1
|
Miller BR, Gonzaga-Jauregui C, Brigatti KW, de Jong J, Breese RS, Ko SY, Puffenberger EG, Van Hout C, Young M, Luna VM, Staples J, First MB, Gregoire HJ, Dwork AJ, Pefanis E, McCarthy S, Brydges S, Rojas J, Ye B, Stahl E, Di Gioia SA, Hen R, Elwood K, Rosoklija G, Li D, Mellis S, Carey D, Croll SD, Overton JD, Macdonald LE, Economides AN, Shuldiner AR, Chuhma N, Rayport S, Amin N, Kushner SA, Alessandri-Haber N, Markx S, Strauss KA. A rare variant in GPR156 associated with depression in a Mennonite pedigree causes habenula hyperactivity and stress sensitivity in mice. Proc Natl Acad Sci U S A 2025; 122:e2404754122. [PMID: 40228124 PMCID: PMC12037005 DOI: 10.1073/pnas.2404754122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Risk for MDD is heritable, and the genetic structure of founder populations enables investigation of rare susceptibility alleles with large effect. In an extended Old Order Mennonite family cohort, we identified a rare missense variant in GPR156 (c.1599G>T, p.Glu533Asp) associated with a two-fold increase in the relative risk of MDD. GPR156 is an orphan G protein-coupled receptor localized in the medial habenula, a region implicated in mood regulation. Insertion of a human sequence containing c.1599G>T into the murine Gpr156 locus induced medial habenula hyperactivity and abnormal stress-related behaviors. This work reveals a human variant that is associated with depression, implicates GPR156 as a target for mood regulation, and introduces informative murine models for investigating the pathophysiology and treatment of affective disorders.
Collapse
Affiliation(s)
- Bradley R. Miller
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | | | - Job de Jong
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | | | - Seung Yeon Ko
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Cristopher Van Hout
- Regeneron Genetics Center, Tarrytown, NY10591
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, 76230, Querétaro, Mexico
| | - Millie Young
- Clinic for Special Children, Gordonville, PA17529
| | - Victor M. Luna
- Department of Neural Sciences, Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA19140
| | | | - Michael B. First
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Hilledna J. Gregoire
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | - Andrew J. Dwork
- Department of Psychiatry, Columbia University, New York, NY10032
| | | | | | | | - Jose Rojas
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY10591
| | | | - René Hen
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY10032
| | - Dadong Li
- Regeneron Genetics Center, Tarrytown, NY10591
| | - Scott Mellis
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Susan D. Croll
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | | | - Aris N. Economides
- Regeneron Genetics Center, Tarrytown, NY10591
- Regeneron Pharmaceuticals Inc. Tarrytown, New York, NY10591
| | | | - Nao Chuhma
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Stephen Rayport
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Najaf Amin
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam3015 GD, The Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY10032
| | | | - Sander Markx
- Department of Psychiatry, Columbia University, New York, NY10032
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY10032
| | - Kevin A. Strauss
- Clinic for Special Children, Gordonville, PA17529
- Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA17602
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA01655
| |
Collapse
|
2
|
Jodeiri Farshbaf M, Matos TA, Niblo K, Alokam Y, Ables JL. STZ-induced hyperglycemia differentially influences mitochondrial distribution and morphology in the habenulointerpeduncular circuit. Front Cell Neurosci 2024; 18:1432887. [PMID: 39763617 PMCID: PMC11700986 DOI: 10.3389/fncel.2024.1432887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease. Methods This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images. We examined different time points after STZ-induced diabetes onset to determine how the brain responded to chronic hyperglycemia, with the limitation that mitochondria and lipids were not examined with respect to cell type or intracellular location. Results Mitochondrial distribution and morphology differentially responded to hyperglycemia depending on time and brain area. Six weeks after STZ treatment, mitochondria in the ventral MHb and dorsal IPN increased in number and exhibited altered morphology, but no changes were observed in the lateral habenula (LHb) or ventral IPN. Strikingly, mitochondrial numbers returned to normal dynamics at 12 weeks. Both blood glucose level and glycated hemoglobin (HbA1C) correlated with mitochondrial dynamics in ventral MHb, whereas only HbA1C correlated in the IPN. We also examined lipid homeostasis using BODIPY staining for neutral lipids in this model given that diabetes is associated with disrupted lipid homeostasis. BODIPY staining intensity was unchanged in the vMHb of STZ-treated mice but increased in the IPN and VTA and decreased in the LHb at 12 weeks. Interestingly, areas that demonstrated changes in mitochondria had little change in lipid staining and vice versa. Discussion This study is the first to describe the specific impacts of diabetes on mitochondria in the MHb-IPN circuit and suggests that the cholinergic MHb is uniquely sensitive to diabetesinduced hyperglycemia. Further studies are needed to understand the functional and behavioral implications of these findings.
Collapse
Affiliation(s)
- Mohammad Jodeiri Farshbaf
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taelor A. Matos
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- PREP Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristi Niblo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jessica L. Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Diabetes Obesity Metabolism Institute, New York, NY, United States
| |
Collapse
|
3
|
Cameron S, Weston-Green K, Newell KA. The disappointment centre of the brain gets exciting: a systematic review of habenula dysfunction in depression. Transl Psychiatry 2024; 14:499. [PMID: 39702626 DOI: 10.1038/s41398-024-03199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The habenula is an epithalamic brain structure that acts as a neuroanatomical hub connecting the limbic forebrain to the major monoamine centres. Abnormal habenula activity is increasingly implicated in depression, with a surge in publications on this topic in the last 5 years. Direct activation of the habenula is sufficient to induce a depressive phenotype in rodents, suggesting a causative role in depression. However, the molecular basis of habenula dysfunction in depression remains elusive and it is unclear how the preclinical advancements translate to the clinical field. METHODS A systematic literature search was conducted following the PRISMA guidelines. The two search terms depress* and habenula* were applied across Scopus, Web of Science and PubMed databases. Studies eligible for inclusion must have examined the habenula in clinical cases of depression or preclinical models of depression and compared their measures to an appropriate control. RESULTS Preclinical studies (n = 63) measured markers of habenula activity (n = 16) and neuronal firing (n = 22), largely implicating habenula hyperactivity in depression. Neurotransmission was briefly explored (n = 15), suggesting imbalances within excitatory and inhibitory habenula signalling. Additional preclinical studies reported neuroconnectivity (n = 1), inflammatory (n = 3), genomic (n = 3) and circadian rhythm (n = 3) abnormalities. Seven preclinical studies (11%) included both males and females. From these, 5 studies (71%) reported a significant difference between the sexes in at least one habenula measure taken. Clinical studies (n = 24) reported abnormalities in habenula connectivity (n = 15), volume (n = 6) and molecular markers (n = 3). Clinical studies generally included male and female subjects (n = 16), however, few of these studies examined sex as a biological variable (n = 6). CONCLUSIONS Both preclinical and clinical evidence suggest the habenula is disrupted in depression. However, there are opportunities for sex-specific analyses across both areas. Preclinical evidence consistently suggests habenula hyperactivity as a primary driver for the development of depressive symptoms. Clinical studies support gross habenula abnormalities such as altered activation, connectivity, and volume, with emerging evidence of blood brain barrier dysfunction, however, progress is limited by a lack of detailed molecular analyses and limited imaging resolution.
Collapse
Affiliation(s)
- Sarah Cameron
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Katrina Weston-Green
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
4
|
Dai Q, Kyuragi Y, Zakia H, Oishi N, Yao L, Zhang Z, Wang L, Yang J, Murai T, Fujiwara H. Psychological resilience is positively correlated with Habenula volume. J Affect Disord 2024; 365:178-184. [PMID: 39151760 DOI: 10.1016/j.jad.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Psychological resilience is defined as the process and outcome of individuals' successful adaptation to challenging life experiences. The Habenula (Hb) is known to be involved in the stress response; however, the relationship between Hb volume and resilience in humans remains unclear. This study investigated the correlation among resilience, Hb volume, and depressive tendencies in adults. METHODS Hb volumes were assessed using deep learning techniques applied to 110 healthy participants. Resilience and depression were evaluated using the Connor-Davidson Resilience Scale and Beck Depression Inventory-II, respectively. We examined the relationship between Hb volume and resilience and assessed the mediating effects of resilience on the relationship between Hb volume and depressive tendencies. RESULTS Correlation analysis revealed a positive correlation between resilience and Hb volume (partial r = 0.176, p = 0.001), which was more pronounced in women (partial r = 0.353, p = 0.003). Hb volumes on the left and right sides exhibited significant lateralization (LI = 0.031, 95 % CI = [0.016, 0.046]). Despite Hb asymmetry, lateralization was not significantly associated with resilience. The mediation analysis shows significant indirect effect of resilience on the relationship between Hb volume and depressive tendencies (β = -0.093, 95%CI = [-0.189, -0.019]). CONCLUSION This study found that populations with lower resilience have smaller Hb volume. Previous research has shown that Hb volume decreased with the increasing severity of depression symptoms in patients. Our findings support this view and extend it to a population that has not been clinically diagnosed with depression. Additionally, we found that psychological resilience can be predicted by Hb volume and may serve as a mediating factor indirectly affecting depressive tendencies, even in healthy individuals. LIMITATIONS Due to its cross-sectional design, this study was unable to analyze dynamic changes in Hb volume during the process of resilience adaptation.
Collapse
Affiliation(s)
- Qi Dai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Yusuke Kyuragi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Halwa Zakia
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Naoya Oishi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Lichang Yao
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Zhilin Zhang
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan; Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Luyao Wang
- School of Life Science, Shanghai University, Shanghai, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Toshiya Murai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan
| | - Hironobu Fujiwara
- Department of Neuropsychiatry, Graduate School of Medicine, University of Kyoto, Kyoto, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama, Japan; The General Research Division, Osaka University Research Center on Ethical, Legal and Social Issues, Kyoto, Japan.
| |
Collapse
|
5
|
Hernandez Silva JC, Pausic N, Marroquin Rivera A, Labonté B, Proulx CD. Chronic Social Defeat Stress Induces Pathway-Specific Adaptations at Lateral Habenula Neuronal Outputs. J Neurosci 2024; 44:e2082232024. [PMID: 39164106 PMCID: PMC11426382 DOI: 10.1523/jneurosci.2082-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/15/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
The lateral habenula (LHb) has emerged as a pivotal brain region implicated in depression, displaying hyperactivity in human and animal models of depression. While the role of LHb efferents in depressive disorders has been acknowledged, the specific synaptic alterations remain elusive. Here, employing optogenetics, retrograde tracing, and ex vivo whole-cell patch-clamp techniques, we investigated synaptic transmission in male mice subjected to chronic social defeat stress (CSDS) at three major LHb neuronal outputs: the dorsal raphe nucleus (DRN), the ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). Our findings uncovered distinct synaptic adaptations in LHb efferent circuits in response to CSDS. Specifically, CSDS induced in susceptible mice postsynaptic potentiation and postsynaptic depression at the DRN and VTA neurons, respectively, receiving excitatory inputs from the LHb, while CSDS altered presynaptic transmission at the LHb terminals in RMTg in both susceptible and resilient mice. Moreover, whole-cell recordings at projection-defined LHb neurons indicate decreased spontaneous activity in VTA-projecting LHb neurons, accompanied by an imbalance in excitatory-inhibitory inputs at the RMTg-projecting LHb neurons. Collectively, these novel findings underscore the circuit-specific alterations in LHb efferents following chronic social stress, shedding light on potential synaptic adaptations underlying stress-induced depressive-like states.
Collapse
Affiliation(s)
- Jose Cesar Hernandez Silva
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Nikola Pausic
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Arturo Marroquin Rivera
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Benoît Labonté
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| | - Christophe D Proulx
- CERVO Brain Research Center, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC G1J 2G3, Canada
| |
Collapse
|
6
|
Park H, Ryu H, Zhang S, Rhee J, Chung C. Mu-opioid receptor activation in the habenula modulates synaptic transmission and depression-like behaviors. Neurobiol Dis 2024; 198:106543. [PMID: 38821376 DOI: 10.1016/j.nbd.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Opioid system dysregulation in response to stress is known to lead to psychiatric disorders including major depression. Among three different types of opioid receptors, the mu-type receptors (mORs) are highly expressed in the habenula complex, however, the action of mORs in this area and its interaction with stress exposure is largely unknown. Therefore, we investigated the roles of mORs in the habenula using male rats of an acute learned helplessness (aLH) model. First, we found that mOR activation decreased both excitatory and inhibitory synaptic transmission onto the lateral habenula (LHb). Intriguingly, this mOR-induced synaptic depression was reduced in an animal model of depression compared to that of controls. In naïve animals, we found an unexpected interaction between mORs and the endocannabinoid (eCB) signaling occurring in the LHb, which mediates presynaptic alteration occurring with mOR activation. However, we did not observe presynaptic alteration by mOR activation after stress exposure. Moreover, selective mOR activation in the habenula before, but not after, stress exposure effectively reduced helpless behaviors compared to aLH animals. Our observations are consistent with clinical reports suggesting the involvement of mOR signaling in depression, and additionally reveal a critical time window of mOR action in the habenula for ameliorating helplessness symptoms.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeehae Rhee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Tang G, Guo Y, Li R, Wang Y, Yang J, Gao S, Liu J. Lateral habenula 5-HT 1B receptors are involved in regulation of anxiety-like behaviors in parkinsonian rats. Neurochem Int 2024; 177:105766. [PMID: 38750961 DOI: 10.1016/j.neuint.2024.105766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not clear the role of LHb 5-HT1B receptors in regulation of anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to decreased normalized δ power and increased normalized θ power in the LHb, and decreased dopamine (DA) level in the prelimbic cortex (PrL) compared with sham rats. Down-regulation of LHb 5-HT1B receptors by RNA interference produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb in both sham and lesioned rats. Further, intra-LHb injection of 5-HT1B receptor agonist CP93129 induced anxiolytic-like responses, increased normalized δ power and decreased normalized θ power in the LHb, and increased DA and serotonin (5-HT) release in the PrL; conversely, 5-HT1B receptor antagonist SB216641 produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb, and decreased DA and 5-HT release in the PrL in sham and lesioned rats. Additionally, effects of CP93129 and SB216641 on the behaviors, normalized δ and θ power in the LHb, and DA and 5-HT release in the PrL were decreased in lesioned rats, which were consistent with down-regulation of LHb 5-HT1B receptors after DA depletion. Collectively, these findings suggest that 5-HT1B receptors in the LHb are involved in the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
8
|
Chen X, Liu X, Luan S, Wang X, Zhang Y, Hao Y, Zhang Q, Zhang J, Zhao H. Optogenetic activation of the lateral habenula D1R-ventral tegmental area circuit induces depression-like behavior in mice. Eur Arch Psychiatry Clin Neurosci 2024; 274:867-878. [PMID: 38236282 DOI: 10.1007/s00406-023-01743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
A number of different receptors are distributed in glutamatergic neurons of the lateral habenula (LHb). These glutamatergic neurons are involved in different neural pathways, which may identify how the LHb regulates various physiological functions. However, the role of dopamine D1 receptor (D1R)-expressing habenular neurons projecting to the ventral tegmental area (VTA) (LHbD1R-VTA) remains not well understood. In the current study, to determine the activity of D1R-expressing neurons in LHb, D1R-Cre mice were used to establish the chronic restraint stress (CRS) depression model. Adeno-associated virus was injected into bilateral LHb in D1R-Cre mice to examine whether optogenetic activation of the LHb D1R-expressing neurons and their projections could induce depression-like behavior. Optical fibers were implanted in the LHb and VTA, respectively. To investigate whether optogenetic inhibition of the LHbD1R-VTA circuit could produce antidepressant-like effects, the adeno-associated virus was injected into the bilateral LHb in the D1R-Cre CRS model, and optical fibers were implanted in the bilateral VTA. The D1R-expressing neuronal activity in the LHb was increased in the CRS depression model. Optogenetic activation of the D1R-expressing neurons in LHb induced behavioral despair and anhedonia, which could also be induced by activation of the LHbD1R-VTA axons. Conversely, optogenetic inhibition of the LHbD1R-VTA circuit improved behavioral despair and anhedonia in the CRS depression model. D1R-expressing glutamatergic neurons in the LHb and their projections to the VTA are involved in the occurrence and regulation of depressive-like behavior.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun, 130021, People's Republic of China
- Department of Rehabilitation Medicine, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuxin Luan
- Department of Mental Health, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xuxin Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun, 130021, People's Republic of China
| | - Ying Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yulei Hao
- Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Qiang Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun, 130021, People's Republic of China
| | - Jiaming Zhang
- Department of Rehabilitation Medicine, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Xinmin Street No. 126, Changchun, 130021, People's Republic of China.
- Neuroscience Research Center, First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
9
|
Samanci B, Tan S, Michielse S, Kuijf ML, Temel Y. The habenula in Parkinson's disease: Anatomy, function, and implications for mood disorders - A narrative review. J Chem Neuroanat 2024; 136:102392. [PMID: 38237746 DOI: 10.1016/j.jchemneu.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Parkinson's disease (PD), a widespread neurodegenerative disorder, often coexists with mood disorders. Degeneration of serotonergic neurons in brainstem raphe nuclei have been linked to depression and anxiety. Additionally, the locus coeruleus and its noradrenergic neurons are among the first areas to degenerate in PD and contribute to stress, emotional memory, motor, sensory, and autonomic symptoms. Another brain region of interest is habenula, which is especially related to anti-reward processing, and its function has recently been linked to PD and to mood-related symptoms. There are several neuroimaging studies that investigated role of the habenula in mood disorders. Differences in habenular size and hemispheric symmetry were found in healthy controls compared to individuals with mood disorders. The lateral habenula, as a link between the dopaminergic and serotonergic systems, is thought to contribute to depressive symptoms in PD. However, there is only one imaging study about role of habenula in mood disorders in PD, although the relationship between PD and mood disorders is known. There is little known about habenula pathology in PD but given these observations, the question arises whether habenular dysfunction could play a role in PD and the development of PD-related mood disorders. In this review, we evaluate neuroimaging techniques and studies that investigated the habenula in the context of PD and mood disorders. Future studies are important to understand habenula's role in PD patients with mood disorders. Thus, new potential diagnostic and treatment opportunities would be found for mood disorders in PD.
Collapse
Affiliation(s)
- Bedia Samanci
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Sonny Tan
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Michielse
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Mark L Kuijf
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Yasin Temel
- School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands; Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
10
|
Chen C, Wang M, Yu T, Feng W, Xu Y, Ning Y, Zhang B. Habenular functional connections are associated with depression state and modulated by ketamine. J Affect Disord 2024; 345:177-185. [PMID: 37879411 DOI: 10.1016/j.jad.2023.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Depression is a widespread mental health disorder with complex neurobiological underpinnings. The habenula, known as the 'anti-reward center', is thought to play a pivotal role in the pathophysiology of depression. This study aims to elucidate the association between the functional connections of the habenula and depression severity and to explore the modulation of these connections by ketamine. METHODS We studied 177 participants from a 7-T resting-state functional magnetic resonance imaging subset of the Human Connectome Project dataset to determine the associations between the functional connections of the habenula and depression. Additionally, we analyzed 60 depressed patients from our ketamine database to conduct a preliminary study on alterations in the functional connections of the habenula after ketamine infusions. We also investigated whether the baseline functional connectivity of the habenula is linked to subsequent improvement in depression. RESULTS We found that functional connections between the habenula and the substantia nigra, as well as the ventral tegmental area were negatively correlated with depression scores and elevated after ketamine infusions. Furthermore, the connection between the right habenula and the right substantia nigra was negatively associated with the improvement of depression. LIMITATIONS The Human Connectome Project dataset primarily consists of data from healthy participants, with varying levels of depression scores. CONCLUSION These results suggest that the habenula may facilitate depression by suppressing dopamine reward centers, and ketamine may relieve depression by disinhibiting these dopaminergic regions. This study may enhance our understanding of the neural underpinnings of depression and ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Chengfeng Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqia Wang
- Institute of Mental Health, Peking University, Beijing, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tong Yu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanting Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J Funct Morphol Kinesiol 2024; 9:14. [PMID: 38249091 PMCID: PMC10801627 DOI: 10.3390/jfmk9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The habenular complex is a diencephalic structure divided into the medial and lateral divisions that lie within the epithalamus of most vertebrates. This brain structure, whose activities are mainly regulated via inputs/outputs from and to the stria medullaris and the fasciculus retroflexus, plays a significant role in the modulation of anti-reward behaviors in both the rodent and human brain. Such anti-reward circuits are regulated by dopaminergic and serotonergic projections with several other subcortical and cortical regions; therefore, it is plausible that impairment to this key subcortical structure or its connections contributes to the pathogenesis of affective disorders. Current literature reveals the existence of structural changes in the habenula complex in individuals afflicted by such disorders; however, there is a need for more comprehensive investigations to elucidate the underlying neuroanatomical connections that underpin disease development. In this review article, we aim to provide a comprehensive view of the neuroanatomical differences between the rodent and human habenular complex, the main circuitries, and provide an update on the emerging roles of this understudied subcortical structure in the control of affective behaviors, with special emphasis to morbid conditions of the affective sphere.
Collapse
Affiliation(s)
- Jordan Allan Piper
- School of Health Sciences, College of Health and Medicine, University of Tasmania (Sydney), Sydney, NSW 2040, Australia;
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical & Biotechnological Sciences, Anatomy, Histology & Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandro Castorina
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
13
|
Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, Li S, Cui Y, Wang J, Zhu Y, Zhang Y, Ma H, Duan S, Li H, Yang Y, Lingle CJ, Hu H. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 2023; 622:802-809. [PMID: 37853123 PMCID: PMC10600008 DOI: 10.1038/s41586-023-06624-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Min Chen
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihao Jiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinkuan Xiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shiqi Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Zuohang Wu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shuo Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yihui Cui
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Junying Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yanqing Zhu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Haohong Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailan Hu
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China.
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Tang GY, Wang RJ, Guo Y, Liu J. 5-HT 1B receptor-AC-PKA signal pathway in the lateral habenula is involved in the regulation of depressive-like behaviors in 6-hydroxydopamine-induced Parkinson's rats. Neurol Res 2023; 45:127-137. [PMID: 36127643 DOI: 10.1080/01616412.2022.2124797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate whether serotonin1B (5-HT1B) receptor-adenylate cyclase (AC)-protein kinase A (PKA) signal pathway in the lateral habenula (LHb) is involved in Parkinson's disease-related depression in sham-lesioned and substantia nigra pars compacta (SNc)-lesioned rats. METHODS The sucrose preference and forced swim tests were used to measure depressive-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of LHb neurons and GABA and glutamate release in the LHb, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, AC and phosphorylated PKA at threonine 197 site (p-PKA-Thr197) in the LHb. RESULTS Unilateral 6-hydroxydopamine lesions of the SNc in rats induced depressive-like behaviors. Intra-LHb injection of 5-HT1B receptor agonist CP93129 produced antidepressant-like effects and the antagonist SB216641 induced depressive-like behaviors in sham-lesioned and SNc-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129 in the two groups of rats, respectively. CP93129 decreased the firing rate of LHb neurons and release of GABA and glutamate, but increased the GABA/glutamate ratio, while SB216641 induced the opposite effects. Compared with sham-lesioned rats, effects of CP93129 and SB216641 on the depressive-like behaviors, electrophysiology, and microdialysis were decreased in SNc-lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the LHb. CONCLUSION 5-HT1B receptor-AC-PKA signal pathway in the LHb is involved in the regulation of depressive-like behaviors, and depletion of DA reduces activity of 5-HT1B receptor-AC-PKA signal pathway.
Collapse
Affiliation(s)
- Guo Yi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Run Jia Wang
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
15
|
Allain F, Carter M, Dumas S, Darcq E, Kieffer BL. The mu opioid receptor and the orphan receptor GPR151 contribute to social reward in the habenula. Sci Rep 2022; 12:20234. [PMID: 36424418 PMCID: PMC9691715 DOI: 10.1038/s41598-022-24395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The mu opioid receptor (MOR) and the orphan GPR151 receptor are inhibitory G protein coupled receptors that are enriched in the habenula, a small brain region involved in aversion processing, addiction and mood disorders. While MOR expression in the brain is widespread, GPR151 expression is restricted to the habenula. In a previous report, we created conditional ChrnB4-Cre × Oprm1fl/fl (so-called B4MOR) mice, where MORs are deleted specifically in Chrnb4-positive neurons restricted to the habenula, and shown a role for these receptors in naloxone aversion. Here we characterized the implication of habenular MORs in social behaviors. B4MOR-/- mice and B4MOR+/+ mice were compared in several social behavior measures, including the chronic social stress defeat (CSDS) paradigm, the social preference (SP) test and social conditioned place preference (sCPP). In the CSDS, B4MOR-/- mice showed lower preference for the social target (unfamiliar mouse of a different strain) at baseline, providing a first indication of deficient social interactions in mice lacking habenular MORs. In the SP test, B4MOR-/- mice further showed reduced sociability for an unfamiliar conspecific mouse. In the sCPP, B4MOR-/- mice also showed impaired place preference for their previous familiar littermates after social isolation. We next created and tested Gpr151-/- mice in the SP test, and also found reduced social preference compared to Gpr151+/+ mice. Altogether our results support the underexplored notion that the habenula regulates social behaviors. Also, our data suggest that the inhibitory habenular MOR and GPR151 receptors normally promote social reward, possibly by dampening the aversive habenula activity.
Collapse
Affiliation(s)
- Florence Allain
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France
| | - Michelle Carter
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
| | | | - Emmanuel Darcq
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France
| | - Brigitte L Kieffer
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montreal, Canada.
- INSERM U1114, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 1 rue Eugène Boeckel, CS60026, 67084, Strasbourg Cedex, France.
| |
Collapse
|
16
|
Post RJ, Bulkin DA, Ebitz RB, Lee V, Han K, Warden MR. Tonic activity in lateral habenula neurons acts as a neutral valence brake on reward-seeking behavior. Curr Biol 2022; 32:4325-4336.e5. [PMID: 36049479 PMCID: PMC9613558 DOI: 10.1016/j.cub.2022.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the lateral habenula (LHb) has been linked to negative valence, but its role in regulating the balance between engaged reward seeking and disengaged behavioral states remains unclear. Here, we show that LHb neural activity is tonically elevated during minutes-long periods of disengagement from reward-seeking behavior, both when due to repeated reward omission (negative valence) and when sufficient reward has been consumed (positive valence). Furthermore, we show that LHb inhibition extends ongoing reward-seeking behavioral states but does not prompt task re-engagement. We find no evidence for similar tonic activity changes in ventral tegmental area dopamine neurons. Our findings support a framework in which tonic activity in LHb neurons suppresses engagement in reward-seeking behavior in response to both negatively and positively valenced factors.
Collapse
Affiliation(s)
- Ryan J Post
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - David A Bulkin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Vladlena Lee
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kasey Han
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Bailly J, Allain F, Schwartz E, Tirel C, Dupuy C, Petit F, Diana MA, Darcq E, Kieffer BL. Habenular Neurons Expressing Mu Opioid Receptors Promote Negative Affect in a Projection-Specific Manner. Biol Psychiatry 2022:S0006-3223(22)01594-3. [PMID: 36496267 PMCID: PMC10027626 DOI: 10.1016/j.biopsych.2022.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/18/2022] [Accepted: 09/10/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The mu opioid receptor (MOR) is central to hedonic balance and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, notably the habenula (Hb), where the receptor is highly dense. Our previous data suggest that the inhibitory activity of MOR in the Hb may limit aversive states. To investigate this hypothesis, we tested whether neurons expressing MOR in the Hb (Hb-MOR neurons) promote negative affect. METHODS Using Oprm1-Cre knockin mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of Hb-MOR neuron stimulation for approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze, and marble burying), and despair-like behavior (tail suspension). RESULTS Optostimulation of Hb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus, Hb-MOR neurons project to the dorsal raphe nucleus. Optostimulation of Hb-MOR/interpeduncular nucleus terminals triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of Hb-MOR/dorsal raphe nucleus terminals increased levels of anxiety with no effect on other behaviors, revealing 2 dissociable pathways controlling negative affect. CONCLUSIONS Together, the data demonstrate that Hb neurons expressing MOR facilitate aversive states via 2 distinct Hb circuits, contributing to despair-like behavior (Hb-MOR/interpeduncular nucleus) and anxiety (Hb-MOR/dorsal raphe nucleus). The findings support the notion that inhibition of these neurons by either endogenous or exogenous opioids may relieve negative affect, a mechanism that would have implications for hedonic homeostasis and addiction.
Collapse
Affiliation(s)
- Julie Bailly
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Allain
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Eric Schwartz
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chloé Tirel
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Charles Dupuy
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Florence Petit
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Marco A Diana
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, Department of Psychiatry, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
18
|
Yang L, Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Alterations of functional connectivity of the lateral habenula in subclinical depression and major depressive disorder. BMC Psychiatry 2022; 22:588. [PMID: 36064380 PMCID: PMC9442927 DOI: 10.1186/s12888-022-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common cause of disability and morbidity, affecting about 10% of the population worldwide. Subclinical depression (SD) can be understood as a precursor of MDD, and therefore provides an MDD risk indicator. The pathogenesis of MDD and SD in humans is still unclear, and the current diagnosis lacks accurate biomarkers and gold standards. METHODS A total of 40 MDD, 34 SD, and 40 healthy control (HC) participants matched by age, gender, and education were included in this study. Resting-state functional magnetic resonance images (rs-fMRI) were used to analyze the functional connectivity (FC) of the posterior parietal thalamus (PPtha), which includes the lateral habenula, as the region of interest. Analysis of variance with the post hoc t-test test was performed to find significant differences in FC and clarify the variations in FC among the HC, SD, and MDD groups. RESULTS Increased FC was observed between PPtha and the left inferior temporal gyrus (ITG) for MDD versus SD, and between PPtha and the right ITG for SD versus HC. Conversely, decreased FC was observed between PPtha and the right middle temporal gyrus (MTG) for MDD versus SD and MDD versus HC. The FC between PPtha and the middle frontal gyrus (MFG) in SD was higher than that in MDD and HC. Compared with the HC group, the FC of PPtha-ITG (left and right) increased in both the SD and MDD groups, PPtha-MTG (right) decreased in both the SD and MDD groups and PPtha-MFG (right) increased in the SD group and decreased in the MDD group. CONCLUSION Through analysis of FC measured by rs-fMRI, the altered FC between PPtha and several brain regions (right and left ITG, right MTG, and right MFG) has been identified in participants with SD and MDD. Different alterations in FC between PPtha and these regions were identified for patients with depression. These findings might provide insights into the potential pathophysiological mechanisms of SD and MDD, especially related to PPtha and the lateral habenula.
Collapse
Affiliation(s)
- Lei Yang
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chaoyang Jin
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China. .,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Yueyang Teng
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- grid.217309.e0000 0001 2180 0654Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, USA
| | - Xiuhang Ruan
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- grid.79703.3a0000 0004 1764 3838Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Antunes GF, Pinheiro Campos AC, de Assis DV, Gouveia FV, de Jesus Seno MD, Pagano RL, Ruiz Martinez RC. Habenula activation patterns in a preclinical model of neuropathic pain accompanied by depressive-like behaviour. PLoS One 2022; 17:e0271295. [PMID: 35819957 PMCID: PMC9275703 DOI: 10.1371/journal.pone.0271295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Pain and depression are complex disorders that frequently co-occur, resulting in diminished quality of life. The habenula is an epithalamic structure considered to play a pivotal role in the neurocircuitry of both pain and depression. The habenula can be divided into two major areas, the lateral and medial habenula, that can be further subdivided, resulting in 6 main subregions. Here, we investigated habenula activation patterns in a rat model of neuropathic pain with accompanying depressive-like behaviour. Wistar rats received active surgery for the development of neuropathic pain (chronic constriction injury of the sciatic nerve; CCI), sham surgery (surgical control), or no surgery (behavioural control). All animals were evaluated for mechanical nociceptive threshold using the paw pressure test and depressive-like behaviour using the forced swimming test, followed by evaluation of the immunoreactivity to cFos—a marker of neuronal activity—in the habenula and subregions. The Open Field Test was used to evaluate locomotor activity. Animals with peripheral neuropathy (CCI) showed decreased mechanical nociceptive threshold and increased depressive-like behaviour compared to control groups. The CCI group presented decreased cFos immunoreactivity in the total habenula, total lateral habenula and lateral habenula subregions, compared to controls. No difference was found in cFos immunoreactivity in the total medial habenula, however when evaluating the subregions of the medial habenula, we observed distinct activation patterns, with increase cFos immunoreactivity in the superior subregion and decrease in the central subregion. Taken together, our data suggest an involvement of the habenula in neuropathic pain and accompanying depressive-like behaviour.
Collapse
Affiliation(s)
| | | | | | - Flavia Venetucci Gouveia
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
- Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
- * E-mail: (RCRM); (FVG)
| | | | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil
- LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, São Paulo, Brazil
- * E-mail: (RCRM); (FVG)
| |
Collapse
|
20
|
Figee M, Riva-Posse P, Choi KS, Bederson L, Mayberg HS, Kopell BH. Deep Brain Stimulation for Depression. Neurotherapeutics 2022; 19:1229-1245. [PMID: 35817944 PMCID: PMC9587188 DOI: 10.1007/s13311-022-01270-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Deep brain stimulation has been extensively studied as a therapeutic option for treatment-resistant depression (TRD). DBS across different targets is associated with on average 60% response rates in previously refractory chronically depressed patients. However, response rates vary greatly between patients and between studies and often require extensive trial-and-error optimizations of stimulation parameters. Emerging evidence from tractography imaging suggests that targeting combinations of white matter tracts, rather than specific grey matter regions, is necessary for meaningful antidepressant response to DBS. In this article, we review efficacy of various DBS targets for TRD, which networks are involved in their therapeutic effects, and how we can use this information to improve targeting and programing of DBS for individual patients. We will also highlight how to integrate these DBS network findings into developing adaptive stimulation and optimal trial designs.
Collapse
Affiliation(s)
- Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Georgia, GA, USA
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucia Bederson
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Martín-Sánchez A, González-Pardo H, Alegre-Zurano L, Castro-Zavala A, López-Taboada I, Valverde O, Conejo NM. Early-life stress induces emotional and molecular alterations in female mice that are partially reversed by cannabidiol. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110508. [PMID: 34973413 DOI: 10.1016/j.pnpbp.2021.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Gender is considered as a pivotal determinant of mental health. Indeed, several psychiatric disorders such as anxiety and depression are more common and persistent in women than in men. In the past two decades, impaired brain energy metabolism has been highlighted as a risk factor for the development of these psychiatric disorders. However, comprehensive behavioural and neurobiological studies in brain regions relevant to anxiety and depression symptomatology are scarce. In the present study, we summarize findings describing cannabidiol effects on anxiety and depression in maternally separated female mice as a well-established rodent model of early-life stress associated with many mental disorders. Our results indicate that cannabidiol could prevent anxiolytic- and depressive-related behaviour in early-life stressed female mice. Additionally, maternal separation with early weaning (MSEW) caused long-term changes in brain oxidative metabolism in both nucleus accumbens and amygdalar complex measured by cytochrome c oxidase quantitative histochemistry. However, cannabidiol treatment could not revert brain oxidative metabolism impairment. Moreover, we identified hyperphosphorylation of mTOR and ERK 1/2 proteins in the amygdala but not in the striatum, that could also reflect altered brain intracellular signalling related with to bioenergetic impairment. Altogether, our study supports the hypothesis that MSEW induces profound long-lasting molecular changes in mTOR signalling and brain energy metabolism related to depressive-like and anxiety-like behaviours in female mice, which were partially ameliorated by CBD administration.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
22
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
23
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
24
|
Lyu S, Guo Y, Zhang L, Tang G, Li R, Yang J, Gao S, Li W, Liu J. Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology 2021; 196:108691. [PMID: 34197892 DOI: 10.1016/j.neuropharm.2021.108691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023]
Abstract
Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.
Collapse
Affiliation(s)
- Shuxuan Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
25
|
Fakhoury M. Optogenetics: A revolutionary approach for the study of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110094. [PMID: 32890694 DOI: 10.1016/j.pnpbp.2020.110094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 10/24/2022]
Abstract
Depression is a severe and chronic mental disorder that affects millions of individuals worldwide. Symptoms include depressed mood, loss of interest, reduced motivation and suicidal thoughts. Even though findings from genetic, molecular and imaging studies have helped provide some clues regarding the mechanisms underlying depression-like behaviors, there are still many unanswered questions that need to be addressed. Optogenetics, a technique developed in the early 2000s, has proved effective in the study and treatment of depression and depression-like behaviors and has revolutionized already known experimental techniques. This technique employs light and genetic tools to either inhibit or excite specific neurons or pathways within the brain. In this review paper, an up-to-date understanding of the use of optogenetics in the study of depression-like behaviors is provided, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, Lebanon.
| |
Collapse
|
26
|
Li ZL, Wang Y, Zou HW, Jing XY, Liu YJ, Li LF. GABA(B) receptors within the lateral habenula modulate stress resilience and vulnerability in mice. Physiol Behav 2021; 230:113311. [DOI: 10.1016/j.physbeh.2021.113311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
|
27
|
Lyu S, Guo Y, Zhang L, Wang Y, Tang G, Li R, Yang J, Gao S, Ma B, Liu J. Blockade of GABA transporter-1 and GABA transporter-3 in the lateral habenula improves depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology 2020; 181:108369. [DOI: 10.1016/j.neuropharm.2020.108369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
28
|
Alterations of neurotransmitters and related metabolites in the habenula from CUMS-susceptible and -resilient rats. Biochem Biophys Res Commun 2020; 534:422-428. [PMID: 33246560 DOI: 10.1016/j.bbrc.2020.11.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
Although major depressive disorder (MDD) has caused severe mental harm to overwhelming amounts of patients, the pathogenesis of MDD remains to be studied. Due to the in-depth discussion of the mechanism of new antidepressants like ketamine, the habenula (Hb) was reported to be significant in the onset of MDD and the antidepressant mechanism. In the Hb of depressive-like rodents, various molecular mechanisms and neuronal electrical activities have been reported, but neurotransmitters disorder in response to stress are still unclear. Thus, we divided stress-susceptible and stress-resilient rats after exposure to chronic unpredictable mild stress (CUMS). Multiple metabolites in the Hb were determined by liquid chromatography-tandem mass spectrometry. Based on this approach, we found that glutamate was significantly increased in susceptible group and resilient group, while dopamine was significant decreased in two groups. Gamma-aminobutyric acid was significantly upregulated in susceptible group but downregulated in resilient group. Our study firstly provides quantitative evidence regarding alterations of main neurotransmitters in the Hb of CUMS rats, showing the different role of neurotransmitters in stress susceptibility and stress resilience.
Collapse
|
29
|
Hui Y, Du C, Xu T, Zhang Q, Tan H, Liu J. Dopamine D4 receptors in the lateral habenula regulate depression-related behaviors via a pre-synaptic mechanism in experimental Parkinson's disease. Neurochem Int 2020; 140:104844. [DOI: 10.1016/j.neuint.2020.104844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
|
30
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
31
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
32
|
Li Y, Li G, Li J, Cai X, Sun Y, Zhang B, Zhao H. Depression-like behavior is associated with lower Per2 mRNA expression in the lateral habenula of rats. GENES BRAIN AND BEHAVIOR 2020; 20:e12702. [PMID: 32964673 DOI: 10.1111/gbb.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
Circadian rhythm dysfunction is primary symptom of depression and is closely related to depression onset. The role of the lateral habenula (LHb) of the thalamus in the pathogenesis of depression has been a research topic of great interest. The neuronal activity of this structure has circadian characteristics, which are related to the regulation of circadian rhythms. However, in depression model of rats, the role of clock genes in the LHb has not been assessed. To address this gap, we used a clomipramine (CLI) injection-induced depression model in rats to assess the daily expression of rhythmic genes in the LHb and depression-like behavior in rats at multiple time points. In determining the role of the Per2 gene in the development of depression-like behavior in the LHb, we found that the expression of this clock gene differed in a circadian manner. Per2 expression was also significantly decreased in CLI-treated rats in late afternoon (17:00) and in the middle of the night (1:00). Furthermore, silencing Per2 in the LHb of normal rats induced depression-like behavior at night, suggesting that Per2 may play an important role in the pathogenesis of depression. Collectively, these results indicate that decreased Per2 expression in the LHb may be related to increased depression-like behavior at night in depression model of rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guangjian Li
- Department of Neurology and Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuewei Cai
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanfei Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Neurology and Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Engagement of the Lateral Habenula in the Association of a Conditioned Stimulus with the Absence of an Unconditioned Stimulus. Neuroscience 2020; 444:136-148. [DOI: 10.1016/j.neuroscience.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
|
34
|
The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav Brain Res 2020; 392:112693. [PMID: 32422236 DOI: 10.1016/j.bbr.2020.112693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Mood disorders affect nearly 300 million humans worldwide, and it is a leading cause of death from suicide. In the last decade, the habenula has gained increased attention due to its major role to modulate emotional behavior and related psychopathologies, including depression and bipolar disorder, through the modulation of monoamines' neurotransmission. However, it is still unclear which genetic factors may directly affect the function of the habenula and hence, could contribute to the psychopathological mechanisms of mood disorders. Disrupted-In-Schizophrenia-1 (DISC1) gene is among robust gene-candidates predisposing to major depression, bipolar disorder and schizophrenia in humans. DISC1-Q31L, a well-established genetic mouse model of depression, offers a unique opportunity for translational studies. The current study aimed to probe morphological features of the habenula in the DISC1-Q31L mouse line and detect novel behavioral endophenotypes, including the increased emotionality in mutant females, high aggression in mutant males and deficient extinction of fear memory in DISC1 mutant mice of both sexes. The histological analysis found the increased neural density in the lateral and medial habenula in DISC1-Q31L mice regardless of sex, hence, excluding direct association between the habenular neurons and emotionality in mutant females. Altogether, our findings demonstrated, for the first time, the direct impact of the DISC1 gene on the habenular neurons and affective behavior in the DISC1-Q31L genetic mouse line. These new findings suggest that the combination of the DISC1 genetic analysis together with habenular neuroimaging may improve diagnostics of mood disorder in clinical studies.
Collapse
|
35
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Shiotani H, Miyata M, Kameyama T, Mandai K, Yamasaki M, Watanabe M, Mizutani K, Takai Y. Nectin‐2α is localized at cholinergic neuron dendrites and regulates synapse formation in the medial habenula. J Comp Neurol 2020; 529:450-477. [DOI: 10.1002/cne.24958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Hajime Shiotani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Takeshi Kameyama
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
- Department of Molecular and Cellular Neurobiology Kitasato University Graduate School of Medical Sciences Sagamihara Japan
- Department of Biochemistry Kitasato University School of Medicine Sagamihara Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine Hokkaido University Sapporo Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine Hokkaido University Sapporo Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
37
|
Yoshino A, Okamoto Y, Sumiya Y, Okada G, Takamura M, Ichikawa N, Nakano T, Shibasaki C, Aizawa H, Yamawaki Y, Kawakami K, Yokoyama S, Yoshimoto J, Yamawaki S. Importance of the Habenula for Avoidance Learning Including Contextual Cues in the Human Brain: A Preliminary fMRI Study. Front Hum Neurosci 2020; 14:165. [PMID: 32477084 PMCID: PMC7235292 DOI: 10.3389/fnhum.2020.00165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 11/18/2022] Open
Abstract
Human habenula studies are gradually advancing, primarily through the use of functional magnetic resonance imaging (fMRI) analysis of passive (Pavlovian) conditioning tasks as well as probabilistic reinforcement learning tasks. However, no studies have particularly targeted aversive prediction errors, despite the essential importance for the habenula in the field. Complicated learned strategies including contextual contents are involved in making aversive prediction errors during the learning process. Therefore, we examined habenula activation during a contextual learning task. We performed fMRI on a group of 19 healthy controls. We assessed the manually traced habenula during negative outcomes during the contextual learning task. The Beck Depression Inventory-Second Edition (BDI-II), the State-Trait-Anxiety Inventory (STAI), and the Temperament and Character Inventory (TCI) were also administered. The left and right habenula were activated during aversive outcomes and the activation was associated with aversive prediction errors. There was also a positive correlation between TCI reward dependence scores and habenula activation. Furthermore, dynamic causal modeling (DCM) analyses demonstrated the left and right habenula to the left and right hippocampus connections during the presentation of contextual stimuli. These findings serve to highlight the neural mechanisms that may be relevant to understanding the broader relationship between the habenula and learning processes.
Collapse
Affiliation(s)
- Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Sumiya
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Takamura
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Naho Ichikawa
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Chiyo Shibasaki
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Hiroshima University, Hiroshima, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Hiroshima University, Hiroshima, Japan
| | - Kyoko Kawakami
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Yokoyama
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan.,Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
38
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
39
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
40
|
Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2019; 53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The habenula (Hb) is a phylogenetically old epithalamic structure differentiated into two nuclear complexes, the medial (MHb) and lateral habenula (LHb). After decades of search for a great unifying function, interest in the Hb resurged when it was demonstrated that LHb plays a major role in the encoding of aversive stimuli ranging from noxious stimuli to the loss of predicted rewards. Consistent with a role as an anti-reward center, aberrant LHb activity has now been identified as a key factor in the pathogenesis of major depressive disorder. Moreover, both MHb and LHb emerged as new players in the reward circuitry by primarily mediating the aversive properties of distinct drugs of abuse. Anatomically, the Hb serves as a bridge that links basal forebrain structures with monoaminergic nuclei in the mid- and hindbrain. So far, research on Hb has focused on the role of the LHb in regulating midbrain dopamine release. However, LHb/MHb are also interconnected with the dorsal (DR) and median (MnR) raphe nucleus. Hence, it is conceivable that some of the habenular functions are at least partly mediated by the complex network that links MHb/LHb with pontomesencephalic monoaminergic nuclei. Here, we summarize research about the topography and transmitter phenotype of the reciprocal connections between the LHb and ventral tegmental area-nigra complex, as well as those between the LHb and DR/MnR. Indirect MHb outputs via interpeduncular nucleus to state-setting neuromodulatory networks will also be commented. Finally, we discuss the role of specific LHb-VTA and LHb/MHb-raphe circuits in anxiety and depression.
Collapse
Affiliation(s)
- Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rudieri Souza
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Debora Bueno
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano Gonçalves
- Department of Human Anatomy, Federal University of the Triângulo Mineiro, Uberaba, Brazil
| | - Chemutai Sego
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara J Shammah-Lagnado
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Zhang J, Lv S, Tang G, Bian G, Yang Y, Li R, Yang J, Liu J. Activation of calcium-impermeable GluR2-containing AMPA receptors in the lateral habenula produces antidepressant-like effects in a rodent model of Parkinson's disease. Exp Neurol 2019; 322:113058. [DOI: 10.1016/j.expneurol.2019.113058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
|
42
|
Cerniauskas I, Winterer J, de Jong JW, Lukacsovich D, Yang H, Khan F, Peck JR, Obayashi SK, Lilascharoen V, Lim BK, Földy C, Lammel S. Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors. Neuron 2019; 104:899-915.e8. [PMID: 31672263 DOI: 10.1016/j.neuron.2019.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/21/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023]
Abstract
Chronic stress (CS) is a major risk factor for the development of depression. Here, we demonstrate that CS-induced hyperactivity in ventral tegmental area (VTA)-projecting lateral habenula (LHb) neurons is associated with increased passive coping (PC), but not anxiety or anhedonia. LHb→VTA neurons in mice with increased PC show increased burst and tonic firing as well as synaptic adaptations in excitatory inputs from the entopeduncular nucleus (EP). In vivo manipulations of EP→LHb or LHb→VTA neurons selectively alter PC and effort-related motivation. Conversely, dorsal raphe (DR)-projecting LHb neurons do not show CS-induced hyperactivity and are targeted indirectly by the EP. Using single-cell transcriptomics, we reveal a set of genes that can collectively serve as biomarkers to identify mice with increased PC and differentiate LHb→VTA from LHb→DR neurons. Together, we provide a set of biological markers at the level of genes, synapses, cells, and circuits that define a distinctive CS-induced behavioral phenotype.
Collapse
Affiliation(s)
- Ignas Cerniauskas
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jochen Winterer
- Brain Research Institute, University of Zurich, Zürich 8057, Switzerland
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Lukacsovich
- Brain Research Institute, University of Zurich, Zürich 8057, Switzerland
| | - Hongbin Yang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fawwad Khan
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James R Peck
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sophie K Obayashi
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Varoth Lilascharoen
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Csaba Földy
- Brain Research Institute, University of Zurich, Zürich 8057, Switzerland.
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Aizawa H, Zhu M. Toward an understanding of the habenula's various roles in human depression. Psychiatry Clin Neurosci 2019; 73:607-612. [PMID: 31131942 DOI: 10.1111/pcn.12892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
The habenula is an evolutionarily conserved structure in the vertebrate brain. Lesion and electrophysiological studies in animals have suggested that it is involved in the regulation of monoaminergic activity through projection to the brain stem nuclei. Since studies in animal models of depression and human functional imaging have indicated that increased activity of the habenula is associated with depressive phenotypes, this structure has attracted a surge of interest in neuroscience research. According to pathway- and cell-type-specific dissection of habenular function in animals, we have begun to understand how the heterogeneity of the habenula accounts for alteration of diverse physiological functions in depression. Indeed, recent studies have revealed that the subnuclei embedded in the habenula show a wide variety of molecular profiles not only in neurons but also in glial cells implementing the multifaceted regulatory mechanism for output from the habenula. In this review, we overview the known facts on mediolateral subdivision in the habenular structure, then discuss heterogeneity of the habenular structure from the anatomical and functional viewpoint to understand its emerging role in diverse neural functions relevant to depressive phenotypes. Despite the prevalent use of antidepressants acting on monoamine metabolisms, ~30% of patients with major depression are reported to be treatment-resistant. Thus, cellular mechanisms deciphering such diversity in depressive symptoms would be a promising candidate for the development of new antidepressants.
Collapse
Affiliation(s)
- Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Meina Zhu
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
44
|
Gosnell SN, Fowler JC, Salas R. Classifying suicidal behavior with resting-state functional connectivity and structural neuroimaging. Acta Psychiatr Scand 2019; 140:20-29. [PMID: 30929253 DOI: 10.1111/acps.13029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE About 80% of patients who commit suicide do not report suicidal ideation the last time they speak to their mental health provider, highlighting the need to identify biomarkers of suicidal behavior. Our goal is to identify suicidal behavior neural biomarkers to classify suicidal psychiatric inpatients. METHODS Eighty percent of our sample [suicidal (n = 63) and non-suicidal psychiatric inpatients (n = 65)] was used to determine significant differences in structural and resting-state functional connectivity measures throughout the brain. These measures were used in a random forest classification model on 80% of the sample for training the model. RESULTS The model built on 80% of the patients had sensitivity = 79.4% and specificity = 72.3%. This model was tested on an independent sample (20%; n = 32) with sensitivity = 81.3% and specificity = 75.0% for confirming the generalizability of the model. Altered resting-state functional connectivity features from frontal and middle temporal regions, as well as the amygdala, parahippocampus, putamen, and vermis were found to generalize best. CONCLUSION This work demonstrates neuroimaging (an unbiased biomarker) can be used to classify suicidal behavior in psychiatric inpatients without observing any clinical features.
Collapse
Affiliation(s)
- S N Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E DeBakey VA Medical, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - J C Fowler
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - R Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,Michael E DeBakey VA Medical, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
46
|
Li J, Yang S, Liu X, Han Y, Li Y, Feng J, Zhao H. Hypoactivity of the lateral habenula contributes to negative symptoms and cognitive dysfunction of schizophrenia in rats. Exp Neurol 2019; 318:165-173. [PMID: 31082390 DOI: 10.1016/j.expneurol.2019.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DAergic) hypofunction in the medial prefrontal cortex (mPFC) has been implicated in the negative and cognitive symptoms of schizophrenia and is regulated by serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN). The lateral habenula (LHb) is a key element in controlling DRN 5-HT neurons. We investigated how the LHb impacts the activity of mPFC neurons and whether it mediates the involvement of DRN on development of symptoms in a pharmacological animal model of schizophrenia. We used immunohisochemistry to assess cytochrome-c oxidase (COX) activity of the LHb in MK-801 model rats and extracellular firing recording to compare firing rates in LHb neurons of acute MK-801-treated rats. The sucrose preference, social interaction, and radial arm maze tests were used to access schizophrenia-like behavior in rats with electrolytically lesioned LHb. Finally, we examined levels of the dopamine D1 receptor (D1R) and tyrosine hydroxylase (TH) in the mPFC, and tryptophan hydroxylase 2 (TPH2) in the DRN of rats with LHb lesions to determine the possible mechanism underlying the schizophrenia-like behavior associated with lesioned LHb. We found that COX levels and LHb neuron firing rates decreased significantly in MK-801-treated animals. The LHb lesions induced negative and cognitive, but not positive symptoms of schizophrenia. The D1R and TH levels decreased in the mPFC while TPH2 expression elevated in the DRN and mPFC of LHb-lesioned rats. These results suggest that LHb hypoactivity may contribute to the negative and cognitive symptoms of schizophrenia by downregulating D1R expression in the mPFC, which might be mediated by DRN 5-HT neurons.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shaojun Yang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Xiaofeng Liu
- Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China
| | - Yuliang Han
- The department of neurology, second Hospital of Jilin University, Changchun 130021, PR China
| | - Yanhui Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Jingjing Feng
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
47
|
Andalman AS, Burns VM, Lovett-Barron M, Broxton M, Poole B, Yang SJ, Grosenick L, Lerner TN, Chen R, Benster T, Mourrain P, Levoy M, Rajan K, Deisseroth K. Neuronal Dynamics Regulating Brain and Behavioral State Transitions. Cell 2019; 177:970-985.e20. [PMID: 31031000 PMCID: PMC6726130 DOI: 10.1016/j.cell.2019.02.037] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022]
Abstract
Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.
Collapse
Affiliation(s)
- Aaron S Andalman
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Vanessa M Burns
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Michael Broxton
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ben Poole
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Samuel J Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Logan Grosenick
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Talia N Lerner
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Tyler Benster
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; INSERM U1024, Ecole Normale Supérieure Paris, Paris 75005, France
| | - Marc Levoy
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Kanaka Rajan
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; CNC Program, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
|
49
|
Luan SX, Zhang L, Wang R, Zhao H, Liu C. A resting-state study of volumetric and functional connectivity of the habenular nucleus in treatment-resistant depression patients. Brain Behav 2019; 9:e01229. [PMID: 30806014 PMCID: PMC6456806 DOI: 10.1002/brb3.1229] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To investigate the volumetric and functional connectivity of the habenular nucleus in treatment-resistant depression (TRD) patients using the resting-state functional magnetic resonance imaging (rs-fMRI) approach. METHODS A total of 15 TRD patients, who visited the Mental Health Institute of the First Hospital Affiliated with Jilin University between August 2014 and March 2015, along with 15 normal subjects, were enrolled into this study for structural and functional imaging. Functional connectivity analysis was performed using bilateral habenular nuclei as the region of interest in contrast to whole-brain voxels. RESULTS No significant difference of absolute volume was found in bilateral habenular nuclei between TRD patients and healthy controls, or after controlling for individual total intracranial volume. However, functional connectivity analysis showed increased connectivity between the right habenular nucleus with the medial superior frontal gyrus, anterior cingulate cortex and medial orbitofrontal gyrus, and decreased connectivity with the corpus callosum in the TRD group. For the left habenular nucleus seed, the brain region with increased functional connectivity in the inferior temporal gyrus and decreased functional connectivity in the insular was found in the TRD patients. CONCLUSION Abnormal functional connectivity was present between the habenular nucleus and the default mode network in TRD patients. Dysfunction in habenular nucleus-related circuitry for processing negative emotion might form the pathological basis for TRD. Significant asymmetric functional connectivity was also found between bilateral habenular nuclei in TRD patients. Such asymmetry suggests potentially divergent strategy for intervention on bilateral habenular nucleus regions in the future management of depression.
Collapse
Affiliation(s)
- Shu-Xin Luan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, China.,Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lei Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Mental Health, The First Hospital of Jilin University, Changchun, China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Mental Health, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Bidirectional regulation of reward, punishment, and arousal by dopamine, the lateral habenula and the rostromedial tegmentum (RMTg). Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|