1
|
Urano Y, Noguchi N. Enzymatically Formed Oxysterols and Cell Death. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:193-211. [PMID: 38036881 DOI: 10.1007/978-3-031-43883-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The side-chain hydroxylation of cholesterol by specific enzymes produces 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and other products. These enzymatically formed side-chain oxysterols act as intermediates in the biosynthesis of bile acids and serve as signaling molecules that regulate cholesterol homeostasis. Besides these intracellular functions, an imbalance in oxysterol homeostasis is implicated in pathophysiology. Furthermore, growing evidence reveals that oxysterols affect cell proliferation and cause cell death. This chapter provides an overview of the pathophysiological role of side-chain oxysterols in developing human diseases. We also summarize our understanding of the molecular mechanisms underlying the induction of various forms of cell death by side-chain oxysterols.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
2
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
Chiba R, Urano Y, Noguchi N. α-Tocopherol suppresses 24(S)-hydroxycholesterol-induced cell death via inhibition of endoplasmic reticulum membrane disruption. Steroids 2023; 189:109136. [PMID: 36351491 DOI: 10.1016/j.steroids.2022.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The brain-specific cholesterol metabolite 24(S)-hydroxycholesterol (24S-OHC) has been shown to cause neuronal cell death when subjected to esterification by acyl-CoA:cholesterol acyltransferase 1 (ACAT1). Accumulating 24S-OHC esters in the endoplasmic reticulum (ER) provoked ER membrane disruption and an integrated stress response (ISR), a signaling pathway that regulates adaptation to various stresses. We have previously reported that α-tocopherol (α-Toc) but not α-tocotrienol (α-Toc3), among vitamin E homologs, suppressed 24S-OHC-induced cell death without affecting ACAT1 activity in human neuroblastoma SH-SY5Y cells. However, the precise mechanisms underlying the inhibitory activity of α-Toc have yet to be elucidated. In the present study, we aimed to investigate the effects of α-Toc on the 24S-OHC-induced cell death machinery. We showed that α-Toc, but not α Toc3, suppressed 24S-OHC-induced ISR and downstream eukaryotic translation initiator factor 2α (eIF2α) phosphorylation. We also found that α-Toc inhibited stress granule formation and robust downregulation of nascent protein synthesis, which were induced by 24S-OHC treatment. Furthermore, disruption of ER membrane integrity was suppressed by α-Toc, but not by α-Toc3. Our findings suggest that the inhibitory effects of α-Toc on 24S-OHC-induced cell death may be attributed to its protective function against ER membrane disruption.
Collapse
Affiliation(s)
- Ren Chiba
- From the Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- From the Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Noriko Noguchi
- From the Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| |
Collapse
|
4
|
Urano Y, Osaki S, Chiba R, Noguchi N. Integrated stress response is involved in the 24(S)-hydroxycholesterol-induced unconventional cell death mechanism. Cell Death Dis 2022; 8:406. [PMID: 36195595 PMCID: PMC9532424 DOI: 10.1038/s41420-022-01197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
Perturbation of proteostasis triggers the adaptive responses that contribute to the homeostatic pro-survival response, whereas disruption of proteostasis can ultimately lead to cell death. Brain-specific oxysterol-i.e., 24(S)-hydroxycholesterol (24S-OHC)-has been shown to cause cytotoxicity when esterified by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) in the endoplasmic reticulum (ER). Here, we show that the accumulation of 24S-OHC esters caused phosphorylation of eukaryotic translation initiator factor 2α (eIF2α), dissociation of polysomes, and formation of stress granules (SG), resulting in robust downregulation of global protein de novo synthesis in human neuroblastoma SH-SY5Y cells. We also found that integrated stress response (ISR) activation through PERK and GCN2 activation induced by 24S-OHC treatment caused eIF2α phosphorylation. 24S-OHC-inducible SG formation and cell death were suppressed by inhibition of ISR. These results show that ACAT1-mediated 24S-OHC esterification induced ISR and formation of SG, which play crucial roles in 24S-OHC-inducible protein synthesis inhibition and unconventional cell death.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Shoya Osaki
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Ren Chiba
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
5
|
Zhao Y, Gagliano Taliun SA. Lipid-lowering drug targets and Parkinson's disease: A sex-specific Mendelian randomization study. Front Neurol 2022; 13:940118. [PMID: 36119674 PMCID: PMC9477004 DOI: 10.3389/fneur.2022.940118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) affects millions of individuals worldwide, and it is the second most common late-onset neurodegenerative disorder. There is no cure and current treatments only alleviate symptoms. Modifiable risk factors have been explored as possible options for decreasing risk or developing drug targets to treat PD, including low-density lipoprotein cholesterol (LDL-C). There is evidence of sex differences for cholesterol levels as well as for PD risk. Genetic datasets of increasing size are permitting association analyses with increased power, including sex-stratified analyses. These association results empower Mendelian randomization (MR) studies, which, given certain assumptions, test whether there is a causal relationship between the risk factor and the outcome using genetic instruments. Sex-specific causal inference approaches could highlight sex-specific effects that may otherwise be masked by sex-agnostic approaches. We conducted a sex-specific two-sample cis-MR analysis based on genetic variants in LDL-C target encoding genes to assess the impact of lipid-lowering drug targets on PD risk. To complement the cis-MR analysis, we also conducted a sex-specific standard MR analysis (using genome-wide independent variants). We did not find evidence of a causal relationship between LDL-C levels and PD risk in females [OR (95% CI) = 1.01 (0.60, 1.69), IVW random-effects] or males [OR (95% CI) = 0.93 (0.55, 1.56)]. The sex-specific standard MR analysis also supported this conclusion. We encourage future work assessing sex-specific effects using causal inference techniques to better understand factors that may contribute to complex disease risk differently between the sexes.
Collapse
Affiliation(s)
- Yangfan Zhao
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sarah A Gagliano Taliun
- Department of Medicine, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
6
|
Suzuki A, Urano Y, Ishida T, Noguchi N. Different functions of vitamin E homologues in the various types of cell death induced by oxysterols. Free Radic Biol Med 2021; 176:356-365. [PMID: 34648906 DOI: 10.1016/j.freeradbiomed.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023]
Abstract
24(S)-Hydroxycholesterol (24S-OHC) and 25-hydroxycholesterol (25-OHC) are produced by cholesterol 24-hydroxylase and cholesterol 25-hydroxylase, respectively. The purpose of the present study was to determine the type of cell death induced by these oxysterols in neuronal cells, hepatic cells, and keratinocytes, and to elucidate the inhibitory effect of vitamin E homologues on various types of cell death. In human neuronal cells (SH-SY5Y cells), 24S-OHC and 25-OHC caused a cell death that was independent of caspase activation. We reported previously that the esterification of 24S-OHC by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) and the resulting formation of a lipid droplet (LD)-like structure are responsible for the 24S-OHC-induced neuronal cell death. Here, we found that 25-OHC also induced ACAT1-mediated 25-OHC esterification and LD formation in neuronal cells. 25-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3), as observed for 24S-OHC-induced cell death in SH-SY5Y cells. In human hepatic cells (HepG2 cells), these oxysterols caused a cell death that was caspase- and oxysterol-esterification-independent. This cell death was suppressed by both α-Toc and α-Toc3, suggesting the involvement of free-radical-mediated lipid peroxidation in the cell death induced by these oxysterols in hepatic cells. In human keratinocytes (HaCaT cells), these oxysterols caused a caspase-dependent but oxysterol-esterification-independent cell death that was inhibited by α-Toc but not by α-Toc3. These results suggest that α-Toc and α-Toc3 act as radical-scavenging antioxidants against oxysterol-induced cell death in the same way in hepatic cells, whereas their behavior is different in inhibition of cell death in neuronal cells and keratinocytes. Collectively, these results demonstrated that 24S-OHC and 25-OHC induced the same type of cell death in each of the cell types examined, and that α-Toc and α-Toc3 exerted different effects, depending on the type of cell death.
Collapse
Affiliation(s)
- Atsuki Suzuki
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Tomohisa Ishida
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
7
|
Sezer E, Can Demirdöğen B, Demirkaya Ş, Bulut G, Akkulak M, Evin E, Adalı O. Association of cholesterol 7α-hydroxylase (CYP7A1) promoter polymorphism (rs3808607) and cholesterol 24S-hydroxylase (CYP46A1) intron 2 polymorphism (rs754203) with serum lipids, vitamin D levels, and multiple sclerosis risk in the Turkish population. Neurol Sci 2021; 43:2611-2620. [PMID: 34546511 DOI: 10.1007/s10072-021-05597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) have significantly lower vitamin D levels. Cholesterol is known to be the precursor for vitamin D synthesis, and cholesterol removal is regulated by cholesterol 7α-hydroxylase (CYP7A1) in the liver and cholesterol 24S-hydroxylase (CYP46A1) in the brain. In this study, single nucleotide polymorphisms (SNPs) within the genes CYP7A1 (rs3808607) and CYP46A1 (rs754203) were investigated for their effects on serum lipid profiles, vitamin D levels, and the risk of developing MS. METHODS Patients with MS (n = 191) and controls (n = 100) were tested using the PCR-RFLP method to determine their genotypes for rs3808607 and rs754203 SNPs. RESULTS The minor (C) allele frequency for CYP7A1 rs3808607 variation was 0.380 in patients with MS and 0.305 in control subjects (P = .074). For CYP46A1 rs754203, the frequencies of the minor (C) allele were 0.272 and 0.250 in patients and control subjects, respectively (P = .563). Serum vitamin D (25(OH)D3) concentrations were significantly lower in patients than in control subjects (P = .002). The CYP46A1 rs754203 SNP was associated with total cholesterol levels in patients, whereas the CYP7A1 rs3808607 variant was not associated with serum lipid parameters or vitamin D levels in patients or control subjects. CONCLUSION CYP7A1 rs3808607 and CYP46A1 rs754203 variations are not likely to confer an independent risk for MS development in the Turkish population. To the best of our knowledge, this is the first study to investigate the association between CYP46A1 rs754203 and MS risk.
Collapse
Affiliation(s)
- Eda Sezer
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey.
| | - Şeref Demirkaya
- Department of Neurology, University of Health Sciences, Gülhane Health Sciences Institute, Ankara, Turkey
| | - Giray Bulut
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Merve Akkulak
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Emre Evin
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Orhan Adalı
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
9
|
Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 2021; 58:2183-2201. [PMID: 33411241 DOI: 10.1007/s12035-020-02232-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol is an indispensable component of the cell membrane and plays vital roles in critical physiological processes. Brain cholesterol accounts for a large portion of total cholesterol in the human body, and its content must be tightly regulated to ensure normal brain function. Disorders of cholesterol metabolism in the brain are linked to neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and other atypical cognitive deficits that arise at old age. However, the specific role of cholesterol metabolism disorder in the pathogenesis of neurodegenerative diseases has not been fully elucidated. Statins that are a class of lipid-lowering drugs have been reported to have a positive effect on neurodegenerative diseases. Herein, we reviewed the physiological and pathological conditions of cholesterol metabolism and discussed the possible mechanisms of cholesterol metabolism and statin therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing, China
| | - Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
10
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Kan HL, Wang CC, Lin YC, Tung CW. Computational identification of preservatives with potential neuronal cytotoxicity. Regul Toxicol Pharmacol 2020; 119:104815. [PMID: 33159970 DOI: 10.1016/j.yrtph.2020.104815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
Preservatives play a vital role in cosmetics by preventing microbiological contamination for keeping products safe to use. However, a few commonly used preservatives have been suggested to be neurotoxic. Cytotoxicity to neuronal cells is commonly used as the first-tier assay for assessing chemical-induced neurotoxicity. Given the time and resources required for chemical screening, computational methods are attractive alternatives over experimental approaches in prioritizing chemicals prior to further experimental evaluations. In this study, we developed a Quantitative Structure-Activity Relationships (QSAR) model for the identification of potential neurotoxicants. A set of 681 chemicals was utilized to construct a robust prediction model using oversampling and Random Forest algorithms. Within a defined applicability domain, the independent test on 452 chemicals showed a high accuracy of 87.7%. The application of the model to 157 preservatives identified 15 chemicals potentially toxic to neuronal cells. Three of them were further validated by in vitro experiments. The results suggested that further experiments are desirable for assessing the neurotoxicity of the identified preservatives with potential neuronal cytotoxicity.
Collapse
Affiliation(s)
- Hung-Lin Kan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Chi Lin
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 106, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 350, Taiwan.
| |
Collapse
|
12
|
Kölsch H, Lütjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, Schmitz S, Maier W, Heun R. CYP46A1 variants influence Alzheimer’s disease risk and brain cholesterol metabolism. Eur Psychiatry 2020; 24:183-90. [DOI: 10.1016/j.eurpsy.2008.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/25/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022] Open
Abstract
AbstractBackgroundCholesterol 24S-hydroxylase (CYP46) catalyzes the conversion of cholesterol to 24S-hydroxycholesterol, the primary cerebral cholesterol elimination product. Only few gene variations in CYP46 gene (CYP46A1) have been investigated for their relevance as genetic risk factors of Alzheimer’s disease (AD) and results are contradictory.MethodsWe performed a gene variability screening in CYP46A1 and investigated the effect of gene variants on the risk of AD and on CSF levels of cholesterol and 24S-hydroxycholesterol.ResultsTwo of the identified 16 SNPs in CYP46A1 influenced AD risk in our study (rs7157609: p = 0.016; rs4900442: p = 0.019). The interaction term of both SNPs was also associated with an increased risk of AD (p = 0.006). Haplotypes including both SNPs were calculated and haplotype G–C was identified to influence the risk of AD (p = 0.005). AD patients and non-demented controls, who were carriers of the G–C haplotype, presented with reduced CSF levels of 24S-hydroxycholesterol (p = 0.001) and cholesterol (p < 0.001).ConclusionOur results suggest that CYP46A1 gene variations might act as risk factor for AD via an influence on brain cholesterol metabolism.
Collapse
|
13
|
Riscal R, Skuli N, Simon MC. Even Cancer Cells Watch Their Cholesterol! Mol Cell 2019; 76:220-231. [PMID: 31586545 DOI: 10.1016/j.molcel.2019.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell proliferation is an established feature of cancer, and altered tumor metabolism has witnessed renewed interest over the past decade, including the study of how cancer cells rewire metabolic pathways to renew energy sources and "building blocks" that sustain cell division. Microenvironmental oxygen, glucose, and glutamine are regarded as principal nutrients fueling tumor growth. However, hostile tumor microenvironments render O2/nutrient supplies chronically insufficient for increased proliferation rates, forcing cancer cells to develop strategies for opportunistic modes of nutrient acquisition. Recent work shows that cancer cells overcome this nutrient scarcity by scavenging other substrates, such as proteins and lipids, or utilizing adaptive metabolic pathways. As such, reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid-mediated signaling during cancer progression. In this review, we highlight more recently appreciated roles for lipids, particularly cholesterol and its derivatives, in cancer cell metabolism within intrinsically harsh tumor microenvironments.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Urano Y, Ho Vo DK, Hirofumi A, Noguchi N. 24( S)-Hydroxycholesterol induces ER dysfunction-mediated unconventional cell death. Cell Death Discov 2019; 5:113. [PMID: 31285856 PMCID: PMC6611791 DOI: 10.1038/s41420-019-0192-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induced by disruption of protein folding activates the unfolded protein response (UPR), which while generally pro-survival in effect can also induce cell death under severe ER stress. 24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the ER of neurons, plays an important role in maintaining brain cholesterol homeostasis but also shows neurotoxicity when subjected to esterification by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) in the ER. In this study, we demonstrated that the accumulation of 24S-OHC esters in human neuroblastoma SH-SY5Y cells evoked the UPR with substantially no pro-survival adaptive response but with significant activation of pro-death UPR signaling via regulated IRE1-dependent decay (RIDD). We further found that accumulation of 24S-OHC esters caused disruption of ER membrane integrity and release of ER luminal proteins into cytosol. We also found that de novo synthesis of global proteins was robustly suppressed in 24S-OHC-treated cells. Collectively, these results show that ER dysfunction and the accompanying RIDD-mediated pro-death UPR signaling and global protein synthesis inhibition are responsible for 24S-OHC ester-induced unconventional cell death.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Diep-Khanh Ho Vo
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Araki Hirofumi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| |
Collapse
|
15
|
Cigliano L, Spagnuolo MS, Napolitano G, Iannotta L, Fasciolo G, Barone D, Venditti P. 24S-hydroxycholesterol affects redox homeostasis in human glial U-87 MG cells. Mol Cell Endocrinol 2019; 486:25-33. [PMID: 30802527 DOI: 10.1016/j.mce.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 01/11/2023]
Abstract
The cholesterol metabolite 24(S)-hydroxycholesterol (24S-OHC) allows cholesterol excretion from the brain and was suggested to be critically involved in physiological as well as neurodegenerative processes. It induces on human neuronal cell cultures a dose dependent toxicity associated with increased reactive oxygen species production. Since glial cells play a key role in assisting neuronal function, here we investigated the effects of increased concentrations of 24S-OHC on a glial cell model (human glioblastoma U-87 MG cells). We determined the content of PGC-1α and TFAM, involved in the biogenesis of mitochondria, both mitochondrial complexes activity and protein amount, lipid and protein oxidative damage, cellular reactive oxygen species (ROS) release and both the activities and amount of the antioxidant enzymes glutathione peroxidase and catalase. Low concentration of 24S-OHC increased cellular content of PGC-1α and TFAM and the activities of mitochondrial complexes I and II, with no marked changes in their protein amount. Interestingly, 24S-OHC at lower concentrations reduced while at higher concentration increased lipid and protein oxidative damage. Conversely, the content of nitro-tyrosine increased only with the highest 24S-OHC concentration. Also, cell H2O2 release was reduced by lower and increased by higher 24S-OHC used concentrations. The cell activity of glutathione peroxidase was reduced by 24S-OHC at higher concentration while that of catalase was reduced by all the assayed concentrations. Further, a dose dependent decrease of both enzymes levels was observed. In conclusion, we demonstrated that 24S-OHC exerts different effects on U-87 MG cells depending on its level. At lower concentrations it stimulates cellular processes critical to maintain redox homeostasis, while at higher dose its effect on the glial cell here used resemble its action on neurons.
Collapse
Affiliation(s)
- Luisa Cigliano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy
| | - Maria Stefania Spagnuolo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo (ISPAAM), CNR, Via Argine 1085, 80147, Napoli, Italy
| | - Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, Via Acton n. 38, I - 80133, Napoli, Italy
| | - Lucia Iannotta
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy
| | - Gianluca Fasciolo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy
| | - Daniela Barone
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126, Napoli, Italy.
| |
Collapse
|
16
|
Pan Y, Xu J, Jin P, Yang Q, Zhu K, You M, Chen M, Hu F. Royal Jelly Ameliorates Behavioral Deficits, Cholinergic System Deficiency, and Autonomic Nervous Dysfunction in Ovariectomized Cholesterol-Fed Rabbits. Molecules 2019; 24:molecules24061149. [PMID: 30909491 PMCID: PMC6470943 DOI: 10.3390/molecules24061149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Estrogen deficiency after menopause is associated with autonomic nervous changes, leading to memory impairment and increased susceptibility to Alzheimer's disease (AD). Royal jelly (RJ) from honeybees (Apis mellifera) has estrogenic activity. Here, we investigated whether RJ can improve behavior, cholinergic and autonomic nervous function in ovariectomized (OVX) cholesterol-fed rabbits. OVX rabbits on high-cholesterol diet were administered with RJ for 12 weeks. The results showed that RJ could significantly improve the behavioral deficits of OVX cholesterol-fed rabbits and image structure of the brain. RJ reduced body weight, blood lipid, as well as the levels of amyloid-beta (Aβ), acetylcholinesterase (AchE), and malonaldehyde (MDA) in the brain. Moreover, RJ also increased the activities of choline acetyltransferase (ChAT) and superoxide dismutase (SOD) in the brain, and enhanced heart rate variability (HRV) and Baroreflex sensitivity (BRS) in OVX cholesterol-fed rabbits. Furthermore, RJ was also shown to reduce the content of Evans blue and the expression levels of Aβ, beta-site APP cleaving enzyme 1(BACE1), and receptor for advanced glycation end products (RAGE), and increase the expression level of LDL(low density lipoprotein) receptor-related protein 1 (LRP-1) in the brain. Our findings suggested that RJ has beneficial effects in neurological disorders of postmenopausal women, which were associated with reducing cholesterol and Aβ deposition, enhancing the estrogen levels and the activities of cholinergic and antioxidant systems, and ameliorating the blood⁻brain barrier (BBB) permeability and restoring autonomic nervous system.
Collapse
Affiliation(s)
- Yongming Pan
- Comparative medical Research Institute, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China.
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Jianqin Xu
- Comparative medical Research Institute, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ping Jin
- The third clinical medical college, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Qinqin Yang
- Comparative medical Research Institute, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Keyan Zhu
- Comparative medical Research Institute, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Mengmeng You
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Minli Chen
- Comparative medical Research Institute, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
17
|
Petek B, Villa-Lopez M, Loera-Valencia R, Gerenu G, Winblad B, Kramberger MG, Ismail MAM, Eriksdotter M, Garcia-Ptacek S. Connecting the brain cholesterol and renin-angiotensin systems: potential role of statins and RAS-modifying medications in dementia. J Intern Med 2018; 284:620-642. [PMID: 30264910 DOI: 10.1111/joim.12838] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Millions of people worldwide receive agents targeting the renin-angiotensin system (RAS) to treat hypertension or statins to lower cholesterol. The RAS and cholesterol metabolic pathways in the brain are autonomous from their systemic counterparts and are interrelated through the cholesterol metabolite 27-hydroxycholesterol (27-OHC). These systems contribute to memory and dementia pathogenesis through interference in the amyloid-beta cascade, vascular mechanisms, glucose metabolism, apoptosis, neuroinflammation and oxidative stress. Previous studies examining the relationship between these treatments and cognition and dementia risk have produced inconsistent results. Defining the blood-brain barrier penetration of these medications has been challenging, and the mechanisms of action on cognition are not clearly established. Potential biases are apparent in epidemiological and clinical studies, such as reverse epidemiology, indication bias, problems defining medication exposure, uncertain and changing doses, and inappropriate grouping of outcomes and medications. This review summarizes current knowledge of the brain cholesterol and RAS metabolism and the mechanisms by which these pathways affect neurodegeneration. The putative mechanisms of action of statins and medications inhibiting the RAS will be examined, together with prior clinical and animal studies on their effects on cognition. We review prior epidemiological studies, analysing their strengths and biases, and identify areas for future research. Understanding the pathophysiology of the brain cholesterol system and RAS and their links to neurodegeneration has enormous potential. In future, well-designed epidemiological studies could identify potential treatments for Alzheimer's disease (AD) amongst medications that are already in use for other indications.
Collapse
Affiliation(s)
- B Petek
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M Villa-Lopez
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - R Loera-Valencia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G Gerenu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosciences, Biodonostia Health Research Institute, San Sebastian, Spain.,Center for Networked Biomedical Research in Neurodegenerative Diseases, CIBERNED, Health Institute Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - B Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - M G Kramberger
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia.,University of Ljubljana, Ljubljana, Slovenia
| | - M-A-M Ismail
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Theme Neuro, Diseases of the Nervous System patient flow, Karolinska University Hospital, Huddinge, Sweden
| | - M Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Garcia-Ptacek
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine, Neurology Section, Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
18
|
Kimura Y, Asa M, Urano Y, Saito Y, Nishikawa K, Noguchi N. Tocopherol suppresses 24(S)-hydroxycholesterol-induced cell death via inhibition of CaMKII phosphorylation. Biochimie 2018; 153:203-209. [PMID: 30244813 DOI: 10.1016/j.biochi.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
|
19
|
Bezine M, Maatoug S, Ben Khalifa R, Debbabi M, Zarrouk A, Wang Y, Griffiths WJ, Nury T, Samadi M, Vejux A, de Sèze J, Moreau T, Kharrat R, El Ayeb M, Lizard G. Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie 2018; 153:56-69. [DOI: 10.1016/j.biochi.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
|
20
|
Di Natale C, Monaco A, Pedone C, Tessitore A, De Mase A, Tedeschi G, Netti PA, Abrescia P. The level of 24-hydroxycholesteryl esters decreases in plasma of patients with Parkinson's disease. Neurosci Lett 2018; 672:108-112. [PMID: 29486288 DOI: 10.1016/j.neulet.2018.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
24-hydroxycholesterol (24OH-C) is synthesized almost exclusively in neurons. This oxysterol is mostly present as ester form in both cerebrospinal fluid and plasma. The enzyme lecithin-cholesterol acyltransferase esterifies 24OH-C in the brain, and the level of 24OH-C esters in cerebrospinal fluid was found to be correlated with the level of 24OH-C esters in plasma. Decreased levels of 24OH-C esters levels were previously found in Alzheimer's disease and Amyotrophic Lateral Sclerosis. This finding was attributed to the inhibitory effect of oxidative stress on lecithin-cholesterol acyltransferase activity in neurodegenerative conditions. Data reported here show that the plasma level of 24OH-C esters is decreased also in Parkinson's disease. ROC analysis identified 69.0% of 24OH-C esterification as the threshold (AUC = 0.98) discriminating patients (N = 19) from healthy subjects (N = 19) with 100% specificity vs controls, 89.5% sensitivity, 94.7% accuracy, and 100% precision. The level of 24OH-C esters was not correlated with UPDRS I or UPDRS III when evaluated at the time of blood sampling. By contrast, it was negatively correlated with UPDRS I (r = -0.4984, p = 0.0299) after one year of follow up. Therefore, this level might represent a novel biomarker of neurodegeneration in Parkinson's disease. The biomarker level is here proposed as a measure to evaluate the severity of disease, as well as to monitor the progression of this pathology.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| | - Alessandra Monaco
- Department of Biology, University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| | - Carlo Pedone
- TRASE S.R.L., via Mezzocannone 8, 80134 Naples, Italy; CIRPEB (Interuniversity Center for Research on Bioactive Peptides), University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
| | - Antonio De Mase
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Paolo Abrescia
- TRASE S.R.L., via Mezzocannone 8, 80134 Naples, Italy; CIRPEB (Interuniversity Center for Research on Bioactive Peptides), University of Naples Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| |
Collapse
|
21
|
Benussi L, Ghidoni R, Dal Piaz F, Binetti G, Di Iorio G, Abrescia P. The level of 24-Hydroxycholesteryl Esters is an Early Marker of Alzheimer's Disease. J Alzheimers Dis 2018; 56:825-833. [PMID: 27983556 DOI: 10.3233/jad-160930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholesterol (C) brain accumulation seems to play a role in the Alzheimer's disease (AD) pathogenesis. 24(S)-hydroxycholesterol (24OH-C) is the predominant metabolite of brain C and its synthesis is believed to represent a way to remove excess C from neurons. Previous studies showed that 24OH-C level is altered in patients with neurodegenerative diseases, including AD. Only one study demonstrated that 24OH-C esterification is altered in neurodegenerative diseases, i.e., amyotrophic lateral sclerosis. Herein we analyzed the level of 24OH-C esters (% 24OH-CE) in i) cerebrospinal fluid (CSF) and homologous serum of AD (n = 13) and controls (n = 8); ii) plasma from AD (n = 30), controls (n = 30), mild cognitive impairment (MCI) converting to AD (n = 34), and stable MCI (n = 40). The % 24OH-CE in CSF positively correlated with that in homologous serum and was lower in both CSF and blood from AD patients as compared to controls; moreover, the plasma value of % 24OH-CE was lower in MCI conv-AD than in non-converters. Kaplan Meier Survival curves revealed a significant anticipation of the disease onset in AD and MCI conv-AD subjects with the lowest % 24OH-CE values. In conclusion, the reduction of % 24OH-CE in AD and MCI conv-AD, as well as the anticipation of the disease in patients with the lowest % 24OH-CE, support a role of the cholesterol/lecithin-cholesterol acyltransferase axis in AD onset/progression. Thus, targeting brain cholesterol metabolism could be a valuable strategy to prevent AD associated cognitive decline.
Collapse
Affiliation(s)
- Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine and Surgery, University of Salerno, Fisciano (SA), Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuseppe Di Iorio
- Department of Medical, Surgical, Neurological, Metabolic, and Ageing Sciences, Second University of Naples, Naples, Italy
| | | |
Collapse
|
22
|
Raju A, Jaisankar P, Borah A, Mohanakumar KP. 1-Methyl-4-Phenylpyridinium-Induced Death of Differentiated SH-SY5Y Neurons Is Potentiated by Cholesterol. Ann Neurosci 2017; 24:243-251. [PMID: 29849448 DOI: 10.1159/000481551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background/Aims Hypercholesterolemia is recently considered a risk factor for Parkinson's disease (PD), the most consistent neurodegenerative movement disorder. The study aimed to investigate the effect of exogenous cholesterol on 1-methyl-4-phenylpyridinium (MPP+) parkinsonian neurotoxin-induced cell death, loss of mitochondrial membrane potential, and dopaminergic deficiency in a cellular model of PD. Methods Cholesterol (50 μM) when added in the culture media alone or in combination with MPP+ was studied in SH-SY5Y neuroblastoma cells. There were 4 groups that were studied; SH-SY5Y cells treated with vehicle (control), cells that were treated with 1 mM MPP+ (MPP+), or cholesterol (chol) or both (M + chol). The loss of cell survival was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Dopamine depletion, microtubule-associated protein 2 (MAP-2), and tyrosine hydroxylase (TH)-positive neuronal loss were determined by HPLC-electrochemical detection and TH immunocytochemistry respectively. Mitochondrial membrane potential in cells stained by tetramethylrhodamine methyl ester dye was analysed by flow cytometry. Results Cholesterol treatment potentiated a reduction of neuronal viability with loss of TH-positive neurons in cultures. MPP+-induced depletion of dopamine level in the post-mitotic MAP-2 immunoreactive neurons and loss of mitochondrial membrane potential were also heightened by cholesterol. Conclusion Apparently, changes in neuronal cholesterol content significantly influenced the neurotoxicity and the direct mitochondrial mechanisms involved in MPP+-induced cell death. Our observations demonstrate that high cholesterol incorporated into the differentiated human neuroblastoma cells worsened dopaminergic neuronal survivability through increased depolarization of mitochondrial membrane potential, which is a known mechanism of dopaminergic cell death by MPP+. The present findings support the hypothesis that hypercholesterolemia could be a risk factor for PD.
Collapse
Affiliation(s)
- Anu Raju
- Division of Cell Biology and Physiology, Kolkata, India.,Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Parasuram Jaisankar
- Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, CSIR Road, Taramani, Chennai, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Kochupurackal Parameswarannayar Mohanakumar
- Division of Cell Biology and Physiology, Kolkata, India.,Division of Chemistry, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.,Inter University Centre for Biomedical Research and Super Speciality Hospital (IUCBR and SSH), Mahatma Gandhi University Campus at Thalappady, Kottayam, India
| |
Collapse
|
23
|
Mast N, Saadane A, Valencia-Olvera A, Constans J, Maxfield E, Arakawa H, Li Y, Landreth G, Pikuleva IA. Cholesterol-metabolizing enzyme cytochrome P450 46A1 as a pharmacologic target for Alzheimer's disease. Neuropharmacology 2017; 123:465-476. [PMID: 28655608 PMCID: PMC5546235 DOI: 10.1016/j.neuropharm.2017.06.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Cytochrome P450 46A1 (CYP46A1 or cholesterol 24-hydroxylase) controls cholesterol elimination from the brain and plays a role in higher order brain functions. Genetically enhanced CYP46A1 expression in mouse models of Alzheimer's disease mitigates the manifestations of this disease. We enhanced CYP46A1 activity pharmacologically by treating 5XFAD mice, a model of rapid amyloidogenesis, with a low dose of the anti-HIV medication efavirenz. Efavirenz was administered from 1 to 9 months of age, and mice were evaluated at specific time points. At one month of age, cholesterol homeostasis was already disturbed in the brain of 5XFAD mice. Nevertheless, efavirenz activated CYP46A1 and mouse cerebral cholesterol turnover during the first four months of administration. This treatment time also reduced amyloid burden and microglia activation in the cortex and subiculum of 5XFAD mice as well as protein levels of amyloid precursor protein and the expression of several genes involved in inflammatory response. However, mouse short-term memory and long-term spatial memory were impaired, whereas learning in the context-dependent fear test was improved. Additional four months of drug administration (a total of eight months of treatment) improved long-term spatial memory in the treated as compared to the untreated mice, further decreased amyloid-β content in 5XFAD brain, and also decreased the mortality rate among male mice. We propose a mechanistic model unifying the observed efavirenz effects. We suggest that CYP46A1 activation by efavirenz could be a new anti-Alzheimer's disease treatment and a tool to study and identify normal and pathological brain processes affected by cholesterol maintenance.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ana Valencia-Olvera
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Constans
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Erin Maxfield
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiroyuki Arakawa
- Behavioral Core, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Young Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Sharma N, Baek K, Phan HTT, Shimokawa N, Takagi M. Glycosyl chains and 25-hydroxycholesterol contribute to the intracellular transport of amyloid beta (Aβ-42) in Jurkat T cells. FEBS Open Bio 2017; 7:865-876. [PMID: 28593141 PMCID: PMC5458452 DOI: 10.1002/2211-5463.12234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
Abstract
Amyloid beta (Aβ) is a peptide responsible for the development of Alzheimer's disease (AD). Misfolding and accumulation of endogenous Aβ can lead to neural cell apoptosis through endoplasmic reticulum (ER) stress. Added exogenous Aβ can also result in ER stress, leading to neurotoxicity and apoptosis, which is identical to that caused by the endogenous peptide. We have speculated that the endocytic transport of Aβ causes ER stress and have previously shown that the oxysterol, in particular, 7-ketocholesterol (7-keto) induces more surface interaction between Aβ-42 and Jurkat cells than cholesterol. However, the interaction was not enough to induce intracellular transfer of the peptide. In this study, we investigated the effect of another oxysterol, 25-hydroxycholesterol (25-OH) on the membrane raft-dependent transport of Aβ-42 in Jurkat cells. Interestingly, intracellular transfer of Aβ-42 was observed in the presence of 25-OH only after the inclusion of cholera toxin B subunit (CT-B), a marker used to detect the raft domain. We speculated that 25-OH can induce intracellular movement of Aβ peptides. Furthermore, CT-B together with GM1 provided negative curvature, which resulted in the intracellular transport of Aβ-42. Notably, we used a protofibrillar species of Aβ-42 in this study. We have shown that the transport was microtubule-dependent since it could not be observed in depolymerized microtubules. These results demonstrate that oxysterols and glycosyl chains are important factors affecting intracellular transport. These compounds are also associated with aging and advanced glycation are risk factors for AD. Thus, this study should further understanding of the pathology of AD.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - KeangOK Baek
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | | | - Naofumi Shimokawa
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| | - Masahiro Takagi
- School of Materials Science Japan Advanced Institute of Science and Technology (JAIST) Ishikawa Japan
| |
Collapse
|
25
|
Nakazawa T, Miyanoki Y, Urano Y, Uehara M, Saito Y, Noguchi N. Effect of vitamin E on 24(S)-hydroxycholesterol-induced necroptosis-like cell death and apoptosis. J Steroid Biochem Mol Biol 2017; 169:69-76. [PMID: 26953980 DOI: 10.1016/j.jsbmb.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
24(S)-Hydroxycholesterol (24S-OHC) has diverse physiological and pathological functions. In particular, cytotoxic effects of 24S-OHC in neuronal cells are important in development of neurodegenerative diseases. 24S-OHC induces necroptosis-like cell death in SH-SY5Y cells expressing little caspase-8. In the present study, 24S-OHC was found to induce apoptosis as determined by caspase-3 activation in all-trans-retinoic acid (atRA)-treated SH-SY5Y cells in which expression of caspase-8 was induced. 24S-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3) in SH-SY5Y cells regardless of whether cells were treated with atRA. In contrast, cumene hydroperoxide (CumOOH)-induced cell death was significantly inhibited by α-Toc and α-Toc3. In atRA-treated SH-SY5Y cells, generation of reactive oxygen species (ROS) was induced by stimulation with CumOOH but was not induced by stimulation with 24S-OHC. These results suggest that inhibition of 24S-OHC-induced cell death by α-Toc cannot be explained by its radical scavenging antioxidant activity. Esterification of 24S-OHC followed by lipid droplet (LD) formation due to acyl-CoA:cholesterol acyltransferase 1 (ACAT1) are key events in 24S-OHC-induced cell death in atRA-treated SH-SY5Y cells as demonstrated by inhibition of cell death by ACAT1 inhibitor. LD number was not changed by treatment with either α-Toc or α-Toc3. The different physical properties of α-Toc and α-Toc3 may account for their different inhibitory effects on 24S-OHC-induced cell death.
Collapse
Affiliation(s)
- Takaya Nakazawa
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yuta Miyanoki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Madoka Uehara
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
26
|
24(S)-Hydroxycholesterol protects the ex vivo rat retina from injury by elevated hydrostatic pressure. Sci Rep 2016; 6:33886. [PMID: 27653972 PMCID: PMC5032171 DOI: 10.1038/srep33886] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
In the central nervous system, 24(S)-hydroxycholesterol (24(S)-HC) is an oxysterol synthesized from cholesterol by cholesterol 24-hydroxylase (CYP46A1) encoded by the cyp46a1 gene. In the present study using a rat ex vivo glaucoma model, we found that retinal 24(S)-HC synthesis is facilitated by pressure elevation. Moreover, we found that 24(S)-HC is neuroprotective against pressure mediated retinal degeneration. Quantitative real-time RT-PCR, ELISA, and immunohistochemistry revealed that elevated pressure facilitated the expression of cyp46a1 and CYP46A1. Immunohistochemically, the enhanced expression of CYP46A1 was mainly observed in retinal ganglion cells (RGC). LC-MS/MS revealed that 24(S)-HC levels increased in a pressure-dependent manner. Axonal injury and apoptotic RGC death induced by 75 mmHg high pressure was ameliorated by exogenously administered 1 μM 24(S)-HC. In contrast, voriconazole, a CYP46A1 inhibitor, was severely toxic even at normobaric pressure. Under normobaric conditions, 30 μM 24(S)-HC was required to prevent the voriconazole-mediated retinal damage. Taken together, our findings indicate that 24(S)-HC is facilitated by elevated pressure and plays a neuroprotective role under glaucomatous conditions, while voriconazole, an antifungal drug, is retinotoxic. 24(S)-HC and related compounds may serve as potential therapeutic targets for protecting glaucomatous eyes from pressure-induced injuries.
Collapse
|
27
|
Takabe W, Urano Y, Vo DKH, Shibuya K, Tanno M, Kitagishi H, Fujimoto T, Noguchi N. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death. J Lipid Res 2016; 57:2005-2014. [PMID: 27647838 DOI: 10.1194/jlr.m068775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.
Collapse
Affiliation(s)
- Wakako Takabe
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Diep-Khanh Ho Vo
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Kimiyuki Shibuya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Masaki Tanno
- Department of Molecular Chemistry and Biochemistry, Faculty of Sciences and Technology, Doshisha University, Kyoto 610-0394, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Sciences and Technology, Doshisha University, Kyoto 610-0394, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
28
|
Zhornitsky S, McKay KA, Metz LM, Teunissen CE, Rangachari M. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes. Mult Scler Relat Disord 2016; 5:53-65. [DOI: 10.1016/j.msard.2015.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/08/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
|
29
|
Dantas NM, Sampaio GR, Ferreira FS, Labre TDS, Torres EAFDS, Saldanha T. Cholesterol Oxidation in Fish and Fish Products. J Food Sci 2015; 80:R2627-39. [PMID: 26555783 DOI: 10.1111/1750-3841.13124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Dept. of Nutrition, School of Public Health, Univ. of São Paulo (USP), Brazil - Av. Dr. Arnaldo, 715, São Paulo, SP, CEP, 01246-904, Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | | | - Tatiana Saldanha
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| |
Collapse
|
30
|
Noguchi N, Urano Y, Takabe W, Saito Y. New aspects of 24(S)-hydroxycholesterol in modulating neuronal cell death. Free Radic Biol Med 2015; 87:366-72. [PMID: 26164631 DOI: 10.1016/j.freeradbiomed.2015.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 02/05/2023]
Abstract
24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has been known to play an important role in maintaining cholesterol homeostasis in the brain and has been proposed as a possible biomarker of neurodegenerative disease. Recent studies have revealed diverse functions of 24S-OHC and gained increased attention. For example, 24S-OHC at sublethal concentrations has been found to induce an adaptive response via activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against subsequent oxidative stress. It has also been found that physiological concentrations of 24S-OHC suppress amyloid-β production via downregulation of amyloid precursor protein trafficking in neuronal cells. On the other hand, high concentrations of 24S-OHC have been found to induce a type of nonapoptotic programmed cell death in neuronal cells expressing little caspase-8. Because neuronal cell death induced by 24S-OHC has been found to proceed by a unique mechanism, which is different from but in some ways similar to necroptosis-necroptosis being a type of programmed necrosis induced by tumor necrosis factor α-neuronal cell death induced by 24S-OHC has been called "necroptosis-like" cell death. 24S-OHC-induced cell death is dependent on the formation of 24S-OHC esters but not on oxidative stress. This review article discusses newly reported aspects of 24S-OHC in neuronal cell death and sheds light on the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative disease.
Collapse
Affiliation(s)
- Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Wakako Takabe
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
31
|
Ghosh S, Mukherjee S, Basu A. Chandipura virus perturbs cholesterol homeostasis leading to neuronal apoptosis. J Neurochem 2015; 135:368-80. [PMID: 26118540 DOI: 10.1111/jnc.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022]
Abstract
Chandipura virus (CHPV; genus Vesiculovirus, family Rhabdoviridae) induces neuronal death through the Fas-mediated extrinsic apoptosis pathway. What propels this apoptosis remains unclear, although oxysterols have been reported to be key players in neurodegeneration. In our study of CHPV-infected brain samples, we observed over-expression of genes such as apolipoprotein E, Cyp46a1, Srebf-1 and Nsdhl. This backs up the hypothesis that CHPV replication demands cholesterol that is supplied by apolipoprotein E through low density lipid receptors, lipid metabolism being pivotal for viral replication. We were able to illustrate this with over-expression of low density lipid receptors in CHPV-infected neurons. An upsurge of cholesterol concentration has been observed in neurons, triggering the expression of Cyp46a1 enzyme and culminating into the conversion of cholesterol to 24(S)-hydroxycholesterol. Increased 24(S)-hydroxycholesterol concentration is toxic to neurons, propelling neuronal apoptosis through the Fas-mediated extrinsic apoptosis pathway. For the first time, perturbation of cholesterol homeostasis in brain is shown to be utilized by the viruses for both maturation and the release of its matured virions outside the cells for continuous neuropathogenesis.
Collapse
Affiliation(s)
- Sourish Ghosh
- National Brain Research Centre, Manesar, Haryana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
32
|
Paul R, Choudhury A, Borah A. Cholesterol - A putative endogenous contributor towards Parkinson's disease. Neurochem Int 2015; 90:125-33. [PMID: 26232622 DOI: 10.1016/j.neuint.2015.07.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/20/2023]
Abstract
Elevated levels of cholesterol and its metabolites (oxysterols) have been reported to be associated not only with several metabolic syndromes, but also become a prognostic risk factor of neurodegenerative diseases particularly Alzheimer's disease. The incidence and the prospect of Alzheimer's disease with respect to elevated levels of cholesterol have been studied extensively and reviewed earlier. Recently, several interesting findings have shown the occurrence of equivalent Parkinsonian pathologies in cellular neuronal models, mediated by oxysterols or excess exposure to cholesterol. In this regard, oxysterols are particular in causing alpha-synuclein aggregation and destruction of dopamine containing neurons in in vitro models, which is linked to their direct influence on oxidative stress provoking potency. Inspite of the significant in vitro reports, which suggest the relativeness of cholesterol or oxysterol towards Parkinsonism, several prospective clinical reports provided a negative or no correlation. However, few prospective clinical studies showed a positive correlation between plasma cholesterol and incidence of Parkinson's disease (PD). Also, few significant studies have convincingly demonstrated that high fat diet exacerbates parkinsonian pathologies, including loss of dopaminergic neurons and oxidative stress parameters in animal models of PD. The present review brings together all the neuropathological proceedings mediated by excess cholesterol or its metabolites in brain in the light of their contribution towards the onset of PD. Also we have reviewed the possibilities of cholesterol lowering efficacy of statin therapy, in reducing the occurrence of PD.
Collapse
Affiliation(s)
- Rajib Paul
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Amarendranath Choudhury
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| |
Collapse
|
33
|
A high-cholesterol diet enriched with polyphenols from Oriental plums (Prunus salicina) improves cognitive function and lowers brain cholesterol levels and neurodegenerative-related protein expression in mice. Br J Nutr 2015; 113:1550-7. [DOI: 10.1017/s0007114515000732] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ageing accompanied by a decline in cognitive performance may be a result of the long-term effects of oxidative stress on neurologic processes. It has been shown that high-cholesterol contents in the blood and brain may lead to the deposition of the β-amyloid (Aβ) protein in the brain, which damages brain cells. The present study was designed to observe the effect of polyphenol-rich Oriental plums on cognitive function and cerebral neurodegeneration-related protein expression in mice that were fed a high-cholesterol diet for 5 months. The study consisted of four groups: the control (Ctrl) group, which was fed the American Institute of Nutrition (AIN)-93M diet; the high cholesterol (HC) group, which was fed the AIN-93M diet with 5 % cholesterol; the high cholesterol+low Oriental plum (LOP) group, which was fed the AIN-93M diet with 5 % cholesterol and 2 % Oriental plum powder; and the high cholesterol+high Oriental plum (HOP) group, which was fed the AIN-93M diet with 5 % cholesterol and 5 % Oriental plum powder. Measurements of cognitive function were assessed using the Morris water maze, and the mRNA expression of cholesterol hydroxylase (Cyp46), Aβ and β-secretase 1 (BACE1) were analysed. The results showed that cholesterol concentrations in both the blood and the brain were significantly higher in the HC group than in the Ctrl and HOP groups at the end of the trial. The high-cholesterol diet per se produced significant cognitive deficits, which were accompanied by a significantly increased mRNA expression of Cyp46, BACE1, Aβ and 24-hydroxycholesterol in the brain cortex and hippocampus. However, all of these variables were non-significantly increased in the HOP group as compared to the Ctrl group. In conclusion, incorporating polyphenol-enriched Oriental plum into a high-cholesterol diet can ameliorate some of the symptoms of neurodegenerative conditions.
Collapse
|
34
|
Regassa A, Kim WK. Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics 2015; 16:91. [PMID: 25765115 PMCID: PMC4347561 DOI: 10.1186/s12864-015-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background 20(S)-hydroxycholesterol (20(S)) potentially reduces adipogenesis in mammalian cells. The role of this oxysterol and molecular mechanisms underlying the adipogenesis of preadipocytes from laying hens have not been investigated. This study was conducted to 1. Analyze genes differentially expressed between preadipocytes treated with an adipogenic cocktail (DMIOA) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 20 μg/mL insulin and 300 μM oleic acid (OA) and control cells and 2. Analyze genes differentially expressed between preadipocytes treated with DMIOA and those treated with DMIOA + 20(S) using Affymetrix GeneChip® Chicken Genome Arrays. Results In experiment one, where we compared the gene expression profile of non-treated (control) cells with those treated with DMIOA, out of 1,221 differentially expressed genes, 755 were over-expressed in control cells, and 466 were over-expressed in cells treated with DMIOA. In experiment two, where we compared the gene expression profile of DMIOA treated cells with those treated with DMIOA+20(S), out of 212 differentially expressed genes, 90 were over-expressed in cells treated with DMIOA, and 122 were over-expressed in those treated with DMIOA+20(S). Genes over-expressed in control cells compared to those treated with DMIOA include those involved in cell-to-cell signaling and interaction (IL6, CNN2, ITGB3), cellular assembly and organization (BMP6, IGF1, ACTB), and cell cycle (CD4, 9, 38). Genes over-expressed in DMIOA compared to control cells include those involved in cellular development (ADAM22, ADAMTS9, FIGF), lipid metabolism (FABP3, 4 and 5), and molecular transport (MAP3K8, PDK4, AGTR1). Genes over-expressed in cells treated with DMIOA compared with those treated with DMIOA+20(S) include those involved in lipid metabolism (ENPP2, DHCR7, DHCR24), molecular transport (FADS2, SLC6A2, CD36), and vitamin and mineral metabolism (BCMO1, AACS, AR). Genes over-expressed in cells treated with DMIOA+20(S) compared with those treated with DMIOA include those involved in cellular growth and proliferation (CD44, CDK6, IL1B), cellular development (ADORA2B, ATP6VOD2, TNFAIP3), and cell-to-cell signaling and interaction (VCAM1, SPON2, VLDLR). Conclusion We identified important adipogenic regulators and key pathways that would help to understand the molecular mechanism of the in vitro adipogenesis in laying hens and demonstrated that 20(S) is capable of suppressing DMIOA-induced adipogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Woo Kyun Kim
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada. .,Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, U.S.A.
| |
Collapse
|
35
|
Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 2014; 15:1036-52. [PMID: 25223281 DOI: 10.15252/embr.201439225] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Carlos G Dotti
- Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, Madrid, Spain
| |
Collapse
|
36
|
Testa G, Gamba P, Badilli U, Gargiulo S, Maina M, Guina T, Calfapietra S, Biasi F, Cavalli R, Poli G, Leonarduzzi G. Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 2014; 9:e96795. [PMID: 24802026 PMCID: PMC4011877 DOI: 10.1371/journal.pone.0096795] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Ulya Badilli
- Department of Pharmaceutical Technology, University of Ankara, Ankara, Turkey
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Marco Maina
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Tina Guina
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Simone Calfapietra
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
- * E-mail:
| |
Collapse
|
37
|
Moon JY, Shin HJ, Son HH, Lee J, Jung U, Jo SK, Kim HS, Kwon KH, Park KH, Chung BC, Choi MH. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice. J Steroid Biochem Mol Biol 2014; 141:52-9. [PMID: 24462676 DOI: 10.1016/j.jsbmb.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/08/2014] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Hee-June Shin
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun-Hwa Son
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jeongae Lee
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Sung-Kee Jo
- Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeonbuk 580-185, Republic of Korea
| | - Hyun Sik Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyung-Hoon Kwon
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu Hwan Park
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bong Chul Chung
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Man Ho Choi
- Future Convergence Research Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
| |
Collapse
|
38
|
La Marca V, Spagnuolo MS, Cigliano L, Marasco D, Abrescia P. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells. J Neurochem 2014; 130:97-108. [DOI: 10.1111/jnc.12713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Valeria La Marca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
| | - Maria Stefania Spagnuolo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo; Consiglio Nazionale delle Ricerche; Napoli Italia
| | - Luisa Cigliano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| | - Daniela Marasco
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
- Dipartimento di Farmacia; Università di Napoli Federico II; Napoli Italia
| | - Paolo Abrescia
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| |
Collapse
|
39
|
Noguchi N, Saito Y, Urano Y. Diverse functions of 24(S)-hydroxycholesterol in the brain. Biochem Biophys Res Commun 2014; 446:692-6. [PMID: 24530911 DOI: 10.1016/j.bbrc.2014.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
24(S)-hydroxycholesterol (24S-OHC) which is enzymatically produced in the brain plays important physiological roles in maintaining brain cholesterol homeostasis. We found that 24S-OHC at sub-lethal concentrations down-regulated amyloid precursor protein (APP) trafficking via enhancement of the complex formation of APP with up-regulated glucose-regulated protein 78, an endoplasmic reticulum chaperone. In accordance with this mechanism, 24S-OHC suppressed amyloid-β production in human neuroblastoma SH-SY5Y cells. Furthermore, 24S-OHC at sub-lethal concentrations induced adaptive responses via transcriptional activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against the forthcoming oxidative stress induced by 7-ketocholesterol. On the other hand, we found that high concentrations of 24S-OHC induced apoptosis in T-lymphoma Jurkat cells which endogenously expressed caspase-8, and induced necroptosis - a form of programmed necrosis - in neuronal SH-SY5Y cells which expressed no caspase-8. In this Article, we show the diverse functions of 24S-OHC and consider the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan.
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Yasuomi Urano
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
40
|
Induction of apoptosis and necroptosis by 24(S)-hydroxycholesterol is dependent on activity of acyl-CoA:cholesterol acyltransferase 1. Cell Death Dis 2014; 5:e990. [PMID: 24407243 PMCID: PMC4040651 DOI: 10.1038/cddis.2013.524] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023]
Abstract
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.
Collapse
|
41
|
Okabe A, Urano Y, Itoh S, Suda N, Kotani R, Nishimura Y, Saito Y, Noguchi N. Adaptive responses induced by 24S-hydroxycholesterol through liver X receptor pathway reduce 7-ketocholesterol-caused neuronal cell death. Redox Biol 2013; 2:28-35. [PMID: 24371802 PMCID: PMC3871289 DOI: 10.1016/j.redox.2013.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/15/2013] [Indexed: 02/05/2023] Open
Abstract
Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive responses induced by brain-specific oxysterol 24SOHC in human neuroblastoma SH-SY5Y cells. Cells treated with 24SOHC at sub-lethal concentrations showed significant reduction in cell death induced by subsequent treatment with 7-ketocholesterol (7KC) in both undifferentiated and retinoic acid-differentiated SH-SY5Y cells. These adaptive responses were also induced by other oxysterols such as 25-hydroxycholesterol and 27-hydroxycholesterol which are known to be ligands of liver X receptor (LXR). Co-treatment of 24SOHC with 9-cis retinoic acid, a retinoid X receptor ligand, enhanced the adaptive responses. Knockdown of LXRβ by siRNA diminished the adaptive responses induced by 24SOHC almost completely. The treatment with 24SOHC induced the expression of LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1). The 24SOHC-induced adaptive responses were significantly attenuated by siRNA for ABCG1 but not by siRNA for ABCA1. Taken together, these results strongly suggest that 24SOHC at sub-lethal concentrations induces adaptive responses via transcriptional activation of LXR signaling pathway, thereby protecting neuronal cells from subsequent 7KC-induced cytotoxicity. 24SOHC induces adaptive responses against 7KC-induced cell death in neuronal cells. Co-treatment of 24SOHC with 9cRA, an RXR ligand enhances adaptive responses. Knockdown of LXRβ suppresses 24SOHC-induced adaptive responses. ABCG1 is involved in LXR-mediated adaptive responses by 24SOHC.
Collapse
Key Words
- 24S-hydroxycholesterol
- 24SOHC, 24S-hydroxycholesterol
- 7-ketocholesterol
- 7KC, 7-ketocholesterol
- 9cRA, 9-cis retinoic acid
- ABCA1, ATP-binding cassette transporter A1
- ABCG1, ATP-binding cassette transporter G1
- AD, Alzheimer's disease
- ATP-binding cassette transporter G1
- Adaptive responses
- CYP46A1, cholesterol 24-hydroxylase
- Cell death
- FITC, fluorescein isothiocyanate
- HDL, high-density lipoprotein
- LDH, lactate dehydrogenase
- LXR, liver X receptor
- Liver X receptor
- MAP2, microtubule-associated protein 2
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NC, negative control
- PI, propidium iodide
- RXR, retinoid X receptor
- atRA, all-trans retinoic acid
Collapse
Affiliation(s)
| | - Yasuomi Urano
- Corresponding authors. Tel.: +81 774 65 6260; fax: +81 774 65 6262.
| | | | | | | | | | | | - Noriko Noguchi
- Corresponding authors. Tel.: +81 774 65 6260; fax: +81 774 65 6262.
| |
Collapse
|
42
|
Popp J, Meichsner S, Kölsch H, Lewczuk P, Maier W, Kornhuber J, Jessen F, Lütjohann D. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. Biochem Pharmacol 2013; 86:37-42. [DOI: 10.1016/j.bcp.2012.12.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
|
43
|
Leoni V, Caccia C. Potential diagnostic applications of side chain oxysterols analysis in plasma and cerebrospinal fluid. Biochem Pharmacol 2013; 86:26-36. [DOI: 10.1016/j.bcp.2013.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/20/2022]
|
44
|
Matsuda A, Nagao K, Matsuo M, Kioka N, Ueda K. 24(S)-hydroxycholesterol is actively eliminated from neuronal cells by ABCA1. J Neurochem 2013; 126:93-101. [PMID: 23600914 DOI: 10.1111/jnc.12275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/13/2013] [Accepted: 04/13/2013] [Indexed: 02/05/2023]
Abstract
High cholesterol turnover catalyzed by cholesterol 24-hydroxylase is essential for neural functions, especially learning. Because 24(S)-hydroxycholesterol (24-OHC), produced by 24-hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH-SY5Y neuron-like cells as a model, we examined whether 24-OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24-OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24-OHC efflux was stimulated in the presence of high-density lipoprotein (HDL), whereas apolipoprotein A-I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24-OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A-I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24-OHC. These results suggest that ABCA1 actively eliminates 24-OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.
Collapse
Affiliation(s)
- Akihiro Matsuda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, Japan
| | | | | | | | | |
Collapse
|
45
|
Oxysterols modulate calcium signalling in the A7r5 aortic smooth muscle cell-line. Biochimie 2013; 95:568-77. [DOI: 10.1016/j.biochi.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022]
|
46
|
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2012; 95:595-612. [PMID: 23041502 DOI: 10.1016/j.biochi.2012.09.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Abstract
Brain cholesterol is mainly involved in the cell membrane structure, in signal transduction, neurotransmitter release, synaptogenesis and membrane trafficking. Impairment of brain cholesterol metabolism was described in neurodegenerative diseases, such as Multiple Sclerosis, Alzheimer and Huntington Diseases. Since the blood-brain barrier efficiently prevents cholesterol uptake from the circulation into the brain, de novo synthesis is responsible for almost all cholesterol present there. Cholesterol is converted into 24S-hydroxycholesterol (24OHC) by cholesterol 24-hydroxylase (CYP46A1) expressed in neural cells. Plasma concentration of 24OHC depends upon the balance between cerebral production and hepatic elimination and is related to the number of metabolically active neurons in the brain. Factors affecting brain cholesterol turnover and liver elimination of oxysterols, together with the metabolism of plasma lipoproteins, genetic background, nutrition and lifestyle habits were found to significantly affect its plasma levels. Either increased or decreased plasma 24OHC concentrations were described in patients with neurodegenerative diseases. A group of evidence suggests that reduced levels of 24OHC are related to the loss of metabolically active cells and the degree of brain atrophy. Inflammation, dysfunction of BBB, increased cholesterol turnover might counteract this tendency resulting in increased levels or, in some cases, in unsignificant changes. The study of plasma 24OHC is likely to offer an insight about brain cholesterol turnover with a limited diagnostic power.
Collapse
Affiliation(s)
- Valerio Leoni
- Laboratory of Clinical Pathology and Medical Genetics, Foundation IRCCS Institute of Neurology Carlo Besta, Milan, Italy.
| | | |
Collapse
|
47
|
Roberg-Larsen H, Strand MF, Grimsmo A, Olsen PA, Dembinski JL, Rise F, Lundanes E, Greibrokk T, Krauss S, Wilson SR. High sensitivity measurements of active oxysterols with automated filtration/filter backflush-solid phase extraction-liquid chromatography–mass spectrometry. J Chromatogr A 2012; 1255:291-7. [DOI: 10.1016/j.chroma.2012.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/29/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
|
48
|
Gamba P, Leonarduzzi G, Tamagno E, Guglielmotto M, Testa G, Sottero B, Gargiulo S, Biasi F, Mauro A, Viña J, Poli G. Interaction between 24-hydroxycholesterol, oxidative stress, and amyloid-β in amplifying neuronal damage in Alzheimer's disease: three partners in crime. Aging Cell 2011; 10:403-17. [PMID: 21272192 DOI: 10.1111/j.1474-9726.2011.00681.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All three cholesterol oxidation products implicated thus far in the pathogenesis of Alzheimer's disease, 7β-hydroxycholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol, markedly enhance the binding of amyloid-beta (Aβ) to human differentiated neuronal cell lines (SK-N-BE and NT-2) by up-regulating net expression and synthesis of CD36 and β1-integrin receptors. However, only 24-hydroxycholesterol markedly potentiates the pro-apoptotic and pro-necrogenic effects of Aβ(1-42) peptide on these cells: 7β-hydroxycholesterol and 27-hydroxycholesterol, like unoxidized cholesterol, show no potentiating effect. This peculiar behavior of 24-hydroxycholesterol at physiologic concentrations (1 μm) depends on its strong enhancement of the intracellular generation of NADPH oxidase-dependent reactive oxygen species (ROS), mainly H(2) O(2) , and the consequent impairment of neuronal cell redox equilibrium, measured in terms of the GSSG/GSH ratio. Cell incubation with antioxidants quercetin or genistein prevents 24-hydroxycholesterol's pro-oxidant effect and potentiation of Aβ-induced necrosis and apoptosis. Thus, the presence of 24-hydroxycholesterol in the close vicinity of amyloid plaques appears to enhance the adhesion of large amounts of Aβ to the plasma membrane of neurons and then to amplify the neurotoxic action of Aβ by locally increasing ROS steady-state levels. This report further supports a primary involvement of altered brain cholesterol metabolism in the complex pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, Faculty of Medicine San Luigi Gonzaga, University of Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamanaka K, Saito Y, Yamamori T, Urano Y, Noguchi N. 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis. J Biol Chem 2011; 286:24666-73. [PMID: 21613228 DOI: 10.1074/jbc.m111.236273] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.
Collapse
Affiliation(s)
- Kazunori Yamanaka
- Systems Life Sciences, Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Kyoto 610-0394, Japan
| | | | | | | | | |
Collapse
|
50
|
Mackrill JJ. Oxysterols and calcium signal transduction. Chem Phys Lipids 2011; 164:488-95. [PMID: 21513705 DOI: 10.1016/j.chemphyslip.2011.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Ionised calcium (Ca(2+)) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca(2+) can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca(2+) channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca(2+) concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca(2+) signal transduction, with these longer-term alterations in cellular Ca(2+) homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca(2+) signalling. This review examines the ways in which oxysterols could influence Ca(2+) signal transduction and the potential roles of this in health and disease.
Collapse
Affiliation(s)
- John J Mackrill
- Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|