1
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
Wang SC, Parpura V, Wang YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 2021; 46:2586-2600. [PMID: 33216313 PMCID: PMC8134618 DOI: 10.1007/s11064-020-03172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC's ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.
Collapse
Affiliation(s)
- Stephani C Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, USA
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35242, USA.
| | - Yu-Feng Wang
- Department of Physiology School of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang, Harbin, 150086, China.
| |
Collapse
|
3
|
Abstract
The scientific community has searched for years for ways of examining neuronal tissue to track neural activity with reliable anatomical markers for stimulated neuronal activity. Existing studies that focused on hypothalamic systems offer a few options but do not always compare approaches or validate them for dependence on cell firing, leaving the reader uncertain of the benefits and limitations of each method. Thus, in this article, potential markers will be presented and, where possible, placed into perspective in terms of when and how these methods pertain to hypothalamic function. An example of each approach is included. In reviewing the approaches, one is guided through how neurons work, the consequences of their stimulation, and then the potential markers that could be applied to hypothalamic systems are discussed. Approaches will use features of neuronal glucose utilization, water/oxygen movement, changes in neuron-glial interactions, receptor translocation, cytoskeletal changes, stimulus-synthesis coupling that includes expression of the heteronuclear or mature mRNA for transmitters or the enzymes that make them, and changes in transcription factors (immediate early gene products, precursor buildup, use of promoter-driven surrogate proteins, and induced expression of added transmitters. This article includes discussion of methodological limitations and the power of combining approaches to understand neuronal function. © 2020 American Physiological Society. Compr Physiol 10:549-575, 2020.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Wang P, Wang SC, Li D, Li T, Yang HP, Wang L, Wang YF, Parpura V. Role of Connexin 36 in Autoregulation of Oxytocin Neuronal Activity in Rat Supraoptic Nucleus. ASN Neuro 2019; 11:1759091419843762. [PMID: 31091986 PMCID: PMC6535915 DOI: 10.1177/1759091419843762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/10/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
In the supraoptic nucleus (SON), the incidence of dye coupling among oxytocin (OT) neurons increases significantly in nursing mothers. However, the type(s) of connexin (Cx) involved is(are) unknown. In this study, we specifically investigated whether Cx36 plays a functional role in the coupling between OT neurons in the SON of lactating rats. In this brain region, Cx36 was mainly coimmunostained with vasopressin neurons in virgin female rats, whereas in lactating rats, Cx36 was primarily colocalized with OT neurons. In brain slices from lactating rats, application of quinine (0.1 mM), a selective blocker of Cx36, significantly reduced dye coupling among OT neurons as well as the discharge/firing frequency of spikes/action potentials and their amplitude, and transiently depolarized the membrane potential of OT neurons in whole-cell patch-clamp recordings. However, quinine significantly reduced the amplitude, but not frequency, of inhibitory postsynaptic currents in OT neurons; the duration of excitatory postsynaptic currents was reduced but not their frequency and amplitude. Furthermore, the excitatory effect of OT (1 pM) on OT neurons was significantly weakened and delayed by quinine, and burst firing was absent in the presence of this inhibitor. Lastly, Western blotting analysis revealed that the presence of combined, but not alone, quinine and OT significantly reduced the amount of Cx36 in the SON. Thus, Cx36-mediated junctional communication plays a crucial role in autoregulatory control of OT neuronal activity, likely by acting at the postsynaptic sites. The level of Cx36 is modulated by its own activity and the presence of OT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, China
| | | | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Hai-Peng Yang
- The Fourth Affiliated Hospital, Harbin Medical University, China
| | - Liwei Wang
- The Fourth Affiliated Hospital, Harbin Medical University, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
5
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
6
|
Kinsley CH, Franssen RA, Meyer EA. Reproductive experience may positively adjust the trajectory of senescence. Curr Top Behav Neurosci 2011; 10:317-45. [PMID: 21611905 DOI: 10.1007/7854_2011_123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although aging is inexorable, aging well is not. From the perspective of research in rats and complementary models, reproductive experience has significant effects; indeed, benefits, which include better-than-average cognitive skills, a slowing of the slope of decline, and a healthier brain and/or nervous system well later into life. Work from our lab and others has suggested that the events of pregnancy and parturition, collectively referred to as reproductive experience-an amalgam of hormone exposure, sensory stimulation, and offspring behavioral experience and interaction-may summate to flatten the degree of decline normally associated with aging. Mimicking the effects of an enriched environment, reproductive experience has been shown to: enhance/protect cognition and decrease anxiety well out to two-plus years; result in fewer hippocampal deposits of the Alzheimer's disease herald, amyloid precursor protein (APP); and, in general, lead to a healthier biology. Based on a suite of recent work in organisms as diverse as nematodes, flies, and mammals, the ubiquitous hormone insulin and its large family of related substances and receptors may play a major role in mediating some of the effects of RE on the parameters of aging studied thus far. We will discuss the current set of data that suggest mechanisms for successful biological and neurobiological aging, and the implications for understanding aging and senescence in their broadest terms.
Collapse
Affiliation(s)
- Craig Howard Kinsley
- Department of Psychology, Center for Neuroscience, Gottwald Science Center and 116 Richmond Hall, University of Richmond, B-326/328, 28 Westhampton Way, Richmond, VA, 23173, USA,
| | | | | |
Collapse
|
7
|
Bealer SL, Armstrong WE, Crowley WR. Oxytocin release in magnocellular nuclei: neurochemical mediators and functional significance during gestation. Am J Physiol Regul Integr Comp Physiol 2010; 299:R452-8. [PMID: 20554931 DOI: 10.1152/ajpregu.00217.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When released from dendrites within the supraoptic (SON) and paraventricular (PVN) nuclei (intranuclear release) during suckling, oxytocin exerts autocrine and paracrine effects on oxytocin neurons that are necessary for the unique timing and episodic pattern of oxytocin release into the systemic circulation that is characteristic of lactation. Recent reports have shown that stimulation of central noradrenergic and histaminergic receptors are both necessary for intranuclear release of oxytocin in response to suckling. In addition, in vitro studies indicate that excitatory amino acids may also be critical for central oxytocin secretion, although in vivo experiments have not provided direct support for this hypothesis. In addition to a critical role in intranuclear oxytocin release during lactation, norepinephrine has also been shown to stimulate central oxytocin during gestation. Stimulation of central oxytocin receptors during gestation appears critical for normal systemic oxytocin secretion in responses to suckling during the subsequent period of lactation. Oxytocin receptor blockade during pregnancy alters normal timing of systemic oxytocin release during suckling and reduces milk delivery. Several adaptations occur in the central oxytocin system that are necessary for determining the unique response characteristic observed during parturition and gestation. Central oxytocin receptor stimulation during gestation has been implicated in pregnancy-related morphological changes in magnocellular oxytocin neurons, disinhibition of oxytocin neurons to GABA, and adaptations in membrane response characteristics of oxytocin neurons. In conclusion, intranuclear oxytocin release during gestation and lactation are critical for establishing, and then evoking the unique pattern of systemic oxytocin secretion in response to the suckling offspring necessary for adequate milk delivery. Furthermore, activation of central noradrenergic receptors appears to be critical for release of central oxytocin in both of these reproductive states.
Collapse
Affiliation(s)
- Steven L Bealer
- Dept. of Pharmacology and Toxicology, Univ. of Utah, 30 South 2000 East, Rm 201, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
8
|
Vanoye-Carlo A, Morales T, Ramos E, Mendoza-Rodríguez A, Cerbón M. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Horm Behav 2008; 53:112-23. [PMID: 17963758 DOI: 10.1016/j.yhbeh.2007.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 01/20/2023]
Abstract
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | | | | | | | | |
Collapse
|
9
|
Sokoya EM, Burns AR, Marrelli SP, Chen J. Myoendothelial gap junction frequency does not account for sex differences in EDHF responses in rat MCA. Microvasc Res 2007; 74:39-44. [PMID: 17490692 PMCID: PMC1995456 DOI: 10.1016/j.mvr.2007.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 11/16/2022]
Abstract
Previous findings from our laboratory have shown that dilations to endothelium-derived hyperpolarizing factor (EDHF) in rat middle cerebral artery (MCA) are less in females compared to males. Myoendothelial gap junctions (MEGJs) appear to mediate the transfer of hyperpolarization between endothelium and smooth muscle in males. In the present study, we hypothesized that MEGJs are the site along the EDHF pathway which is compromised in female rat MCA. Membrane potential in endothelium was measured using the voltage-sensitive dye di-8-ANEPPS and in smooth muscle using intracellular glass microelectrodes in the presence of l-NAME (3x10(-5 )M) and indomethacin (10(-5 )M). Electron microscopy was used to assess MEGJ characteristics. In endothelial cells, the di-8-ANEPPS fluorescence ratio change to 10(-5 )M UTP was similar in males (-2.9+/-0.5%) and females (-3.2+/-0.2%), indicating comparable degrees of endothelial cell hyperpolarization. However, smooth muscle cell hyperpolarization to 10(-5 )M UTP was significantly attenuated in females (0 mV hyperpolarization; -31+/-1.5 mV resting) compared to males (8 mV hyperpolarization; -28+/-1.7 mV resting). Ultrastructural evidence suggested that MEGJ frequency and area of contact were comparable between males and females. Taken together, our data suggest that in rat MCA, MEGJ frequency does not account for the reduced EDHF responses observed in females compared to males. We conclude that reduced myoendothelial coupling and/or homocellular coupling within the media may account for these differences.
Collapse
Affiliation(s)
- Elke M Sokoya
- Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
10
|
Salmaso N, Woodside B. Upregulation of astrocytic basic fibroblast growth factor in the cingulate cortex of lactating rats: time course and role of suckling stimulation. Horm Behav 2006; 50:448-53. [PMID: 16860801 DOI: 10.1016/j.yhbeh.2006.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/23/2006] [Accepted: 05/26/2006] [Indexed: 11/21/2022]
Abstract
Previous work from our laboratory has shown that there is a much higher level of bFGF and GFAP immunoreactivity in area 2 of the cingulate cortex (Cg2) of rats on day 16 of lactation than in cycling or late pregnant females. To examine the time course of this change, in the first of the current studies, we compared bFGF and GFAP immunoreactivity in the brains of lactating females on postpartum day 4 (PP4), day 10 (PP10), day 16 (PP16), and day 24 (PP24) with that of cycling and ovariectomized (OVX) females. In the second study, we investigated whether the maintenance of these changes in bFGF and GFAP depended on suckling stimulation by removing litters on day 1 or day 16 postpartum and examining the brains of the dams on day 4 (Pr4) or day 24 (Pr24) postpartum, respectively. bFGF and GFAP immunoreactivity within Cg2 and the medial preoptic area (MPOA) were measured. In both experiments astrocytic bFGF and GFAP surface density in the Cg2 varied significantly across groups. All postpartum rats, regardless of stage of lactation or presence of the litter, had significantly higher levels of bFGF and GFAP immunoreactivity than cycling animals. Thus, the maintenance of this upregulation in bFGF and GFAP immunoreactivity does not depend on suckling stimulation. Consistent with our previous report, astrocytic bFGF was also elevated in the MPOA of PP16 animals. These data suggest a robust, long-lasting, postpartum change in bFGF and GFAP immunoreactivity in Cg2 and a role for this area of the cortex in the physiological and behavioral adaptations that accompany reproductive experience.
Collapse
Affiliation(s)
- N Salmaso
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Armstrong WE, Hatton GI. The puzzle of pulsatile oxytocin secretion during lactation: some new pieces. Am J Physiol Regul Integr Comp Physiol 2006; 291:R26-8. [PMID: 16832903 DOI: 10.1152/ajpregu.00879.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- William E Armstrong
- Department of Anatomy and Neurobiology, Unversity of Tennessee Medical School, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
12
|
Gulinello M, Etgen AM. Sexually dimorphic hormonal regulation of the gap junction protein, CX43, in rats and altered female reproductive function in CX43+/- mice. Brain Res 2005; 1045:107-15. [PMID: 15910768 PMCID: PMC4169114 DOI: 10.1016/j.brainres.2005.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 03/10/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
Astrocytic gap junctional communication is important in steroid hormone regulation of reproductive processes at the level of the hypothalamus, including estrous cyclicity and sexual behavior. We examined the effects of estradiol and progesterone on the abundance of the gap junctional protein, connexin 43 (CX43), which is highly expressed in astrocytes. Gonadectomized rats received hormone treatments that induce maximal sexual behavior and gonadotropin surges in females (estrogen for 48 h followed by progesterone, estrogen alone or progesterone alone). Control animals received vehicle (oil) injections. In the female rat preoptic area (POA), containing the gonadotropin-releasing hormone (GnRH) cell bodies, treatment with estrogen, progesterone or estrogen + progesterone significantly increased CX43 protein levels in immunoblots. In contrast, estrogen + progesterone significantly decreased CX43 levels in the male rat POA. This sexually dimorphic hormonal regulation of CX43 was not evident in the hypothalamus, which contains primarily GnRH nerve terminals. Treatment with estrogen + progesterone significantly decreased CX43 levels in both the male and female hypothalamus. To examine the role of CX43 in female reproductive function, we studied heterozygous female CX43 (CX43+/-) mice. Most mutant mice did not show normal estrous cycles. In addition, when compared to wild type females, CX43+/- mice had reduced lordosis behavior. These data suggest that hypothalamic CX43 expression is regulated by steroid hormones in a brain-region-specific and sexually dimorphic manner. Therefore, gap junctional communication in the POA and hypothalamus may be a factor regulating the estrous cycle and sexual behavior in female rodents.
Collapse
Affiliation(s)
- Maria Gulinello
- Albert Einstein College of Medicine, Department of Neuroscience, 1300 Morris Park Avenue F113, Bronx, NY 10461, USA.
| | | |
Collapse
|
13
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
14
|
Saito D, Komatsuda M, Urano A. Functional organization of preoptic vasotocin and isotocin neurons in the brain of rainbow trout: central and neurohypophysial projections of single neurons. Neuroscience 2004; 124:973-84. [PMID: 15026137 DOI: 10.1016/j.neuroscience.2003.12.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2003] [Indexed: 11/30/2022]
Abstract
Preoptic magnocellular neurosecretory cells (NSCs) in the brain of rainbow trout show synchronization of periodic Ca(2+) pulses, patterns of which differ between vasotocin (VT) and isotocin (IT) neurons. To provide neuroanatomical bases of the synchronized periodic Ca(2+) pulses and their biological implications, we examined the organization of preoptic VT and IT neurons in the brain of rainbow trout. The cytoarchitecture of the preoptic neurosecretory system was characterized by a confocal double-color immunofluorescence. Two to five VT neurons, and also IT neurons, aggregate to form cell-type specific clusters. VT clusters tend to localize medially, while IT clusters laterally. VT neurons are closely apposed at the proximal neuronal processes. A Golgi-like immunohistochemistry demonstrated that VT and IT fibers distribute widely in the brain, such as ventral telencephalon, diencephalon, and various mesencephalic structures, in addition to the neurohypophysial projections. Projections from single VT and IT neurons were examined by an intracellular staining with biocytin injection in a sagittally hemisected brain preparation, which contains the entire forebrain region. Single VT and IT neurons project toward the pituitary and the extrahypothalamic regions. Some IT neurons, but not VT neurons, were dye-coupled. These results support the idea that the same types of NSCs are connected to form cell-type-specific networks responsible for the synchronization of periodic Ca(2+) pulses. The organization of the preoptic neurosecretory system shown in the present study is suitable for the simultaneous control of neurohypophysial and extrahypothalamic outputs through the synchronization of electrical activity.
Collapse
Affiliation(s)
- D Saito
- Division of Biological Sciences, Hokkaido University Graduate School of Science, Sapporo, Hokkaido 060-0810, Japan.
| | | | | |
Collapse
|
15
|
Russell JA, Leng G, Douglas AJ. The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front Neuroendocrinol 2003; 24:27-61. [PMID: 12609499 DOI: 10.1016/s0091-3022(02)00104-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxytocin secretion from the posterior pituitary gland is increased during parturition, stimulated by the uterine contractions that forcefully expel the fetuses. Since oxytocin stimulates further contractions of the uterus, which is exquisitely sensitive to oxytocin at the end of pregnancy, a positive feedback loop is activated. The neural pathway that drives oxytocin neurons via a brainstem relay has been partially characterised, and involves A2 noradrenergic cells in the brainstem. Until close to term the responsiveness of oxytocin neurons is restrained by neuroactive steroid metabolites of progesterone that potentiate GABA inhibitory mechanisms. As parturition approaches, and this inhibition fades as progesterone secretion collapses, a central opioid inhibitory mechanism is activated that restrains the excitation of oxytocin cells by brainstem inputs. This opioid restraint is the predominant damper of oxytocin cells before and during parturition, limiting stimulation by extraneous stimuli, and perhaps facilitating optimal spacing of births and economical use of the store of oxytocin accumulated during pregnancy. During parturition, oxytocin cells increase their basal activity, and hence oxytocin secretion increases. In addition, the oxytocin cells discharge a burst of action potentials as each fetus passes through the birth canal. Each burst causes the secretion of a pulse of oxytocin, which sharply increases uterine tone; these bursts depend upon auto-stimulation by oxytocin released from the dendrites of the magnocellular neurons in the supraoptic and paraventricular nuclei. With the exception of the opioid mechanism that emerges to restrain oxytocin cell responsiveness, the behavior of oxytocin cells and their inputs in pregnancy and parturition is explicable from the effects of hormones of pregnancy (relaxin, estrogen, progesterone) on pre-existing mechanisms, leading through relative quiescence at term inter alia to net increase in oxytocin storage, and reduced auto-inhibition by nitric oxide generation. Cyto-architectonic changes in parturition, involving evident retraction of glial processes between oxytocin cells so they get closer together, are probably a response to oxytocin neuron activation rather than being essential for their patterns of firing in parturition.
Collapse
Affiliation(s)
- John A Russell
- Laboratory of Neuroendocrinology, School of Biomedical and Clinical Laboratory Sciences, College of Medicine, University of Edinburgh, UK.
| | | | | |
Collapse
|
16
|
Abstract
Recognition of the importance of glial cells in nervous system functioning is increasing, specifically regarding the modulation of neural activity. This brief review focuses on some of the morphological and functional interactions that take place between astroglia and neurons. Astrocyte-neuron interactions are of special interest because this glia cell type has intimate and dynamic associations with all parts of neurons, i.e., somata, dendrites, axons, and terminals. Activation of certain receptors on astrocytes produces morphological changes that result in new contacts between neurons, along with physiological and functional changes brought about by the new contacts. In response to activation of other receptors or changes in the extracellular microenvironment, astrocytes release neuroactive substances that directly excite or inhibit nearby neurons and may modulate synaptic transmission. Although some of these glial-neuronal interactions have been known for many years, others have been quite recently revealed, but together they are forming a compelling story of how these two major cell types in the brain carry out the complex tasks that mammalian nervous systems perform.
Collapse
Affiliation(s)
- Glenn I Hatton
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA.
| |
Collapse
|