1
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
2
|
Duan HZ, Zhou X, Hu Q, Liu ML, Wang SH, Zhang J, Jiang XH, Zhang TX, Yu AY. Mannitol inhibits the proliferation of neural stem cell by a p38 mitogen-activated protein kinase-dependent signaling pathway. Chin J Traumatol 2024; 27:42-52. [PMID: 37953130 PMCID: PMC10859289 DOI: 10.1016/j.cjtee.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation. METHODS C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. RESULTS Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol. CONCLUSIONS Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.
Collapse
Affiliation(s)
- Hai-Zhen Duan
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Xin Zhou
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan province, China; Dachuan District Traditional Chinese Medicine Hospital, Dazhou, 635000, Sichuan province, China
| | - Quan Hu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Meng-Long Liu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Shu-Hong Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Ji Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Xu-Heng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - Tian-Xi Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China
| | - An-Yong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou province, China.
| |
Collapse
|
3
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
4
|
Stokum JA, Gerzanich V, Sheth KN, Kimberly WT, Simard JM. Emerging Pharmacological Treatments for Cerebral Edema: Evidence from Clinical Studies. Annu Rev Pharmacol Toxicol 2020; 60:291-309. [PMID: 31914899 DOI: 10.1146/annurev-pharmtox-010919-023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral edema, a common and often fatal companion to most forms of acute central nervous system disease, has been recognized since the time of ancient Egypt. Unfortunately, our therapeutic armamentarium remains limited, in part due to historic limitations in our understanding of cerebral edema pathophysiology. Recent advancements have led to a number of clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. In this review, we discuss these agents, their targets, and the data supporting their use, with a focus on agents that have progressed to clinical trials.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; .,Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
5
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
6
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
7
|
Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res 2017; 9:437-451. [DOI: 10.1007/s12975-017-0593-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
|
8
|
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36:513-38. [PMID: 26661240 PMCID: PMC4776312 DOI: 10.1177/0271678x15617172] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/25/2022]
Abstract
Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, USA Department of Pathology, University of Maryland School of Medicine, Baltimore, USA Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
9
|
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2014; 40:317-28. [PMID: 24996934 DOI: 10.1007/s11064-014-1374-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 11/26/2022]
Abstract
Cerebral edema formation stems from disruption of blood brain barrier (BBB) integrity and occurs after injury to the CNS. Due to the restrictive skull, relatively small increases in brain volume can translate into impaired tissue perfusion and brain herniation. In excess, cerebral edema can be gravely harmful. Astrocytes are key participants in cerebral edema by virtue of their relationship with the cerebral vasculature, their unique compliment of solute and water transport proteins, and their general role in brain volume homeostasis. Following the discovery of aquaporins, passive conduits of water flow, aquaporin 4 (AQP4) was identified as the predominant astrocyte water channel. Normally, AQP4 is highly enriched at perivascular endfeet, the outermost layer of the BBB, whereas after injury, AQP4 expression disseminates to the entire astrocytic plasmalemma, a phenomenon termed dysregulation. Arguably, the most important role of AQP4 is to rapidly neutralize osmotic gradients generated by ionic transporters. In pathological conditions, AQP4 is believed to be intimately involved in the formation and clearance of cerebral edema. In this review, we discuss aquaporin function and localization in the BBB during health and injury, and we examine post-injury ionic events that modulate AQP4-dependent edema formation.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | | | | | | |
Collapse
|
10
|
Uria-Avellanal C, Robertson NJ. Na⁺/H⁺ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res 2014; 5:79-98. [PMID: 24452957 PMCID: PMC3913853 DOI: 10.1007/s12975-013-0322-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Encephalopathy consequent on perinatal hypoxia–ischemia occurs in 1–3 per 1,000 term births in the UK and frequently leads to serious and tragic consequences that devastate lives and families, with huge financial burdens for society. Although the recent introduction of cooling represents a significant advance, only 40 % survive with normal neurodevelopmental function. There is thus a significant unmet need for novel, safe, and effective therapies to optimize brain protection following brain injury around birth. The Na+/H+ exchanger (NHE) is a membrane protein present in many mammalian cell types. It is involved in regulating intracellular pH and cell volume. NHE1 is the most abundant isoform in the central nervous system and plays a role in cerebral damage after hypoxia–ischemia. Excessive NHE activation during hypoxia–ischemia leads to intracellular Na+ overload, which subsequently promotes Ca2+ entry via reversal of the Na+/Ca2+ exchanger. Increased cytosolic Ca2+ then triggers the neurotoxic cascade. Activation of NHE also leads to rapid normalization of pHi and an alkaline shift in pHi. This rapid recovery of brain intracellular pH has been termed pH paradox as, rather than causing cells to recover, this rapid return to normal and overshoot to alkaline values is deleterious to cell survival. Brain pHi changes are closely involved in the control of cell death after injury: an alkalosis enhances excitability while a mild acidosis has the opposite effect. We have observed a brain alkalosis in 78 babies with neonatal encephalopathy serially studied using phosphorus-31 magnetic resonance spectroscopy during the first year after birth (151 studies throughout the year including 56 studies of 50 infants during the first 2 weeks after birth). An alkaline brain pHi was associated with severely impaired outcome; the degree of brain alkalosis was related to the severity of brain injury on MRI and brain lactate concentration; and a persistence of an alkaline brain pHi was associated with cerebral atrophy on MRI. Experimental animal models of hypoxia–ischemia show that NHE inhibitors are neuroprotective. Here, we review the published data on brain pHi in neonatal encephalopathy and the experimental studies of NHE inhibition and neuroprotection following hypoxia–ischemia.
Collapse
Affiliation(s)
- Cristina Uria-Avellanal
- Neonatology, Institute for Women's Health, University College London, 74 Huntley Street, 4th floor, Room 401, London, WC1E 6AU, UK
| | | |
Collapse
|
11
|
Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM. Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 2013; 5:3-16. [PMID: 24323726 DOI: 10.1007/s12975-013-0307-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/22/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
Cerebral edema is a major cause of morbidity and mortality following ischemic stroke, but its underlying molecular pathophysiology is incompletely understood. Recent data have revealed the importance of ion flux via channels and transporters expressed in the neurogliovascular unit in the development of ischemia-triggered cytotoxic edema, vasogenic edema, and hemorrhagic conversion. Disruption of homeostatic mechanisms governing cell volume regulation and epithelial/endothelial ion transport due to ischemia-associated energy failure results in the thermodynamically driven re-equilibration of solutes and water across the CSF-blood and blood-brain barriers that ultimately increases the brain's extravascular volume. Additionally, hypoxia, inflammation, and other stress-triggered increases in the functional expression of ion channels and transporters normally expressed at low levels in the neurogliovascular unit cause disruptions in ion homeostasis that contribute to ischemic cerebral edema. Here, we review the pathophysiological significance of several molecular mediators of ion transport expressed in the neurogliovascular unit, including targets of existing FDA-approved drugs, which might be potential nodes for therapeutic intervention.
Collapse
|
12
|
Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 2013; 33:969-82. [PMID: 23549380 PMCID: PMC3705429 DOI: 10.1038/jcbfm.2013.44] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/09/2023]
Abstract
Glial cells constitute a large percentage of cells in the nervous system. During recent years, a large number of studies have critically attributed to glia a new role which no longer reflects the long-held view that glia constitute solely a silent and passive supportive scaffolding for brain cells. Indeed, it has been hypothesized that glia, partnering neurons, have a much more actively participating role in brain function. Alteration of intraglial ionic homeostasis in response to ischemic injury has a crucial role in inducing and maintaining glial responses in the ischemic brain. Therefore, glial transporters as potential candidates in stroke intervention are becoming promising targets to enhance an effective and additional therapy for brain ischemia. In this review, we will describe in detail the role played by ionic transporters in influencing astrocyte, microglia, and oligodendrocyte activity and the implications that these transporters have in the progression of ischemic lesion.
Collapse
|
13
|
O'Donnell ME, Chen YJ, Lam TI, Taylor KC, Walton JH, Anderson SE. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab 2013; 33:225-34. [PMID: 23149557 PMCID: PMC3564192 DOI: 10.1038/jcbfm.2012.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral edema forms in the early hours of ischemic stroke by processes involving increased transport of Na and Cl from blood into brain across an intact blood-brain barrier (BBB). Our previous studies provided evidence that the BBB Na-K-Cl cotransporter is stimulated by the ischemic factors hypoxia, aglycemia, and arginine vasopressin (AVP), and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema and infarct in rats subjected to permanent middle cerebral artery occlusion (pMCAO). More recently, we showed that BBB Na/H exchanger activity is also stimulated by hypoxia, aglycemia, and AVP. The present study was conducted to further investigate the possibility that a BBB Na/H exchanger also participates in edema formation during ischemic stroke. Sprague-Dawley rats were subjected to pMCAO and then brain edema and Na content assessed by magnetic resonance imaging diffusion-weighed imaging and magnetic resonance spectroscopy Na spectroscopy, respectively, for up to 210 minutes. We found that intravenous administration of the specific Na/H exchange inhibitor HOE-642 significantly decreased brain Na uptake and reduced cerebral edema, brain swelling, and infarct volume. These findings support the hypothesis that edema formation and brain Na uptake during the early hours of cerebral ischemia involve BBB Na/H exchanger activity as well as Na-K-Cl cotransporter activity.
Collapse
Affiliation(s)
- Martha E O'Donnell
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Akhtar M, Pillai KK, Najmi AK, Vohora D. Effect of amiloride: An Na / H exchange inhibitor in the middle cerebral artery occlusion model of focal cerebral ischemia in rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:519-24. [PMID: 22219585 PMCID: PMC3249699 DOI: 10.4103/0975-7406.90105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/26/2011] [Accepted: 05/06/2011] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The effect of pretreatment with amiloride (AML), an Na(+) / H(+) exchange inhibitor was studied in the middle cerebral artery occlusion (MCAO) model of focal cerebral ischemia in rats. MATERIALS AND METHODS Male wistar rats were subjected to 2 hr of MCAO followed by 22-hr reperfusion. Grip strength, locomotor activity, and spontaneous alternation performance were assessed after 24 hr. Immediately after behavioral activities, animals were sacrificed and the oxidative stress markers were estimated in brains. RESULTS An elevation of thiobarbituric acid reactive substances (TBARS), reduction in glutathione, and antioxidant enzymes activities, namely glutathione-S-transferase, glutathione peroxidase (GPx), glutathione reductase (GR), and superoxide dismutase (SOD) were observed following MCA occluded rats. Pretreatment with AML (0.91 and 1.82 mg/kg p.o) significantly reversed the MCAO-induced elevation in TBARS but could not reverse the other parameters. Paradoxically, AML further reduced the levels of GPx, GR, and SOD, but no significant changes were observed in the catalase activity, grip strength, and spontaneous alternation behavior of rats. Locomotor activity was reduced slightly but reversed on pretreatment with AML. CONCLUSIONS Although pretreatment with single dose of AML showed reduction in oxidative stress markers, further multiple doses of AML as pre- and post-treatments are required to establish its potential to be used in cerebral ischemia.
Collapse
Affiliation(s)
- Mohammad Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - K. K. Pillai
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, New Delhi, India
| |
Collapse
|
15
|
Sun Z, Baker W, Hiraki T, Greenberg JH. The effect of right vagus nerve stimulation on focal cerebral ischemia: an experimental study in the rat. Brain Stimul 2011; 5:1-10. [PMID: 22037134 DOI: 10.1016/j.brs.2011.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/24/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the effect of vagus nerve stimulation (VNS) on infarct size after transient and after permanent focal cerebral ischemia in rats and to test the hypothesis that VNS-induced neuroprotection is due to changes in cerebral blood flow. METHODS Ischemia was produced by either temporary proximal middle cerebral artery occlusion (TMCAO) or permanent distal middle cerebral artery occlusion (PMCAO). Stimulating electrodes were implanted on the cervical part of the right vagus nerve, and electrical stimulation was initiated 30 minutes after the induction of ischemia and delivered for 30 seconds every 5 minutes for 1 hour. All the procedures were duplicated but no stimulus was delivered in control groups. Cerebral blood flow in the MCA territory was continuously monitored with laser speckle contrast imaging. A neurologic evaluation was undertaken after 24 hours of ischemia, and animals were euthanized and neuronal damage evaluated. RESULTS Ischemic lesion volume was smaller in VNS-treated animals in both the temporary and permanent ischemic groups (P<.01). VNS-treated animals in TMCAO had better functional scores at 24 hours as compared with control animals (P<.01), but there were no statistically significant differences in the neurobehavioral scores in PMCAO (P=.089). Cerebral blood flow changes in the MCA territory during ischemia did not differ between the VNS-treated animals and control animals in either group. CONCLUSIONS VNS offers neuroprotection against stroke in both temporary and permanent ischemia. Although the precise mechanism of this effect remains to be determined, alterations in cerebral blood flow do not appear to play a role. VNS could readily be translated to clinical practice.
Collapse
Affiliation(s)
- Zhenghui Sun
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6063, USA
| | | | | | | |
Collapse
|
16
|
Hydrogen sulfide regulates intracellular pH in rat primary cultured glia cells. Neurosci Res 2010; 66:92-8. [DOI: 10.1016/j.neures.2009.09.1713] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/04/2009] [Accepted: 09/29/2009] [Indexed: 11/21/2022]
|
17
|
Lam TI, Wise PM, O'Donnell ME. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. Am J Physiol Cell Physiol 2009; 297:C278-89. [PMID: 19458287 DOI: 10.1152/ajpcell.00093.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Blood-brain barrier (BBB) Na transporters are essential for brain water and electrolyte homeostasis. However, they also contribute to edema formation during the early hours of ischemic stroke by increased transport of Na from blood into brain across an intact BBB. We previously showed that a luminal BBB Na-K-Cl cotransporter is stimulated by hypoxia, aglycemia, and AVP and that inhibition of the cotransporter by intravenous bumetanide significantly reduces edema and infarct in the rat middle cerebral artery occlusion (MCAO) model of stroke. More recently, we found evidence that intravenous cariporide (HOE-642), a highly potent Na/H exchange inhibitor, also reduces brain edema after MCAO. The present study was conducted to investigate which Na/H exchange protein isoforms are present in BBB endothelial cells and to evaluate the effects of ischemic factors on BBB Na/H exchange activity. Western blot analysis of bovine cerebral microvascular endothelial cells (CMEC) and immunoelectron microscopy of perfusion-fixed rat brain revealed that Na/H exchanger isoforms 1 and 2 (NHE1 and NHE2) are present in BBB endothelial cells. Using microspectrofluorometry and the pH-sensitive dye BCECF, we found that hypoxia (2% O(2), 30 min), aglycemia (30 min), and AVP (1-200 nM, 5 min) significantly increased CMEC Na/H exchange activity, assessed as Na-dependent, HOE-642-sensitive H(+) flux. We found that AVP stimulation of CMEC Na/H exchange activity is dependent on intracellular Ca concentration and is blocked by V(1), but not V(2), vasopressin receptor antagonists. Our findings support the hypothesis that a BBB Na/H exchanger, possibly NHE1 and/or NHE2, is stimulated during ischemia to participate in cerebral edema formation.
Collapse
Affiliation(s)
- Tina I Lam
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
18
|
Park KS, Poburko D, Wollheim CB, Demaurex N. Amiloride derivatives induce apoptosis by depleting ER Ca(2+) stores in vascular endothelial cells. Br J Pharmacol 2009; 156:1296-304. [PMID: 19302589 DOI: 10.1111/j.1476-5381.2009.00133.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Amiloride derivatives are blockers of the Na(+)/H(+) exchanger (NHE) and at micromolar concentrations have protective effects on cardiac and brain ischaemia/reperfusion injury but at higher concentrations also induce apoptosis. Here, we aimed to elucidate the mechanism related to this cytotoxic action. EXPERIMENTAL APPROACH We quantified the expression of genes associated with endoplasmic reticulum (ER) stress and measured changes in luminal ER Ca(2+) concentration ([Ca(2+)](ER)) with a 'cameleon' indicator, D1ER. KEY RESULTS Amiloride derivatives induced apoptosis in vascular endothelial cells, an effect that increased at alkaline extracellular pH. The potency order for cytotoxicity was 5-(N,N-hexamethylene)-amiloride (HMA) > 5-(N-methyl-N-isobutyl) amiloride > 5-(N-ethyl-N-isopropyl) amiloride (EIPA) >> amiloride. HMA dose-dependently increased the transcription of the ER stress genes GADD153 and GADD34 and rapidly depleted [Ca(2+)](ER), mimicking the effects of the sarco/endoplasmic reticulum ATPase (SERCA) inhibitor thapsigargin. The NHE1-specific inhibitor HOE 694 inhibited NHE activity by 87% but did not alter [Ca(2+)](ER). The decrease in [Ca(2+)](ER) evoked by amiloride derivatives was also observed in HeLa cells and was mirrored by an increase in cytosolic Ca(2+) concentration. CONCLUSIONS AND IMPLICATIONS Amiloride derivatives disrupt ER and cytosolic Ca(2+) homeostasis by a mechanism unrelated to NHE inhibition, most likely by interfering with the activity of SERCA. We propose that ER Ca(2+) depletion and subsequent ER stress provide a rationale framework for the apoptotic effects of amiloride derivatives.
Collapse
Affiliation(s)
- K S Park
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
19
|
Yao H, Yoshii N, Akira T, Nakahara T. Reperfusion-induced temporary appearance of therapeutic window in penumbra after 2 h of photothrombotic middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 2009; 29:565-74. [PMID: 19088742 DOI: 10.1038/jcbfm.2008.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To explore the effects of reperfusion on evolution of focal ischemic injury, spontaneously hypertensive male rats were subjected to photothrombotic distal middle cerebral artery occlusion (MCAO) with or without YAG laser-induced reperfusion. The volume of fodrin breakdown zone, water content, and brain tissue levels of sodium (Na(+)) and potassium (K(+)) were measured in the ischemic core and penumbra. Reperfusion attenuated fodrin breakdown, and the volume containing fodrin breakdown product at 3 h after reperfusion (5 h after MCAO) (30+/-7 mm(3)) was significantly smaller than the 42+/-3 mm(3) of the permanent occlusion group. After 3 to 6 h of ischemia, Na(+) increased, and K(+) decreased in the ischemic core. Reperfusion after 2 h of MCA occlusion did not mitigate the ischemia-induced changes in brain tissue electrolytes and water content at 3 to 6 h of ischemia. Even in reperfusion after comparatively long periods of occlusion where brain infarction size, assessed 3 days after MCAO, was not significantly reduced by reperfusion, and the precipitating indicators of the ischemic core (Na(+), K(+), water content) did not improve, temporary improvement or a delay in progression of ischemic injury was discernible in the penumbra. These results indicate the possibility that treatment with reperfusion is permissive to the effects of neuroprotection.
Collapse
Affiliation(s)
- Hiroshi Yao
- Laboratory for Neurochemistry, Center for Emotional and Behavioral Disorders, National Hospital Organization, Hizen Psychiatric Center, Saga, Japan.
| | | | | | | |
Collapse
|
20
|
Ishizaki M, Kaibori M, Uchida Y, Hijikawa T, Tanaka H, Ozaki T, Tokuhara K, Matsui K, Kwon AH, Kamiyama Y, Nishizawa M, Okumura T. PROTECTIVE EFFECT OF FR183998, A Na+/H+ EXCHANGER INHIBITOR, AND ITS INHIBITION OF iNOS INDUCTION IN HEPATIC ISCHEMIA-REPERFUSION INJURY IN RATS. Shock 2008; 30:311-7. [DOI: 10.1097/shk.0b013e318164ef14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 2008; 55:289-309. [PMID: 18639906 DOI: 10.1016/j.neuropharm.2008.05.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/27/2022]
Abstract
In cerebral ischemia survival of neurons, astrocytes, oligodendrocytes and endothelial cells is threatened during energy deprivation and/or following re-supply of oxygen and glucose. After a brief summary of characteristics of different cells types, emphasizing the dependence of all on oxidative metabolism, the bioenergetics of focal and global ischemia is discussed, distinguishing between events during energy deprivation and subsequent recovery attempt after re-circulation. Gray and white matter ischemia are described separately, and distinctions are made between mature and immature brains. Next comes a description of bioenergetics in individual cell types in culture during oxygen/glucose deprivation or exposure to metabolic inhibitors and following re-establishment of normal aerated conditions. Due to their expression of NMDA and non-NMDA receptors neurons and oligodendrocytes are exquisitely sensitive to excitotoxicity by glutamate, which reaches high extracellular concentrations in ischemic brain for several reasons, including failing astrocytic uptake. Excitotoxicity kills brain cells by energetic exhaustion (due to Na(+) extrusion after channel-mediated entry) combined with mitochondrial Ca(2+)-mediated injury and formation of reactive oxygen species. Many (but not all) astrocytes survive energy deprivation for extended periods, but after return to aerated conditions they are vulnerable to mitochondrial damage by cytoplasmic/mitochondrial Ca(2+) overload and to NAD(+) deficiency. Ca(2+) overload is established by reversal of Na(+)/Ca(2+) exchangers following Na(+) accumulation during Na(+)-K(+)-Cl(-) cotransporter stimulation or pH regulation, compensating for excessive acid production. NAD(+) deficiency inhibits glycolysis and eventually oxidative metabolism, secondary to poly(ADP-ribose)polymerase (PARP) activity following DNA damage. Hyperglycemia can be beneficial for neurons but increases astrocytic death due to enhanced acidosis.
Collapse
Affiliation(s)
- Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, PR China.
| |
Collapse
|
22
|
Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Matsuo R, Hagiwara N, Ishikawa E, Ooboshi H, Ibayashi S, Iida M. Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes. Am J Physiol Heart Circ Physiol 2008; 294:H1700-7. [PMID: 18263712 DOI: 10.1152/ajpheart.01203.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nervous system (CNS) pericytes play an important role in brain microcirculation. Na(+)/H(+) exchanger isoform 1 (NHE1) has been suggested to regulate the proliferation of nonvascular cells through the regulation of intracellular pH, Na(+), and cell volume; however, the relationship between NHE1 and intracellular Ca(2+), an essential signal of cell growth, is still not known. The aim of the present study was to elucidate the role of NHE1 in Ca(2+) signaling and the proliferation of human CNS pericytes. The intracellular Ca(2+) concentration was measured by fura 2 in cultured human CNS pericytes. The cells showed spontaneous Ca(2+) oscillation under quasi-physiological ionic conditions. A decrease in extracellular pH or Na(+) evoked a transient Ca(2+) rise followed by Ca(2+) oscillation, whereas an increase in pH or Na(+) did not induce the Ca(2+) responses. The Ca(2+) oscillation was inhibited by an inhibitor of NHE in a dose-dependent manner and by knockdown of NHE1 by using RNA interference. The Ca(2+) oscillation was completely abolished by thapsigargin. The proliferation of pericytes was attenuated by inhibition of NHE1. These results demonstrate that NHE1 regulates Ca(2+) signaling via the modulation of Ca(2+) release from the endoplasmic reticulum, thus contributing to the regulation of proliferation in CNS pericytes.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Dept. of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka H, Uchida Y, Kaibori M, Hijikawa T, Ishizaki M, Yamada M, Matsui K, Ozaki T, Tokuhara K, Kamiyama Y, Nishizawa M, Ito S, Okumura T. Na+/H+ exchanger inhibitor, FR183998, has protective effect in lethal acute liver failure and prevents iNOS induction in rats. J Hepatol 2008; 48:289-99. [PMID: 18096265 DOI: 10.1016/j.jhep.2007.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/20/2007] [Accepted: 09/11/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Selective inhibition of Na(+)/H(+) exchanger (NHE) improves organ dysfunctions including heart ischemia-reperfusion injury. In vivo and in vitro studies were designed to investigate whether NHE inhibitor has a protective effect in lethal acute liver failure, and if so, what are the mechanisms involved. METHODS NHE inhibitor (FR183998) was administered to rats treated with d-galactosamine/lipopolysaccharide (GalN/LPS), or incubated with cultured hepatocytes stimulated by pro-inflammatory cytokine, interleukin (IL)-1beta. RESULTS FR183998 reduced the increases of pro-inflammatory cytokines such as TNF-alpha, interferon-gamma and CINC-1, but enhanced the anti-inflammatory cytokine, IL-10, leading to the prevention of liver injury and increased survival rate in GalN/LPS-treated animals. FR183998 prevented the activation of transcription factor NF-kappaB induced by GalN/LPS. In vivo and in vitro experiments revealed that FR183998 reduced inducible nitric oxide synthase (iNOS) induction and NO production. Further FR183998 decreased levels of iNOS antisense-transcript in GalN/LPS-treated liver and IL-1beta-treated hepatocytes. CONCLUSIONS FR183998 may reduce a variety of inflammatory mediators such as cytokines and NO in part through the inhibition of NF-kappaB activation, resulting in the prevention of fulminant liver failure, and may inhibit iNOS gene expression at steps of iNOS promoter transactivation and its mRNA stabilization through NF-kappaB and iNOS antisense-transcript, respectively.
Collapse
Affiliation(s)
- Hironori Tanaka
- Department of Surgery, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chang E, O'Donnell ME, Barakat AI. Shear stress and 17β-estradiol modulate cerebral microvascular endothelial Na-K-Cl cotransporter and Na/H exchanger protein levels. Am J Physiol Cell Physiol 2008; 294:C363-71. [DOI: 10.1152/ajpcell.00045.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ion transporters of blood-brain barrier (BBB) endothelial cells play an important role in regulating the movement of ions between the blood and brain. During ischemic stroke, reduction in cerebral blood flow is accompanied by transport of Na and Cl from the blood into the brain, with consequent brain edema formation. We have shown previously that a BBB Na-K-Cl cotransporter (NKCC) participates in ischemia-induced brain Na and water uptake and that a BBB Na/H exchanger (NHE) may also participate. While the abrupt reduction of blood flow is a prominent component of ischemia, the effects of flow on BBB NKCC and NHE are not known. In the present study, we examined the effects of changes in shear stress on NKCC and NHE protein levels in cerebral microvascular endothelial cells (CMECs). We have shown previously that estradiol attenuates both ischemia-induced cerebral edema and CMEC NKCC activity. Thus, in the present study, we also examined the effects of estradiol on NKCC and NHE protein levels in CMECs. Exposing CMECs to steady shear stress (19 dyn/cm2) increased the abundance of both NKCC and NHE. Estradiol abolished the shear stress-induced increase in NHE but not NKCC. Abrupt reduction of shear stress did not alter NKCC or NHE abundance in the absence of estradiol, but it decreased NKCC abundance in estradiol-treated cells. Our results indicate that changes in shear stress modulate BBB NKCC and NHE protein levels. They also support the hypothesis that estradiol attenuates edema formation in ischemic stroke in part by reducing the abundance of BBB NKCC protein.
Collapse
|
25
|
Kumai Y, Ooboshi H, Ibayashi S, Ishikawa E, Sugimori H, Kamouchi M, Kitazono T, Egashira K, Iida M. Postischemic gene transfer of soluble Flt-1 protects against brain ischemia with marked attenuation of blood-brain barrier permeability. J Cereb Blood Flow Metab 2007; 27:1152-60. [PMID: 17077813 DOI: 10.1038/sj.jcbfm.9600420] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brain edema is a major and often mortal complication of brain ischemia. Vascular endothelial growth factor (VEGF) is also known as a potent vascular permeability factor and may play detrimental roles at the acute stage of brain infarction. Our goal in this study was to explore protective effects of gene transfer of soluble flt-1 (sFlt-1), a natural inhibitor of VEGF, on focal brain ischemia. Adenoviral vector encoding sFlt-1 or beta-galactosidase as control was injected into the lateral ventricle 90 mins after photochemical distal middle cerebral artery occlusion in male spontaneously hypertensive rats. The transduced sFlt-1 was released to the cerebrospinal fluid from the ventricular wall and significantly increased 6 h, 1 and 7 days after sFlt-1 transfection. One day after brain ischemia, sFlt-1 gene transfer significantly reduced infarct volume (by 35%), brain edema (by 35%), and blood-brain barrier permeability (Evans blue extravasation; by 69%) with diminished phosphorylation of focal adhesion kinase (FAKtyr397 and FAKtyr861) in the ischemic vessels. Seven days after ischemia, sFlt-1 gene transfer also significantly attenuated infarct volume (by 29%) and monocyte/macrophage infiltration (by 27%), although there were no reductions in angiogenesis by sFlt-1 overexpression. These results suggest that sFlt-1 gene therapy targeting brain edema in acute stage of brain ischemia may be useful for brain infarction.
Collapse
Affiliation(s)
- Yasuhiro Kumai
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hom S, Fleegal MA, Egleton RD, Campos CR, Hawkins BT, Davis TP. Comparative changes in the blood-brain barrier and cerebral infarction of SHR and WKY rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1881-92. [PMID: 17234953 DOI: 10.1152/ajpregu.00761.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypertension is involved in the exacerbation of stroke. It is unclear how blood-brain barrier (BBB) tight-junction (TJ) and ion transporter proteins critical for maintaining brain homeostasis contribute to cerebral infarction during hypertension development. In the present study, we investigated cerebral infarct volume following permanent 4-h middle cerebral artery occlusion (MCAO) and characterized the expression of BBB TJ and ion transporter proteins in brain microvessels of spontaneously hypertensive rats (SHR) compared with age-matched Wistar-Kyoto (WKY) rats at 5 wk (prehypertension), 10 wk (early-stage hypertension), and 15 wk (later-stage hypertension) of age. Hypertensive SHR show increased infarct volume following MCAO compared with WKY control rats. BBB TJ and ion transporter proteins, known to contribute to edema and fluid volume changes in the brain, show differential protein expression patterns during hypertension development. Western blot analysis of TJ protein zonula occludens-2 (ZO-2) showed decreased expression, while ion transporter, Na+/H+exchanger 1 (NHE-1), was markedly increased in hypertensive SHR. Expression of TJ proteins ZO-1, occludin, actin, claudin-5, and Na+-K+-2Cl−cotransporter remain unaffected in SHR compared with control. Selective inhibition of NHE-1 using dimethylamiloride significantly attenuated ischemia-induced infarct volume in hypertensive SHR following MCAO, suggesting a novel role for NHE-1 in the brain in the regulation of ischemia-induced infarct volume in SHR.
Collapse
Affiliation(s)
- Sharon Hom
- Dept of Pharmacology, College of Medicine, Univ of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Astrocytes are multifunctional cells that interact with neurons and other astrocytes in signaling and metabolic functions, and their resistance to pathophysiological conditions can help restrict loss of tissue after an ischemic event provided adequate nutrients are supplied to support their requirements. Astrocytes have substantial oxidative capacity and mechanisms to upregulate glycolytic capability when respiration is impaired. An astrocytic enzyme that synthesizes a powerful activator of glycolysis is not present in neurons, endowing astrocytes with the ability to sustain ATP production under restrictive conditions. The monocarboxylic acid transporter (MCT) isoforms predominating in astrocytes are optimized to facilitate very large increases in lactate flux as lactate concentration increases within (1-3 mM) and above (>3 mM) the normal range. In sharp contrast, the major neuronal MCT serves as a barrier to increased transmembrane transport as lactate rises above 1 mM, restricting both entry and efflux. Lactate can serve as fuel during recovery from ischemia but direct evidence that lactate is oxidized by neurons (vs. astrocytes) to maintain synaptic function is lacking. Astrocytes have critical roles in regulation of ionic homeostasis and control of extracellular glutamate levels, and spreading depression associated with ischemia places high demands on energy supplies in astrocytes and contributes to metabolic exhaustion and demise. Disruption of Ca2+ homeostasis, generation of oxygen free radicals and nitric oxide, and mitochondrial depolarization contribute to astrocyte death during and after a metabolic insult. Novel pharmaceutical agents targeted to astrocytes and hyperoxic therapy that restores penumbral oxygen level during energy failure might improve postischemic outcome.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Leif Hertz
- College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Masuoka H, Fujimori K, Sekiguchi S, Watanabe M, Wang H, Aiso T, Yamaya H, Satoh A, Satomi S. Beneficial effect of FR183998, a Na+/H+ exchanger inhibitor, on porcine pancreas allotransplantation retrieved from non–heart-beating donors. Transplant Proc 2005; 37:223-5. [PMID: 15808601 DOI: 10.1016/j.transproceed.2004.12.227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of Na(+)/H(+) exchanger (NHE) may have an important role in the ischemia/reperfusion injury by producing intracellular calcium overload. Recent studies have shown a beneficial effect of an NHE inhibitor on the ischemia/reperfusion injury in the heart. In this study, we examined the effect of FR183998, a potent NHE inhibitor, in porcine pancreas allotransplantation from non-heart-beating Landrace pig donors (NHBDs). The four experimental groups included: untreated with no preservation (group 1; n = 3), treated with no preservation (group 2; n = 5), untreated with preservation (group 3; n = 6), and treated with preservation (group 4; n = 4). The preservation was made in ice-cold University of Wisconsin (UW) solution for 24 hours. The groups treated received 1 mg/kg FR183998 before donor cardiac arrest and 10 mg in the UW solution flush in situ. Serum blood glucose, insulin, and amylase were measured daily. An intravenous glucose tolerance test (IVGTT) was performed on the postoperative day (POD) 7 when pigs were sacrificed for histological examination. Graft survival rates on that day in groups 1,2,3, and 4 were 3 of 3; 5 of 5; 3 of 6; and 4 of 4, respectively. The mean K values of IVGTT in groups 3 and 4 were 0.78 +/- 0.10 and 1.27 +/- 0.16, respectively, which were significantly different (P < .05). Upon histological examination, pancreatic tissue in group 3 showed more severe edema and necrosis than other groups. FR183998 may be considered beneficial for ischemia/reperfusion injury to pancreatic grafts from NHBDs.
Collapse
Affiliation(s)
- H Masuoka
- Division of Advanced Surgical Science and Technology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ju C, Oh YJ, Han BH, Kim HS, Kim HC, Kim WK. Intracellular pH-dependent peroxynitrite-evoked synergistic death of glucose-deprived astrocytes. Free Radic Biol Med 2004; 37:1160-9. [PMID: 15451056 DOI: 10.1016/j.freeradbiomed.2004.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 06/22/2004] [Accepted: 07/08/2004] [Indexed: 11/24/2022]
Abstract
Previously, we reported that glucose-deprived astrocytes were highly vulnerable to peroxynitrite (ONOO-). Here we demonstrate that the increased vulnerability caused by glucose deprivation and ONOO- depends on intracellular pH. The ONOO- releasing reagent 3-morpholinosydnonimine (SIN-1) markedly induced the release of lactate dehydrogenase (LDH, the marker of cytotoxicity) in glucose-deprived astrocytes. Morphological studies and caspase activity assay showed that astrocytes treated together with glucose deprivation and ONOO- died mostly in a necrotic mode. Alkalinization of pH from 7.4 to 7.8 increased LDH release, whereas acidification from pH 7.4 to 7.0 decreased it. However, intracellular pH (pHi), not extracellular pH (pHe), appeared to play a critical role in the synergistic death. Thus, without a change in pHe (7.4) cytosolic acidification by a weak acid salt, sodium acetate, and a Na+/H+ antiporter inhibitor, amiloride, reduced LDH release. In contrast, a weak base, NH4Cl, and a Na+/H+ antiporter stimulator, monensin, increased pHi and greatly enhanced LDH release. The augmented death was found to be due, in part, to the preceding decrease in the level of reduced glutathione, the ONOO- scavenger, and collapse of the mitochondrial transmembrane potential at alkaline pH.
Collapse
Affiliation(s)
- Chung Ju
- Department of Pharmacology, College of Medicine, Ewha Women's University, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Saesue P, Horiuchi T, Goto T, Tanaka Y, Hongo K. Functional role of the Na+/H+ exchanger in the regulation of cerebral arteriolar tone in rats. J Neurosurg 2004; 101:330-5. [PMID: 15309927 DOI: 10.3171/jns.2004.101.2.0330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In vascular smooth-muscle cells, the Na+/H+ exchanger (NHE) is involved in the regulation of [Na+]i, pHi through [H+], and cell volume. Recently, investigations have determined that this exchanger contributes to ischemia and reperfusion injury in coronary circulation. Nonetheless, there is limited information on this glycoprotein in cerebral circulation, especially microcirculation. Thus, the authors in the present study examined the role of NHE in the regulation of cerebral arteriolar tone and its related mechanisms in vitro. METHODS The internal diameter of isolated pressurized intracerebral arterioles in rats was monitored with the aid of a microscope. To examine the basal activity of NHE two kinds of Na+/H+ exchange inhibitors (FR183998 and 5-[N,N-hexamethylene]amiloride) were administered in the arterioles. Furthermore the authors studied the effects of nitric oxide (NO) synthase inhibitor (NG methyl-L-arginine), Na+/K+ -adenosine triphosphatase (NKA) inhibitor (ouabain), and the Na+/Ca++ exchange inhibitor (SEA0400) on the vascular response induced by either of the Na+/H+ exchange inhibitors. Both of the Na+/H+ exchange inhibitors constricted the arteriole. Subsequent application of NO synthase inhibitor further decreased the diameter of the arterioles. The Na+/H+ exchange inhibitor-induced constriction was completely abolished in the presence of ouabain and SEA0400. CONCLUSIONS The NHE is active in the basal condition and regulates cerebral arteriolar tone through NKA and the Na+/Ca++ exchanger. Endogenous NO is not related to the activity of NHE in basal conditions.
Collapse
Affiliation(s)
- Prajak Saesue
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
31
|
Schneider D, Gerhardt E, Bock J, Müller MM, Wolburg H, Lang F, Schulz JB. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death Differ 2004; 11:760-70. [PMID: 15017383 DOI: 10.1038/sj.cdd.4401377] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhibitors and transfection with an adenovirus expressing Bcl-XL. However, cycloheximide protected cerebellar granule neurons from death induced by potassium withdrawal as well as from death after treatment with HOE 642. Therefore, the molecular mechanisms leading to cell death after acidification appear to be different from the mechanisms after potassium withdrawal and resemble the biochemical but not the morphological characteristics of paraptosis.
Collapse
Affiliation(s)
- D Schneider
- Neurodegeneration Laboratory, Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|