell-cultivated food. NPJ Sci Food 2023; 7:34. [PMID: 37443321 DOI: 10.1038/s41538-023-00209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Cell-adhesive factors mediate adhesion of cells to substrates via peptide motifs such as the Arg-Gly-Asp (RGD) sequence. With the onset of sustainability issues, there is a pressing need to find alternatives to animal-derived cell-adhesive factors, especially for cell-cultivated food applications. In this paper, we show how data mining can be a powerful approach toward identifying fungal-derived cell-adhesive proteins and present a method to isolate and utilize these proteins as extracellular matrices (ECM) to support cell adhesion and culture in 3D. Screening of a protein database for fungal and plant proteins uncovered that ~5.5% of the unique reported proteins contain RGD sequences. A plot of fungi species vs RGD percentage revealed that 98% of the species exhibited an RGD percentage > = 1%. We observed the formation of protein particles in crude extracts isolated from basidiomycete fungi, which could be correlated to their stability towards particle aggregation at different temperatures. These protein particles were incorporated in 3D fiber matrices encapsulating mouse myoblast cells, showing a positive effect on cell alignment. We demonstrated a cell traction stress on the protein particles (from Flammulina velutipes) that was comparable to cells on fibronectin. A snapshot of the RGD-containing proteins in the fungal extracts was obtained by combining SDS-PAGE and mass spectrometry of the peptide fragments obtained by enzymatic cleavage. Therefore, a sustainable source of cell-adhesive proteins is widely available in the fungi kingdom. A method has been developed to identify candidate species and produce cell-adhesive matrices, applicable to the cell-cultivated food and healthcare industries.
Collapse
Affiliation(s)
- Yu Xing Teo
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology, and Research (A*STAR), Singapore, 138669, Singapore
| | - Kah Yin Lee
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology, and Research (A*STAR), Singapore, 138669, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Chan Du
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology, and Research (A*STAR), Singapore, 138669, Singapore.
| | - Andrew C A Wan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology, and Research (A*STAR), Singapore, 138669, Singapore.
| |
Collapse
|
50
|
Subramanian Balachandar VA, Steward RL. Extracellular matrix composition alters endothelial force transmission. Am J Physiol Cell Physiol 2023; 325:C314-C323. [PMID: 37335028 PMCID: PMC10393341 DOI: 10.1152/ajpcell.00106.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Extracellular matrix (ECM) composition is important in a host of pathophysiological processes such as angiogenesis, atherosclerosis, and diabetes, and during each of these processes ECM composition has been reported to change over time. However, the impact ECM composition has on the ability of endothelium to respond mechanically is currently unknown. Therefore, in this study, we seeded human umbilical vein endothelial cells (HUVECs) onto soft hydrogels coated with an ECM concentration of 0.1 mg/mL at the following collagen I (Col-I) and fibronectin (FN) ratios: 100% Col-I, 75% Col-I-25% FN, 50% Col-I-50% FN, 25% Col-I-75% FN, and 100% FN. We subsequently measured tractions, intercellular stresses, strain energy, cell morphology, and cell velocity. Our results revealed that tractions and strain energy are maximal at 50% Col-I-50% FN and minimal at 100% Col-I and 100% FN. Intercellular stress response was maximal on 50% Col-I-50% FN and minimal on 25% Col-I-75% FN. Cell area and cell circularity displayed a divergent relationship for different Col-I and FN ratios. We believe that these results will be of great importance to the cardiovascular field, biomedical field, and cell mechanics.NEW & NOTEWORTHY The endothelium constitutes the innermost layer of all blood vessels and plays an important role in vascular physiology and pathology. During certain vascular diseases, the extracellular matrix has been suggested to transition from a collagen-rich matrix to a fibronectin-rich matrix. In this study, we demonstrate the impact various collagen and fibronectin ratios have on endothelial biomechanical and morphological response.
Collapse
Affiliation(s)
- Vignesh Aravind Subramanian Balachandar
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, College of Engineering and Computer Science, University of Central Florida, Orlando, Florida, United States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|