1
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
2
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
3
|
Noble F, Marie N. Biased Opioid Ligands: Revolution or Evolution? FRONTIERS IN PAIN RESEARCH 2021; 2:722820. [PMID: 35295469 PMCID: PMC8915667 DOI: 10.3389/fpain.2021.722820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Opioid are the most powerful analgesics ever but their use is still limited by deleterious side effects such as tolerance, dependence, and respiratory depression that could eventually lead to a fatal overdose. The opioid crisis, mainly occurring in north America, stimulates research on finding new opioid ligands with reduced side effects. Among them, biased ligands are likely the most promising compounds. We will review some of the latest discovered biased opioid ligands and see if they were able to fulfill these expectations.
Collapse
|
4
|
Hill R, Canals M. Experimental considerations for the assessment of in vivo and in vitro opioid pharmacology. Pharmacol Ther 2021; 230:107961. [PMID: 34256067 DOI: 10.1016/j.pharmthera.2021.107961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Morphine and other mu-opioid receptor (MOR) agonists remain the mainstay treatment of acute and prolonged pain states worldwide. The major limiting factor for continued use of these current opioids is the high incidence of side effects that result in loss of life and loss of quality of life. The development of novel opioids bereft, or much less potent, at inducing these side effects remains an intensive area of research, with multiple pharmacological strategies being explored. However, as with many G protein-coupled receptors (GPCRs), translation of promising candidates from in vitro characterisation to successful clinical candidates still represents a major challenge and attrition point. This review summarises the preclinical animal models used to evaluate the key opioid-induced behaviours of antinociception, respiratory depression, constipation and opioid-induced hyperalgesia and tolerance. We highlight the influence of distinct variables in the experimental protocols, as well as the potential implications for differences in receptor reserve in each system. Finally, we discuss how methods to assess opioid action in vivo and in vitro relate to each other in the context of bridging the translational gap in opioid drug discovery.
Collapse
Affiliation(s)
- Rob Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| |
Collapse
|
5
|
Gillis A, Kliewer A, Kelly E, Henderson G, Christie MJ, Schulz S, Canals M. Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends Pharmacol Sci 2020; 41:947-959. [PMID: 33097283 DOI: 10.1016/j.tips.2020.09.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
G protein-biased agonists of the μ-opioid receptor (MOPr) have been proposed as an improved class of opioid analgesics. Recent studies have been unable to reproduce the original experiments in the β-arrestin2-knockout mouse that led to this proposal, and alternative genetic models do not support the G protein-biased MOPr agonist hypothesis. Furthermore, assessment of putatively biased ligands has been confounded by several factors, including assay amplification. As such, the extent to which current lead compounds represent mechanistically novel, extremely G protein-biased agonists is in question, as is the underlying assumption that β-arrestin2 mediates deleterious opioid effects. Addressing these current challenges represents a pressing issue to successfully advance drug development at this receptor and improve upon current opioid analgesics.
Collapse
Affiliation(s)
- Alexander Gillis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Andrea Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Eamonn Kelly
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Macdonald J Christie
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany.
| | - Meritxell Canals
- Division of Physiology, Pharmacology, and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK.
| |
Collapse
|
6
|
The role of sphingolipids in psychoactive drug use and addiction. J Neural Transm (Vienna) 2018; 125:651-672. [DOI: 10.1007/s00702-018-1840-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
|
7
|
Lamberts JT, Rosenthal LD, Jutkiewicz EM, Traynor JR. Role of the guanine nucleotide binding protein, Gα o, in the development of morphine tolerance and dependence. Psychopharmacology (Berl) 2018; 235:71-82. [PMID: 28971229 PMCID: PMC5819733 DOI: 10.1007/s00213-017-4742-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE The use of morphine and other opioids for chronic pain is limited by the development of analgesic tolerance and physical dependence. Morphine produces its effects by activating the μ opioid receptor, which couples to Gαi/o-containing heterotrimeric G proteins. Evidence suggests that the antinociceptive effects of morphine are mediated by Gαo. However, the role of Gαo in the development of morphine tolerance and dependence is unknown. OBJECTIVE The objective of the study is to evaluate the contribution of Gαo to the development of morphine tolerance and dependence in mice. METHODS 129S6 mice lacking one copy of the Gαo gene (Gαo +/-) were administered morphine acutely or chronically. Mice were examined for tolerance to the antinociceptive action of morphine using the 52 °C hot plate as the nociceptive stimulus and for dependence by evaluating the severity of naltrexone-precipitated withdrawal. Wild-type littermates of the Gαo +/- mice were used as controls. Changes in μ receptor number and function were determined in midbrain and hindbrain homogenates using radioligand binding and μ agonist-stimulated [35S]GTPγS binding, respectively. RESULTS Following either acute or chronic morphine treatment, all mice developed antinociceptive tolerance and physical dependence, regardless of genotype. With chronic morphine treatment, Gαo +/- mice developed tolerance faster and displayed more severe naltrexone-precipitated withdrawal in some behaviors than did wild-type littermates. Morphine tolerance was not associated with changes in μ receptor number or function in brain homogenates from either wild-type or Gαo +/- mice. CONCLUSIONS These data suggest that the guanine nucleotide binding protein Gαo offers some protection against the development of morphine tolerance and dependence.
Collapse
Affiliation(s)
- Jennifer T Lamberts
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
- College of Pharmacy, Ferris State University, Big Rapids, MI, 49307, USA
| | - Lisa D Rosenthal
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - Emily M Jutkiewicz
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI, 48109-5632, USA.
| |
Collapse
|
8
|
Komatsu T, Katsuyama S, Nagase H, Mizoguchi H, Sakurada C, Tsuzuki M, Sakurada S, Sakurada T. Intrathecal morphine-3-glucuronide-induced nociceptive behavior via Delta-2 opioid receptors in the spinal cord. Pharmacol Biochem Behav 2016; 140:68-74. [DOI: 10.1016/j.pbb.2015.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
|
9
|
Watanabe S, Higashi H. Pain Signaling and Gangliosides. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1311.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shun Watanabe
- Department of Pharmacology, School of Pharmacy, Kitasato University
| | - Hideyoshi Higashi
- Division of Glyco-Signal Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University
| |
Collapse
|
10
|
Mattioli TA, Leduc-Pessah H, Skelhorne-Gross G, Nicol CJB, Milne B, Trang T, Cahill CM. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence. PLoS One 2014; 9:e97361. [PMID: 24824631 PMCID: PMC4019634 DOI: 10.1371/journal.pone.0097361] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4). Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal) were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (-) naloxone, an opioid receptor antagonist, and (+) naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.
Collapse
Affiliation(s)
| | - Heather Leduc-Pessah
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Graham Skelhorne-Gross
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Christopher J. B. Nicol
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Brian Milne
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anaesthesiology & Perioperative Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Tuan Trang
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Cahill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Komatsu T, Katsuyama S, Mizoguchi H, Sakurada C, Tsuzuki M, Sakurada S, Sakurada T. Spinal ERK2 activation through δ2-opioid receptors contributes to nociceptive behavior induced by intrathecal injection of leucine-enkephalin. Peptides 2014; 54:131-9. [PMID: 24480726 DOI: 10.1016/j.peptides.2014.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/15/2022]
Abstract
Intrathecal (i.t.) injection of leucine-enkephalin (Leu-ENK), co-administered with peptidase inhibitors, phosphoramidon (an endopeptidase 24.11 inhibitor), and bestatin (a general aminopeptidase inhibitor), produced behaviors consisting of the biting and/or licking of the hindpaw and the tail along with hindlimb scratching directed toward the flank, which peaked at 10-15 min after an injection. This characteristic behavior was not observed in mice treated with i.t. Leu-ENK alone. We also investigated the effect of the extracellular signal-regulated kinase (ERK) in spinal processing of nociception induced by i.t. co-administration of Leu-ENK with phospharamidon and bestatin. Western blot analysis of phospho-ERK (pERK) showed a significant increase of pERK2 in the lumbar spinal cord in response to i.t. Leu-ENK co-injected with peptidase inhibitors. The MAP kinase-ERK inhibitor, U0126 dose-dependently attenuated the nociceptive behavior and spinal ERK activation to i.t. Leu-ENK co-injected with peptidase inhibitors. Furthermore, the nociceptive behavior and spinal ERK activation evoked by i.t. Leu-ENK in combination with peptidase inhibitors were inhibited by co-administration of the non-selective δ-opioid receptor antagonist, naltrindole, the selective δ2-opioid receptor antagonist, naltriben, the non-competitive N-methyl-D-aspartate (NMDA) antagonist, MK-801 or the non-selective nitric oxide synthase inhibitor, L-NAME, the selective nNOS inhibitor, N(ω)-propyl-L-arginine or the selective iNOS inhibitor, W1400, but not by the selective δ1-receptor antagonist, BNTX (7-benzylidenenaltrexone). These results suggest that spontaneous nociceptive behaviors produced by i.t. co-administration of Leu-ENK with peptidase inhibitors may be induced by an activation of the glutamate-NO-ERK pathway through the δ2-opioid receptor in the dorsal spinal cord.
Collapse
MESH Headings
- Animals
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Behavior, Animal/drug effects
- Butadienes/pharmacology
- Enkephalin, Leucine/administration & dosage
- Enkephalin, Leucine/pharmacology
- Enzyme Activation/drug effects
- Glycopeptides/pharmacology
- Injections, Spinal
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Male
- Mice, Inbred Strains
- Mitogen-Activated Protein Kinase 1/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitriles/pharmacology
- Nociception/drug effects
- Protease Inhibitors/pharmacology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Takaaki Komatsu
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Soh Katsuyama
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Chikai Sakurada
- Department of Biochemistry, Nihon Pharmaceutical University, 10281 Komuro, Ina-Machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Minoru Tsuzuki
- Department of Biochemistry, Nihon Pharmaceutical University, 10281 Komuro, Ina-Machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Tsukasa Sakurada
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
12
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
13
|
Tapocik JD, Luu TV, Mayo CL, Wang BD, Doyle E, Lee AD, Lee NH, Elmer GI. Neuroplasticity, axonal guidance and micro-RNA genes are associated with morphine self-administration behavior. Addict Biol 2013; 18:480-95. [PMID: 22804800 DOI: 10.1111/j.1369-1600.2012.00470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations, we utilized a behavior-genetics strategy designed to associate contingent intravenous drug self-administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a Yoked-control paradigm, C57BL/6J mice showed clear morphine-reinforced behavior, whereas DBA/2J mice did not. Moreover, the Yoked-control paradigm revealed the powerful consequences of self-administration versus passive administration at the level of gene expression. Morphine self-administration in the C57BL/6J mice uniquely up- or down-regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self-administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent- and genotype-dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and micro-RNAs (miRNAs) were among the key themes associated with drug self-administration. Noteworthy were the primary miRNA genes H19 and micro-RNA containing gene (Mirg), processed, respectively, to mature miRNAs miR-675 and miR-154, because they are prime candidates to mediate network-like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu-opioid receptor regulation. The strategic approach designed to focus on reinforcement-associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction.
Collapse
Affiliation(s)
| | - Truong V. Luu
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Cheryl L. Mayo
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Erin Doyle
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Alec D. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology; The George Washington University Medical Center; Washington; DC; USA
| | - Greg I. Elmer
- Department of Psychiatry; Maryland Psychiatric Research Center; University of Maryland School of Medicine; Baltimore; MD; USA
| |
Collapse
|
14
|
Smith JP, Field D, Bingaman SI, Evans R, Mauger DT. Safety and tolerability of low-dose naltrexone therapy in children with moderate to severe Crohn's disease: a pilot study. J Clin Gastroenterol 2013; 47:339-45. [PMID: 23188075 PMCID: PMC3586944 DOI: 10.1097/mcg.0b013e3182702f2b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is an unmet need for safe and effective medicines to treat children with Crohn's disease. Recently, investigations have shown an association between endogenous opioid peptides and inflammatory cells. AIMS The aims of this study were to evaluate the safety and tolerability of an opioid antagonist, naltrexone, in children with moderate to severe Crohn's disease. METHODS A pilot clinical trial was conducted in children with moderate to severe Crohn's disease. Fourteen subjects with a mean age of 12.3 years (range, 8 to 17 y) were enrolled. Children were randomized to placebo or naltrexone (0.1 mg/kg) orally for 8 weeks followed by open-labeled treatment with 8 additional weeks of naltrexone. Safety and toxicity were monitored by physical examinations and blood chemistries. Clinical activity was assessed by the Pediatric Crohn's Disease Activity Index (PCDAI) and Quality of life was monitored by the Impact III survey. RESULTS Oral naltrexone was well tolerated without any serious adverse events in children with moderate to severe Crohn's disease. PCDAI scores significantly decreased from pretreatment values (34.2±3.3) with an 8-week course of naltrexone therapy (21.7±3.9) (P=0.005). Twenty-five percent of those treated with naltrexone were considered in remission (score ≤10) and 67% had improved with mild disease activity (decrease in PCDAI score by at least 10 points) at the end of the study. Systemic and social quality of life improved with naltrexone treatment (P=0.035). CONCLUSIONS Naltrexone therapy seems safe with limited toxicity when given to children with Crohn's disease and may reduce disease activity.
Collapse
Affiliation(s)
- Jill P Smith
- Department of Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
15
|
Barr GA, McPhie-Lalmansingh A, Perez J, Riley M. Changing mechanisms of opiate tolerance and withdrawal during early development: animal models of the human experience. ILAR J 2011; 52:329-41. [PMID: 23382147 PMCID: PMC6040919 DOI: 10.1093/ilar.52.3.329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human infants may be exposed to opiates through placental transfer from an opiate-using mother or through the direct administration of such drugs to relieve pain (e.g., due to illness or neonatal surgery). Infants of many species show physical dependence and tolerance to opiates. The magnitude of tolerance and the nature of withdrawal differ from those of the adult. Moreover, the mechanisms that contribute to the chronic effects of opiates are not well understood in the infant but include biological processes that are both common to and distinct from those of the adult. We review the animal research literature on the effects of chronic and acute opiate exposure in infants and identify mechanisms of withdrawal and tolerance that are similar to and different from those understood in adults. These mechanisms include opioid pharmacology, underlying neural substrates, and the involvement of other neurotransmitter systems. It appears that brain circuitry and opioid receptor types are similar but that NMDA receptor function is immature in the infant. Intracellular signaling cascades may differ but data are complicated by differences between the effects of chronic versus acute morphine treatment. Given the limited treatment options for the dependent infant patient, further study of the biological functions that are altered by chronic opiate treatment is necessary to guide evidenced-based treatment modalities.
Collapse
|
16
|
Klein G, Juni A, Waxman AR, Arout CA, Inturrisi CE, Kest B. A survey of acute and chronic heroin dependence in ten inbred mouse strains: evidence of genetic correlation with morphine dependence. Pharmacol Biochem Behav 2008; 90:447-52. [PMID: 18472145 PMCID: PMC3627368 DOI: 10.1016/j.pbb.2008.03.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/18/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
Abstract
Heroin and morphine exposure can cause physical dependence, with symptoms manifesting during their withdrawal. Inter-individual differences in symptom frequency during morphine withdrawal are a common finding that, in rodents, is demonstrably attributable to genotype. However, it is not known whether inter-individual differences characterize heroin withdrawal, and whether such variation can be similarly influenced by genotype. Therefore, we injected mice of ten inbred strains with acute and chronic heroin doses and compared their jumping frequencies, a common index of withdrawal magnitude, during naloxone-precipitated withdrawal. The data revealed significant strain frequency differences (range after acute and chronic heroin injection: 0-104 and 0-142 jumps, respectively) and substantial heritability (h(2)=0.94 to 0.96), indicating that genetic variance is associated with heroin withdrawal. The rank order of strain sensitivity for acute and chronic heroin withdrawal jumping, and for the current heroin and previous morphine strain data, were significantly correlated (r=0.75-0.94), indicating their genetic and, ultimately, physiological commonality. These data suggest that the genetic liability to heroin dependence remains constant across a period of heroin intake, and that heroin and morphine dependence may benefit from common treatment strategies.
Collapse
Affiliation(s)
- Gad Klein
- Neuropsychology Doctoral Subprogram Queens College, City University of New York Flushing, NY 11367
| | - Aaron Juni
- Neuropsychology Doctoral Subprogram Queens College, City University of New York Flushing, NY 11367
| | - Amanda R. Waxman
- Neuropsychology Doctoral Subprogram Queens College, City University of New York Flushing, NY 11367
| | - Caroline A. Arout
- Department of Psychology and Center for Developmental Neuroscience The College of Staten Island, City University of New York Staten Island, NY 10314
| | - Charles E. Inturrisi
- Department of Pharmacology, Weill Medical College, Cornell University New York, NY 10021
| | - Benjamin Kest
- Neuropsychology Doctoral Subprogram Queens College, City University of New York Flushing, NY 11367
- Department of Psychology and Center for Developmental Neuroscience The College of Staten Island, City University of New York Staten Island, NY 10314
| |
Collapse
|
17
|
Fereidoni M, Javan M, Semnanian S, Ahmadiani A. Chronic forced swim stress inhibits ultra-low dose morphine-induced hyperalgesia in rats. Behav Pharmacol 2008; 18:667-72. [PMID: 17912051 DOI: 10.1097/fbp.0b013e3282f007cb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ultra-low doses of morphine (UL-morphine) induce hyperalgesia, which is assumed to be mediated by stimulatory G proteins (G(alphas)) signaling pathway. G(alphas) pathway inhibition and chronic stress both attenuate development of tolerance to analgesic effect of morphine. This study evaluated the effect of chronic stress on UL-morphine-induced hyperalgesia to find out if chronic stress interacts with the G(alphas) signaling pathway. Repeated daily forced swim stress was applied to induce chronic stress. UL-morphine (1 microg/kg, intraperitoneal)-induced hyperalgesia was assessed using the tail-flick test on day 6, in male rats that during days 1-5 received different treatments of swim stress, dexamethasone, swim stress following adrenalectomy (ADX) or swim stress after sham operation. Chronic stress by itself induced hyperalgesia in control and sham-operated rats but inhibited UL-morphine-induced hyperalgesia. In ADX animals, chronic stress did not produce hyperalgesia and could not inhibit UL-morphine-induced hyperalgesia. Chronic dexamethasone produced hyperalgesia but did not change the UL-morphine-induced hyperalgesia. Inhibition of UL-morphine hyperalgesia by chronic stress suggests that chronic stress interacts with the G(alphas) signaling pathway, which is responsible for UL-morphine-induced hyperalgesia. The absence of this effect in the ADX-rats or after repetitive dexamethasone administration demonstrates that hypothalamic-pituitary-adrenal (HPA) axis activation is necessary for controlling UL-morphine-induced hyperalgesia. Finally, the interaction of stress with the G(alphas) signaling pathway may provide an explanation for the inhibitory effect of stress on development of tolerance to the analgesic effect of morphine.
Collapse
Affiliation(s)
- Masoud Fereidoni
- Department of Physiology, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Crain SM, Shen KF. Naloxone rapidly evokes endogenous kappa opioid receptor-mediated hyperalgesia in naïve mice pretreated briefly with GM1 ganglioside or in chronic morphine-dependent mice. Brain Res 2007; 1167:31-41. [PMID: 17692296 DOI: 10.1016/j.brainres.2007.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 11/22/2022]
Abstract
Low-dose naloxone-precipitated withdrawal hyperalgesia is a reliable indicator of physical dependence after chronic morphine treatment. A remarkably similar long-lasting (>3-4 h) hyperalgesia is evoked by injection of a low dose of naloxone (10 microg/kg, s.c.) in naïve mice after acute pretreatment with the glycolipid, GM1 ganglioside (1 mg/kg) (measured by warm-water-immersion tail-flick assays). GM1 treatment markedly increases the efficacy of excitatory Gs-coupled opioid receptor signaling in nociceptive neurons. Co-treatment with an ultra-low-dose (0.1 ng/kg, s.c.) of the broad-spectrum opioid receptor antagonist, naltrexone or the selective kappa opioid receptor antagonist, nor-binaltorphimine, blocks naloxone-evoked hyperalgesia in GM1-pretreated naïve mice and unmasks prominent, long-lasting (>4 h) inhibitory opioid receptor-mediated analgesia. This unmasked analgesia can be rapidly blocked by injection after 1-2 h of a high dose of naltrexone (10 mg/kg) or nor-binaltorphimine (0.1 mg/kg). Because no exogenous opioid is administered to GM1-treated mice, we suggest that naloxone may evoke hyperalgesia by inducing release of endogenous bimodally acting opioid agonists from neurons in nociceptive networks by antagonizing putative presynaptic inhibitory opioid autoreceptors that "gate" the release of endogenous opioids. In the absence of exogenous opioids, the specific pharmacological manipulations utilized in our tail-flick assays on GM1-treated mice provide a novel bioassay to detect the release of endogenous bimodally acting (excitatory/inhibitory) opioid agonists. Because mu excitatory opioid receptor signaling is blocked by ultra-low doses of naloxone, the higher doses of naloxone that evoke hyperalgesia in GM1-treated mice cannot be mediated by activation of mu opioid receptors. Co-treatment with ultra-low-dose naltrexone or nor-binaltorphimine may selectively block signaling by endogenous GM1-sensitized excitatory kappa opioid receptors, unmasking inhibitory kappa opioid receptor signaling, and converting endogenous opioid receptor-mediated hyperalgesia to analgesia. Co-treatment with kelatorphan stabilizes putative endogenous opioid peptide agonists released by naloxone in GM1-treated mice, so that analgesia is evoked rather than hyperalgesia. Acute treatment of chronic morphine-dependent mice with ultra-low-dose naltrexone (0.1 ng/kg) results in remarkably similar rapid blocking of naloxone (10 microg/kg)-precipitated withdrawal hyperalgesia and unmasking of prominent opioid analgesia. These studies may clarify complex mechanisms underlying opioid physical dependence and opioid addiction.
Collapse
Affiliation(s)
- Stanley M Crain
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave. Bronx, NY 10461, USA.
| | | |
Collapse
|
19
|
Bryant CD, Roberts KW, Byun JS, Fanselow MS, Evans CJ. Morphine analgesic tolerance in 129P3/J and 129S6/SvEv mice. Pharmacol Biochem Behav 2006; 85:769-79. [PMID: 17196637 PMCID: PMC1905890 DOI: 10.1016/j.pbb.2006.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 10/28/2006] [Accepted: 11/20/2006] [Indexed: 09/30/2022]
Abstract
Morphine analgesic tolerance is heritable in both humans and rodents, with some individuals and strains exhibiting little and others exhibiting robust tolerance. 129S6/SvEv and 129P3/J mice reportedly do not demonstrate tolerance to morphine analgesia. Using our laboratory's standard morphine tolerance regimen and a between-subjects design, tolerance developed in the hot plate and tail withdrawal assays as indicated by a change in analgesic efficacy following a morphine challenge dose. Furthermore, the non-competitive NMDA receptor antagonist MK-801 (dizocilipine) blocked morphine tolerance in 129S6/SvEv and CD-1 mice in the hot plate assay. As previously reported, when a within-subjects design and cumulative dosing was employed, no tolerance was observed in the 129P3/J strain. However, using the same morphine regimen and a between-subjects design, comparable tolerance developed between 129P3/J and C57BL/6J strains following a single challenge dose of morphine. Spontaneous hyperalgesia was observed in the tail withdrawal assay following chronic morphine in C57BL/6J, but not 129P3/J mice. Additionally, morphine-tolerant C57BL/6J mice, but not 129P3/J mice, exhibited a large increase in the frequency of tail flicks during the first second following the baseline nociceptive response which may facilitate detection of the response during the tolerant state. We conclude that the method of tolerance assessment affects the ability to detect tolerance and thus may affect the degree and pattern of heritability of this trait and this could have implications for gene mapping studies.
Collapse
|
20
|
Abstract
BACKGROUND Pain, not responsive to opioid analgesics, remains a problem for patients with chronic and cancer pain as well as their families, and clinicians. Opioid antagonists have various uses in pain and palliative care. Their use in the reversal of tolerance and hyperalgesia remains at the basic science level and has limited clinical exposure. OBJECTIVE To improve symptom control and quality of life in patients with pain not responsive to opioid analgesics. DESIGN Present three cases in which patients have undergone administration of opioid antagonists for the purpose of analgesia. METHODS Patients on opioids analgesics received parenteral opioid antagonist, naloxone. Complete withdrawal under a sedative or conscious sedation was allowed and then the opioid at smaller doses was restarted and analgesia was observed. RESULTS All patients had improved analgesia on a significantly lower dose of opioid analgesics. CONCLUSIONS Only three patients who have received this procedure were presented yet all have responded positively to this procedure. Further research is needed to elucidate the mechanism and clinical relevance in the acute use of opioid antagonists.
Collapse
Affiliation(s)
- Jane E Loitman
- Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA.
| |
Collapse
|
21
|
Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. ACTA ACUST UNITED AC 2006; 52:69-92. [PMID: 16488019 DOI: 10.1016/j.brainresrev.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.
| | | |
Collapse
|
22
|
Terner JM, Barrett AC, Lomas LM, Negus SS, Picker MJ. Influence of low doses of naltrexone on morphine antinociception and morphine tolerance in male and female rats of four strains. Pain 2006; 122:90-101. [PMID: 16527399 DOI: 10.1016/j.pain.2006.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 12/13/2005] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
In a recently proposed bimodal opioid receptor model, the inhibitory actions of opioids on action potential duration in dorsal root ganglion neurons have been proposed to produce antinociception, and the excitatory actions of hyperalgesia. Recent studies indicate that selectively blocking these excitatory actions with low doses of opioid antagonists enhances opioid antinociception and attenuates the development of opioid tolerance. To determine if the excitatory actions of opioids contribute to sex as well as strain differences in opioid sensitivity, the effects of morphine alone and in combination with low doses of naltrexone were examined in male and female rats of four strains. The strains examined differed in their sensitivity to opioid antinociception and magnitude of sex differences in opioid sensitivity. All testing was conducted using a thermal tail-flick procedure with the nociceptive stimulus intensity adjusted so that baseline latencies were comparable across strains/sexes. In chronic studies, the morphine dosing regimen was adjusted in each strain/sex to produce comparable levels of tolerance. In each of the strains tested, morphine produced dose-dependent increases in antinociception, with differences in morphine potency observed across strains and sexes. In male and female Sprague-Dawley and Long-Evans rats, naltrexone enhanced morphine antinociception and attenuated the development of morphine tolerance. These effects were not observed in F344 and Lewis rats, even when tests were conducted across a range of morphine and naltrexone doses. These results suggest that the ability of low doses of naltrexone to enhance opioid antinociception does not contribute to sex or rat strain differences in opioid sensitivity.
Collapse
Affiliation(s)
- Jolan M Terner
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.
| | | | | | | | | |
Collapse
|
23
|
Greenwald PW, Provataris J, Coffey J, Bijur P, Gallagher EJ. Low-dose naloxone does not improve morphine-induced nausea, vomiting, or pruritus. Am J Emerg Med 2005; 23:35-9. [PMID: 15672335 DOI: 10.1016/j.ajem.2004.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE We tested the hypothesis that low-dose naloxone delivered with intravenous (IV) bolus morphine to emergency department patients in pain would reduce nausea. METHODS Randomized, double-blind, placebo-controlled trial. Patients receiving 0.10 mg/kg morphine IV bolus rated pain, nausea, and pruritus on 100-mm visual analog scales at enrollment and 20 minutes. Patients were randomized to 0.25 microg/kg naloxone or equal volume placebo administered with IV morphine. RESULTS One hundred thirty-one enrolled, 99 (76%) treated according to protocol with sufficient data for analysis. At 20 minutes the difference between groups (naloxone-placebo) was 1 mm (95% CI [confidence interval], -9 to 11) for nausea, 1 mm (95% CI, -3 to 3) for pruritus, 4% (95% CI, -1 to 9) for vomiting, and 0% (95% CI, -5 to 5) for rescue antiemetics. Pain was significantly reduced in both groups. CONCLUSION Addition of 0.25 microg/kg naloxone to bolus morphine does not improve nausea, pruritus, vomiting, or reduce use of rescue antiemetics when administered to emergency department patients in pain.
Collapse
Affiliation(s)
- Peter W Greenwald
- New York-Presbyterian Emergency Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
24
|
Kest B, Palmese CA, Juni A, Chesler EJ, Mogil JS. Mapping of a quantitative trait locus for morphine withdrawal severity. Mamm Genome 2004; 15:610-7. [PMID: 15457340 DOI: 10.1007/s00335-004-2367-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 04/02/2004] [Indexed: 11/25/2022]
Abstract
Chronic morphine exposure results in physical dependence, manifested by physical symptoms during naloxone-precipitated withdrawal. Jumping frequency is widely considered the most sensitive and reliable index of withdrawal intensity in mice. Inbred mouse strains surveyed for naloxone-precipitated withdrawal display large and significant strain differences in jumping frequency, including an approximately tenfold difference between C57BL/6 and 129P3 mice. In the present study, (B6 x 129)F2 hybrid mice were given daily morphine injections for four days using an escalating dosing schedule, and naloxone-precipitated withdrawal on day 5 was measured. A full-genome scan for linkage to phenotypic data was performed using polymorphic microsatellite markers. Significant linkage was observed between withdrawal jumping frequencies and a 28 cM-wide region of Chromosome 1 (32-60 cM; peak at 51 cM), accounting for 20% of the overall phenotypic variance. Two other suggestive QTLs were found, on Chromosomes 5 and 10, and an additive model fitting all three loci accounted for 43% of the total variance. F2 mice were also assessed for changes in morphine analgesic potency using the tail-withdrawal test in dose-response studies on days 1 and 4. No linkage was observed between Chromosomes 1, 5, and 10 and morphine analgesic tolerance, suggestive of genetic dissociation of naloxone-precipitated withdrawal from morphine and chronic morphine intake per se. The significant quantitative trait locus for naloxone-precipitated withdrawal severity in morphine-dependent mice, which we name Depmq1, may prove to be of considerable heuristic value once the underlying gene or genes are identified.
Collapse
Affiliation(s)
- Benjamin Kest
- Department of Psychology, The College of Staten Island, City University of New York, 10314, USA.
| | | | | | | | | |
Collapse
|
25
|
Crain SM, Shen KF. Neuraminidase inhibitor, oseltamivir blocks GM1 ganglioside-regulated excitatory opioid receptor-mediated hyperalgesia, enhances opioid analgesia and attenuates tolerance in mice. Brain Res 2004; 995:260-6. [PMID: 14672816 DOI: 10.1016/j.brainres.2003.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The endogenous glycolipid GM1 ganglioside plays a critical role in nociceptive neurons in regulating opioid receptor excitatory signaling demonstrated to mediate "paradoxical" morphine hyperalgesia and to contribute to opioid tolerance/dependence. Neuraminidase (sialidase) increases levels of GM1, a monosialoganglioside, in these neurons by enzymatic removal of sialic acid from abundant polysialylated gangliosides. In this study, acute treatment of mice with the neuraminidase inhibitor, oseltamivir enhanced morphine analgesia. Acute oseltamivir also reversed "paradoxical" hyperalgesia induced by an extremely low dose of morphine, unmasking potent analgesia. In chronic studies, co-administration of oseltamivir with morphine prevented and reversed the hyperalgesia associated with morphine tolerance. These results provide the first evidence indicating that treatment with a neuraminidase inhibitor, oseltamivir, blocks morphine's hyperalgesic effects by decreasing neuronal levels of GM1. The present study further implicates GM1 in modulating morphine analgesia and tolerance, via its effects on the underlying excitatory signaling of Gs-coupled opioid receptors. Finally, this work suggests a remarkable, previously unrecognized effect of oseltamivir-which is widely used clinically as an antiviral agent against influenza-on glycolipid regulation of opioid excitability functions in nociceptive neurons.
Collapse
Affiliation(s)
- Stanley M Crain
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
26
|
Xu XJ, Colpaert F, Wiesenfeld-Hallin Z. Opioid hyperalgesia and tolerance versus 5-HT1A receptor-mediated inverse tolerance. Trends Pharmacol Sci 2003; 24:634-9. [PMID: 14654304 DOI: 10.1016/j.tips.2003.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In addition to analgesia, opioids also produce paradoxical hyperalgesic effects following acute and chronic treatment. In this article, we review the occurrence of this hyperalgesia under several conditions, and discuss the potential mechanisms and clinical implications. We also review recent evidence that paradoxical analgesia and inverse tolerance induced by stimulation of 5-HT(1A) receptors, which is a mirror image of opioid-induced hyperalgesia and tolerance, might achieve clinically significant analgesia in chronic pain.
Collapse
Affiliation(s)
- Xiao-Jun Xu
- Department of Laboratory Medicine, Division of Clinical Neurophysiology, Karolinska Institutet, Huddinge University Hospital, S-141 86, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Abstract
Recent discoveries in opioid pharmacology help explain the enormous variability in clinical responses to these powerful analgesics. Although there is only one m opioid receptor gene, splice variants of that gene's expression result in a panoply of different functioning receptors. Other sources of variable response include polymorphisms in the m opioid receptor regulatory region, and pharmacokinetic differences because of cytochrome P-450 mono-oxygenase heterogeneity. Analgesic tolerance is likely the key phenomenon limiting the benefit of opioids. A plethora of intracellular pathways affects this. Among them are the N-methyl-D-aspartate receptor, protein kinase C gamma activity, nitric oxide synthase, and GM1 ganglioside content of the neuronal membrane. Clinical studies undercut the routine use of meperidine in most settings. Other studies have shown better ways to diminish opioid side effects.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/therapeutic use
- Animals
- Clinical Trials as Topic
- Drug Tolerance
- Humans
- Pain/drug therapy
- Pain/physiopathology
- Receptors, Opioid/drug effects
- Receptors, Opioid/genetics
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Eric Chevlen
- Cancer Care Center, St. Elizabeth Hospital, 1044 Belmont Avenue, Youngstown, OH 44501, USA.
| |
Collapse
|
28
|
Kest B, Palmese CA, Hopkins E, Adler M, Juni A, Mogil JS. Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience 2003; 115:463-9. [PMID: 12421612 DOI: 10.1016/s0306-4522(02)00458-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Physical dependence is a widely known consequence of morphine intake. Although commonly associated with prolonged or repeated morphine administration, withdrawal symptoms can be elicited even after a single prior morphine exposure. What remains contentious is the extent to which physical dependence following acute and chronic morphine treatment is mediated by common physiological substrates and, accordingly, represent distinct syndromes. The genetic relationship between acute and chronic morphine dependence was thus presently studied by comparing mice of 11 inbred strains (129P3, A, AKR, BALB/c, C3H/He, C57BL/6, CBA, DBA/2, LP, SJL, and SWR) for naloxone-precipitated withdrawal jumping responses using three subcutaneous morphine administration paradigms: acute (single injection) or chronic (three daily morphine injections for 4 days) injection, or chronic infusion (7 days via implanted osmotic minipumps). Although there were differences in the magnitude of withdrawal jumping between the three different morphine administration paradigms, large and significant strain differences were observed for each. In addition, the same strains were unusually sensitive or, conversely, altogether refractory to withdrawal jumping across all morphine treatment conditions. Overall, strain jumping means between acute and chronic dependence paradigms displayed a high degree of genetic correlation (r=0.87-0.95). The significant correlation between chronic morphine injection and continuous morphine infusion discounts the possible confounding effect of contextual learning and spontaneous withdrawal between chronic injections on the assessment of naloxone-precipitated withdrawal. Substantial heritability was also observed for acute and both paradigms of chronic dependence, with estimates ranging from h(2)=0.53 to 0.70. The present demonstration of a strong genetic correlation between physical dependence to morphine following acute and chronic treatment implies that genes associated with variable sensitivity in the two traits are the same, and is suggestive of shared physiological substrates. The data also demonstrate that the differential genetic liability to morphine physical dependence begins with, and is predicted by, the first morphine exposure.
Collapse
Affiliation(s)
- B Kest
- Department of Psychology and Center for Developmental Neuroscience, The College of Staten Island, City University of New York, 10314, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Kest B, Hopkins E, Palmese CA, Adler M, Mogil JS. Genetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains. Pharmacol Biochem Behav 2002; 73:821-8. [PMID: 12213527 DOI: 10.1016/s0091-3057(02)00908-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study assessed the analgesic potency of morphine in 11 inbred mouse strains before and after chronic morphine treatment. Using the 49 degrees C tail-withdrawal test, significant strain differences in morphine AD(50) estimates derived from cumulative dose-response curves were noted prior to tolerance induction on Day 1. AD(50) estimates were reassessed on Day 4, after three daily systemic morphine injections for 3 days using an escalating dose schedule (10, 20, and 40 mg/kg sc). In 9 of 11 strains, morphine potency was significantly reduced from 2-fold to as much as 11-fold. Two strains (129P3 and LP) displayed no evidence whatsoever of tolerance development. Neither initial baseline withdrawal latency nor morphine analgesic sensitivity was significantly correlated with tolerance magnitude. Also observed were strain-dependent alterations (mostly hyperalgesia) in baseline tail-withdrawal latencies as a result of chronic morphine treatment. The magnitude of hyperalgesia and analgesic tolerance was significantly correlated among strains, implicating common genetic substrates and supporting their proposed association. The present work demonstrates that the presence and magnitude of morphine analgesic tolerance is genotype-dependent and identifies strains with widely divergent liabilities that should facilitate identification of trait-relevant genes.
Collapse
Affiliation(s)
- Benjamin Kest
- Department of Psychology and Center for Developmental Neuroscience, The College of Staten Island, City University of New York, , Staten Island, NY 10314, USA.
| | | | | | | | | |
Collapse
|
30
|
Rady JJ, Portoghese PS, Fujimo JM. Methadone and heroin antinociception: predominant delta-opioid-receptor responses in methadone-tolerant mice. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:319-31. [PMID: 11949888 DOI: 10.1254/jjp.88.319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antinociceptive tail flick responses to heroin and 6-monoacetylmorphine mediated in the brain by mu-opioid receptor are switched by morphine pellet implantation to delta1- and delta2-opioid-receptors mediation, respectively. Present results showed that the mu-receptor response (inhibited by beta-funaltrexamine) to methadone was changed by morphine pellet implantation to delta1 (inhibited by 7-benzylidenenaltrexone)- and delta2 (inhibited by naltriben)-opioid-receptor responses. Methadone pellet implantation likewise changed mediation from mu- to delta-opioid receptors for heroin and methadone but not for morphine (beta-funaltrexamine continued to inhibit). Methadone mu action in the brain was linked through a descending system to activate spinal serotonin receptors (inhibited by methysergide), but this link was gone in the methadone-pellet-implanted group. In the latter group, the new delta1- and delta2-receptor responses were mediated by spinal GABAA (inhibited by bicuculline) and GABAB (inhibited by 2-hydroxysaclofen) receptors. These shifts in neuronal systems meant that mu receptors on a given neuron were not changed into delta receptors. Preliminary results showed that delta-agonist action for methadone was prevented from appearing by MK801, a NMDA-receptor antagonist, and did not occur in 129S6/SvEv mice which lack NMDA responsiveness. Could methadone maintenance treatment in humans uncover delta-agonist actions?
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Drug Implants
- Drug Tolerance
- Heroin/pharmacology
- Injections, Intraventricular
- Methadone/administration & dosage
- Methadone/pharmacology
- Mice
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, mu/antagonists & inhibitors
- Species Specificity
Collapse
Affiliation(s)
- Jodie J Rady
- Research Service, VA Medical Center, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
31
|
Abstract
This paper is the twenty-third installment of the annual review of research concerning the opiate system. It summarizes papers published during 2000 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
32
|
Shen KF, Crain SM. Cholera toxin-B subunit blocks excitatory opioid receptor-mediated hyperalgesic effects in mice, thereby unmasking potent opioid analgesia and attenuating opioid tolerance/dependence. Brain Res 2001; 919:20-30. [PMID: 11689159 DOI: 10.1016/s0006-8993(01)02990-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In a previous study we demonstrated that injection (i.p.) of low doses of GM1 ganglioside in mice rapidly attenuates morphine's analgesic effects. This result is consonant with our electrophysiologic studies in nociceptive types of dorsal root ganglion (DRG) neurons in culture, which showed that exogenous GM1 rapidly increased the efficacy of excitatory (Gs-coupled) opioid receptor functions. By contrast, treatment of DRG neurons with the non-toxic B-subunit of cholera toxin (CTX-B) which binds selectively to GM1, blocked the excitatory, but not inhibitory, effects of morphine and other bimodally-acting opioid agonists, thereby resulting in a net increase in inhibitory opioid potency. The present study provides more direct evidence that endogenous GM1 plays a physiologic role in regulating excitatory opioid receptor functions in vivo by demonstrating that cotreatment with remarkably low doses of CTX-B (10 ng/kg, s.c.) selectively blocks hyperalgesic effects elicited by morphine or by a kappa opioid agonist, thereby unmasking potent opioid analgesia. These results are comparable to the effects of cotreatment of mice with morphine plus an ultra-low dose of the opioid antagonist, naltrexone (NTX) which blocks opioid-induced hyperalgesic effects, unmasking potent opioid analgesia. Low-dose NTX selectively blocks excitatory opioid receptors at their recognition site, whereas CTX-B binds to, and interferes with, a putative allosteric GM1 regulatory site on excitatory opioid receptors. Furthermore, chronic cotreatment of mice with morphine plus CTX-B attenuates development of opioid tolerance and physical dependence, as previously shown to occur during cotreatment with low-dose NTX.
Collapse
Affiliation(s)
- K F Shen
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Ave. Bronx, NY 10461, USA
| | | |
Collapse
|
33
|
Abstract
Despite decades of research, the mechanisms that underlie opiate tolerance, dependence and withdrawal remain elusive. Evidence accumulated over the past ten years suggests that the NMDA receptor plays a central role in mediating the neuroplasticity induced by chronic opiate administration in adult animals. Yet, during ontogeny, the NMDA receptor complex undergoes qualitative developmental changes, which renders some of the basic assumptions for a role of the NMDA receptor in opiate withdrawal invalid in infants. Recent data indicate that NMDA receptor antagonists are not effective in blocking morphine tolerance, dependence and withdrawal in the neonatal rat. Roles for other glutamate receptor types (e.g. metabotropic glutamate receptors) have also been proposed recently. In this article, the latest evidence that characterizes the dynamic roles of glutamate receptors in these phenomena during ontogeny will be discussed.
Collapse
Affiliation(s)
- H Zhu
- Biopsychology Doctoral Program, Hunter College, 695 Park Avenue, New York, NY 10021, USA
| | | |
Collapse
|
34
|
Crain SM, Shen KF. Acute thermal hyperalgesia elicited by low-dose morphine in normal mice is blocked by ultra-low-dose naltrexone, unmasking potent opioid analgesia. Brain Res 2001; 888:75-82. [PMID: 11146054 DOI: 10.1016/s0006-8993(00)03010-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous electrophysiologic studies on nociceptive types of dorsal root ganglion (DRG) neurons in culture demonstrated that extremely low fM-nM concentrations of morphine and many other bimodally-acting mu, delta and kappa opioid agonists can elicit direct excitatory opioid receptor-mediated effects, whereas higher (microM) opioid concentrations evoked inhibitory effects. Cotreatment with pM naloxone or naltrexone (NTX) plus fM-nM morphine blocked the excitatory effects and unmasked potent inhibitory effects of these low opioid concentrations. In the present study, hot-water-immersion tail-flick antinociception assays at 52 degrees C on mice showed that extremely low doses of morphine (ca. 0.1 microg/kg) can, in fact, elicit acute hyperalgesic effects, manifested by rapid onset of decreases in tail-flick latency for periods >3 h after drug administration. Cotreatment with ultra-low-dose NTX (ca. 1-100 pg/kg) blocks this opioid-induced hyperalgesia and unmasks potent opioid analgesia. The consonance of our in vitro and in vivo evidence indicates that doses of morphine far below those currently required for clinical treatment of pain may become effective when opioid hyperalgesic effects are blocked by coadministration of appropriately low doses of opioid antagonists. This low-dose-morphine cotreatment procedure should markedly attenuate morphine tolerance, dependence and other aversive side-effects.
Collapse
Affiliation(s)
- S M Crain
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
35
|
Miller-Podraza H. Polyglycosylceramides, Poly-N-acetyllactosamine-Containing Glycosphingolipids: Methods of Analysis, Structure, and Presumable Biological Functions. Chem Rev 2000; 100:4663-82. [PMID: 11749361 DOI: 10.1021/cr990347o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- H Miller-Podraza
- Institute of Medical Biochemistry, Göteborg University, P.O. Box 440, SE 405 30 Göteborg, Sweden
| |
Collapse
|