1
|
Costas‐Insua C, Guzmán M. Endocannabinoid signaling in glioma. Glia 2023; 71:127-138. [PMID: 35322459 PMCID: PMC9790654 DOI: 10.1002/glia.24173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
High-grade gliomas constitute the most frequent and aggressive form of primary brain cancer in adults. These tumors express cannabinoid CB1 and CB2 receptors, as well as other elements of the endocannabinoid system. Accruing preclinical evidence supports that pharmacological activation of cannabinoid receptors located on glioma cells exerts overt anti-tumoral effects by modulating key intracellular signaling pathways. The mechanism of this cannabinoid receptor-evoked anti-tumoral activity in experimental models of glioma is intricate and may involve an inhibition not only of cancer cell survival/proliferation, but also of invasiveness, angiogenesis, and the stem cell-like properties of cancer cells, thereby affecting the complex tumor microenvironment. However, the precise biological role of the endocannabinoid system in the generation and progression of glioma seems very context-dependent and remains largely unknown. Increasing our basic knowledge on how (endo)cannabinoids act on glioma cells could help to optimize experimental cannabinoid-based anti-tumoral therapies, as well as the preliminary clinical testing that is currently underway.
Collapse
Affiliation(s)
- Carlos Costas‐Insua
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| | - Manuel Guzmán
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Department of Biochemistry and Molecular BiologyInstituto Universitario de Investigación Neuroquímica (IUIN), Complutense UniversityMadridSpain,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)MadridSpain
| |
Collapse
|
2
|
Ellert-Miklaszewska A, Ciechomska IA, Kaminska B. Cannabinoid Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:223-241. [PMID: 32034716 DOI: 10.1007/978-3-030-30651-9_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cannabinoids are a group of structurally heterogeneous but pharmacologically related compounds, including plant-derived cannabinoids, synthetic substances and endogenous cannabinoids, such as anandamide and 2-arachidonoylglycerol. Cannabinoids elicit a wide range of central and peripheral effects mostly mediated through cannabinoid receptors. There are two types of specific Gi/o-protein-coupled receptors cloned so far, called CB1 and CB2, although an existence of additional cannabinoid-binding receptors has been suggested. CB1 and CB2 differ in their predicted amino acid sequence, tissue distribution, physiological role and signaling mechanisms. Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment relies on the generation of a pro-apoptotic sphingolipid ceramide and disruption of signaling pathways crucial for regulation of cellular proliferation, differentiation or apoptosis. Increased ceramide levels lead also to ER-stress and autophagy in drug-treated glioblastoma cells. Beyond blocking of tumor cells proliferation cannabinoids inhibit invasiveness, angiogenesis and the stem cell-like properties of glioma cells, showing profound activity in the complex tumor microenvironment. Advances in translational research on cannabinoid signaling led to clinical investigations on the use of cannabinoids in treatments of glioblastomas.
Collapse
Affiliation(s)
- Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Boury-Jamot B, Halfon O, Magistretti PJ, Boutrel B. Lactate release from astrocytes to neurons contributes to cocaine memory formation. Bioessays 2016; 38:1266-1273. [DOI: 10.1002/bies.201600118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Benjamin Boury-Jamot
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| | - Pierre J. Magistretti
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Brain Mind Institute; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | - Benjamin Boutrel
- Department of Psychiatry; Centre for Psychiatric Neuroscience; Lausanne University Hospital; Lausanne Switzerland
- Division of Child and Adolescent Psychiatry; Department of Psychiatry; Lausanne University Hospital; Lausanne Switzerland
| |
Collapse
|
4
|
Fetal Alcohol Spectrum Disorder: Potential Role of Endocannabinoids Signaling. Brain Sci 2015; 5:456-93. [PMID: 26529026 PMCID: PMC4701023 DOI: 10.3390/brainsci5040456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
One of the unique features of prenatal alcohol exposure in humans is impaired cognitive and behavioral function resulting from damage to the central nervous system (CNS), which leads to a spectrum of impairments referred to as fetal alcohol spectrum disorder (FASD). Human FASD phenotypes can be reproduced in the rodent CNS following prenatal ethanol exposure. Several mechanisms are expected to contribute to the detrimental effects of prenatal alcohol exposure on the developing fetus, particularly in the developing CNS. These mechanisms may act simultaneously or consecutively and differ among a variety of cell types at specific developmental stages in particular brain regions. Studies have identified numerous potential mechanisms through which alcohol can act on the fetus. Among these mechanisms are increased oxidative stress, mitochondrial damage, interference with the activity of growth factors, glia cells, cell adhesion molecules, gene expression during CNS development and impaired function of signaling molecules involved in neuronal communication and circuit formation. These alcohol-induced deficits result in long-lasting abnormalities in neuronal plasticity and learning and memory and can explain many of the neurobehavioral abnormalities found in FASD. In this review, the author discusses the mechanisms that are associated with FASD and provides a current status on the endocannabinoid system in the development of FASD.
Collapse
|
5
|
Cannabinoid Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:209-20. [DOI: 10.1007/978-94-007-4719-7_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Duarte JMN, Ferreira SG, Carvalho RA, Cunha RA, Köfalvi A. CB₁ receptor activation inhibits neuronal and astrocytic intermediary metabolism in the rat hippocampus. Neurochem Int 2011; 60:1-8. [PMID: 22085448 DOI: 10.1016/j.neuint.2011.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 10/21/2011] [Accepted: 10/31/2011] [Indexed: 01/30/2023]
Abstract
Cannabinoid CB₁ receptor (CB₁R) activation decreases synaptic GABAergic and glutamatergic transmission and it also controls peripheral metabolism. Here we aimed at testing with ¹³C NMR isotopomer analysis whether CB₁Rs could have a local metabolic role in brain areas having high CB₁R density, such as the hippocampus. We labelled hippocampal slices with the tracers [2-¹³C]acetate, which is oxidized in glial cells, and [U-¹³C]glucose, which is metabolized both in glia and neurons, to evaluate metabolic compartmentation between glia and neurons. The synthetic CB₁R agonist WIN55212-2 (1 μM) significantly decreased the metabolism of both [2-¹³C]acetate (-11.6±2.0%) and [U-¹³C]glucose (-11.2±3.4%) in the tricarboxylic acid cycle that contributes to the glutamate pool. WIN55212-2 also significantly decreased the metabolism of [U-¹³C]glucose (-11.7±4.0%) but not that of [2-¹³C]acetate contributing to the pool of GABA. These effects of WIN55212-2 were prevented by the CB₁R antagonist AM251 (500 nM). These results thus suggest that CB₁Rs might be present also in hippocampal astrocytes besides their well-known neuronal localization. Indeed, confocal microscopy analysis revealed the presence of specific CB₁R immunoreactivity in astrocytes and pericytes throughout the hippocampus. In conclusion, CB₁Rs are able to control hippocampal intermediary metabolism in both neuronal and glial compartments, which suggests new alternative mechanisms by which CB₁Rs control cell physiology and afford neuroprotection.
Collapse
Affiliation(s)
- João M N Duarte
- Center for Neurosciences and Cell Biology of Coimbra, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
7
|
Basavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 2009; 9:448-62. [PMID: 19356123 DOI: 10.2174/138955709787847921] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
8
|
Yamamoto DL, Hutchinson DS, Bengtsson T. Beta(2)-Adrenergic activation increases glycogen synthesis in L6 skeletal muscle cells through a signalling pathway independent of cyclic AMP. Diabetologia 2007; 50:158-67. [PMID: 17119919 DOI: 10.1007/s00125-006-0484-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 09/01/2006] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS In skeletal muscle, the storage of glycogen by insulin is regulated by glycogen synthase, which is regulated by glycogen synthase kinase 3 (GSK3). Here we examined whether adrenergic receptor activation, which can increase glucose uptake, regulates glycogen synthesis in L6 skeletal muscle cells. METHODS We used L6 cells and measured glycogen synthesis (as incorporation of D: -[U-(14)C]glucose into glycogen) and GSK3 phosphorylation following adrenergic activation. RESULTS Insulin (negative logarithm of median effective concentration [pEC(50)] 8.2 +/- 0.3) and the beta-adrenergic agonist isoprenaline (pEC(50) 7.5 +/- 0.3) induced a twofold increase in glycogen synthesis in a concentration-dependent manner. The alpha(1)-adrenergic agonist cirazoline and alpha(2)-adrenergic agonist clonidine had no effect. Both insulin and isoprenaline phosphorylated GSK3. The beta-adrenergic effect on glycogen synthesis is mediated by beta(2)-adrenoceptors and not beta(1)-/beta(3)-adrenoceptors, and was not mimicked by 8-bromo-cyclic AMP or cholera toxin, and also was insensitive to pertussis toxin, indicating no involvement of cyclic AMP or inhibitory G-protein (G(i)) signalling in the beta(2)-adrenergic effect on glycogen synthesis. 12-O-tetra-decanoylphorbol-13-acetate (TPA) increased glycogen synthesis 2.5-fold and phosphorylated GSK3 fourfold. Inhibition of protein kinase C (PKC) isoforms with 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrollo(3,4-c)-carbazole (Gö6976; inhibits conventional and novel PKCs) or 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983; inhibits conventional, novel and atypical PKCs) inhibited the stimulatory TPA effect, but did not significantly inhibit glycogen synthesis mediated by insulin or isoprenaline. Inhibition of phosphatidylinositol 3-kinase (PI3K) with wortmannin inhibited the effects of insulin and isoprenaline on glycogen synthesis. CONCLUSIONS/INTERPRETATION These results demonstrate that in L6 skeletal muscle cells adrenergic stimulation through beta(2)-adrenoceptors, but not involving cyclic AMP or G(i), activates a PI3K pathway that stimulates glycogen synthesis through GSK3.
Collapse
Affiliation(s)
- D L Yamamoto
- Department of Physiology, The Wenner-Gren Institute, Arrhenius Laboratories F3, Stockholm University, SE 10691, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Goncharov I, Weiner L, Vogel Z. Delta9-tetrahydrocannabinol increases C6 glioma cell death produced by oxidative stress. Neuroscience 2005; 134:567-74. [PMID: 15975726 DOI: 10.1016/j.neuroscience.2005.04.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 04/03/2005] [Accepted: 04/15/2005] [Indexed: 11/25/2022]
Abstract
(-)Delta9-tetrahydrocannabinol is a scavenger of free radicals. However, the activation of the CB1 receptor in cultured C6 glioma cells by (-)delta9-tetrahydrocannabinol in the presence of reagents generating reactive oxygen species leads to amplification of the cellular damage from oxidative stress. This was evident by increased loss of cell wall integrity, impaired mitochondrial function and reduction of glucose uptake. In addition, (-)delta9-tetrahydrocannabinol treatment was also found to be deleterious to the cells under conditions of glucose starvation. Free radicals have been implicated in various conditions leading to cell death and, as a routine, the Fenton reaction is utilized for modeling reactive oxygen species production. Our study was performed using a cell permeating Fe(III) chelating quinone that provides more physiological conditions for mimicking the naturally occurring oxidative stress within the cell and thus serves as a better model for natural reactive oxygen species formation.
Collapse
Affiliation(s)
- I Goncharov
- Department of Neurobiology, Weizmann Institute of Science, Herzel Street, Rehovot 76100, Israel.
| | | | | |
Collapse
|
10
|
Fernández-Ruiz J, Gómez M, Hernández M, de Miguel R, Ramos JA. Cannabinoids and gene expression during brain development. Neurotox Res 2004; 6:389-401. [PMID: 15545023 DOI: 10.1007/bf03033314] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cannabis is the most commonly used illicit drug in western societies, in particular among young people. It is consumed even by women during pregnancy and lactation, which result in a variety of disturbances in the development of their offspring, because, like other habit-forming drugs, cannabinoids, the psychoactive ingredients of marijuana, can cross the placental barrier and be secreted in the maternal milk. Through this way, cannabinoids affect the ontogeny of various neurotransmitter systems leading to changes in different behavioral patterns. Dopamine and endogenous opioids are among the neurotransmitters that result more affected by perinatal cannabinoid exposure, which, when animals mature, produce changes in motor activity, drug-seeking behavior, nociception and other processes. These disturbances are likely originated by the capability of cannabinoids to influence the expression of key genes for both neurotransmitters, in particular, the enzyme tyrosine hydroxylase and the opioid precursor proenkephalin. In addition, cannabinoids seem to be also able to influence the expression of genes encoding for neuron-glia cell adhesion molecules, which supports a potential influence of cannabinoids on the processes of cell proliferation, neuronal migration or axonal elongation in which these proteins are involved. In support of this possibility, CB1 receptors, which represent the major targets for the action of cannabinoids, are abundantly expressed in certain brain regions, such as the subventricular areas, which have been involved in these processes during brain development. Finally, cannabinoids might also be involved in the apoptotic death that occurs during brain development, possibly by influencing the expression of Bcl-2/Bax system. Also in support of this option, CB1 receptors are transiently expressed during brain development in different group of neurons which do not contain these receptors in the adult brain. This paper will review all evidence relating cannabinoids to the expression of key genes for neural development, trying to establish the future research addressed to elucidate the mechanisms involved in the epigenetic action of cannabinoids during brain development.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
11
|
Fowler CJ, Jonsson KO, Andersson A, Juntunen J, Järvinen T, Vandevoorde S, Lambert DM, Jerman JC, Smart D. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. Biochem Pharmacol 2003; 66:757-67. [PMID: 12948856 DOI: 10.1016/s0006-2952(03)00392-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has previously been shown that the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit the proliferation of C6 glioma cells in a manner that can be prevented by a combination of capsazepine (Caps) and cannabinoid (CB) receptor antagonists. It is not clear whether the effect of 2-AG is due to the compound itself, due to the rearrangement to form 1-arachidonoylglycerol (1-AG) or due to a metabolite. Here, it was found that the effects of 2-AG can be mimicked with 1-AG, both in terms of its potency and sensitivity to antagonism by Caps and CB receptor antagonists. In order to determine whether the effect of Caps could be ascribed to actions upon vanilloid receptors, the effect of a more selective vanilloid receptor antagonist, SB366791 was investigated. This compound inhibited capsaicin-induced Ca(2+) influx into rVR1-HEK293 cells with a pK(B) value of 6.8+/-0.3. The combination of SB366791 and CB receptor antagonists reduced the antiproliferative effect of 1-AG, confirming a vanilloid receptor component in its action. 1-AG, however, showed no direct effect on Ca(2+) influx into rVR1-HEK293 cells indicative of an indirect effect upon vanilloid receptors. Identification of the mechanism involved was hampered by a large inter-experimental variation in the sensitivity of the cells to the antiproliferative effects of 1-AG. A variation was also seen with anandamide, which was not a solubility issue, since its water soluble phosphate ester showed the same variability. In contrast, the sensitivity to methanandamide, which was not sensitive to antagonism by the combination of Caps and CB receptor antagonists, but has similar physicochemical properties to anandamide, did not vary between experiments. This variation greatly reduces the utility of these cells as a model system for the study of the antiproliferative effects of anandamide. Nevertheless, it was possible to conclude that the antiproliferative effects of anandamide were not solely mediated by either its hydrolysis to produce arachidonic acid or its CB receptor-mediated activation of phospholipase A(2) since palmitoyltrifluoromethyl ketone did not prevent the response to anandamide. The same result was seen with the fatty acid amide hydrolase inhibitor palmitoylethylamide. Increasing intracellular arachidonic acid by administration of arachidonic acid methyl ester did not affect cell proliferation, and the modest antiproliferative effect of umbelliferyl arachidonate was not prevented by a combination of Caps and CB receptor antagonists.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sarafian TA, Kouyoumjian S, Khoshaghideh F, Tashkin DP, Roth MD. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 2003; 284:L298-306. [PMID: 12533310 DOI: 10.1152/ajplung.00157.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have observed rapid and extensive depletion of cellular energy stores by Delta(9)-tetrahydrocannabinol (THC) in the pulmonary transformed cell line A549. ATP levels declined dose dependently with an IC(50) of 7.5 microg/ml of THC after 24-h exposure. Cell death was observed only at concentrations >10 microg/ml. Studies using JC-1, a fluorescent probe for mitochondrial membrane potential, revealed diminished mitochondrial function at THC concentrations as low as 0.5 microg/ml. At concentrations of 2.5 or 10 microg/ml of THC, a decrease in mitochondrial membrane potential was observed as early as 1 h after THC exposure. Mitochondrial function remained diminished for at least 30 h after THC exposure. Flow cytometry studies on cells exposed to particulate smoke extracts indicate that JC-1 red fluorescence was fivefold lower in cells exposed to marijuana smoke extract relative to cells exposed to tobacco smoke extract. Comparison with a variety of mitochondrial inhibitors demonstrates that THC produced effects similar to that of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, suggesting uncoupling of electron transport. Loss of red JC-1 fluorescence by THC was suppressed by cyclosporin A, suggesting mediation by the mitochondrial permeability transition pore. This disruption of mitochondrial function was sustained for at least 24 h after removal of THC by extensive washing. These results suggest that exposure of the bronchopulmonary epithelium to THC may have important health and physiological consequences.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Medicine, Division of Pulmonary and Critical Care, Center for Health Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
13
|
Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids 2002; 121:91-109. [PMID: 12505694 DOI: 10.1016/s0009-3084(02)00153-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Effects of cannabinoid compounds on neurons are predominantly mediated by the CB(1) cannabinoid receptor. Onset of signaling cascades in response to cannabimimetic drugs is triggered by the interaction of the cannabinoid receptor with G(i/o) proteins. Much work has been done to delineate the cannabinoid agonist-induced downstream signaling events; however, it remains to define the molecular basis of cannabinoid receptor-G protein interactions that stimulate these signaling pathways. In this review, we discuss several signal transduction pathways, focusing on studies that demonstrate the efficacy of CB(1) receptor agonists through G protein mediated pathways.
Collapse
Affiliation(s)
- Somnath Mukhopadhyay
- Neuroscience and Drug Abuse Research Program, J L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | | | | | | | | |
Collapse
|
14
|
Ramos JA, De Miguel R, Cebeira M, Hernandez M, Fernández-Ruiz J. Exposure to cannabinoids in the development of endogenous cannabinoid system. Neurotox Res 2002; 4:363-72. [PMID: 12829425 DOI: 10.1080/1029842021000010893] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
New data strengthen the idea of a prominent role for endocannabinoids in the modulation of a wide variety of neurobiological functions. Among these, two functions, control of movement and antinociception, have attracted the maximal interest because of the possibility that cannabinoids and related compounds might be used with a therapeutic purpose. However, the functions of endocannabinoids in the brain, and also in the periphery, are large and involve, not only the adulthood, but also the period of prenatal and postnatal development, when endocannabinoids have been reported to be significantly present and to play a role in processes of brain development as neuronal proliferation and migration, axonal elongation, synaptogenesis and/or myelinogenesis. The present review article will summarize the different studies carried out on this topic and will suggest future lines of research to clarify the role of endocannabinoids and their receptors in the development.
Collapse
Affiliation(s)
- José A Ramos
- Instituto Universitario de Drogodependencias, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
15
|
Hosoi R, Momosaki S, Ibii N, Abe K, Itoh T, Inoue O. The role of the cAMP-PKA system in the short-term regulation of striatal [(14)C]-2-deoxyglucose uptake in freely moving rats. Brain Res 2001; 921:260-3. [PMID: 11720734 DOI: 10.1016/s0006-8993(01)03119-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cyclic adenosine monophosphate (cAMP)-protein kinase (PK) A system has been shown to have stimulatory effects on glucose utilization in various tissues in vitro. However, little is known about the influence of cAMP on glucose utilization in vivo. In the present study, we examined how cAMP-related compounds affected [(14)C]-2-deoxyglucose (DG) uptake in the striatum of freely moving rats. An intrastriatal injection of dibutyryl-cyclic adenosine monophosphate (db-cAMP), although increasing local cerebral blood flow, was found to decrease the uptake of [(14)C]-2-DG in the striatum. This decrease of [(14)C]-2-DG uptake in the striatum was completely blocked by pretreatment with Rp-adenosine-3',5'-cyclic monophosphorothioate triethylamine (Rp-cAMPS). Moreover, intrastriatal infusion of Rp-cAMPS alone produced a striking increase of [(14)C]-2-DG uptake in the striatum. These results strongly suggest that transient activation of the cAMP-PKA system can depress the glucose phosphorylation process of the rat brain in vivo.
Collapse
Affiliation(s)
- R Hosoi
- Department of Medical Physics, School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Perron RR, Tyson RL, Sutherland GR. Delta9 -tetrahydrocannabinol increases brain temperature and inverts circadian rhythms. Neuroreport 2001; 12:3791-4. [PMID: 11726796 DOI: 10.1097/00001756-200112040-00038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Delta9-tetrahydrocannabinol (THC) has been shown to protect against focal and global ischemia. Hypothermia is thought to be one mechanism for this protection. These observations are important since brain hyperthermia is known to increase ischemic damage while hypothermia is protective. To establish the effect of THC on brain and body core temperature, brain and body temperature probes were inserted for chronic temperature monitoring (n = 20). THC treated groups were administered THC at either low (0.1 mg/kg) or high (10 mg/kg) dose for 1 week. Brain temperature was recorded during this period and for 1 week following the discontinuation of THC. Chronic administration of THC at either dose increased brain temperature (p < 0.0001) but did not significantly change body core temperature (p = 0.4767) in the freely moving rat.
Collapse
Affiliation(s)
- R R Perron
- Seaman Family MR Research Centre, Department of Clinical Neurosciences, University of Calgary, 1403-29 Street N.W. Calgary, Alberta T2N 2T9 Canada
| | | | | |
Collapse
|
17
|
Costa B, Colleoni M. Changes in rat brain energetic metabolism after exposure to anandamide or Delta(9)-tetrahydrocannabinol. Eur J Pharmacol 2000; 395:1-7. [PMID: 10781666 DOI: 10.1016/s0014-2999(00)00170-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of this study was to investigate whether single and repeated administration of the cannabinoids anandamide or Delta(9)-tetrahydrocannabinol affected brain energetic metabolism. Single administration of either anandamide (20 mg/kg) or Delta(9)-tetrahydrocannabinol (10 mg/kg) in rats induced a behaviour typical with cannabinoids. An increase in both brain mitochondria oxidative phosphorylation and cerebral lipoperoxidation was shown ex vivo. The cannabinoid CB(1) receptor-specific antagonist, N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (SR141716A; 3 mg/kg), reversed the anandamide-induced metabolic effects. Prolonged exposure to anandamide (20 mg/kg, 16 days) induced behavioural tolerance and the disappearance of the increased mitochondria oxygen uptake and lipoperoxidation. Repeated Delta(9)-tetrahydrocannabinol injection (10 mg/kg, twice daily, 4.5 days) reduced brain metabolism and uncoupled respiration from oxidative phosphorylation. The present findings showed that both anandamide and Delta(9)-tetrahydrocannabinol enhanced the energetic brain metabolism, probably via the cannabinoid CB(1) receptor; the anandamide-tolerant brain of rats showed tolerance to the drug for metabolic effects, while the brain of Delta(9)-tetrahydrocannabinol-tolerant rats showed metabolic signs of neuronal damage, i.e. low energy production.
Collapse
Affiliation(s)
- B Costa
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, via Vanvitelli 32, 20129, Milan, Italy
| | | |
Collapse
|
18
|
Gómez del Pulgar T, Velasco G, Guzmán M. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. Biochem J 2000; 347:369-73. [PMID: 10749665 PMCID: PMC1220968 DOI: 10.1042/0264-6021:3470369] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabinoids exert most of their effects in the central nervous system through the CB(1) cannabinoid receptor. This G-protein-coupled receptor has been shown to be functionally coupled to inhibition of adenylate cyclase, modulation of ion channels and activation of extracellular-signal-regulated kinase. Using Chinese hamster ovary cells stably transfected with the CB(1) receptor cDNA we show here that Delta(9)-tetrahydrocannabinol (THC), the major active component of marijuana, induces the activation of protein kinase B/Akt (PKB). This effect of THC was also exerted by the endogenous cannabinoid anandamide and the synthetic cannabinoids CP-55940 and HU-210, and was prevented by the selective CB(1) antagonist SR141716. Pertussis toxin and wortmannin blocked the CB(1) receptor-evoked activation of PKB, pointing to the sequential involvement of a G(i)/G(o) protein and phosphoinositide 3'-kinase. The functionality of the cannabinoid-induced stimulation of PKB was proved by the increased phosphorylation of glycogen synthase kinase-3 serine 21 observed in cannabinoid-treated cells and its prevention by SR141716 and wortmannin. Cannabinoids activated PKB in the human astrocytoma cell line U373 MG, which expresses the CB(1) receptor, but not in the human promyelocytic cell line HL-60, which expresses the CB(2) receptor. Data indicate that activation of PKB may be responsible for some of the effects of cannabinoids in cells expressing the CB(1) receptor.
Collapse
Affiliation(s)
- T Gómez del Pulgar
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040-Madrid, Spain
| | | | | |
Collapse
|
19
|
Walker J, Huang SM, Strangman NM, Sanudo-Pena M. Identification of the role of endogenous cannabinoids in pain modulation: strategies and pitfalls. THE JOURNAL OF PAIN 2000. [DOI: 10.1016/s1526-5900(00)90085-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
The present review summarizes the recent work carried out by our group on the link between signal transduction pathways and metabolic regulation systems as affected by cannabinoids. In cells such as astrocytes and lymphocytes, which express cannabinoid receptors, physiologically relevant doses of cannabinoids induce a remarkable metabolic stimulation as determined e.g. by enhanced glucose utilization. Studies performed in astrocytes show that the cannabinoid-evoked stimulation of glucose metabolism is independent of adenylyl cyclase inhibition, and seems to rely on the cascade CB1 cannabinoid receptor --> Sphingomyelin breakdown --> Ceramide --> Raf-1 --> Mitogen-activated protein kinase (MAPK) --> Glucose utilization. A role for phosphoinositide 3'-kinase in the stimulation of glucose utilization by cannabinoids is also put forward. In addition, ceramide generated upon CB1 cannabinoid receptor activation may enhance ketone body production by astrocytes independently of MAPK. Anandamide has also been shown to exert metabolic effects in hepatocytes, cells that do not express cannabinoid receptors. The biological role of cannabinoids as modulators of metabolism is as yet unclear.
Collapse
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain.
| | | |
Collapse
|
21
|
Fernández-Ruiz JJ, Berrendero F, Hernández ML, Romero J, Ramos JA. Role of endocannabinoids in brain development. Life Sci 1999; 65:725-36. [PMID: 10462073 DOI: 10.1016/s0024-3205(99)00295-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In addition to those functions that have been extensively addressed in this special issue, such as nociception, motor activity, neuroendocrine regulation, immune function and others, the endogenous cannabinoid system seems to play also a role in neural development. This view is based on a three-fold evidence. A first evidence emerges from neurotoxicological studies that showed that synthetic and plant-derived cannabinoids, when administered to pregnant rats, produced a variety of changes in the maturation of several neurotransmitters and their associated-behaviors in their pups, changes that were evident at different stages of brain development. A second evidence comes from studies that demonstrated the early appearance of elements of the endogenous cannabinoid system (receptors and ligands) during the brain development. The atypical location of these elements during fetal and early postnatal periods favours the notion that this system may play a role in specific molecular events related to neural development. Finally, a third evidence derives from studies using cultures of fetal glial or neuronal cells. Cannabinoid receptors are present in some of these cultured cells and their activation produced a set of cellular effects consistent with a role of this system in the process of neural development. All this likely supports that endocannabinoids, early synthesized in nervous cells, play a role in events related to development, by acting through the activation of second messenger-coupled cannabinoid receptors.
Collapse
Affiliation(s)
- J J Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
22
|
Blázquez C, Sánchez C, Daza A, Galve-Roperh I, Guzmán M. The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 1999; 72:1759-68. [PMID: 10098887 DOI: 10.1046/j.1471-4159.1999.721759.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of cannabinoids on ketogenesis in primary cultures of rat astrocytes were studied. Delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, produced a malonyl-CoA-independent stimulation of carnitine palmitoyltransferase I (CPT-I) and ketogenesis from [14C]palmitate. The THC-induced stimulation of ketogenesis was mimicked by the synthetic cannabinoid HU-210 and was prevented by pertussis toxin and the CB1 cannabinoid receptor antagonist SR141716. Experiments performed with different cellular modulators indicated that the THC-induced stimulation of ketogenesis was independent of cyclic AMP, Ca2+, protein kinase C, and mitogen-activated protein kinase (MAPK). The possible involvement of ceramide in the activation of ketogenesis by cannabinoids was subsequently studied. THC produced a CB1 receptor-dependent stimulation of sphingomyelin breakdown that was concomitant to an elevation of intracellular ceramide levels. Addition of exogenous sphingomyelinase to the astrocyte culture medium led to a MAPK-independent activation of ketogenesis that was quantitatively similar and not additive to that exerted by THC. Furthermore, ceramide activated CPT-I in astrocyte mitochondria. Results thus indicate that cannabinoids stimulate ketogenesis in astrocytes by a mechanism that may rely on CB1 receptor activation, sphingomyelin hydrolysis, and ceramide-mediated activation of CPT-I.
Collapse
Affiliation(s)
- C Blázquez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Sánchez C, Galve-Roperh I, Rueda D, Guzmán M. Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 1998; 54:834-43. [PMID: 9804618 DOI: 10.1124/mol.54.5.834] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of cannabinoids on metabolic pathways and signal transduction systems were studied in primary cultures of rat astrocytes. Delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, increased the rate of glucose oxidation to CO2 as well as the rate of glucose incorporation into phospholipids and glycogen. These effects of THC were mimicked by the synthetic cannabinoid HU-210, and prevented by forskolin, pertussis toxin, and the CB1 receptor antagonist SR 141716. THC did not affect basal cAMP levels but partially antagonized the forskolin-induced elevation of intracellular cAMP concentration. THC stimulated p42/p44 mitogen-activated protein kinase (MAPK) activity, Raf-1 phosphorylation, and Raf-1 translocation to the particulate cell fraction. In addition, the MAPK inhibitor PD 098095 and the phosphoinositide 3-kinase inhibitors wortmannin and LY 294002 were able to antagonize the THC-induced stimulation of glucose oxidation to CO2, phospholipid synthesis and glycogen synthesis. The possible involvement of sphingomyelin breakdown in the metabolic effects of THC was studied subsequently. THC produced a rapid stimulation of sphingomyelin hydrolysis that was concomitant to an elevation of intracellular ceramide levels. This effect was prevented by SR 141716. Moreover, the cell-permeable ceramide analog D-erythro-N-octanoylsphingosine, as well as exogenous sphingomyelinase, were able in turn to stimulate MAPK activity, to increase the amount of Raf-1 bound to the particulate cell fraction, and to stimulate glucose metabolism. The latter effect was prevented by PD 098059 and was not additive to that exerted by THC. Results thus indicate that THC produces a cannabinoid receptor-mediated stimulation of astrocyte metabolism that seems to rely on sphingomyelin hydrolysis and MAPK stimulation.
Collapse
Affiliation(s)
- C Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Sánchez C, Galve-Roperh I, Canova C, Brachet P, Guzmán M. Delta9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 1998; 436:6-10. [PMID: 9771884 DOI: 10.1016/s0014-5793(98)01085-0] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, induced apoptosis in C6.9 glioma cells, as determined by DNA fragmentation and loss of plasma membrane asymmetry. THC stimulated sphingomyelin hydrolysis in C6.9 glioma cells. THC and N-acetylsphingosine, a cell-permeable ceramide analog, induced apoptosis in several transformed neural cells but not in primary astrocytes or neurons. Although glioma C6.9 cells expressed the CBI cannabinoid receptor, neither THC-induced apoptosis nor THC-induced sphingomyelin breakdown were prevented by SR141716, a specific antagonist of that receptor. Results thus show that THC-induced apoptosis in glioma C6.9 cells may rely on a CBI receptor-independent stimulation of sphingomyelin breakdown.
Collapse
Affiliation(s)
- C Sánchez
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Ongrádi J, Specter S, Horváth A, Friedman H. Combined in vitro effect of marijuana and retrovirus on the activity of mouse natural killer cells. Pathol Oncol Res 1998; 4:191-9. [PMID: 9761937 DOI: 10.1007/bf02905248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both marijuana and retroviruses impair natural killer (NK) cell functions. No data on their simulataneous effects are available. Similarities to human AIDS induced early by Friend leukemia complex (FLC) and its replication competent helper Rowson-Parr virus (RPV) provides a mouse model to study drug-virus action. Leukemia susceptible BALB/c and resistant C57BL/6 mice were infected, then at time intervals their nylon wool-separated splenocytes were exposed to tetrahydrocannabinol (THC) for 3h. Natural killer (NK) cell activity against Yac-1 cells was assayed by 51Cr-release for 4 and 18h. Recovery of splenocytes was found to be suppressed by FLC, but in BALB/c only by RPV. After a transient enhancement in C57BL/6 by FLC, NK cell activity of both mice became suppressed early (2 to 4 days), normalized subsequently and enhanced late (11 to 14 days) postinfection. A moderate increase in BALB/c, no change in C57BL/6 were induced by low (1-2.5 microgram/ml) THC doses. NK cell activity of BALB/c became suppressed exponentially by higher (5-10 microgrtam/ ml) THC doses in 18h as compared to 4h assays, while its proportional and moderate impairment was seen in C57BL/6. The magnitude of NK cell activity of infected mice was determined by THC: enhancement or impairment followed those of untreated, infected counterparts, but on the level of THC-treated cells. Low doses hardly, high doses additively influenced NK cells of infected BALB/c. THC hardly affected very early and late enhancement in NK cell activiy of FLC infected C57BL/6, but augmented RPV induced suppression late in 18h assays. Genetic factors similar to endotoxin resistance, altered cytokine profile might determine these effects. Similar phenomena in humans might result in earlier manifestation of AIDS.
Collapse
Affiliation(s)
- J Ongrádi
- National Institute of Dermato-Venereology, Budapest, Hungary.
| | | | | | | |
Collapse
|