1
|
Jesus JBD, Sena CBCD, Macchi BDM, do Nascimento JLM. Cyclosporin A as an Alternative Neuroimmune Strategy to Control Neurites and Recover Neuronal Tissues in Leprosy. Neuroimmunomodulation 2022; 29:15-20. [PMID: 34350891 DOI: 10.1159/000517993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/21/2020] [Indexed: 11/19/2022] Open
Abstract
Leprosy, also known as Hansen's disease, continues to have a substantial impact on infectious diseases throughout the world. Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae and shows a wide clinical and immunopathological spectrum related to the immune response of the host. This disease affects the skin and other internal organs with a predilection to infect Schwann cells, which play an active role during axonal degeneration, affecting peripheral nerves and promoting neurological damage. This chronic inflammation influences immune function, leading to neuroimmune disorders. Leprosy is also associated with neuroimmune reactions, including type 1 (reverse) and type 2 (erythema nodosum leprosum) reactions, which are immune-mediated inflammatory complications that can occur during the disease and appear to worsen dramatically; these complications are the main concerns of patients. The reactions may induce neuritis and neuropathic pain that progressively worsen with irreversible deformity and disabilities responsible for the immunopathological damage and glial/neuronal death. However, the neuronal damage is not always associated with the reactional episode. Also, the efficacy in the treatment of reactions remains low because of the nonexistence of a specific treatment and missing informations about the immunopathogenesis of the reactional episode. There is increasing evidence that peripheral neuron dysfunction strongly depends on the activity of neurotrophins. The most important neurotrophin in leprosy is nerve growth factor (NGF), which is decreased in the course of leprosy, as well as the presence of autoantibodies against NGF in all clinical forms of leprosy and neuroimmune reactions. The levels of autoantibodies against NGF are decreased by the immunomodulatory activity of cyclosporin A, which mainly controls pain and improves motor function and sensitivity. Therefore, the suppression of anti-NGF and the regulation of NGF levels can be attractive targets for immunomodulatory treatment and for controlling the neuroimmune reactions of leprosy, although further studies are needed to clarify this point.
Collapse
Affiliation(s)
- Jessica Batista de Jesus
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - José Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
- Graduation Program in Pharmaceutical Science, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
2
|
Malfait AM, Miller RE, Block JA. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacol Ther 2020; 211:107553. [PMID: 32311372 DOI: 10.1016/j.pharmthera.2020.107553] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Chronic pain represents a substantial unmet medical need globally. In recent years, the quest for a new generation of novel, safe, mechanism-based analgesic treatments has focused on neurotrophic factors, a large group of secreted proteins that control the growth and survival of different populations of neurons, but that postnatally are involved in the genesis and maintenance of pain, with biological activity in both the periphery and the central nervous system. In this narrative review, we discuss the two families of neurotrophic proteins that have been extensively studied for their role in pain: first, the neurotrophins, nerve growth factor (NGF) and brain-derived growth factor (BDNF), and secondly, the GDNF family of ligands (GFLs). We provide an overview of the pain pathway, and the pain-producing effects of these different proteins. We summarize accumulating preclinical and clinical findings with a focus on musculoskeletal pain, and on osteoarthritis in particular, because the musculoskeletal system is the most prevalent source of chronic pain and of disability, and clinical testing of these novel agents - often biologics- is most advanced in this area.
Collapse
Affiliation(s)
- Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America
| | - Rachel E Miller
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America
| | - Joel A Block
- Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, United States of America.
| |
Collapse
|
3
|
Gómez-Paz A, Drucker-Colín R, Milán-Aldaco D, Palomero-Rivero M, Ambriz-Tututi M. Intrastriatal Chromospheres' Transplant Reduces Nociception in Hemiparkinsonian Rats. Neuroscience 2017; 387:123-134. [PMID: 28890053 DOI: 10.1016/j.neuroscience.2017.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The present study evaluates the possible antinociceptive effect of chromosphere transplants in rats injected with 6-hydroxydopamine (6-OHDA), a model of Parkinson's disease. Male adult Wistar rats received 40μg/0.5μl of 6-OHDA or 0.5μl of vehicle into the left substantia nigra (SNc). Rats were evaluated for mechanical allodynia, cold allodynia, thermal hyperalgesia and formalin. Rats with altered nociceptive threshold were transplanted with chromospheres. After transplant, rats were evaluated every week. Our results confirm that 6-OHDA injection into rat's SNc reduces mechanical, thermal, and chemical thresholds. Interestingly, chromospheres' transplant reverted 6-OHDA-induced allodynia and hyperalgesia. The antinociceptive effect induced by chromospheres was dopamine D2- and opioid-receptor dependent since sulpiride or naltrexone reverted its effect.
Collapse
Affiliation(s)
- Alejandra Gómez-Paz
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Diana Milán-Aldaco
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Marcela Palomero-Rivero
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Mónica Ambriz-Tututi
- Hospital General Ajusco Medio "Dra. Obdulia Rodriguez Rodriguez", Unidad de, Trastornos de Movimiento y Sueño, Mexico.
| |
Collapse
|
4
|
Sarchielli P, Gallai V. Nerve growth factor and chronic daily headache: a potential implication for therapy. Expert Rev Neurother 2014; 4:115-27. [PMID: 15853622 DOI: 10.1586/14737175.4.1.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pivotal role of nerve growth factor in inducing hyperalgesia and central sensitization has been emphasized in experimental pain models. Higher nerve growth factor levels have recently been found in the cerebrospinal fluid of patients with chronic daily headache. These levels were significantly correlated with the cerebrospinal fluid levels of substance P and calcitonin gene-related peptide, supporting the involvement of this neurotrophin in enhancing the production of the two sensory neuropeptides of the trigemino-vascular system in chronic daily headache. This may, in part, account for the long-lasting sensitization and activation of this system, which could contribute to headache chronicity. More recent research has shown a significant correlation between the higher cerebrospinal fluid levels of nerve growth factor and those of another neurotrophin, the brain-derived neurotrophic factor, as well as glutamate in chronic daily headache patients. These findings suggest the potential involvement of nerve growth factor-mediated upregulation of brain-derived neurotrophic factor in persistent head pain. Therefore, nerve growth factor appears to indirectly exert its effect through enhancing glutamatergic transmission involved in the processing of head pain via brain-derived neurotrophic factor. Based on these data, a potential application can be hypothesized for novel strategies targeting neurotrophins (nerve growth factor and brain-derived neurotrophic factor) and their receptors to chronic daily headache. To date, the majority of the molecules discovered in this regard have been scarcely or never proved in animal pain models and are far from clinical use in chronic pain, including chronic daily headache. If this approach is to be developed in the near future, research should be focused on identifying strategies with few central side effects and specific selective action on central sites involved in chronic head pain and more generally in chronic pain conditions. This will represent a very difficult challenge, taking into account the pleiotropic effect of nerve growth factor and the wide range of intracellular signalling pathways activated by this neurotrophin which are not limited to the nociceptive system.
Collapse
Affiliation(s)
- Paola Sarchielli
- Department of Neuroscience, Neurologic Clinic, Via E Dal Pozzo 06126, Perugia, Italy.
| | | |
Collapse
|
5
|
Hoffman EM, Zhang Z, Anderson MB, Schechter R, Miller KE. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation. Neuroscience 2011; 193:452-65. [PMID: 21802499 DOI: 10.1016/j.neuroscience.2011.06.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/22/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self-harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception-related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined (1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, (2) IENF density, and (3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm(2)) and small neurons (<400 μm(2)), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception-related protein expression are potential mechanisms for tanezumab-induced hypoalgesia.
Collapse
Affiliation(s)
- E M Hoffman
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | | | | | | | | |
Collapse
|
6
|
Sex differences in neuropeptide content and release from rat dental pulp. J Endod 2011; 37:1098-101. [PMID: 21763901 DOI: 10.1016/j.joen.2011.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Studies to examine sex differences in response to pain have suggested that females exhibit lower threshold responses to painful stimuli and that threshold response varies greatly at different stages of the menstrual cycle. Additional studies suggest that sex differences may be caused by societal sex roles or differences in anxiety responses by men and women. OBJECTIVE The purpose of this study was to evaluate biologically evident sex differences in male and female rats chronically treated with a systemic algogen, the nerve growth factor (NGF), by measuring neuropeptides (calcitonin gene-related peptide) content and release from isolated dental pulp. METHODS Rats were injected subcutaneously every other day with either murine NGF (1 mg/kg) or vehicle for 7 or 13 days. Isolated incisor pulp tissue was evaluated from these male and female rats (n = 96). Capsaicin-evoked neurosecretion of CGRP and tissue content were measured using a previously validated radioimmunoassay. RESULTS Dental pulp from female rats at 7 days showed significantly increased capsaicin-evoked immunoreactive CGRP release (>50% increase) compared with tissue from male rats. After 13 days, this release was significantly increased only in NGF-treated female rats (3-fold increase) when compared with control females or both male groups. The CGRP content in tissue from both female groups was also significantly increased after 7 days of treatment (>3 fold), but after 13 days this content was only significantly increased in tissue from NGF-treated female rats (P = .0001). CONCLUSIONS These data suggest that sex differences affect the role of NGF in the modulation of inflammation through the regulation of peripheral neuropeptide release and content.
Collapse
|
7
|
Jang MU, Park JW, Kho HS, Chung SC, Chung JW. Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Dis 2010; 17:187-93. [PMID: 20659258 DOI: 10.1111/j.1601-0825.2010.01717.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M-U Jang
- Orofacial Pain Clinic, Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
8
|
Brázda V, Klusáková I, Svízenská I, Veselková Z, Dubový P. Bilateral changes in IL-6 protein, but not in its receptor gp130, in rat dorsal root ganglia following sciatic nerve ligature. Cell Mol Neurobiol 2009; 29:1053-62. [PMID: 19330444 DOI: 10.1007/s10571-009-9396-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/16/2009] [Indexed: 01/19/2023]
Abstract
Local intracellular signaling cascades following peripheral nerve injury lead to robust axon regeneration and neuropathic pain induction. Cytokines are classic injury-induced mediators. We used sciatic nerve ligature (ScNL) to investigate temporal changes in IL-6 and its receptor gp130 in both ipsilateral and contralateral lumbal (L4-L5) dorsal root ganglia (DRG). Rats were operated aseptically on unilateral ScNL and allowed to survive for 1, 3, 7, and 14 days. Immunohistochemistry and Western blot analysis were used to determine levels of IL-6 and gp130 in DRG. A distinct increase in immunostaining for IL-6 was found in the neuronal cell bodies of sections through both ipsilateral and contralateral DRG at 1 and 3 days after operation. After 7 and 14 days, the DRG sections displayed only a moderate elevation in immunostaining when compared with sections of naïve DRG. The levels of IL-6 protein increased in both ipsilateral and contralateral lumbal DRG following peripheral nerve injury. The elevation of IL-6 protein was significant in both ipsilateral and contralateral DRG 1, 3, 7, and 14 days after operation. On the other hand, the levels of gp130 receptor did not change significantly. The data provide evidence for changes in IL-6 levels not only in the DRG associated with the damaged nerve but also in those unassociated with nerve injury during the experimental neuropathic pain model.
Collapse
Affiliation(s)
- Václav Brázda
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
Edwards JL, Vincent A, Cheng T, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008; 120:1-34. [PMID: 18616962 PMCID: PMC4007052 DOI: 10.1016/j.pharmthera.2008.05.005] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 02/07/2023]
Abstract
Neuropathy is the most common and debilitating complication of diabetes and results in pain, decreased motility, and amputation. Diabetic neuropathy encompasses a variety of forms whose impact ranges from discomfort to death. Hyperglycemia induces oxidative stress in diabetic neurons and results in activation of multiple biochemical pathways. These activated pathways are a major source of damage and are potential therapeutic targets in diabetic neuropathy. Though therapies are available to alleviate the symptoms of diabetic neuropathy, few options are available to eliminate the root causes. The immense physical, psychological, and economic cost of diabetic neuropathy underscore the need for causally targeted therapies. This review covers the pathology, epidemiology, biochemical pathways, and prevention of diabetic neuropathy, as well as discusses current symptomatic and causal therapies and novel approaches to identify therapeutic targets.
Collapse
Affiliation(s)
- James L. Edwards
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Andrea Vincent
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Thomas Cheng
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| | - Eva L. Feldman
- The University of Michigan, Department of Neurology, Ann Arbor, Michigan 48109
| |
Collapse
|
10
|
Sarchielli P, Nardi K, Mancini ML, Corbelli I, Tambasco N, Chiasserini D, Calabresi P. Nerve growth factor and brain-derived neurotrophic factor: potential targets for migraine treatment? Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 2007; 62:240-5. [PMID: 17622962 DOI: 10.1203/pdr.0b013e3180db2949] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders, characterized by abdominal pain and disturbed defecation that cannot be explained by structural abnormalities. Although IBS symptoms (visceral pain, increased gut permeability, motility alterations) are clearly established, the etiology of this pathology is loosely understood. Nevertheless, clinical studies have reported that some early abuse (physical and psychological) is often associated with IBS development. Thus, loss and separation in the family during childhood may contribute to the IBS development. The recent development of animal models has pointed out the importance of early traumatic experiences in favoring the occurrence of IBS in adult life. Among these different models, neonatal maternal deprivation (NMD), neonatal colonic irritation (inflammatory stimuli), and neonatal colonic pain (rectal distension) have been described to mimic some cardinal features of IBS. The purpose of this review is 3-fold. First, to present the different neonatal stress models. Second, to review the literature on the influence of these early traumatic experiences on the gastrointestinal tract disturbances observed in adult life. Finally, we will also present the mediators and mechanisms involved in gut dysfunction triggered by NMD and probably in IBS.
Collapse
Affiliation(s)
- Frederick Barreau
- INSERM U843, Inflammation intestinale chez l'enfant, Université Paris 7, Hôpital Robert Debré, F-75019 Paris, France.
| | | | | | | |
Collapse
|
12
|
Bowles WR, Sabino M, Harding-Rose C, Hargreaves KM. Chronic nerve growth factor administration increases the peripheral exocytotic activity of capsaicin-sensitive cutaneous neurons. Neurosci Lett 2006; 403:305-8. [PMID: 16777323 DOI: 10.1016/j.neulet.2006.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/19/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Nerve growth factor (NGF) plays an important role in inflammation and pain and has been suggested to regulate the responsiveness and sensitivity of nociceptive fibers. However, no study has evaluated whether chronic NGF alters the exocytotic capacity of peripheral terminals of peptidergic fibers. To test this hypothesis, rats were injected subcutaneously every other day with either murine recombinant NGF (mNGF; 1.0 mg/kg) or vehicle for 7 days; or mNGF (0.1 mg/kg), mNGF (1 mg/kg) or vehicle every other day for 13 days. Treatment of rats with NGF over a 13-day period produced a significant increase in capsaicin-evoked iCGRP release from isolated biopsies of hindpaw skin, as assessed by in vitro superfusion and RIA. This effect was dose-dependent and exhibited a temporal requirement, because the enhancement was only observed after 13 days of treatment and was not evident after 7 days of treatment. This NGF enhancement of capsaicin-evoked iCGRP release was not due solely to increases in peripheral iCGRP content since only the 1mg/kg dose of NGF elevated cutaneous pools of iCGRP, whereas both doses significantly increased capsaicin-evoked peptide release. Moreover, NGF also enhanced capsaicin-evoked thermal hyperalgesia under similar dose- and time-related conditions. Collectively, the chronic administration of NGF not only increases capsaicin-evoked hyperalgesia, but also significantly primes peripheral fibers to enhanced peptidergic exocytosis following activation of the capsaicin receptor. Collectively, these data are consistent with the hypothesis that persistently elevated NGF levels may contribute to enhanced neurogenic regulation of inflammatory and wound healing processes in injured tissue.
Collapse
Affiliation(s)
- Walter R Bowles
- Division of Endodontics, University of Minnesota School of Dentistry, 8-166 Moos Tower, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
13
|
Barreau F, Cartier C, Ferrier L, Fioramonti J, Bueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004; 127:524-34. [PMID: 15300585 DOI: 10.1053/j.gastro.2004.05.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Maternal deprivation (MD) increases nerve growth factor (NGF) expression and colonic mast cell density and alters visceral sensitivity. This study aimed to establish whether NGF overexpression induced by neonatal stress is involved in altered visceral sensitivity and gut mucosal integrity in adult rats. METHODS Male Wistar rat pups were either submitted to MD and treated with anti-NGF antibodies or left with their dam and treated daily with NGF. All rats were tested 10 weeks later for visceral sensitivity and 12 weeks later for gut permeability, myeloperoxidase activity, and mast cell numbers. Colonic NGF and NGF receptor expression were determined at 14 days and 12 weeks of age. To determine the involvement of colonic NGF overexpression and mast cell hyperplasia in visceral hyperalgesia induced by MD, neonatally deprived adult rats received anti-NGF antibodies or doxantrazole. RESULTS MD increased visceral sensitivity to rectal distention, gut permeability, colonic myeloperoxidase activity, and mast cell density, and anti-NGF antibodies abolished these effects. Neonatal daily treatment with NGF mimicked the alterations induced by MD on both rectal sensitivity and mucosal barrier. In deprived compared with nondeprived rats, colonic NGF immunostaining and NGF messenger RNA were increased at 14 days and 12 weeks. Overexpression of NGF receptor messenger RNA, present at 14 days, was not observed later. Moreover, adult deprived rats treated with doxantrazole or anti-NGF antibodies exhibited normal gut permeability and visceral sensitivity to rectal distention. CONCLUSIONS These data indicate that NGF triggers and maintains long-term alterations of visceral sensitivity and gut mucosal integrity induced by MD.
Collapse
Affiliation(s)
- Frederick Barreau
- Nuro-Gastroenterology and Nutrition Unit, Institut National de la Recherche Agronimique, Toulouse, France
| | | | | | | | | |
Collapse
|
14
|
Bielefeldt K, Ozaki N, Gebhart GF. Role of nerve growth factor in modulation of gastric afferent neurons in the rat. Am J Physiol Gastrointest Liver Physiol 2003; 284:G499-507. [PMID: 12576306 DOI: 10.1152/ajpgi.00356.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies demonstrated that experimental ulcers are associated with changes in the properties of voltage-sensitive sodium currents in sensory neurons. We hypothesized that nerve growth factor (NGF) contributes to these changes. Gastric ulcers were induced by acetic acid injection into the wall of the rat stomach. NGF expression was determined by ELISA and immunohistochemically. Sensory neurons were labeled by injection of a retrograde tracer into the gastric wall. Sodium currents were recorded in gastric sensory neurons from nodose and dorsal root ganglia cultured for 24 h in the presence of NGF or a neutralizing NGF antibody, respectively. Gastric ulcer formation caused a rise in NGF concentration within the gastric wall and an increase in NGF immunoreactivity. Exposure to NGF caused a significant increase in the TTX-resistant sodium current, whereas the TTX-sensitive sodium current remained unchanged. This was associated with an acceleration of the recovery from inactivation in spinal sensory neurons. Production and release of NGF in the gastric wall may contribute to sensitization of primary afferent neurons during gastric inflammation.
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Internal Medicine, 4614 JCP, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
15
|
Reinshagen M, Rohm H, Steinkamp M, Lieb K, Geerling I, Von Herbay A, Flämig G, Eysselein VE, Adler G. Protective role of neurotrophins in experimental inflammation of the rat gut. Gastroenterology 2000; 119:368-76. [PMID: 10930372 DOI: 10.1053/gast.2000.9307] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Sensory neuropeptides modulate the mucosal response to inflammation in experimental colitis. Because nerve growth factor (NGF) regulates the expression of neuropeptides such as substance P and calcitonin gene-related peptide (CGRP) and is implicated as a link between the nervous system and the immune system in the inflammatory process, we investigated the functional role of NGF and neurotrophin-3 during experimental colitis. METHODS Immunoneutralizing antibodies specific for NGF and neurotrophin (NT)-3 were used to block their endogenous activity. Mild trinitrobenzene sulfonic acid (TNBS) colitis was induced, and damage scores were assessed after 1 week. Neuropeptide content in the colon and NT messenger RNA (mRNA) expression were determined. RESULTS The pretreatment with anti-NGF or anti-NT-3 caused a significant 2-3-fold increase in the severity of the experimental inflammation as assessed by a macroscopic damage score, histologic ulceration score, and myeloperoxidase activity in the tissue. CGRP, but not substance P, contents in the colon were significantly reduced by NGF immunoneutralization. NGF mRNA was slightly up-regulated after NGF immunoneutralization, but NT-3 mRNA was unchanged by NT-3 immunoneutralization. CGRP mRNA was not significantly changed after 1 week of colitis by NGF or NT-3 immunoneutralization, whereas beta-preprotachykinin mRNA was up-regulated after immunoneutralization. CONCLUSIONS These findings suggest a regulatory role for NGF and NT-3 in experimental inflammation of the gut. This effect may be partly caused by the reduction of mucosal CGRP content caused by the NGF blockade.
Collapse
Affiliation(s)
- M Reinshagen
- Department of Medicine I, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gould HJ, Gould TN, England JD, Paul D, Liu ZP, Levinson SR. A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res 2000; 854:19-29. [PMID: 10784102 DOI: 10.1016/s0006-8993(99)02216-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inflammation induces an upregulation of sodium channels in sensory neurons. This most likely occurs as a result of the retrograde transport of cytochemical mediators released during the inflammatory response. The purpose of this study was to determine the effect of the subcutaneous administration of one such mediator, nerve growth factor (NGF), on the production of sodium channels in neurons of the rat dorsal root ganglion. For this, hindpaw withdrawal from either a thermal or mechanical stimulus was measured in rats at selected intervals for up to 2 weeks following injections of NGF. Sodium channel augmentation was then examined in dorsal root ganglia using site-specific, anti-sodium channel antibodies. Both thermal and mechanical allodynia was observed between 3 and 12 h post-injection. The hyperalgesic response returned to baseline by approximately 24 h post-injection. Sodium channel labeling was found to increase dramatically in the small neurons of the associated dorsal root ganglia beginning at 23 h, reached maximum intensity by 1 week, and persisted for up to 3 months post-injection. Pre-blocking NGF with anti-NGF prevented the NGF-induced decrease in paw withdrawal latencies and significantly reduced the intensity of sodium channel labeling. The results indicate that NGF is an important mediator both in the development of acute hyperalgesia and in the stimulation of sodium channel production in dorsal root ganglia during inflammation.
Collapse
Affiliation(s)
- H J Gould
- Department of Neurology, Louisiana State University Medical Center, New Orleans 70112, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Shiomi H, Ohsaki Y, Akamine A, Iijima T. The Re-Expression of Nerve Growth Factor Protein after Cavity Preparation in Rat Molars. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hisashi Shiomi
- Department of Oral Anatomy and Cell Biology, Faculty of Dental Science, Kyushu University
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - Yasuyoshi Ohsaki
- Department of Oral Anatomy and Cell Biology, Faculty of Dental Science, Kyushu University
| | - Akifumi Akamine
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - Tadahiko Iijima
- Department of Oral Anatomy and Cell Biology, Faculty of Dental Science, Kyushu University
| |
Collapse
|
18
|
Fjell J, Cummins TR, Dib-Hajj SD, Fried K, Black JA, Waxman SG. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:267-82. [PMID: 10216225 DOI: 10.1016/s0169-328x(99)00070-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Following sciatic nerve transection, the electrophysiological properties of small dorsal root ganglion (DRG) neurons are markedly altered, with attenuation of TTX-R sodium currents and the appearance of rapidly repriming TTX-S currents. The reduction in TTX-R currents has been attributed to a down-regulation of sodium channels SNS/PN3 and NaN. While infusion of exogenous NGF to the transected nerve restores SNS/PN3 transcripts to near-normal levels in small DRG neurons, TTX-R sodium currents are only partially rescued. Binding of the isolectin IB4 distinguishes two subpopulations of small DRG neurons: IB4+ neurons, which express receptors for the GDNF family of neurotrophins, and IB4- neurons that predominantly express TrkA. We show here that SNS/PN3 is expressed in approximately one-half of both IB4+ and IB4- DRG neurons, while NaN is preferentially expressed in IB4+ neurons. Whole-cell patch-clamp studies demonstrate that TTX-R sodium currents in IB4+ neurons have a more hyperpolarized voltage-dependence of activation and inactivation than do IB4- neurons, suggesting different electrophysiological properties for SNS/PN3 and NaN. We confirm that NGF restores SNS/PN3 mRNA levels in DRG neurons in vitro and demonstrate that the trk antagonist K252a blocks this rescue. The down-regulation of NaN mRNA is, nevertheless, not rescued by NGF-treatment in either IB4+ or IB4- neurons and NGF-treatment in vitro does not significantly increase the peak amplitude of the TTX-R current in small DRG neurons. In contrast, GDNF-treatment causes a twofold increase in the peak amplitude of TTX-R sodium currents and restores both SNS/PN3 and NaN mRNA to near-normal levels in IB4+ neurons. These observations provide a mechanism for the partial restoration of TTX-R sodium currents by NGF in axotomized DRG neurons, and demonstrate that the neurotrophins NGF and GDNF differentially regulate sodium channels SNS/PN3 and NaN.
Collapse
Affiliation(s)
- J Fjell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
19
|
Fjell J, Cummins TR, Fried K, Black JA, Waxman SG. In vivo NGF deprivation reduces SNS expression and TTX-R sodium currents in IB4-negative DRG neurons. J Neurophysiol 1999; 81:803-10. [PMID: 10036280 DOI: 10.1152/jn.1999.81.2.803] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent evidence suggests that changes in sodium channel expression and localization may be involved in some pathological pain syndromes. SNS, a tetrodotoxin-resistant (TTX-R) sodium channel, is preferentially expressed in small dorsal root ganglion (DRG) neurons, many of which are nociceptive. TTX-R sodium currents and SNS mRNA expression have been shown to be modulated by nerve growth factor (NGF) in vitro and in vivo. To determine whether SNS expression and TTX-R currents in DRG neurons are affected by reduced levels of systemic NGF, we immunized adult rats with NGF, which causes thermal hypoalgesia in rats with high antibody titers to NGF. DRG neurons cultured from rats with high antibody titers to NGF, which do not bind the isolectin IB4 (IB4(-)) but do express TrkA, were studied with whole cell patch-clamp and in situ hybridization. Mean TTX-R sodium current density was decreased from 504 +/- 77 pA/pF to 307 +/- 61 pA/pF in control versus NGF-deprived neurons, respectively. In comparison, the mean TTX-sensitive sodium current density was not significantly different between control and NGF-deprived neurons. Quantification of SNS mRNA hybridization signal showed a significant decrease in the signal in NGF-deprived neurons compared with the control neurons. The data suggest that NGF has a major role in the maintenance of steady-state levels of TTX-R sodium currents and SNS mRNA in IB4(-) DRG neurons in adult rats in vivo.
Collapse
Affiliation(s)
- J Fjell
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
20
|
Anderson LC, von Bartheld CS, Byers MR. NGF depletion reduces ipsilateral and contralateral trigeminal satellite cell reactions after inferior alveolar nerve injury in adult rats. Exp Neurol 1998; 150:312-20. [PMID: 9527901 DOI: 10.1006/exnr.1997.6769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following peripheral nerve injury, neuronal cell functions in sensory ganglia shift from normal maintenance and neurotransmission toward survival and regeneration. A rapid modulation of glial cell activity, which is related to changes in neuronal-support cell interaction, also occurs after nerve injury. Nerve growth factor (NGF) is required for the survival and maintenance of specific populations of sensory and sympathetic neurons, and changes in neuronal gene expression after axonal injury are due in part to a loss of NGF retrograde transport from the periphery to the cell body. A similar role for NGF in modulating support cell responses to peripheral nerve injury, however, has not been demonstrated. Using an autoimmune model, we assessed the effects of NGF depletion in adult rats on the injury-induced expression of glial fibrillary acid protein immunoreactivity (GFAP-IR) in the ipsilateral and contralateral trigeminal ganglia (TG). Unilateral inferior alveolar nerve crush resulted in a bilateral, NGF-dependent trigeminal satellite cell response. In control rats there was a widespread induction of GFAP-IR in the ipsilateral as well as the contralateral TG. In contrast, GFAP-IR was reduced to the mandibular division of the ipsilateral TG in NGF-depleted rats, and the contralateral up-regulation of GFAP-IR was entirely abolished. Bilateral sympathectomy failed to mimic the effects of autoimmunization. Our results provide evidence that NGF depletion inhibits injury-induced satellite cell responses, independent of its effects on sympathetic nerve function.
Collapse
Affiliation(s)
- L C Anderson
- Department of Oral Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|