1
|
Henn D, Lensink AV, Botha CJ. Ultrastructural changes in cardiac and skeletal myoblasts following in vitro exposure to monensin, salinomycin, and lasalocid. PLoS One 2024; 19:e0311046. [PMID: 39321180 PMCID: PMC11423986 DOI: 10.1371/journal.pone.0311046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Carboxylic ionophores are polyether antibiotics used in production animals as feed additives, with a wide range of benefits. However, ionophore toxicosis often occurs as a result of food mixing errors or extra-label use and primarily targets the cardiac and skeletal muscles of livestock. The ultrastructural changes induced by 48 hours of exposure to 0.1 μM monensin, salinomycin, and lasalocid in cardiac (H9c2) and skeletal (L6) myoblasts in vitro were investigated using transmission electron microscopy and scanning electron microscopy. Ionophore exposure resulted in condensed mitochondria, dilated Golgi apparatus, and cytoplasmic vacuolization which appeared as indentations on the myoblast surface. Ultrastructurally, it appears that both apoptotic and necrotic myoblasts were present after exposure to the ionophores. Apoptotic myoblasts contained condensed chromatin and apoptotic bodies budding from their surface. Necrotic myoblasts had disrupted plasma membranes and damaged cytoplasmic organelles. Of the three ionophores, monensin induced the most alterations in myoblasts of both cell lines.
Collapse
MESH Headings
- Monensin/pharmacology
- Pyrans/pharmacology
- Animals
- Myoblasts, Skeletal/drug effects
- Myoblasts, Skeletal/ultrastructure
- Myoblasts, Skeletal/metabolism
- Lasalocid/toxicity
- Cell Line
- Ionophores/pharmacology
- Myoblasts, Cardiac/drug effects
- Myoblasts, Cardiac/ultrastructure
- Myoblasts, Cardiac/metabolism
- Rats
- Apoptosis/drug effects
- Necrosis/chemically induced
- Microscopy, Electron, Transmission
- Microscopy, Electron, Scanning
- Polyether Polyketides
Collapse
Affiliation(s)
- Danielle Henn
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Antonia V Lensink
- Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christo J Botha
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
3
|
Jadiya P, Kolmetzky DW, Tomar D, Thomas M, Cohen HM, Khaledi S, Garbincius JF, Hildebrand AN, Elrod JW. Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561889. [PMID: 37904949 PMCID: PMC10614731 DOI: 10.1101/2023.10.11.561889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid beta, intracellular neurofibrillary tangles, synaptic dysfunction, and neuronal cell death. These phenotypes correlate with and are linked to elevated neuronal intracellular calcium ( i Ca 2+ ) levels. Recently, our group reported that mitochondrial calcium ( m Ca 2+ ) overload, due to loss of m Ca 2+ efflux capacity, contributes to AD development and progression. We also noted proteomic remodeling of the mitochondrial calcium uniporter channel (mtCU) in sporadic AD brain samples, suggestive of altered m Ca 2+ uptake in AD. Since the mtCU is the primary mechanism for Ca 2+ uptake into the mitochondrial matrix, inhibition of the mtCU has the potential to reduce or prevent m Ca 2+ overload in AD. Here, we report that neuronal-specific loss of mtCU-dependent m Ca 2+ uptake in the 3xTg-AD mouse model of AD reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline. Knockdown of Mcu in a cellular model of AD significantly decreased matrix Ca 2+ content, oxidative stress, and cell death. These results suggest that inhibition of neuronal m Ca 2+ uptake is a novel therapeutic target to impede AD progression.
Collapse
|
4
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
The stallion sperm acrosome: Considerations from a research and clinical perspective. Theriogenology 2023; 196:121-149. [PMID: 36413868 DOI: 10.1016/j.theriogenology.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
During the fertilization process, the interaction between the sperm and the oocyte is mediated by a process known as acrosomal exocytosis (AE). Although the role of the sperm acrosome on fertilization has been studied extensively over the last 70 years, little is known about the molecular mechanisms that govern acrosomal function, particularly in species other than mice or humans. Even though subfertility due to acrosomal dysfunction is less common in large animals than in humans, the evaluation of sperm acrosomal function should be considered not only as a complementary but a routine test when individuals are selected for breeding potential. This certainly holds true for stallions, which might display lower levels of fertility in the face of "acceptable" sperm quality parameters determined by conventional sperm assays. Nowadays, the use of high throughput technologies such as flow cytometry or mass spectrometry-based proteomic analysis is commonplace in the research arena. Such techniques can also be implemented in clinical scenarios of males with "idiopathic" subfertility. The current review focuses on the sperm acrosome, with particular emphasis on the stallion. We aim to describe the physiological events that lead to the acrosome formation within the testis, the role of very specific acrosomal proteins during AE, the methods to study the occurrence of AE under in vitro conditions, and the potential use of molecular biology techniques to discover new markers of acrosomal function and subfertility associated with acrosomal dysfunction in stallions.
Collapse
|
6
|
Almikhlafi MA, Karami MM, Jana A, Alqurashi TM, Majrashi M, Alghamdi BS, Ashraf GM. Mitochondrial Medicine: A Promising Therapeutic Option Against Various Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:1165-1183. [PMID: 36043795 PMCID: PMC10286591 DOI: 10.2174/1570159x20666220830112408] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.
Collapse
Affiliation(s)
- Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohammed M. Karami
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Thamer M. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Hernández-Avilés C, Castaneda C, Raudsepp T, Varner DD, Love CC. The role of impaired acrosomal exocytosis (IAE) in stallion subfertility: A retrospective analysis of the clinical condition, and an update on its diagnosis by high throughput technologies. Theriogenology 2022; 186:40-49. [DOI: 10.1016/j.theriogenology.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
8
|
Sindhu RK, Kaur P, Kaur P, Singh H, Batiha GES, Verma I. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24458-24477. [PMID: 35064486 DOI: 10.1007/s11356-021-17667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington's disease, Alzheimer's disease, and Parkinson's disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson's disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Inderjeet Verma
- Department of Pharmacy Practice, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|
9
|
Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022; 11:cells11040706. [PMID: 35203354 PMCID: PMC8869783 DOI: 10.3390/cells11040706] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disorders are currently incurable devastating diseases which are characterized by the slow and progressive loss of neurons in specific brain regions. Progress in the investigation of the mechanisms of these disorders helped to identify a number of genes associated with familial forms of these diseases and a number of toxins and risk factors which trigger sporadic and toxic forms of these diseases. Recently, some similarities in the mechanisms of neurodegenerative diseases were identified, including the involvement of mitochondria, oxidative stress, and the abnormality of Ca2+ signaling in neurons and astrocytes. Thus, mitochondria produce reactive oxygen species during metabolism which play a further role in redox signaling, but this may also act as an additional trigger for abnormal mitochondrial calcium handling, resulting in mitochondrial calcium overload. Combinations of these factors can be the trigger of neuronal cell death in some pathologies. Here, we review the latest literature on the crosstalk of reactive oxygen species and Ca2+ in brain mitochondria in physiology and beyond, considering how changes in mitochondrial metabolism or redox signaling can convert this interaction into a pathological event.
Collapse
|
10
|
Schlichte SL, Pekas EJ, Bruett TJ, Kosmacek EA, Hackfort BT, Rasmussen JM, Patel KP, Park SY, Oberley-Deegan RE, Zimmerman MC. Sympathoinhibition and Vasodilation Contribute to the Acute Hypotensive Response of the Superoxide Dismutase Mimic, MnTnBuOE-2-PyP 5+, in Hypertensive Animals. ADVANCES IN REDOX RESEARCH 2021; 3:100016. [PMID: 38831957 PMCID: PMC11146686 DOI: 10.1016/j.arres.2021.100016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The pathogenesis of hypertension has been linked to excessive levels of reactive oxygen species (ROS), particularly superoxide (O2•-), in multiple tissues and organ systems. Overexpression of superoxide dismutase (SOD) to scavenge O2•- has been shown to decrease blood pressure in hypertensive animals. We have previously shown that MnTnBuOE-2-PyP5+ (BuOE), a manganese porphyrin SOD mimic currently in clinical trials as a normal tissue protector for cancer patients undergoing radiation therapy, can scavenge O2•- and acutely decrease normotensive blood pressures. Herein, we hypothesized that BuOE decreases hypertensive blood pressures. Using angiotensin II (AngII)-hypertensive mice, we demonstrate that BuOE administered both intraperitoneally and intravenously (IV) acutely decreases elevated blood pressure. Further investigation using renal sympathetic nerve recordings in spontaneously hypertensive rats (SHRs) reveals that immediately following IV injection of BuOE, blood pressure and renal sympathetic nerve activity (RSNA) decrease. BuOE also induces dose-dependent vasodilation of femoral arteries from AngII-hypertensive mice, a response that is mediated, at least in part, by nitric oxide, as demonstrated by ex vivo video myography. We confirmed this vasodilation in vivo using doppler imaging of the superior mesenteric artery in AngII-hypertensive mice. Together, these data demonstrate that BuOE acutely decreases RSNA and induces vasodilation, which likely contribute to its ability to rapidly decrease hypertensive blood pressure.
Collapse
Affiliation(s)
- Sarah L. Schlichte
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE
| | - Taylor J. Bruett
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Elizabeth A. Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Bryan T. Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Jordan M. Rasmussen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE
| | | | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
11
|
Gupta S, Khan A, Vishwas S, Gulati M, Gurjeet Singh T, Dua K, Kumar Singh S, Najda A, Sayed AA, Almeer R, Abdel-Daim MM. Demethyleneberberine: A possible treatment for Huntington's disease. Med Hypotheses 2021; 153:110639. [PMID: 34229236 DOI: 10.1016/j.mehy.2021.110639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Huntington disease (HD) is a type of neurodegenerative disease that is characterized by presence of multiple repeats (more than 36) of cytosine-adenine-guanine (CAG) trinucleotides and mutated huntingtin (mHtt). This can further lead to oxidative stress, enhancement in level of ROS/RNS, mitochondrial dysfunction and neuroinflammations. Many clinical and preclinical trials have been conducted so far for the effective treatment of HD however, none of the drugs has shown complete relief. The regeneration of neurons is a very complicated process and associated with multiple pathological pathways. Hence, finding a unique solution using single drug that could act on multiple pathological pathways is really cumbersome. In the proposed hypothesis the use of demethyleneberberine (DMB) as a potential anti-HD agent has been explained. It is a metabolite of berberine and reported to act on multiple mechanistic pathways that are responsible for HD. Present article highlights new mechanistic insights through which DMB inhibits ROS/RNS, oxidative stress, mitochondrial dysfunctions and neuroinflammation such as NFκB, TNF-α, IL-6 and IL-8, cytokinin. Further its action on cellular apoptosis and neuronal cell death are also reported.
Collapse
Affiliation(s)
- Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Arzoo Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India.
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
12
|
Soman SK, Bazała M, Keatinge M, Bandmann O, Kuznicki J. Restriction of mitochondrial calcium overload by mcu inactivation renders a neuroprotective effect in zebrafish models of Parkinson's disease. Biol Open 2019; 8:bio044347. [PMID: 31548178 PMCID: PMC6826286 DOI: 10.1242/bio.044347] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
The loss of dopaminergic neurons (DA) is a pathological hallmark of sporadic and familial forms of Parkinson's disease (PD). We have previously shown that inhibiting mitochondrial calcium uniporter (mcu) using morpholinos can rescue DA neurons in the PTEN-induced putative kinase 1 (pink1)-/- zebrafish model of PD. In this article, we show results from our studies in mcu knockout zebrafish, which was generated using the CRISPR/Cas9 system. Functional assays confirmed impaired mitochondrial calcium influx in mcu -/- zebrafish. We also used in vivo calcium imaging and fluorescent assays in purified mitochondria to investigate mitochondrial calcium dynamics in a pink1 -/- zebrafish model of PD. Mitochondrial morphology was evaluated in DA neurons and muscle fibers using immunolabeling and transgenic lines, respectively. We observed diminished mitochondrial area in DA neurons of pink1 -/- zebrafish, while deletion of mcu restored mitochondrial area. In contrast, the mitochondrial volume in muscle fibers was not restored after inactivation of mcu in pink1 -/- zebrafish. Mitochondrial calcium overload coupled with depolarization of mitochondrial membrane potential leads to mitochondrial dysfunction in the pink1 -/- zebrafish model of PD. We used in situ hybridization and immunohistochemical labeling of DA neurons to evaluate the effect of mcu deletion on DA neuronal clusters in the ventral telencephalon of zebrafish brain. We show that DA neurons are rescued after deletion of mcu in pink1 -/- and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) zebrafish model of PD. Thus, inactivation of mcu is protective in both genetic and chemical models of PD. Our data reveal that regulating mcu function could be an effective therapeutic target in PD pathology.
Collapse
Affiliation(s)
- Smijin K Soman
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Michal Bazała
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Marcus Keatinge
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Oliver Bandmann
- Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| |
Collapse
|
13
|
Essa MM, Moghadas M, Ba-Omar T, Walid Qoronfleh M, Guillemin GJ, Manivasagam T, Justin-Thenmozhi A, Ray B, Bhat A, Chidambaram SB, Fernandes AJ, Song BJ, Akbar M. Protective Effects of Antioxidants in Huntington’s Disease: an Extensive Review. Neurotox Res 2019; 35:739-774. [DOI: 10.1007/s12640-018-9989-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023]
|
14
|
Ahmad W, Ebert PR. 5-Methoxyindole-2-carboxylic acid (MICA) suppresses Aβ-mediated pathology in C. elegans. Exp Gerontol 2018; 108:215-225. [DOI: 10.1016/j.exger.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 12/22/2022]
|
15
|
Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, Essa MM, Guillemin GJ, Kandasamy M. Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3279061. [PMID: 28168008 PMCID: PMC5266860 DOI: 10.1155/2017/3279061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023]
Abstract
Huntington's disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD.
Collapse
Affiliation(s)
- Thirunavukkarasu Velusamy
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- DBT Ramalingaswami Re-Entry Fellowship Programme, Department of Biotechnology (DBT), New Delhi, India
| | - Archana S. Panneerselvam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meera Purushottam
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- UGC-Faculty Recharge Program (UGC-FRP), University Grant Commission, New Delhi, India
| |
Collapse
|
16
|
Calcium-induced apoptosis of developing cerebellar granule neurons depends causally on NGFI-B. Int J Dev Neurosci 2016; 55:82-90. [PMID: 27769911 DOI: 10.1016/j.ijdevneu.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/23/2022] Open
Abstract
Immediate early gene nerve growth factor-induced clone B (NGFI-B), a nuclear receptor important for differentiation and apoptosis, is expressed in mice and rat cerebellum from an early stage of postnatal development. Following apoptotic stimuli NGFI-B translocates to mitochondria to initiate cell death processes. Controlled cell death is critical for correct cerebellar development. Immunohistochemical analysis of NGFI-B in sections of mice cerebella showed NGFI-B to be expressed in granule neurons in vivo at a time (P8-11) when apoptosis is known to occur. The importance of NGFI-B for apoptosis of cultured rat cerebellar granule neurons was investigated by inducing apoptosis with calcium ionophore A23187 (CaI, 0.1μM). Imaging studies of gfp-tagged NGFI-B confirmed that mitochondrial translocation of NGFI-B occurred following treatment with CaI and was reduced by addition of 9-cis-retinoic acid (1μM), a retinoid X receptor (RXR) agonist that prevents dimerization of RXR and NGFI-B that is known to occur before translocation. Consequently, 9-cis-retinoic acid partly reduced cell death. To address the causality of NGFI-B in apoptosis further, knock-down by siRNA was performed and it removed 85% of the NGFI-B protein. This resulted in a complete inhibition of apoptosis after CaI exposure. Together these findings suggest that NGFI-B plays a role in controlling correct cerebellar development.
Collapse
|
17
|
Joseph Sahaya Rajan J, Chinnappan Santiago T, Singaravel R, Ignacimuthu S. Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid. Biotechnol Lett 2015; 38:689-700. [DOI: 10.1007/s10529-015-2025-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
|
18
|
4-hydroxy tempo improves mitochondrial and neurobehavioral deficits in experimental model of Huntington's disease. Synapse 2015; 69:128-38. [DOI: 10.1002/syn.21793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/27/2014] [Indexed: 11/07/2022]
|
19
|
Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:72-83. [PMID: 25173805 DOI: 10.1016/j.nbd.2014.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/28/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics: 1) neuronal loss in motor, sensory or cognitive systems, leading to cognitive and motor decline; and 2) a strong correlation between metabolic changes and neurodegeneration. In order to treat them, a better understanding of their complexity is required: it is necessary to interpret the neuronal damage in light of the metabolic changes, and to find the disrupted link between the peripheral organs governing energy metabolism and the CNS. This review is an attempt to present ghrelin as part of molecular regulatory interface between energy metabolism, neuroendocrine and neurodegenerative processes. Ghrelin takes part in lipid and glucose metabolism, in higher brain functions such as sleep-wake state, learning and memory consolidation; it influences mitochondrial respiration and shows neuroprotective effect. All these make ghrelin an attractive target for development of biomarkers or therapeutics for prevention or treatment of disorders, in which cell protection and recruitment of new neurons or synapses are needed.
Collapse
|
20
|
Duan W, Jiang M, Jin J. Metabolism in HD: still a relevant mechanism? Mov Disord 2014; 29:1366-74. [PMID: 25124273 DOI: 10.1002/mds.25992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022] Open
Abstract
The polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of Huntington's disease (HD). Although the underlying mechanisms by which mutant huntingtin causes neuronal dysfunction and degeneration have not been fully elucidated, compelling evidence suggests that mitochondrial dysfunction and compromised energy metabolism are key players in HD pathogenesis. Longitudinal studies of HD subjects have shown reductions in glucose utilization before the disease clinical onset. Preferential striatal neurodegeneration, a hallmark of HD pathogenesis, also has been associated with interrupted energy metabolism. Data from genetic HD models indicate that mutant huntingtin disrupts mitochondrial bioenergetics and prevents adenosine triphosphate (ATP) generation, implying altered energy metabolism as an important component of HD pathogenesis. Here we revisit the evidence of abnormal energy metabolism in the central nervous system of HD patients, review our current understanding of the molecular mechanisms underlying abnormal metabolism induced by mutant huntingtin, and discuss the promising therapeutic development by halting abnormal metabolism in HD.
Collapse
Affiliation(s)
- Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
21
|
An ursolic acid-enriched extract of Cynomorium songaricum protects against carbon tetrachloride hepatotoxicity and gentamicin nephrotoxicity in rats possibly through a mitochondrial pathway: A comparison with ursolic acid. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
22
|
Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington's disease. Neuromolecular Med 2013; 16:106-18. [PMID: 24008671 DOI: 10.1007/s12017-013-8261-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/16/2013] [Indexed: 12/13/2022]
Abstract
Till date, an exact causative pathway responsible for neurodegeneration in Huntington's disease (HD) remains elusive; however, mitochondrial dysfunction appears to play an important role in HD pathogenesis. Therefore, strategies to attenuate mitochondrial impairments could provide a potential therapeutic intervention. In the present study, we used curcumin encapsulated solid lipid nanoparticles (C-SLNs) to ameliorate 3-nitropropionic acid (3-NP)-induced HD in rats. Results of MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and succinate dehydrogenase (SDH) staining of striatum revealed a marked decrease in Complex II activity. However, C-SLN-treated animals showed significant increase in the activity of mitochondrial complexes and cytochrome levels. C-SLNs also restored the glutathione levels and superoxide dismutase activity. Moreover, significant reduction in mitochondrial swelling, lipid peroxidation, protein carbonyls and reactive oxygen species was observed in rats treated with C-SLNs. Quantitative PCR and Western blot results revealed the activation of nuclear factor-erythroid 2 antioxidant pathway after C-SLNs administration in 3-NP-treated animals. In addition, C-SLN-treated rats showed significant improvement in neuromotor coordination when compared with 3-NP-treated rats. Thus, the results of this study suggest that C-SLNs administration might be a promising therapeutic intervention to ameliorate mitochondrial dysfunctions in HD.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India,
| | | | | | | | | | | |
Collapse
|
23
|
Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2013; 33:837-50. [PMID: 23812758 DOI: 10.1007/s10571-013-9950-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023]
Abstract
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer's disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- D-fructofuranosyl (2-2) β- D-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10-40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25-35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25-35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25-35-induced increases in [Ca(2+)] i . Furthermore, Bajijiasu reversed Aβ25-35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25-35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.
Collapse
Affiliation(s)
- Di-Ling Chen
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Feng J, Zhu P, Zhao Z. Ketamine Inhibits Calcium Elevation and Hydroxyl Radical and Nitric Oxide Production in Lipopolysaccharide-Stimulated NR8383 Alveolar Macrophages. Inflammation 2013; 36:1094-100. [DOI: 10.1007/s10753-013-9642-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Johri A, Beal MF. Antioxidants in Huntington's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:664-74. [PMID: 22138129 DOI: 10.1016/j.bbadis.2011.11.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a prototypical neurodegenerative disease in which there is selective neuronal degeneration, which leads to progressive disability, manifesting itself as a movement disorder, with both psychiatric and cognitive impairment. The disease is caused by a cytosine-adenine-guanine (CAG) repeat expansion in the huntingtin gene, which causes an expanded polyglutamine repeat in the huntingtin protein, resulting in a protein with a novel gain of function. The mutant huntingtin protein causes neuronal dysfunction and eventual cell death in which transcriptional impairment, excitotoxicity, oxidative damage, inflammation, apoptosis and mitochondrial dysfunction are all implicated. A critical transcriptional impairment may be impaired expression and function of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a master co-regulator of mitochondrial biogenesis and expression of antioxidant enzymes. A deficiency of PGC-1α leads to increased vulnerability to oxidative stress and to striatal degeneration. The extent and severity of the oxidative damage in HD are features well recognized but perhaps under-appreciated. Oxidative damage occurs to lipids, proteins and deoxyribonucleic acid (DNA), and it has been suggested that the latter may contribute to CAG repeat expansion during DNA repair [1]. A marked elevation of oxidized DNA bases occurs in patients' plasma, which may provide a biomarker of disease progression. Antioxidants are effective in slowing disease progression in transgenic mouse models of HD, and show promise in human clinical trials. Strategies to transcriptionally increase expression of antioxidant enzymes by modulating the Nrf-2/ARE pathway, or by increasing expression of PGC-1α hold great promise for developing new treatments to slow or halt the progression of HD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Ashu Johri
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10065, USA.
| | | |
Collapse
|
26
|
Fanaei H, Keshtgar S, Bahmanpour S, Ghannadi A, Kazeroni M. Beneficial Effects of α-Tocopherol Against Intracellular Calcium Overload in Human Sperm. Reprod Sci 2011; 18:978-82. [DOI: 10.1177/1933719111401656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hamed Fanaei
- Medical school, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sara Keshtgar
- Medical school, Shiraz University of medical Sciences, Shiraz, Iran
| | | | | | | |
Collapse
|
27
|
Ma MT, Yeo JF, Farooqui AA, Ong WY. Role of Calcium Independent Phospholipase A2 in Maintaining Mitochondrial Membrane Potential and Preventing Excessive Exocytosis in PC12 Cells. Neurochem Res 2010; 36:347-54. [DOI: 10.1007/s11064-010-0340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
28
|
Abstract
Mitochondrial oxidative stress has been reported as the result of respiratory complex anomalies, genetic defects, or insufficient oxygen or glucose supply. Although Ca(2+) has no direct effect on respiratory chain function or oxidation/reduction process, mitochondrial Ca(2+) overload can lead to reactive oxygen species (ROS) increase. Even though Ca(2+) is well known for its role as crucial second messenger in modulating many cellular physiological functions, Ca(2+) overload is detrimental to mitochondrial function and may present as an important cause of mitochondrial ROS generation. Possible mechanisms include Ca(2+) stimulated increase of metabolic rate, Ca(2+) stimulated nitric oxide production, Ca(2+) induced cytochrome c dissociation, Ca(2+) induced cardiolipin peroxidation, Ca(2+) induced mitochondrial permeability transition pore opening with release of cytochrome c and GSH-antioxidative enzymes, and Ca(2+)-calmodulin dependent protein kinases activation. Different mechanisms may exist under different mitochondrial preparations (isolated mitochondria vs. mitochondria in intact cells), tissue sources, animal species, or inhibitors used. Furthermore, mitochondrial ROS rise can modulate Ca(2+) dynamics and augment Ca(2+) surge. The reciprocal interactions between Ca(2+) induced ROS increase and ROS modulated Ca(2+) upsurge may cause a feedforward, self-amplified loop createing cellular damage far beyond direct Ca(2+) induced damage.
Collapse
Affiliation(s)
- Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital at Kee-Lung, Kee-Lung, Taiwan
| | | |
Collapse
|
29
|
Ma H, Quan F, Chen D, Zhang B, Zhang Y. Alterations in mitochondrial function and spermatozoal motility in goat spermatozoa following incubation with a human lysozyme plasmid. Anim Reprod Sci 2010; 121:106-14. [DOI: 10.1016/j.anireprosci.2010.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 05/04/2010] [Accepted: 05/12/2010] [Indexed: 12/29/2022]
|
30
|
Du H, Yan SS. Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 2010; 42:560-72. [PMID: 20067840 DOI: 10.1016/j.biocel.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 01/04/2023]
Abstract
Mitochondrial dysfunction has been reported in a wide array of neurological disorders ranging from neuromuscular to neurodegenerative diseases. Recent studies on neurodegenerative diseases have revealed that mitochondrial pathology is generally found in inherited or sporadic neurodegenerative diseases and is believed to be involved in the pathophysiological process of these diseases. Commonly seen types of mitochondrial dysfunction in neurodegenerative diseases include excessive free radical generation, lowered ATP production, mitochondrial permeability transition, mitochondrial DNA lesions, perturbed mitochondrial dynamics and apoptosis. Mitochondrial medicine as an emerging therapeutic strategy targeted to mitochondrial dysfunction in neurodegenerative diseases has been proven to be of value, though this area of research is still at in its early stage. In this article, we report on recent progress in the development of several mitochondrial therapies including antioxidants, blockade of mitochondrial permeability transition, and mitochondrial gene therapy as evidence that mitochondrial medicine has promise in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Heng Du
- Department of Surgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
31
|
Kuo CC, Kuo DH, Huang CJ, Fang YC, Shieh P, Chen FA, Shaw CF, Jan CR. Nonylphenol-induced apoptotic pathways in SCM1 human gastric cancer cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Quintanilla RA, Johnson GVW. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Res Bull 2009; 80:242-7. [PMID: 19622387 DOI: 10.1016/j.brainresbull.2009.07.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that is caused by a pathological expansion of CAG repeats within the gene encoding for a 350 kD protein called huntingtin. This polyglutamine expansion within huntingtin is the causative factor in the pathogenesis of HD, however the underlying mechanisms have not been fully elucidated. Nonetheless, it is becoming increasingly clear that alterations in mitochondrial function play key roles in the pathogenic processes in HD. The net result of these events is compromised energy metabolism and increased oxidative damage, which eventually contribute to neuronal dysfunction and death. Mitochondria from striatal cells of a genetically accurate model of HD take up less calcium and at a slower rate than mitochondria from striatal cells derived from normal mice. Further, respiration in mitochondria from these mutant huntingtin-expressing cells is inhibited at significantly lower calcium concentrations compared to mitochondria from wild-type cells. Considering these and other findings this review explores the evidence suggesting that mutant huntingtin, directly or indirectly impairs mitochondrial function, which compromises cytosolic and mitochondrial calcium homeostasis, and contributes to neuronal dysfunction and death in HD.
Collapse
Affiliation(s)
- Rodrigo A Quintanilla
- Department of Anesthesiology, University of Rochester, Rochester, NY 14642-0002, USA
| | | |
Collapse
|
33
|
Crane MS, Howie AF, Arthur JR, Nicol F, Crosley LK, Beckett GJ. Modulation of thioredoxin reductase-2 expression in EAhy926 cells: implications for endothelial selenoprotein hierarchy. Biochim Biophys Acta Gen Subj 2009; 1790:1191-7. [PMID: 19595745 DOI: 10.1016/j.bbagen.2009.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/10/2009] [Accepted: 07/01/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND We examined the expression of the mitochondrial selenoenzyme TrxR2 in the endothelial cell line EAhy926 under conditions known to modify its cytoplasmic counterpart TrxR1. METHODS Cells were cultured with varying concentrations of selenite, sulforaphane or the Ca2+ ionophore A23187 for 72-h, prior to assay of TrxR concentration and activity. Further cultures underwent prolonged (7-day) Se-depletion before selenoprotein measurement. RESULTS In Se-deficient cultures, neither Se, A23187 or sulforaphane affected TrxR2 concentration, while these treatments induced TrxR1 concentration (p<0.05). When co-incubated, optimal concentrations of Se (40 nM) and sulforaphane (4 microM) only modestly increased TrxR2 protein (approximately 1.3-fold), compared with TrxR1 (approximately 4-fold). In Se-deficient cells, TrxR activity was unaffected by sulforaphane or A23187. Prolonged Se-depletion caused a comparatively small reduction in TrxR2 (66% TrxR2 retained) against TrxR1 and glutathione peroxidase-1 activity (38% and 17% retained, respectively). CONCLUSIONS The relative resistance of TrxR2 to Se-deprivation and induction by sulforaphane and A23187 suggests TrxR2 lies near the top of the selenoprotein hierarchy in EAhy926 cells and exhibits near maximum expression under a range of culture conditions. In Se deficiency an inactive (possibly truncated) TrxR1 is produced in response to stimulus by sulforaphane and A23187. GENERAL SIGNIFICANCE These observations underpin a likely critical antioxidant role for TrxR2 and TrxR1 in the endothelium.
Collapse
Affiliation(s)
- Michael S Crane
- Department of Clinical Biochemistry, Royal Infirmary of Edinburgh, Little France, EH16 4SA Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway.
Collapse
|
35
|
Stack EC, Matson WR, Ferrante RJ. Evidence of Oxidant Damage in Huntington's Disease: Translational Strategies Using Antioxidants. Ann N Y Acad Sci 2008; 1147:79-92. [DOI: 10.1196/annals.1427.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Calò M, Marini H, Bitto A, Altavilla D, Polito F, Minutoli L, Lo Cascio P, Antoci S, Squadrito F. Protective effects of IRFI-042 in monensin induced neurotoxicity in chicks. Food Chem Toxicol 2008; 46:3528-33. [PMID: 18834916 DOI: 10.1016/j.fct.2008.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 08/23/2008] [Accepted: 09/02/2008] [Indexed: 11/28/2022]
Abstract
Monensin, a well known ionophore antibiotic, may cause severe damage in neuronal cells by altering Na+/K+-ATPase and Ca2+-ATPase. We investigated whether IRFI-042, a synthetic analogue of vitamin E, may block lipid peroxidation in neuronal cells and protect against monensin neurotoxicity in chicks. Monensin toxicity was induced in chicks by once-daily administration (150 mg/kg by oral gavages), for 8 days. Sham animals received a saline solution and were used as controls. All animals were randomized to receive either IRFI-042 (20 mg/kg) or its vehicle. Survival rate, brain lipid peroxidation, mRNA for neuronal and inducible nitric oxide synthases (nNOS and iNOS) and brain histological evaluations, including immunohistochemical expression of nNOS and iNOS were performed. Monensin administration decreased survival rate, induced behavioural changes, increased brain lipid peroxidation, reduced brain nNOS mRNA and immunostaining and enhanced iNOS mRNA and immunostaining in the brain in chicks. IRFI-042 significantly improved the survival rate and counteracted monensin-induced changes in chick brains. Our data suggest that monensin is responsible of neurotoxicity in chicks by inducing oxidative stress/lipid peroxidation and that IRFI-042 might represent a useful pharmacological approach to protect against the neuronal damage induced by this monovalent carboxylic ionophorous polyether antibiotic.
Collapse
Affiliation(s)
- M Calò
- Department of Veterinary Public Health, Section of Veterinary Pharmacology and Toxicology, University of Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Joo JH, Yoon SY, Kim JH, Paik SG, Min SR, Lim JS, Choe IS, Choi I, Kim JW. S100A6 (calcyclin) enhances the sensitivity to apoptosis via the upregulation of caspase-3 activity in Hep3B cells. J Cell Biochem 2008; 103:1183-97. [PMID: 17721932 DOI: 10.1002/jcb.21496] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
S100A6 (calcyclin) is a small calcium-binding protein which has been implicated in several cellular processes such as cell cycle progression, cytoskeleton rearrangement, and exocytosis. Also the upregulation of S100A6 has been reported in a variety of tumors and linked to metastasis. However, exact intracellular roles of S100A6 related with apoptosis have not been clarified yet. Here we demonstrated that the upregulation of S100A6 enhances the cell death rate compared to the control under the apoptotic conditions. In exogenously S100A6 induced Hep3B cells, cell viability was significantly decreased compared with mock and S100A6-knockdown cells under calcium ionophore A23187 treatment. The exogenously introduced S100A6 significantly affected the caspase-3-like activity in programmed cell death through the enhanced caspase-3 expression, which was verified by promoter assay in wild or mutant S100A6-transfected Hep3B cells. Next, the promoter activity of caspase-3 was increased by 2.5-folds in wild-type S100A6-transfected cells compared to mutant 2 (E67K, mutant of EF-hand motif) or control. Our results suggest that S100A6 might be involved in the processing of apoptosis by modulating the transcriptional regulation of caspase-3.
Collapse
Affiliation(s)
- Joung Hyuck Joo
- Laboratory of Cell Biology, Korea Research Institute of Bioscience and Biotechnology (KRIBB), P.O. Box 115, Deajeon 305-333, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Apoptotic-like changes in equine spermatozoa separated by density-gradient centrifugation or after cryopreservation. Theriogenology 2008; 69:1041-55. [PMID: 18378291 DOI: 10.1016/j.theriogenology.2008.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/23/2022]
Abstract
The objective was to evaluate apoptotic markers in ejaculated equine spermatozoa after separation by density-gradient centrifugation and after cryopreservation. Subpopulations of percoll-separated equine spermatozoa differed (P<0.05) in the percentage of live, caspase-activated spermatozoa (2.9+/-0.7% vs 14.2+/-6.4%; mean+/-S.E.M.), low mitochondrial membrane potential (MMP; 6.8+/-1.1 vs 23.8+/-3.7), altered plasma membrane permeability (1.3+/-0.2 vs 3.0+/-0.5), DNA fragmentation (2.0+/-1.3 vs 14.3+/-3.6), total motility (81.8+/-3.3 vs 35.1+/-5.4), and progressive motility (66.3+/-4.3 vs 24.1+/-4.5) for high-density versus low-density subpopulations, respectively. Phosphatidylserine externalization did not differ (P=0.67) between the high- and low-density subpopulations (2.6+/-0.7 vs 3.1+/-0.9). After cryopreservation, equine spermatozoa differed (P<0.01) in the percentage of active caspases (19.1+/-1.6 vs 52.1+/-2.8), low MMP (18.2+/-2.5 vs 48.7+/-2.6), altered plasma membrane permeability (6.8+/-1.7 vs 17.6+/-2.0), total motility (75.5+/-2.4 vs 45.2+/-5.6), and progressive motility (53.9+/-3.1 vs 28.3+/-4.5) for pre-freeze versus cryopreserved spermatozoa. There was no difference (P=0.21) in percentage of DNA fragmented cells before (5.5+/-1.2) versus after cryopreservation (6.6+/-1.1). We concluded that apoptotic-like changes were detectable in ejaculated equine spermatozoa and were more prevalent after cryopreservation.
Collapse
|
39
|
Chiu PY, Leung HY, Ling Siu AH, Chen N, Poon MK, Ko KM. Long-Term Treatment with a Yang-Invigorating Chinese Herbal Formula Produces Generalized Tissue Protection Against Oxidative Damage in Rats. Rejuvenation Res 2008; 11:43-62. [DOI: 10.1089/rej.2007.0577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Yan Leung
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ada Hoi Ling Siu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Na Chen
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Michel K.T. Poon
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
40
|
The novel phospholipase C activator, m-3M3FBS, induces apoptosis in tumor cells through caspase activation, down-regulation of XIAP and intracellular calcium signaling. Apoptosis 2007; 13:133-45. [DOI: 10.1007/s10495-007-0159-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Gandhi R, Luk KC, Rymar VV, Sadikot AF. Group I mGluR5 metabotropic glutamate receptors regulate proliferation of neuronal progenitors in specific forebrain developmental domains. J Neurochem 2007; 104:155-72. [PMID: 17944877 DOI: 10.1111/j.1471-4159.2007.04955.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Major classical neurotransmitters including GABA and glutamate play novel morphogenic roles during development of the mammalian CNS. During forebrain neurogenesis, glutamate regulates neuroblast proliferation in different germinal domains using receptor subtype-specific mechanisms. For example, ionotropic N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptors mediate distinct proliferative effects in ventral or dorsal forebrain germinal domains, and regulate the correct number of neurons that populate the striatum or cerebral cortex. Recent work suggests metabotropic receptors may also mediate glutamate's proliferative effects. Group I mGluR5 receptor subtypes are highly expressed in forebrain germinal zones. Using in vitro and in vivo methods, we demonstrate mGluR5 receptor activation plays an important role in neuroblast proliferation in the ventral telencephalon, and helps determine the complement of striatum projection neurons. mGluR5 receptor-mediated effects on striatal neuronal progenitors are restricted mainly to early cycling populations in the ventricular zone, with little effect on secondary proliferative populations in the subventricular zone. In contrast to proliferative effects in the ventral telencephalon, mGluR5 receptors do not modulate proliferation of dorsal telencephalon-derived cortical neuroblasts. Heterogeneous domain-specific proliferative effects of glutamate-mediated by specific receptor subtypes provide an important developmental mechanism allowing generation of the correct complement of neuronal subtypes that populate the mammalian forebrain.
Collapse
Affiliation(s)
- Rina Gandhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Jing P, Jin Q, Wu J, Zhang XJ. GSK3beta mediates the induced expression of synaptic acetylcholinesterase during apoptosis. J Neurochem 2007; 104:409-19. [PMID: 17949411 DOI: 10.1111/j.1471-4159.2007.04975.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Besides its role in terminating acetylcholine-mediated neurotransmission, acetylcholinesterase (AChE) is found to be expressed and participate in the process of apoptosis in various cell types. However, the mechanisms underlying AChE up-regulation in neuronal cells remain elusive. Herein we demonstrated that glycogen synthase kinase-3beta (GSK3beta) mediates induced AChE-S expression during apoptosis. In this study, A23187 and thapsigargin (TG) were employed to induce apoptosis in neuroendocrine PC12 cells. The results showed that exposure of PC12 cells to A23187 and TG up-regulated AChE activity significantly. The same treatment also led to activation of GSK3beta. Two different inhibitors of GSK3beta (lithium and GSK3beta-specific inhibitor VIII) could block A23187- or TG-induced up-regulation of AChE activity, AChE-S mRNA level and protein expression. However, lithium could not inhibit the induction of AChE-R mRNA and protein under similar conditions. Taken together, our results show that GSK3beta is specifically involved in the induction of AChE-S expression in PC12 cells during apoptosis.
Collapse
Affiliation(s)
- Peng Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
43
|
Jones GJ, Barsby NL, Cohen ÉA, Holden J, Harris K, Dickie P, Jhamandas J, Power C. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 2007; 27:3703-11. [PMID: 17409234 PMCID: PMC6672409 DOI: 10.1523/jneurosci.5522-06.2007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the introduction of highly active antiretroviral therapy, dementia caused by human immunodeficiency virus-1 (HIV-1) infection remains a devastating and common neurological disorder. Although the mechanisms governing neurodegeneration during HIV-1 infection remain uncertain, the HIV-1 accessory protein, viral protein R (Vpr), has been proposed as a neurotoxic protein. Herein, we report that Vpr protein and transcript were present in the brains of HIV-infected persons. Moreover, soluble Vpr caused neuronal apoptosis, involving cytochrome c extravasation, p53 induction, and activation of caspase-9 while exerting a depressive effect on whole-cell currents in neurons (p < 0.05), which was inhibited by iberiotoxin. Vpr-activated glial cells secreted neurotoxins in a concentration-dependent manner (p < 0.001). Transgenic (Tg) mice expressing Vpr in brain monocytoid cells displayed the transgene principally in the basal ganglia (p < 0.05) and cerebral cortex (p < 0.01) compared with hindbrain expression. Vpr was released from cultured transgenic macrophages, which was cytotoxic to neurons and was blocked by anti-Vpr antibody (p < 0.05). Neuronal injury was observed in Tg animals compared with wild-type littermates, chiefly affecting GAD65 (p < 0.01) and vesicular acetylcholine transferase (p < 0.001) immunopositive neuronal populations in the basal ganglia. There was also a loss of subcortical synaptophysin (p < 0.001) immunoreactivity as well as an increase in activated caspase-3, which was accompanied by a hyperexcitable neurobehavioral phenotype (p < 0.05). Thus, HIV-1 Vpr caused neuronal death through convergent pathogenic mechanisms with ensuing in vivo neurodegeneration, yielding new insights into the mechanisms by which HIV-1 injures the nervous system.
Collapse
Affiliation(s)
- Gareth J. Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Nicola L. Barsby
- Departments of Medical Microbiology and Immunology and
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Éric A. Cohen
- Institut de Recherches Cliniques de Montréal and Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec, Canada H2W 1R7, and
| | - Janet Holden
- Department of Pathology, St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | - Kim Harris
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Peter Dickie
- Departments of Medical Microbiology and Immunology and
| | - Jack Jhamandas
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Christopher Power
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Departments of Medical Microbiology and Immunology and
- Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| |
Collapse
|
44
|
Zhu H, Gao W, Jiang H, Jin QH, Shi YF, Tsim KWK, Zhang XJ. Regulation of acetylcholinesterase expression by calcium signaling during calcium ionophore A23187- and thapsigargin-induced apoptosis. Int J Biochem Cell Biol 2007; 39:93-108. [PMID: 17000130 DOI: 10.1016/j.biocel.2006.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 06/06/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
We have recently reported that acetylcholinesterase expression was induced during apoptosis in various cell types. In the current study we provide evidence to suggest that the induction of acetylcholinesterase expression during apoptosis is regulated by the mobilization of intracellular Ca(2+). During apoptosis, treatment of HeLa and MDA-MB-435s cells with the calcium ionophore A23187 resulted in a significant increase in acetylcholinesterase mRNA and protein levels. Chelation of intracellular Ca(2+) by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester), an intracellular Ca(2+) chelator, inhibited acetylcholinesterase expression. A23187 also enhanced the stability of acetylcholinesterase mRNA and increased the activity of acetylcholinesterase promoter, effects that were blocked by BAPTA-AM. Perturbations of cellular Ca(2+) homeostasis by thapsigargin resulted in the increase of acetylcholinesterase expression as well as acetylcholinesterase promoter activity during thapsigargin induced apoptosis in HeLa and MDA-MB-435s cells, effects that were also inhibited by BAPTA-AM. We further demonstrated that the transactivation of the human acetylcholinesterase promoter by A23187 and thapsigargin was partially mediated by a CCAAT motif within the -1270 to -1248 fragment of the human acetylcholinesterase promoter. This motif was able to bind to CCAAT binding factor (CBF/NF-Y). These results strongly suggest that cytosolic Ca(2+) plays a key role in acetylcholinesterase regulation during apoptosis induced by A23187 and thapsigargin.
Collapse
Affiliation(s)
- Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Oliveira JMA, Chen S, Almeida S, Riley R, Gonçalves J, Oliveira CR, Hayden MR, Nicholls DG, Ellerby LM, Rego AC. Mitochondrial-dependent Ca2+ handling in Huntington's disease striatal cells: effect of histone deacetylase inhibitors. J Neurosci 2006; 26:11174-86. [PMID: 17065457 PMCID: PMC6674668 DOI: 10.1523/jneurosci.3004-06.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence suggests that neuronal dysfunction in Huntington's disease (HD) striatum involves deficits in mitochondrial function and in Ca2+ handling. However, the relationship between mitochondria and Ca2+ handling has been incompletely studied in intact HD striatal cells. Treatment with histone deacetylase (HDAC) inhibitors reduces cell death in HD models, but the effects of this promising therapy on cellular function are mostly unknown. Here, we use real-time functional imaging of intracellular Ca2+ and mitochondrial membrane potential to explore the role of in situ HD mitochondria in Ca2+ handling. Immortalized striatal (STHdh) cells and striatal neurons from transgenic mice, expressing full-length mutant huntingtin (Htt), were used to model HD. We show that (1) active glycolysis in STHdh cells occludes the mitochondrial role in Ca2+ handling as well as the effects of mitochondrial inhibitors, (2) STHdh cells and striatal neurons in the absence of glycolysis are critically dependent on oxidative phosphorylation for energy-dependent Ca2+ handling, (3) expression of full-length mutant Htt is associated with deficits in mitochondrial-dependent Ca2+ handling that can be ameliorated by treatment with HDAC inhibitors (treatment with trichostatin A or sodium butyrate decreases the proportion of STHdh cells losing Ca2+ homeostasis after Ca2+-ionophore challenging, and accelerates the restoration of intracellular Ca2+ in striatal neurons challenged with NMDA), and (4) neurons with different response patterns to NMDA receptor activation exhibit different average somatic areas and are differentially affected by treatment with HDAC inhibitors, suggesting subpopulation or functional state specificity. These findings indicate that neuroprotection induced by HDAC inhibitors involves more efficient Ca2+ handling, thus improving the neuronal ability to cope with excitotoxic stimuli.
Collapse
Affiliation(s)
- Jorge M. A. Oliveira
- Serviço de Farmacologia da Faculdade de Farmácia, Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia, Universidade do Porto, 4050-047 Porto, Portugal
- Buck Institute for Age Research, Novato, California 94945
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sylvia Chen
- Buck Institute for Age Research, Novato, California 94945
| | - Sandra Almeida
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rebeccah Riley
- Buck Institute for Age Research, Novato, California 94945
| | - Jorge Gonçalves
- Serviço de Farmacologia da Faculdade de Farmácia, Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia, Universidade do Porto, 4050-047 Porto, Portugal
| | - Catarina R. Oliveira
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Michael R. Hayden
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4, and
| | | | | | - A. Cristina Rego
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
46
|
Tauskela JS, Brunette E, Kiedrowski L, Lortie K, Hewitt M, Morley P. Unconventional neuroprotection against Ca2+ -dependent insults by metalloporphyrin catalytic antioxidants. J Neurochem 2006; 98:1324-42. [PMID: 16895586 DOI: 10.1111/j.1471-4159.2006.03973.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We evaluated whether both inert and catalytically active metalloporphyrin antioxidants, meso-substituted with either phenyl-based or N-alkylpyridinium-based groups, suppress Ca(2+)-dependent neurotoxicity in cell culture models of relevance to cerebral ischemia. Representatives from both metalloporphyrin classes, regardless of antioxidant strength, protected cultured cortical neurons or PC-12 cultures against the Ca(2+) ionophores ionomycin or A23187, by suppressing neurotoxic Ca(2+) influx. Some metalloporphyrins suppressed excitotoxic Ca(2+) influx indirectly induced by the Ca(2+) ionophores in cortical neurons. Metalloporphyrins did not quench intracellular fluorescence, suggesting localization to the plasma membrane interface and/or interference with Ca(2+) ionophores. Metalloporphyrins suppressed ionomycin-induced Mn(2+) influx, but did not protect cortical neurons against pyrithione, a Zn(2+) ionophore. In other Ca(2+)-dependent paradigms, Ca(2+) influx via plasma membrane depolarization, but not through reversal of plasmalemmal Na(+)/Ca(2+) exchangers, was modestly suppressed by Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP) or by an inert analog, Zn(II)TBAP. Mn(III)TBAP and Zn(II)TBAP potently protected cortical neurons against long-duration oxygen-glucose deprivation (OGD), performed in the presence of antagonists of NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and L-type voltage-gated Ca(2+) channels, raising the possibility of an unconventional mode of blockade of transient receptor protein melastatin 7 channels by a metalloTBAP family of metalloporphyrins. The present study extends the range of Ca(2+)-dependent insults for which metalloporphyrins demonstrate unconventional neuroprotection. MetalloTBAPs appear capable of targeting an OGD temporal continuum.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
47
|
NICHOLAS AH, HYSON RL. Afferent regulation of oxidative stress in the chick cochlear nucleus. Neuroscience 2006; 140:1359-68. [PMID: 16650604 PMCID: PMC1847353 DOI: 10.1016/j.neuroscience.2006.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/28/2006] [Accepted: 03/12/2006] [Indexed: 11/21/2022]
Abstract
The chick auditory brain stem has been a useful model system for examining the afferent-dependent signals that regulate postsynaptic neurons. Like other sensory systems, compromised afferent input results in rapid death and atrophy of postsynaptic neurons. The present paper explores the possible contributions of an oxidative stress pathway in determining neuronal fate following deafferentation. Levels of reactive oxygen species, lipid damage measured by 4-hydroxynonenal formation, and a compensatory reactive oxygen species-induced response regulated by glutathione s transferase M1 and the reactive oxygen species-sensitive transcriptional factor, nuclear respiratory factor 1 were examined. Unilateral cochlea removal surgery was performed on young posthatch chicks. Labeling in the cochlear nucleus, nucleus magnocellularis, on opposite sides of the same tissue sections were compared by densitometry. The results showed a dramatic increase in reactive oxygen species in the deafferented nucleus magnocellularis by 6 h following cochlea removal. This increase in reactive oxygen species was accompanied by lipid damage and a compensatory upregulation of both glutathione s transferase M1 and nuclear respiratory factor 1. Double-labeling revealed that glutathione s transferase M1 expression was highest in neurons that were likely to survive deafferentation, as assessed immunocytochemically with Y10b, a marker for ribosomal integrity. Together, these data suggest reactive oxygen species are generated and a compensatory detoxifying pathway is upregulated in the first few hours following deafferentation. This is consistent with the hypothesis that oxidative stress plays a role in determining whether a given neuron survives following deafferentation.
Collapse
Affiliation(s)
| | - R. L. HYSON
- *Corresponding author. Tel: +1-850-644-5824; fax: +1-850-644-7739. E-mail address: (R. L. Hyson)
| |
Collapse
|
48
|
Nicholls DG. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons. J Biol Chem 2006; 281:14864-74. [PMID: 16551630 DOI: 10.1074/jbc.m510916200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although natural and synthetic ionophores are widely exploited in cell studies, for example, to influence cytoplasmic free calcium concentrations and to depolarize in situ mitochondria, their inherent lack of membrane selectivity means that they affect the ion permeability of both plasma and mitochondrial membranes. A similar ambiguity affects the interpretation of signals from fluorescent membrane-permeant cations (usually termed "mitochondrial membrane potential indicators"), because the accumulation of these probes is influenced by both plasma and mitochondrial membrane potentials. To resolve some of these problems a technique is developed to allow simultaneous monitoring of plasma and mitochondrial membrane potentials at single-cell resolution using a cationic and anionic fluorescent probe. A computer program is described that transforms the fluorescence changes into dynamic estimates of changes in plasma and mitochondrial potentials. Exploiting this technique, primary cultures of rat cerebellar granule neurons display a concentration-dependent response to ionomycin: low concentrations mimic nigericin by hyperpolarizing the mitochondria while slowly depolarizing the plasma membrane and maintaining a stable elevated cytoplasmic calcium. Higher ionomycin concentrations induce a stochastic failure of calcium homeostasis that precedes both mitochondrial depolarization and an enhanced rate of plasma membrane depolarization. In addition, the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone only selectively depolarizes mitochondria at submicromolar concentrations. ATP synthase reversal following respiratory chain inhibition depolarizes the mitochondria by 26 mV.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
49
|
Nishimura Y, Yamaguchi JY, Kanada A, Horimoto K, Kanemaru K, Satoh M, Oyama Y. Increase in intracellular Cd2+ concentration of rat cerebellar granule neurons incubated with cadmium chloride: Cadmium cytotoxicity under external Ca2+-free condition. Toxicol In Vitro 2006; 20:211-6. [PMID: 16061347 DOI: 10.1016/j.tiv.2005.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 05/13/2005] [Accepted: 06/15/2005] [Indexed: 11/19/2022]
Abstract
In order to examine the cadmium cytotoxicity unrelated to external Ca(2+), the effects of micromolar CdCl(2) on intracellular Cd(2+) concentration, cellular content of glutathione, and cell viability of rat cerebellar granule neurons were examined under normal Ca(2+) and external Ca(2+)-free conditions, using a laser confocal microscope with fluorescent probes, fluo-3-AM, 5-chloromethylfluorescein (CMF) diacetate, and propidium iodide. CdCl(2) (10-300 microM) dose-dependently increased the intensity of fluo-3 fluorescence. Exposure to CdCl(2) equally enhanced the fluo-3 fluorescence under both Ca(2+) conditions and MnCl(2) did not quench the CdCl(2)-enhanced fluorescence. The results indicate that the enhancement of fluo-3 fluorescence is due to the increase in intracellular Cd(2+) concentration. CdCl(2) at 100-300 microM decreased the intensity of CMF fluorescence, indicating the decrease in cellular content of glutathione. The population of cells stained with propidium (dead cells) was increased by 100-300 microM CdCl(2). Similar results described above were also observed under external Ca(2+)-free condition. It is suggested that some of cytotoxic actions of CdCl(2) on neurons are unrelated to external Ca(2+), one of main sources for increasing intracellular Ca(2+) concentration.
Collapse
Affiliation(s)
- Yumiko Nishimura
- Laboratory of Cellular Signaling, Faculty of Integrated Arts and Sciences, The University of Tokushima, Minami-Jyosanjima 1-1, Tokushima 770-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee YN, Lee HY, Kim JS, Park C, Choi YH, Lee TG, Ryu SH, Kwak JY, Bae YS. The novel phospholipase C activator, m-3M3FBS, induces monocytic leukemia cell apoptosis. Cancer Lett 2005; 222:227-35. [PMID: 15863272 DOI: 10.1016/j.canlet.2004.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 09/08/2004] [Accepted: 09/11/2004] [Indexed: 10/26/2022]
Abstract
We investigated the effect of the novel phospholipase C activator, m-3M3FBS, on the apoptosis of leukemic cells. m-3M3FBS inhibited the growth of the leukemic cell lines U937 and THP-1, but not primary monocytes. m-3M3FBS induced the apoptosis of U937 cells, which was accompanied by chromatin condensation and DNA fragmentation. Moreover, m-3M3FBS-induced apoptosis appeared to involve the down-regulation of anti-apoptotic Bcl-2, the up-regulation of pro-apoptotic Bax, the release of cytochrome c, and caspase activation. m-3M3FBS-induced apoptosis of U937 cells was also partly inhibited by BAPTA-AM and EGTA, indicating the involvement of intracellular calcium signaling on the apoptosis in U937 cells. The results of our study suggest that m-3M3FBS can be developed as a novel anti-leukemic agent.
Collapse
Affiliation(s)
- Youl-Nam Lee
- Medical Research Center for Cancer Molecular Therapy, College of Medicine, Dong-A University, Busan 602-714, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|