1
|
Deng J, Yang JC, Feng Y, Xu ZJ, Kuča K, Liu M, Sun LH. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB 1 in chicken. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1468-1478. [PMID: 38703348 DOI: 10.1007/s11427-023-2512-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 05/06/2024]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.
Collapse
Affiliation(s)
- Jiang Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Feng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Jing Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Cardioprotective Effect of Acetylsalicylic Acid in the Myocardial Ischemia-Reperfusion Model on Oxidative Stress Markers Levels in Heart Muscle and Serum. Antioxidants (Basel) 2022; 11:antiox11081432. [PMID: 35892634 PMCID: PMC9332077 DOI: 10.3390/antiox11081432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heart failure occurs in increased oxidative stress conditions, which contribute to the progression of pathological changes. Orally or intravenously administered acetylsalicylic acid (ASA, aspirin) is typically used in human patients with acute myocardial ischemia. The study used an experimental porcine ischemia-reperfusion model to evaluate the potential cardioprotective effect of intracoronary administered ASA on myocardial ischemia-reperfusion injury. The cardioprotective effect of ASA was evaluated by measuring selected oxidative stress markers levels in infarcted and non-infarcted myocardium 14 days after the procedure, and three times in serum, before the procedure, during the reperfusion process, and after 14-day recovery. The results showed that intracoronary administrated ASA reduced the oxidative stress. The level of oxidative stress, measured with the non-enzymatic markers total antioxidant capacity (TAC), total oxidative status (TOS), and malondialdehyde (MDA), and the enzymatic markers glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST), in heart tissue was significantly higher in a control group injected with saline. The level of oxidative stress in serum, measured with TAC, TOS, oxidative stress index (OSI), and lipofuscin (LF), was also higher in the control group than in animals injected with ASA. The confirmed cardioprotective effect of intracoronary administered ASA provides the foundation for further studies on ASA intracoronary application, which may lead to the development of a new therapy for the treatment of ischemia-reperfusion complications in humans.
Collapse
|
3
|
Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 2022; 167:17-31. [PMID: 35331696 DOI: 10.1016/j.yjmcc.2022.03.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) constitute a promising drug treatment for heart failure patients with either preserved or reduced ejection fraction. Whereas SGLT2i were originally developed to target SGLT2 in the kidney to facilitate glucosuria in diabetic patients, it is becoming increasingly clear that these drugs also have important effects outside of the kidney. In this review we summarize the literature on cardiac effects of SGLT2i, focussing on pro-inflammatory and oxidative stress processes, ion transport mechanisms controlling sodium and calcium homeostasis and metabolic/mitochondrial pathways. These mechanisms are particularly important as disturbances in these pathways result in endothelial dysfunction, diastolic dysfunction, cardiac stiffness, and cardiac arrhythmias that together contribute to heart failure. We review the findings that support the concept that SGLT2i directly and beneficially interfere with inflammation, oxidative stress, ionic homeostasis, and metabolism within the cardiac cell. However, given the very low levels of SGLT2 in cardiac cells, the evidence suggests that SGLT2-independent effects of this class of drugs likely occurs via off-target effects in the myocardium. Thus, while there is still much to be understood about the various factors which determine how SGLT2i affect cardiac cells, much of the research clearly demonstrates that direct cardiac effects of these SGLT2i exist, albeit mediated via SGLT2-independent pathways, and these pathways may play a role in explaining the beneficial effects of SGLT2 inhibitors in heart failure.
Collapse
Affiliation(s)
- Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany; Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital Ruhr University Bochum, Bochum, Germany
| | - Ruben Coronel
- Department of Experimental Cardiology, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Nina C Weber
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands
| | - Peter E Light
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Coert J Zuurbier
- Department of Anesthesiology - L.E.I.C.A, Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Gavali JT, Carrillo ED, García MC, Sánchez JA. The mitochondrial K-ATP channel opener diazoxide upregulates STIM1 and Orai1 via ROS and the MAPK pathway in adult rat cardiomyocytes. Cell Biosci 2020; 10:96. [PMID: 32817784 PMCID: PMC7424994 DOI: 10.1186/s13578-020-00460-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Background Openers of mitochondrial adenosine triphosphate-dependent potassium (mKATP) channels like diazoxide increase reactive oxygen species (ROS) production in cardiac cells and reduce Ca2+ elevations produced by ischemia–reperfusion, protecting the heart from damage. In this study we tested the hypothesis that opening mKATP channels regulates expression of the major components of store-operated Ca2+ entry (SOCE) STIM1 and Orai1. Results Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot experiments showed that diazoxide increased expression of STIM1 and Orai1 at the mRNA and protein levels, respectively, in adult rat cardiomyocytes. Immunofluorescence analyses revealed that diazoxide also disrupted the striated distribution pattern of STIM1. These effects were prevented by the ROS scavenger N-acetyl cysteine (NAC), the mKATP channel antagonist 5-hydroxydecanoate (5-HD), or the protein synthesis inhibitor cycloheximide (CHX). Confocal microscopy revealed that diazoxide also led to nuclear translocation of the transcription factors c-Fos and NFκB, which was also blocked by NAC or 5-HD. Finally, the MAPK pathway inhibitor UO126 attenuated diazoxide-induced upregulation of STIM1 and Orai1 expression. Conclusions Our results suggest that opening mitochondrial potassium ATP channels with diazoxide upregulates the expression of STIM1 and Orai1 by de novo synthesis by a mechanism that involves NFkB, c-Fos, and ROS via MAPK/ERK signaling.
Collapse
Affiliation(s)
- Joice T Gavali
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, CDMX Mexico
| |
Collapse
|
5
|
The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev 2020; 12:947-968. [PMID: 32691301 PMCID: PMC7429613 DOI: 10.1007/s12551-020-00742-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease. Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine.
Collapse
|
6
|
Garnier Y, Coumans ABC, Jensen A, Hasaart THM, Berger R. Infection-Related Perinatal Brain Injury: The Pathogenic Role of Impaired Fetal Cardiovascular Control. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300150-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Tom H. M. Hasaart
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands
| | - Richard Berger
- Department of Obstetrics and Gynecology, University of Bochum, Bochum, Germany; Department of obstetrics and Gynecology, University of Maastricht, Maastricht, The Netherlands; Universitätsfrauenklinik Bochum, Knappschaftskrankenhaus, In der Schornau 23-25, 44982 Bochum
| |
Collapse
|
7
|
Cui L, Wang Y, Yu R, Li B, Xie S, Gao Y, Wang X, Zhu M. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway. Mol Med Rep 2016; 14:1610-6. [PMID: 27315199 PMCID: PMC4940101 DOI: 10.3892/mmr.2016.5405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 05/27/2016] [Indexed: 11/05/2022] Open
Abstract
Jia-Shen decoction (JSD) is a traditional Chinese medicine, which is used widely to treat chronic heart failure. However, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism underlying the effects of JSD on cardiac fibroblast (CF) proliferation and differentiation. The CFs were obtained from the hearts of neonatal (1‑3‑day old) Sprague‑Dawley rats and treated with JSD-medicated serum (JSDS) with or without angiotensin II (Ang II). Cell proliferation was assessed using Cell Counting Kit‑8 reagent. In addition, the mRNA expression levels of transforming growth factor‑β1 (TGF‑β1) and phosphorylated small mothers against decapentaplegic (p‑Smad)2/3 and their protein expression levels were analyzed. CF proliferation was significantly increased in the Ang II‑treated group, compared with the control group (P<0.05). The expression levels of collagen, α‑smooth muscle actin, TGF‑β1 and p‑Smad2/3 were also increased in the Ang II‑treated group (P<0.05). Following JSDS treatment, the increased levels of collagen and cell proliferation were inhibited, and the increased expression levels of p‑Smad2 and p‑Smad3 were also inhibited (P<0.05). These data suggested that JSDS may inhibit CF proliferation via attenuating the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Lin Cui
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Youping Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Yu
- Department of Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bin Li
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shiyang Xie
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yuan Gao
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Xiaoxiao Wang
- Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Mingjun Zhu
- Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
8
|
Kang N, Jian JF, Cao SJ, Zhang Q, Mao YW, Huang YY, Peng YF, Qiu F, Gao XM. Physalin A induces G2/M phase cell cycle arrest in human non-small cell lung cancer cells: involvement of the p38 MAPK/ROS pathway. Mol Cell Biochem 2016; 415:145-55. [PMID: 27000859 DOI: 10.1007/s11010-016-2686-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/12/2016] [Indexed: 01/17/2023]
Abstract
Physalin A (PA) is an active withanolide isolated from Physalis alkekengi var. franchetii, a traditional Chinese herbal medicine named Jindenglong, which has long been used for the treatment of sore throat, hepatitis, and tumors in China. In the present study, we firstly investigated the effects of PA on proliferation and cell cycle distribution of the human non-small cell lung cancer (NSCLC) A549 cell line, and the potential mechanisms involved. Here, PA inhibited cell growth in dose- and time-dependent manners. Treatment of A549 cells with 28.4 μM PA for 24 h resulted in approximately 50 % cell death. PA increased the amount of intracellular ROS and the proportion of cells in G2/M. G2/M arrest was attenuated by the addition of ROS scavenger NAC. ERK and P38 were triggered by PA through phosphorylation in a time-dependent manner. The phosphorylation of ERK and P38 were not attenuated by the addition of NAC, but the use of the p38 inhibitor could reduce, at least in part, PA-induced ROS and the proportion of cells in G2/M. PA induces G2/M cell cycle arrest in A549 cells involving in the p38 MAPK/ROS pathway. This study suggests that PA might be a promising therapeutic agent against NSCLC.
Collapse
Affiliation(s)
- Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Jun-Feng Jian
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Shi-Jie Cao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yi-Wei Mao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yi-Yuan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yan-Fei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Feng Qiu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Xiu-Mei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.
| |
Collapse
|
9
|
Townley-Tilson WHD, Pi X, Xie L. The Role of Oxygen Sensors, Hydroxylases, and HIF in Cardiac Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:676893. [PMID: 26491535 PMCID: PMC4600863 DOI: 10.1155/2015/676893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the leading cause of death worldwide. Oxygen-sensing proteins are critical components of the physiological response to hypoxia and reperfusion injury, but the role of oxygen and oxygen-mediated effects is complex in that they can be cardioprotective or deleterious to the cardiac tissue. Over 200 oxygen-sensing proteins mediate the effects of oxygen tension and use oxygen as a substrate for posttranslational modification of other proteins. Hydroxylases are an essential component of these oxygen-sensing proteins. While a major role of hydroxylases is regulating the transcription factor HIF, we investigate the increasing scope of hydroxylase substrates. This review discusses the importance of oxygen-mediated effects in the heart as well as how the field of oxygen-sensing proteins is expanding, providing a more complete picture into how these enzymes play a multifaceted role in cardiac function and disease. We also review how oxygen-sensing proteins and hydroxylase function could prove to be invaluable in drug design and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- W. H. Davin Townley-Tilson
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Lin CY, Hsu YJ, Hsu SC, Chen Y, Lee HS, Lin SH, Huang SM, Tsai CS, Shih CC. CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia. J Mol Cell Cardiol 2015; 85:249-61. [PMID: 26093151 DOI: 10.1016/j.yjmcc.2015.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy. Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling. The heart size and myocardial fibrosis were evaluated by echocardiography and immunohistochemical staining, respectively, in 5/6 nephrectomy chronic kidney disease (CKD) mice treated with a CB1R antagonist. CB1R and fibrosis marker expression levels were determined by immunoblotting in H9c2 cells exposed to the uremic toxin indoxyl sulfate (IS), with an organic anion transporter 1 inhibitor or a CB1R antagonist or agonist. Akt phosphorylation was also assessed to examine the signaling pathways downstream of CB1R activation induced by IS in H9c2 cells. CKD mice exhibited marked left ventricular hypertrophy and myocardial fibrosis, which were reversed by treatment with the CB1R antagonist. CB1R, collagen I, transforming growth factor (TGF)-β, and α-smooth muscle actin (SMA) expression showed time- and dose-dependent upregulation in H9c2 cells treated with IS. The inhibition of CB1R by either CB1R antagonist or small interfering RNA-mediated knockdown attenuated the expression of collagen I, TGF-β, and α-SMA in IS-treated H9c2 cells, while Akt phosphorylation was enhanced by CB1R agonist and abrogated by CB1R antagonist in these cells. In summary, we conclude that CB1R blockade attenuates LVH and Akt-mediated cardiac fibrosis in a CKD mouse model. Uremic toxin IS stimulates the expression of CB1R and fibrotic markers and CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts. Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy.
Collapse
Affiliation(s)
- Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Che Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ying Chen
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Che Shih
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
Sotomayor V, Chiriotto TS, Pechen AM, Venturino A. Biochemical biomarkers of sublethal effects in Rhinella arenarum late gastrula exposed to the organophosphate chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 119:48-53. [PMID: 25868816 DOI: 10.1016/j.pestbp.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
We determined the biochemical and molecular effects of the organophosphate insecticide chlorpyrifos (CPF) in the late gastrula embryonic stage of the South American toad Rhinella arenarum continuously exposed from fertilization (24 h). Our objective was to evaluate these responses as potential biomarkers at low, sublethal levels of the toxicant. We first established the EC50 for embryo arrest in 21.3 mg/L, with a LOEC of 16 mg/L. At 4 mg/L CPF, some embryos were unable to complete the dorsal lip of the blastopore and the yolk plug became blur, probably because of abnormal cell migration. Acetylcholinesterase activity, the specific biomarker for organophosphates, was unaffected by any of the tested concentrations of CPF (2-14 mg/L). In turn, 2 mg/L CPF increased the reduced glutathione levels and inhibited glutathione-S-transferase activity, suggesting an oxidative stress and antioxidant response. Catalase was induced by CPF exposure at higher concentrations (8 and 14 mg/L). We also studied transcription factor c-Fos as a signaling event related to development in early embryogenesis. Analysis of nuclear c-Fos protein showed two bands, both enhanced in embryos exposed to 2 and 8 mg/L CPF. While nuclear Erk protein was practically unaffected, Mek protein levels were induced by the OP. Transcription factor c-Fos may be then linking oxidative stress with developmental alterations observed due to CPF exposure. These molecular and biochemical responses observed in R. arenarum gastrula at sublethal CPF exposures may replace non-responsive AChE as very early biomarkers in toad gastrula.
Collapse
Affiliation(s)
- Verónica Sotomayor
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de CienciasMédicas, Universidad Nacional del Comahue, Toschi y Arrayanes, 8324, Cipolletti, Río Negro, Argentina
| | - Tai S Chiriotto
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Ana M Pechen
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina
| | - Andrés Venturino
- Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente (LIBIQUIMA), Facultad de Ingeniería, Universidad Nacional del Comahue - CONICET, Buenos Aires 1400, 8300 Neuquén, Argentina; Facultad de CienciasAgrarias, Universidad Nacional del Comahue, Ruta 151 Km 12.5, 8303, CincoSaltos, Río Negro, Argentina.
| |
Collapse
|
12
|
Kobayashi S, Susa T, Tanaka T, Wada Y, Okuda S, Doi M, Nao T, Yoshiga Y, Yamada J, Okamura T, Ueyama T, Kawamura S, Yano M, Matsuzaki M. Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail 2014; 13:29-36. [DOI: 10.1093/eurjhf/hfq178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Shigeki Kobayashi
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Takehisa Susa
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Takeo Tanaka
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Yasuaki Wada
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Shinichi Okuda
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Masahiro Doi
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Tomoko Nao
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Yasuhiro Yoshiga
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Jutaro Yamada
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Takayuki Okamura
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Takeshi Ueyama
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Syuji Kawamura
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Masafumi Yano
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| | - Masunori Matsuzaki
- Division of Cardiology, Department of Medicine and Clinical Science; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
13
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
14
|
Gomez Sandoval YH, Lévesque LO, Li Y, Anand-Srivastava MB. Role of epidermal growth factor receptor transactivation in endothelin-1-induced enhanced expression of Gi protein and proliferation in A10 vascular smooth muscle cells. Can J Physiol Pharmacol 2013; 91:221-7. [DOI: 10.1139/cjpp-2012-0250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that vasoactive peptides such as angiotensin II (Ang II) and endothelin-1 (ET-1) increase the expression of Gi proteins and the proliferation of A10 vascular smooth muscle cells (VSMC) through mitogen-activated protein (MAP) kinase – phosphoinositide (PI) 3-kinase pathways. This study was intended to examine the implication of epidermal growth factor receptor (EGFR) activation in ET-1-induced enhanced expression of Gi proteins and proliferation of A10 VSMC, and to further investigate the underlying mechanisms responsible for these increases. Cell proliferation was determined by [3H]thymidine incorporation and the expression of Gi proteins; extracellular signal-regulated kinases 1 and 2 (ERK1/2) and EGFR phosphorylation was determined by Western blotting. Treatment of A10 VSMC with ET-1 enhanced the expression of Gi proteins, which was attenuated by BQ123 and BQ788, antagonists of ETA and ETB receptor respectively. In addition, ET-1 enhanced the phosphorylation of EGFR in A10 VSMC, which was restored to the control levels by EGFR inhibitor and ETA and ETB receptor antagonists. Furthermore, ET-1 also augmented the proliferation and ERK1/2 phosphorylation of A10 VSMC, which were restored to the control levels by inhibition of EGFR. These data suggest that ET-1 transactivates EGFR, which, through MAP kinase signaling, may contribute to the enhanced expression of Gi proteins and thus increased proliferation of A10 VSMC.
Collapse
Affiliation(s)
- Yessica-Haydee Gomez Sandoval
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Louis-Olivier Lévesque
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yuan Li
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Physiology, Faculty of Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Wu AZY, Loh SH, Cheng TH, Lu HH, Lin CI. Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes. Biochem Pharmacol 2013; 85:69-80. [PMID: 23116965 DOI: 10.1016/j.bcp.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 02/08/2023]
Abstract
(-)-Epicatechin-3-gallate (ECG), a polyphenol extracted from green tea, has been proposed as an effective compound for improving cardiac contractility. However, the therapeutic potential of ECG on the treatment of arrhythmia remains unknown. We investigated the direct actions of ECG on the modulation of ion currents and cardiac cell excitability in the primary culture of neonatal rat ventricular myocyte (NRVM), which is considered a hypertrophic model for analysis of myocardial arrhythmias. By using the whole-cell patch-clamp configurations, we found ECG enhanced the slowly inactivating component of voltage-gated Na(+) currents (I(Na)) in a concentration-dependent manner (0.1-100 μM) with an EC(50) value of 3.8 μM. ECG not only shifted the current-voltage relationship of peak I(Na) to the hyperpolarizing direction but also accelerated I(Na) recovery kinetics. Working at a concentration level of I(Na) enhancement, ECG has no notable effect on voltage-gated K(+) currents and L-type Ca(2+) currents. With culture time increment, the firing rate of spontaneous action potential (sAP) in NRVMs was gradually decreased until spontaneous early after-depolarization (EAD) was observed after about one week culture. ECG increased the firing rate of normal sAP about two-fold without waveform alteration. Interestingly, the bradycardia-dependent EAD could be significantly restored by ECG in fast firing rate to normal sAP waveform. The expression of dominant cardiac sodium channel subunit, Nav1.5, was consistently detected throughout the culture periods. Our results reveal how ECG, the novel I(Na) agonist, may act as a promising candidate in clinical applications on cardiac arrhythmias.
Collapse
Affiliation(s)
- Adonis Zhi-Yang Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
16
|
Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P, Cheng TH. Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol 2012; 157:174-179. [PMID: 21190747 DOI: 10.1016/j.ijcard.2010.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/10/2010] [Accepted: 12/04/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Doxorubicin, one of the original anthracyclines, remains among the most effective anticancer drugs ever developed. Clinical use of doxorubicin is, however, greatly limited by its serious adverse cardiac effects that may ultimately lead to cardiomyopathy and heart failure. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' in traditional Chinese medicine for treating cardiovascular disorders. The objective of this study was set to evaluate the protective effect of tanshinone IIA on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). METHODS Primary cultured neonatal rat cardiomyocytes were treated with the vehicle, doxorubicin (1 μM), tanshinone IIA (0.1, 0.3, 1 and 3 μM), or tanshinone IIA plus doxorubicin. RESULTS We found that tanshinone IIA (1 and 3 μM) inhibited doxorubicin-induced reactive oxygen species generation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased BcL-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, Akt phosphorylation was enhanced by tanshinone IIA treatment in cardiomyocytes. The wortmannin (100 nM), LY294002 (10 nM), and siRNA transfection for Akt significantly reduced tanshinone IIA-induced protective effect. CONCLUSIONS These findings suggest that tanshinone IIA protects cardiomyocytes from doxorubicin-induced apoptosis in part through Akt-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin.
Collapse
Affiliation(s)
- Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
17
|
Chen YL, Loh SH, Chen JJ, Tsai CS. Urotensin II prevents cardiomyocyte apoptosis induced by doxorubicin via Akt and ERK. Eur J Pharmacol 2012; 680:88-94. [DOI: 10.1016/j.ejphar.2012.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 01/27/2012] [Accepted: 01/28/2012] [Indexed: 12/23/2022]
|
18
|
Wang Z, Zhang W, Li X, Han Y, Chen Y, Liu Z, Xie L, Ji Y, Lu X. CPU0213, a novel endothelin type A and type B receptor antagonist, protects against myocardial ischemia/reperfusion injury in rats. Braz J Med Biol Res 2011; 44:1148-55. [DOI: 10.1590/s0100-879x2011007500119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/16/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Y. Han
- Nanjing Medical University, China
| | | | - Z. Liu
- Nanjing Medical University
| | | | - Y. Ji
- Nanjing Medical University
| | - X. Lu
- Nanjing Medical University
| |
Collapse
|
19
|
Protective effects of endothelin-A receptor antagonist BQ123 against LPS-induced oxidative stress in lungs. Pharmacol Rep 2011; 63:494-500. [PMID: 21602605 DOI: 10.1016/s1734-1140(11)70516-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 10/25/2010] [Indexed: 12/22/2022]
Abstract
The aim of this study was to assess whether endothelin-A receptor (ET(A)-R) blocker, BQ123, influences lung edema, lipid peroxidation TBARS), hydrogen peroxide (H(2)O(2)), TNF-α concentration or the glutathione redox system in the lung homogenates obtained from LPS-induced endotoxic shock rats. The study was performed on male Wistar rats (n = 6 per group) divided into groups: (1) saline, (2) LPS (15 mg/kg)-saline, (3) BQ123 (0.5 mg/kg)-LPS, (4) BQ123 (1 mg/kg)-LPS. The ET(A)-R antagonist was injected intravenously 30 min before LPS administration. Five hours after saline or LPS administration, animals were sacrificed and lungs were isolated for indices of lung edema, oxidative stress and TNF-α concentration. Injection of LPS alone resulted in lung edema development and a marked increase in TNF-α (p < 0.02), TBARS (p < 0.02), and H(2)O(2) (p < 0.01) concentrations as well as a depletion of total glutathione (p < 0.01). Administration of BQ123 (1 mg/kg), before LPS challenge, led to a significant reduction in TNF-α and H(2)O(2) concentrations (p < 0.05) and elevation of both total glutathione and the GSH/GSSG ratio (p < 0.05). However, it did not prevent LPS-induced TBARS increase and lung edema formation. Interestingly, a lower dose of BQ123 was much more effective in decreasing H(2)O(2), TBARS, as well as TNF-α levels (p < 0.02, p < 0.05, p < 0.05, respectively). That dose was also effective in prevention of lung edema development (p < 0.01). Taken together, the obtained results indicate that BQ123 is highly effective in decreasing LPS-induced oxidative stress in lungs. Moreover, the dose of 0.5 mg/kg of the antagonist showed to be more effective in decreasing free radical generation and lung edema in endotoxemic rats.
Collapse
|
20
|
Abstract
Over the past several decades, investigations in humans and animal models of heart failure (HF) have provided substantial evidence that oxidative stress is increased in HF and contributes to disease progression. The high metabolic activity of cardiac myocytes makes these cells active sources of reactive oxygen species. Work in cell and animal models clearly demonstrates that oxidative stress activates processes such as changes in gene expression and cell death that are now accepted components of myocardial remodeling and HF. Antioxidants prevent progressive remodeling and even improve cardiac function in animal models of HF. It is therefore disappointing that to date no antioxidant strategy has translated to a therapeutic in the HF clinic. Possible explanations, including inadequate appreciation of the critical disease-modifying sources of reactive oxygen species, the choice of the wrong antioxidant strategy, or incomplete understanding of individual variability in human antioxidant defenses in this brief review.
Collapse
Affiliation(s)
- Douglas B Sawyer
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
21
|
Kubin AM, Skoumal R, Tavi P, Kónyi A, Perjés A, Leskinen H, Ruskoaho H, Szokodi I. Role of reactive oxygen species in the regulation of cardiac contractility. J Mol Cell Cardiol 2011; 50:884-93. [PMID: 21320508 DOI: 10.1016/j.yjmcc.2011.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 01/12/2023]
Abstract
Increased production of reactive oxygen species (ROS) has been linked to the pathogenesis of contractile dysfunction in heart failure. However, it is unclear whether ROS can regulate physiological cellular processes in the myocardium. Here, we characterized the role of endogenous ROS production in the acute regulation of cardiac contractility in the intact rat heart. In isolated perfused rat hearts, endothelin-1 (ET-1, 1nmol/L) stimulated ROS formation in the left ventricle, which was prevented by the antioxidant N-acetylcysteine and the NAD(P)H oxidase inhibitor apocynin. N-acetylcysteine, the superoxide dismutase mimetic MnTMPyP, and apocynin significantly attenuated ET-1-mediated inotropic effect, which was accompanied by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. Moreover, the mitochondrial K(ATP) channel blocker 5-HD, and the mitochondrial large conductance calcium activated potassium channel blocker paxilline, but not the sarcolemmal K(ATP) channel blocker HMR 1098 attenuated the inotropic response to ET-1. However, ET-1-induced ROS generation was not abolished by inhibiting mitochondrial K(ATP) channel opening. In contrast to ET-1 stimulation, the positive inotropic effect of β(1)-adrenergic receptor agonist dobutamine (250nmol/L) was significantly augmented by N-acetylcysteine and apocynin. Moreover, dobutamine-induced phospholamban phosphorylation was markedly enhanced by apocynin. In conclusion, NAD(P)H oxidase-derived ROS play a physiological role in the acute regulation of cardiac contractility in the intact rat heart. Our results reveal that ET-1-induced increase in cardiac contractility is partially dependent on enhanced ROS generation, which in turn, activates the ERK1/2 pathway. On the other hand, β-adrenergic receptor-induced positive inotropic effect and phospholamban phosphorylation is enhanced by NAD(P)H oxidase inhibition.
Collapse
Affiliation(s)
- Anna-Maria Kubin
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hong HJ, Liu JC, Cheng TH, Chan P. Tanshinone IIA attenuates angiotensin II-induced apoptosis via Akt pathway in neonatal rat cardiomyocytes. Acta Pharmacol Sin 2010; 31:1569-1575. [PMID: 21102479 PMCID: PMC4002950 DOI: 10.1038/aps.2010.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/12/2010] [Indexed: 01/27/2023]
Abstract
AIM to examine the effects of tanshinone IIA, the main effective component of Salvia miltiorrhiza (known as 'Danshen' in traditional Chinese medicine) on angiotensin II (Ang II)-mediated cardiomyocyte apoptosis. METHODS rat neonatal cardiomyocytes were primarily cultured with Ang II or Ang II plus tanshinone IIA. Myocyte apoptosis was evaluated by caspase-3 activity and DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining. Western blot analysis was employed to determine the related protein expression and flow cytometry assay was used to determine the TUNEL positive cells and the intracellular reactive oxygen species (ROS) production. SiRNA targeted to Akt was used. RESULTS ang II (0.1 micromol/L) remarkably increased caspase-3 activity, TUNEL positive cells, and cleaved caspase-3 and cytochrome c expression, but reduced Bcl-X(L) expression. These effects were effectively antagonized by pretreatment with tanshione IIA (1-3 micromol/L). Tanshinone IIA had no effect on basal ROS level, while attenuated the ROS production by Ang II. Interestingly, tanshione IIA significantly increased the phosphorylated Akt level, which was countered by the PI3K antagonist wortmannin or LY294002. Knockdown of Akt with Akt siRNA significantly reduced Akt protein levels and tanshinone IIA protective effect. CONCLUSION tanshinone IIA prevents Ang II-induced apoptosis, thereby suggesting that tanshinone IIA may be used for the prevention of the cardiac remodeling process.
Collapse
Affiliation(s)
- Hong-jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Ju-chi Liu
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| | - Tzu-hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, China
| | - Paul Chan
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| |
Collapse
|
23
|
Piechota A, Polańczyk A, Goraca A. Role of endothelin-1 receptor blockers on hemodynamic parameters and oxidative stress. Pharmacol Rep 2010; 62:28-34. [PMID: 20360613 DOI: 10.1016/s1734-1140(10)70240-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 01/20/2010] [Indexed: 12/17/2022]
Abstract
Endothelin (ET) was first isolated and described by Yanagisawa et al. and has since been described as one of the most potent known vasoconstrictor compounds. ET-1 mediates its effects via two types of receptors, ETA and ETB, which are expressed in the vascular smooth muscle cells, endothelial cells, intestines and brain. Secretion of ET-1 results in long-lasting vasoconstriction, increased blood pressure and, in turn, overproduction of free radicals. As dysregulation of the endothelin system is an important factor in the pathogenesis of several diseases including atherosclerosis, hypertension and endotoxic shock, the ETA and ETB receptors are attractive therapeutic targets for treatment of these disorders. The biosynthesis and release of ET-1 are regulated at the transcriptional level. Studies have shown that p38MAP kinase, nuclear factor kappaB (NF-kappaB), PKC/ERK and JNK/c-Jun all take part in the ROS-activated production of ET-1. Furthermore, administration of ET(A) significantly reduces the generation of free radicals. However, treatment with ETB receptor blockers does not elicit the same effect. Therefore, the effects of endothelin receptor blockers on blood pressure and the generation of free radicals remain debatable. This review summarizes recent investigations into the role of endothelin receptor blockers with respect to the modulation of hemodynamic parameters and the generation of free radicals.
Collapse
Affiliation(s)
- Aleksandra Piechota
- Chair of Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Łódź, Mazowiecka 6/8, PL 92-215 Łódź, Poland.
| | | | | |
Collapse
|
24
|
Deng W, Baki L, Baumgarten CM. Endothelin signalling regulates volume-sensitive Cl- current via NADPH oxidase and mitochondrial reactive oxygen species. Cardiovasc Res 2010; 88:93-100. [PMID: 20444986 DOI: 10.1093/cvr/cvq125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS We assessed regulation of volume-sensitive Cl(-) current (I(Cl,swell)) by endothelin-1 (ET-1) and characterized the signalling pathway responsible for its activation in rabbit atrial and ventricular myocytes. METHODS AND RESULTS ET-1 elicited I(Cl,swell) under isosmotic conditions. Outwardly rectified Cl(-) current was blocked by the I(Cl,swell)-selective inhibitor DCPIB or osmotic shrinkage and involved ET(A) but not ET(B) receptors. ET-1-induced current was abolished by inhibiting epidermal growth factor receptor (EGFR) kinase or phosphoinositide-3-kinase (PI-3K), indicating that these kinases were downstream. Regarding upstream events, activation of I(Cl,swell) by osmotic swelling or angiotensin II (AngII) was suppressed by ET(A) blockade, whereas AngII AT(1) receptor blockade failed to alter ET-1-induced current. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) stimulate I(Cl,swell). As expected, blockade of NOX suppressed ET-1-induced I(Cl,swell), but blockade of mitochondrial ROS production with rotenone also suppressed I(Cl,swell). I(Cl,swell) was activated by augmenting complex III ROS production with antimycin A or diazoxide; in this case, I(Cl,swell) was insensitive to NOX inhibitors, indicating that mitochondria were downstream from NOX. ROS generation in HL-1 cardiomyocytes measured by flow cytometry confirmed the electrophysiological findings. ET-1-induced ROS production was inhibited by blocking either NOX or mitochondrial complex I, whereas complex III-induced ROS production was insensitive to NOX blockade. CONCLUSION ET-1-ET(A) signalling activated I(Cl,swell) via EGFR kinase, PI-3K, and NOX ROS production, which triggered mitochondrial ROS production. ET(A) receptors were downstream effectors when I(Cl,swell) was elicited by osmotic swelling or AngII. These data suggest that ET-1-induced ROS-dependent I(Cl,swell) is likely to participate in multiple physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Wu Deng
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | | | | |
Collapse
|
25
|
Cheng TH, Lin JW, Chao HH, Chen YL, Chen CH, Chan P, Liu JC. Uric acid activates extracellular signal-regulated kinases and thereafter endothelin-1 expression in rat cardiac fibroblasts. Int J Cardiol 2010; 139:42-49. [PMID: 18945502 DOI: 10.1016/j.ijcard.2008.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/20/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND The association between hyperuricemia and cardiovascular diseases has long been recognized. Elevated levels of uric acid may have a causal role in hypertension and cardiovascular diseases. However, the direct effect of uric acid on cardiac cells remains unclear. Therefore, this study was aimed to examine the effect of uric acid in rat cardiac fibroblasts and to identify the putative underlying signaling pathways. METHODS Cultured rat cardiac fibroblasts were stimulated with uric acid; cell proliferation and endothelin-1 (ET-1) gene expression were examined. The effect of uric acid on NADPH oxidase activity, reactive oxygen species (ROS) formation, and extracellular signal-regulated kinases (ERK) phosphorylation were tested to elucidate the intracellular mechanism of uric acid in ET-1 gene expression. RESULTS Uric acid-increased cell proliferation and ET-1 gene expression. Uric acid also increased NADPH oxidase activity, ROS formation, ERK phosphorylation, and activator protein-1 (AP-1)-mediated reporter activity. Antioxidants suppressed uric acid-induced ET-1 gene expression, and ERK phosphorylation, and AP-1 reporter activities. Mutational analysis of the ET-1 gene promoter showed that AP-1 binding site was an important cis-element in uric acid-induced ET-1 gene expression. CONCLUSIONS These results suggest that uric acid-induced ET-1 gene expression, partially by the activation of ERK pathway via ROS generation in cardiac fibroblasts.
Collapse
Affiliation(s)
- Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu JC, Chen CH, Chen JJ, Cheng TH. Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol Pharmacol 2009; 76:1186-1195. [PMID: 19755521 DOI: 10.1124/mol.109.058297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
Urotensin II (U-II) is implicated in cardiomyocyte hypertrophy, which results in cardiac remodeling. We recently demonstrated that both reactive oxygen species (ROS) generation and epidermal growth factor receptor (EGFR) transactivation play critical roles in U-II signal transduction. However, the detailed intracellular mechanism(s) underlying cardiac hypertrophy and remodeling remain unclear. In this study, we used rat cardiomyocytes treated with U-II to investigate the association between ROS generation and EGFR transactivation. U-II treatment was found to stimulate cardiomyocyte hypertrophy through phosphorylation of EGFR and ROS generation. Apocynin, an NAD(P)H oxidase inhibitor, and N-acetyl cysteine (NAC), an ROS scavenger, both inhibited EGFR transactivation induced by U-II. In contrast, 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline (AG1478, an EGFR inhibitor) failed to inhibit intracellular ROS generation induced by U-II. Src homology 2-containing tyrosine phosphatase (SHP-2), but not protein tyrosine phosphatase 1B (PTP 1B), was shown to be associated with EGFR during U-II treatment by EGFR coimmunoprecipitation. ROS have been reported to transiently oxidize the catalytic cysteine of phosphotyrosine phosphatases, subsequently inhibiting their activity. We examined the effect of U-II on SHP-2 and PTP 1B in cardiomyocytes using a modified malachite green phosphatase assay. SHP-2, but not PTP 1B, was transiently oxidized during U-II treatment, which could be repressed by NAC treatment. In SHP-2 knockdown cells, U-II-induced phosphorylation of EGFR and myocyte hypertrophy were dramatically elevated, and these effects were not influenced by NAC. Our data suggest that U-II-mediated ROS generation can transiently inhibit SHP-2 activity, thereby facilitating EGFR transactivation and hypertrophic signal transduction in rat cardiomyocytes.
Collapse
Affiliation(s)
- Ju-Chi Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan 40402, R.O.C
| | | | | | | |
Collapse
|
27
|
Bouallegue A, Vardatsikos G, Srivastava AK. Role of insulin-like growth factor 1 receptor and c-Src in endothelin-1- and angiotensin II-induced PKB phosphorylation, and hypertrophic and proliferative responses in vascular smooth muscle cellsThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:1009-18. [DOI: 10.1139/y09-056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Endothelin-1 (ET-1) and angiotensin II (Ang II) are vasoactive peptides believed to contribute to the pathogenesis of vascular abnormalities such as hypertension, atherosclerosis, hypertrophy, and restenosis. The concept of transactivation of growth factor receptors, such as epidermal growth factor receptor (EGFR), in triggering vasoactive peptide-induced signaling events has gained much recognition during the past several years. We have demonstrated that insulin-like growth factor type 1 receptor (IGF-1R) plays a role in transducing the effect of H2O2, leading to protein kinase B (PKB) phosphorylation. Since vasoactive peptides elicit their responses through generation of reactive oxygen species, including H2O2, we investigated whether IGF-1R transactivation plays a similar role in ET-1- and Ang II-induced PKB phosphorylation and hypertrophic responses in vascular smooth muscle cells (VSMC). AG1024, a specific inhibitor of IGF-1R protein tyrosine kinase (PTK), attenuated both ET-1- and Ang II-induced PKB phosphorylation in a dose-dependent manner. ET-1 and Ang II treatment also induced the phosphorylation of tyrosine residues in the autophosphorylation sites of IGF-1R, which were blocked by AG1024. In addition, both ET-1 and Ang II evoked tyrosine phosphorylation of c-Src, a nonreceptor PTK, whereas pharmacological inhibition of c-Src PTK activity by PP2, a specific inhibitor of Src-family tyrosine kinase, significantly reduced PKB phosphorylation as well as tyrosine phosphorylation of IGF-1R induced by the 2 vasoactive peptides. Furthermore, protein and DNA synthesis enhanced by ET-1 and Ang II were attenuated by AG1024 and PP2. In conclusion, these data suggest that IGF-1R PTK and c-Src PTK play a critical role in mediating PKB phosphorylation as well as hypertrophic and proliferative responses induced by ET-1 and Ang II in A10 VSMC.
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| | - George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| | - Ashok K. Srivastava
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM), Technopole Angus Campus, and Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
28
|
Kok SH, Hong CY, Kuo MYP, Wang CC, Hou KL, Lin YT, Galson DL, Lin SK. Oncostatin M-induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritis. ACTA ACUST UNITED AC 2009; 60:1451-62. [DOI: 10.1002/art.24452] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Chao HH, Liu JC, Lin JW, Chen CH, Wu CH, Cheng TH. Uric acid stimulates endothelin-1 gene expression associated with NADPH oxidase in human aortic smooth muscle cells. Acta Pharmacol Sin 2008; 29:1301-1312. [PMID: 18954524 DOI: 10.1111/j.1745-7254.2008.00877.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AIM Recent experimental and human studies have shown that hyperuricemia is associated with hypertension and cardiovascular diseases. Elevated levels of endothelin-1 (ET-1) has been regarded as one of the most powerful independent predictors of cardiovascular diseases. For investigating whether uric acidinduced vascular diseases are related to ET-1, the uric acid-induced ET-1 expression in human aortic smooth muscle cells (HASMC) was examined. METHODS Cultured HASMC treated with uric acid, cell proliferation and ET-1 expression were examined. Antioxidant pretreatments on uric acid-induced extracellular signal-regulated kinases (ERK) phosphorylation were carried out to elucidate the redox-sensitive pathway in proliferation and ET-1 gene expression. RESULTS Uric acid was found to increase HASMC proliferation, ET-1 expression and reactive oxygen species production. The ability of both N-acetylcysteine and apocynin (1-[4-hydroxy-3-methoxyphenyl]ethanone, a NADPH oxidase inhibitor) to inhibit uric acid-induced ET-1 secretion and cell proliferation suggested the involvement of intracellular redox pathways. Furthermore, apocynin, and p47phox small interfering RNA knockdown inhibited ET-1 secretion and cell proliferation induced by uric acid. Inhibition of ERK by U0126 (1,4-diamino-2,3-dicyano- 1,4-bis[2-aminophenylthio]butadiene) significantly suppressed uric acid-induced ET-1 expression, implicating this pathway in the response to uric acid. In addition, uric acid increased the transcription factor activator protein-1 (AP-1) mediated reporter activity, as well as the ERK phosphorylation. Mutational analysis of the ET-1 gene promoter showed that the AP-1 binding site was an important cis-element in uric acid-induced ET-1 gene expression. CONCLUSION This is the first observation of ET-1 regulation by uric acid in HASMC, which implicates the important role of uric acid in the vascular changes associated with hypertension and vascular diseases.
Collapse
|
30
|
Chen YL, Liu JC, Loh SH, Chen CH, Hong CY, Chen JJ, Cheng TH. Involvement of reactive oxygen species in urotensin II-induced proliferation of cardiac fibroblasts. Eur J Pharmacol 2008; 593:24-29. [PMID: 18671962 DOI: 10.1016/j.ejphar.2008.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 06/30/2008] [Accepted: 07/09/2008] [Indexed: 12/09/2022]
Abstract
Urotensin II, a cyclic dodecapeptide, has recently been demonstrated to play an important role in cardiac remodeling and fibrosis. Cardiac fibroblast is the cell type known to proliferate during cardiac fibrosis and to produce the excess matrix proteins characteristic of cardiac remodeling. However, the effect of urotensin II on cardiac fibroblast proliferation and the intracellular mechanisms remain to be clarified. Cultured neonatal rat cardiac fibroblasts were stimulated with urotensin II, cell proliferation and the reactive oxygen species generation were examined. We also examined the effects of antioxidant pretreatment on urotensin II-induced cell proliferation, extracellular signal-regulated kinase phosphorylation, and the tyrosine phosphorylation of epidermal growth factor receptor, to elucidate the redox-sensitive pathway in urotensin II-induced cell proliferation. Urotensin II-increased cell proliferation and intracellular reactive oxygen species levels which were inhibited by antioxidants N-acetylcysteine, and the flavin inhibitor diphenyleneiodonium. Urotensin II potently activated the tyrosine phosphorylation of epidermal growth factor receptors and extracellular signal-regulated kinase. Pretreatment of cells with U0126, an inhibitor of the upstream activator of mitogen-activated protein kinase kinase, or with AG1478, a selective epidermal growth factor receptor kinase inhibitor, reduced the urotensin II-increased extracellular signal-regulated kinase phosphorylation. Antioxidants, U0126, and AG1478, all significantly inhibited urotensin II-increased cell proliferation in cardiac fibroblasts. Our data suggest that the redox-sensitive intracellular signaling pathway plays a role in urotensin II-induced proliferation in rat cardiac fibroblasts.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
31
|
Duda M, Konior A, Klemenska E, Beresewicz A. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. J Mol Cell Cardiol 2007; 42:400-10. [PMID: 17156794 DOI: 10.1016/j.yjmcc.2006.10.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/25/2006] [Indexed: 02/07/2023]
Abstract
The hypothesis was tested that endothelin-1 (ET-1)-induced superoxide (O(2)(-)) generation mediates post-ischemic coronary endothelial injury, that ischemic preconditioning (IPC) affords endothelial protection by preventing post-ischemic ET-1, and thus O(2)(-), generation, and that opening of the mitochondrial ATP-dependent potassium channel (mK(ATP)) triggers the mechanism of IPC. Furthermore, the study was aimed at identifying the source of O(2)(-) mediating the endothelial injury. Langendorff-perfused guinea-pig hearts were subjected either to 30 min ischemia/35 min reperfusion (IR) or were preconditioned prior to IR with three cycles of either 5 min ischemia/5 min reperfusion or 5 min infusion/5 min washout of mK(ATP) opener diazoxide (0.5 mM). Coronary flow responses to acetylcholine (ACh) served as a measure of endothelium-dependent vascular function. Myocardial outflow of ET-1 and O(2)(-) and functional recoveries were followed during reperfusion. NADPH oxidase and xanthine oxidase (XO) activities were measured in cardiac homogenates. IR augmented ET-1 and O(2)(-) outflow and impaired ACh response. All these effects were attenuated or prevented by IPC and diazoxide, and 5-hydroxydecanoate (a selective mK(ATP) blocker) abolished the effects of IPC and diazoxide. Superoxide dismutase and tezosentan (a mixed ET-1-receptor antagonist) mimicked the effects of IPC, although they had no effect on the ET-1 generation. IR augmented also the activity of NADPH oxidase and XO. Apocynin treatment, that resulted in NADPH oxidase inhibition, prevented XO activation and O(2)(-) generation in IR hearts. The inhibition of XO, either by allopurinol or feeding the animals with tungsten-enriched chow, prevented post-ischemic O(2)(-) generation, although these interventions had no effect on the NADPH activity. In addition, the post-ischemic activation of NADPH oxidase and XO, and O(2)(-) generation were prevented by IPC, tezosentan, thenoyltrifluoroacetone (mitochondrial complex II inhibitor), and tempol (cell-membrane permeable O(2)(-) scavenger). In guinea-pig heart: (i) ET-1-induced O(2)(-) generation mediates post-ischemic endothelial dysfunction; (ii) IPC and diazoxide afford endothelial protection by attenuating the ET-1, and thus O(2)(-) generation, and the mK(ATP) opening triggers the protection; (iii) the NADPH oxidase maintains the activity of XO, and the XO-derived O(2)(-) mediates the endothelial injury, and (iv) ET-1 and O(2)(-) (probably of mitochondrial origin) are upstream activators of the NADPH oxidase-XO cascade, and IPC prevents the cascade activation and the endothelial dysfunction by preventing the ET-1 generation.
Collapse
Affiliation(s)
- Monika Duda
- Department of Clinical Physiology, Postgraduate Medical School, Marymoncka 99, 01-813 Warsaw, Poland
| | | | | | | |
Collapse
|
32
|
Wong KL, Wu KC, Wu RSC, Chou YH, Cheng TH, Hong HJ. Tetramethylpyrazine inhibits angiotensin II-increased NAD(P)H oxidase activity and subsequent proliferation in rat aortic smooth muscle cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2007; 35:1021-1035. [PMID: 18186588 DOI: 10.1142/s0192415x0700548x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tetramethylpyrazine (TMP) is the major component extracted from the Chinese herb, Chuanxiong, which is widely used in China for the treatment of cardiovascular problems. The aims of this study were to examine whether TMP may alter angiotenisn II (Ang II)-induced proliferation and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with TMP and then stimulated with Ang II, [3H]-thymidine incorporation and the ET-1 expression was examined. Ang II increased DNA synthesis which was inhibited by TMP (1-100 microM). TMP inhibited the Ang II-induced ET-1 mRNA levels and ET-1 secretion. TMP also inhibited Ang II-increased NAD(P)H oxidase activity, intracellular reactive oxygen species (ROS) levels, and the ERK phosphorylation. Furthermore, TMP and antioxidants such as Trolox and diphenylene iodonium decreased Ang II-induced ERK phosphorylation, and activator protein-1 reporter activity. In summary, we demonstrate for the first time that TMP inhibits Ang II-induced proliferation and ET-1, partially by interfering with the ERK pathway via attenuation of Ang II-increased NAD(P)H oxidase and ROS generation. Thus, this study delivers important new insight in the molecular pathways that may contribute to the proposed beneficial effects of TMP in cardiovascular disease.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- DNA/metabolism
- Endothelin-1/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- NADPH Oxidases/drug effects
- NADPH Oxidases/metabolism
- Pyrazines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Kar-Lok Wong
- Department of Anesthesiology, Pain Management and Critical Care Medicine, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Sugden PH, Clerk A. Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 2006; 8:2111-24. [PMID: 17034354 DOI: 10.1089/ars.2006.8.2111] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.
Collapse
Affiliation(s)
- Peter H Sugden
- National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
34
|
Javadov S, Baetz D, Rajapurohitam V, Zeidan A, Kirshenbaum LA, Karmazyn M. Antihypertrophic effect of Na+/H+ exchanger isoform 1 inhibition is mediated by reduced mitogen-activated protein kinase activation secondary to improved mitochondrial integrity and decreased generation of mitochondrial-derived reactive oxygen species. J Pharmacol Exp Ther 2006; 317:1036-43. [PMID: 16513848 DOI: 10.1124/jpet.105.100107] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although inhibition of Na+/H+ exchanger isoform 1 (NHE-1) reduces cardiomyocyte hypertrophy, the mechanisms underlying this effect are not known. Recent evidence suggests that this may be associated with improved mitochondrial function. To understand the mechanistic bases for mitochondrial involvement in the antihypertrophic effect of NHE-1 inhibition, we examined the effect of the NHE-1-specific inhibitor N-[2-methyl-4,5-bis(methylsulphonyl)-benzoyl]-guanidine, hydrochloride (EMD, EMD87580; 5 microM) on the hypertrophic phenotype, mitogen-activated protein kinase (MAPK) activity, mitochondrial membrane potential (Deltapsim), permeability transition (MPT) pore opening, and superoxide generation in phenylephrine (PE)-treated neonatal rat cardiomyocytes. EMD significantly suppressed markers of cell hypertrophy, including cell surface area and gene expression of atrial natriuretic peptide and alpha-skeletal actin. EMD inhibited the PE-induced MPT pore opening, prevented the loss in Deltapsim, and attenuated superoxide generation induced by PE. Moreover, the activation of p38 MAPK (p38) and extracellular signal-regulated kinase (ERK) 1/2 MAPKs induced by PE was significantly attenuated in the presence of EMD as well as the antioxidant catalase. To examine the role of MPT and mitochondrial Ca2+ uniport in parallel with EMD, the effects of cyclosporin A (0.2 microM) and ruthenium red (10 microM) were evaluated. Both agents significantly attenuated PE-induced hypertrophy and inhibited both mitochondrial dysfunction and p38 and ERK1/2 MAPK activation. Our results suggest a novel mechanism for attenuation of the hypertrophic phenotype by NHE-1 inhibition that is mediated by a reduction in PE-induced MAPK activation and superoxide production secondary to improved mitochondrial integrity.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cardiac hypertrophy was viewed as a compensatory response to hemodynamic stress. However, cumulative evidence obtained from studies using more advanced technologies in human patients and animal models suggests that cardiac hypertrophy is a maladaptive process of the heart in response to intrinsic and extrinsic stimuli. Although hypertrophy can normalize wall tension, it is a risk factor for QT-prolongation and cardiac sudden death. Studies using molecular biology techniques such as transgenic and knockout mice have revealed many important molecules that are involved in the development of heart hypertrophy and have demonstrated signaling pathways leading to the pathogenesis. With the same approach, the consequence of heart hypertrophy has been examined. The significance of hypertrophy in the development of overt heart failure has been demonstrated and several critical molecular pathways involved in the process were revealed. A comprehensive understanding of the threats of heart hypertrophy to patients has helped to develop novel treatment strategies. The recognition of hypertrophy as a major risk factor for QT-prolongation and cardiac sudden death is an important advance in cardiac medicine. Cellular and molecular mechanisms of this risk aspect are currently under extensively exploring. These studies would lead to more comprehensive approaches to prevention of potential life threatening arrhythmia and cardiac sudden death. The adaptation of new approaches such as functional genomics and proteomics will further advance our knowledge of heart hypertrophy.
Collapse
Affiliation(s)
- Y James Kang
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA.
| |
Collapse
|
36
|
Ritchie RH, Delbridge LMD. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect? Clin Exp Pharmacol Physiol 2006; 33:159-66. [PMID: 16445716 DOI: 10.1111/j.1440-1681.2006.04342.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Metabolic remodelling in the heart occurs in response to chronically altered workload and substrate availability. Recently, the importance of the metabolic remodelling processes inherent in the hypertrophic growth response (whether primary or secondary) has been recognized. 2. Altered energy demand, shifts in substrate utilization and increased oxidative stress are observed in the hypertrophic heart. Both a shift away from carbohydrate usage (i.e. insulin resistance) and a shift to carbohydrate usage (i.e. pressure loading) are associated with disturbed cardiomyocyte Ca(2+) homeostasis and the development of cardiac hypertrophy. 3. A change in the balance of myocardial usage of fatty acid and glucose substrates must entail a degree of cellular oxidative stress. Increased throughput of any substrate will necessarily involve a regional imbalance between reactive oxygen species (ROS) production and breakdown. 4. In addition to a number of enzyme generators of ROS at various intracellular locations, the heart also contains a number of endogenous anti-oxidants, to restrict steady state ROS levels. The balance between ROS generation and their elimination by endogenous anti-oxidant mechanisms plays a critical role in preserving cardiac function; inappropriate levels of myocardial ROS likely precipitate impairment of myocardial function and abnormalities in cardiac structure. 5. Although different metabolic adaptations are associated with hypertrophic responses of contrasting aetiology, there is accumulating evidence that the joint insults of increased production of ROS and disturbed Ca(2+) handling in the cardiomyocyte comprise the primary lesion. These molecular signals operate together in a feed-forward mode and have the capacity to inflict substantial functional and structural damage on the hypertrophic myocardium.
Collapse
Affiliation(s)
- Rebecca H Ritchie
- Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
37
|
Chen CH, Cheng TH, Lin H, Shih NL, Chen YL, Chen YS, Cheng CF, Lian WS, Meng TC, Chiu WT, Chen JJ. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol 2006; 69:1347-1355. [PMID: 16391241 DOI: 10.1124/mol.105.017558] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endothelin-1 (ET-1) is implicated in fibroblast proliferation, which results in cardiac fibrosis. Both reactive oxygen species (ROS) generation and epidermal growth factor receptor (EGFR) transactivation play critical roles in ET-1 signal transduction. In this study, we used rat cardiac fibroblasts treated with ET-1 to investigate the connection between ROS generation and EGFR transactivation. ET-1 treatment was found to stimulate the phosphorylation of EGFR and ROS generation, which were abolished by ETA receptor antagonist N-(N-(N-((hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan (BQ485). NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI), ROS scavenger N-acetyl cysteine (NAC), and p47phox small interfering RNA knockdown all inhibited the EGFR transactivation induced by ET-1. In contrast, EGFR inhibitor 4-(3'-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478) cannot inhibit intracellular ROS generation induced by ET-1. Src homology 2-containing tyrosine phosphatase (SHP-2) was shown to be associated with EGFR during ET-1 treatment by EGFR coimmunoprecipitation. ROS have been reported to transiently oxidize the catalytic cysteine of phosphotyrosine phosphatases to inhibit their activity. We examined the effect of ROS on SHP-2 in cardiac fibroblasts using a modified malachite green phosphatase assay. SHP-2 was transiently oxidized during ET-1 treatment, and this transient oxidization could be repressed by DPI or NAC treatment. In SHP-2 knockdown cells, ET-1-induced phosphorylation of EGFR was dramatically elevated and is not influenced by NAC and DPI. However, this elevation was suppressed by GM6001 [a matrix metalloproteinase (MMP) inhibitor] and heparin binding (HB)-epidermal growth factor (EGF) neutralizing antibody. Our data suggest that ET-1-ETA-mediated ROS generation can transiently inhibit SHP-2 activity to facilitate the MMP-dependent and HB-EGF-stimulated EGFR transactivation and mitogenic signal transduction in rat cardiac fibroblasts.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barman SA, Marrero MB. Mechanism of Endothelin-1 Activation of Map Kinases in Neonatal Pulmonary Vascular Smooth Muscle. Lung 2005; 183:425-39. [PMID: 16465602 DOI: 10.1007/s00408-005-2554-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2005] [Indexed: 12/01/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) belong to the group of serine-threonine kinases that are rapidly activated in response to growth factor stimulation. In adult mammalian cells, the MAPK family includes extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2 or p44(mapk) and p42(mapk)), which translocate to the nucleus and integrate signals from second messengers leading to cellular proliferation or differentiation, but the specific role of MAPKs in neonatal pulmonary vascular smooth muscle is not well understood. Expression of p44(mapk) and p42(mapk) in primary cultured pulmonary vascular smooth muscle cells from neonatal (1-2 day old) rats was identified by Western immunoblot analysis and treatment with 10 nM endothelin-1 (ET-1), a potent vasoconstrictor with vascular mitogenic properties, induced cell proliferation, and phosphorylation of both p44(mapk) and p42(mapk). The protein kinase C (PKC) isozyme inhibitor (alpha, beta, gamma, delta, zeta) Go 6983, the ET(A) receptor antagonist BQ 123, and the MAPK kinase inhibitor PD98059 blocked the cell proliferation response to ET-1. Also, BQ 123, Go 6983, and PKC inhibitor 20-28 (Myr-N-FARKGAL-RQ-NH2-PKCalpha antagonist) inhibited ET-1-induced phosphorylation of both p44(mapk) and p42(mapk). In contrast, the reactive oxygen species (ROS) inhibitor diphenylene iodonium (DPI), the PKCdelta inhibitor rottlerin, and the ET(B) receptor antagonist BQ 788 did not block ET-1-induced phosphorylation of MAPKs. Collectively, these data demonstrate the expression and phosphorylation of MAPKs by ET-1 and suggests that MAPK activation and cell proliferation by ET-1 occurs via ET(A) receptor stimulation and specific PKC isozyme activation in rat neonatal pulmonary vascular smooth muscle.
Collapse
Affiliation(s)
- Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
39
|
Izzotti A, Bagnasco M, Cartiglia C, Longobardi M, Balansky RM, Merello A, Lubet RA, De Flora S. Chemoprevention of genome, transcriptome, and proteome alterations induced by cigarette smoke in rat lung. Eur J Cancer 2005; 41:1864-74. [PMID: 15953715 DOI: 10.1016/j.ejca.2005.04.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 04/01/2005] [Indexed: 12/29/2022]
Abstract
Post-genomic methodologies have provided novel tools for evaluating safety and efficacy of cancer chemopreventive agents. We exposed rats to environmental cigarette smoke (ECS) for 28 days, with or without oral administration of N-acetylcysteine (NAC). As assessed by 32P-postlabelling, ECS caused a 10-fold increase of DNA adduct levels, which were significantly reduced by NAC. Of 518 proteins tested by antibody microarray, ECS stimulated 56 activities involved in stress response, protein removal, cell replication, apoptosis, phagocytosis, and immune response. NAC alone did not change the amounts of any protein, whereas it significantly decreased the amounts of 6 ECS-induced proteins. The intensity of expression of 278 related genes, assessed by cDNA microarray, was significantly correlated with protein amounts. These observed molecular alterations, which can be attenuated by NAC, represent in part adaptive responses and in part reflect mechanisms contributing to the pathogenesis of smoke-related diseases, including lung cancer, asthma, chronic bronchitis, and emphysema.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cheng-Hsien C, Yung-Ho H, Yuh-Mou S, Chun-Cheng H, Horng-Mo L, Huei-Mei H, Tso-Hsiao C. Src homology 2-containing phosphotyrosine phosphatase regulates endothelin-1-induced epidermal growth factor receptor transactivation in rat renal tubular cell NRK-52E. Pflugers Arch 2005; 452:16-24. [PMID: 16261333 DOI: 10.1007/s00424-005-0006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/05/2005] [Accepted: 10/03/2005] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor (EGF) and endothelin-1 (ET-1) have been shown to be involved in proliferation and autoregeneration of renal tubular cells. This study aims to investigate the regulatory mechanism of ET-1-mediated EGF receptor (EGFR) transactivation in rat renal tubular cells (NRK-52E). Exposure of NRK-52E cells to ET-1 was found to stimulate the phosphorylation of EGFR and induce reactive oxygen species (ROS) generation. Both NAD(P)H oxidase inhibitor, diphenyliodonium (DPI) and ROS scavenger N-acetylcysteine (NAC), inhibited EGFR transactivation and extracellular signal-regulated kinase (ERK) phosphorylation caused by ET-1. In contrast, blockade of EGFR by AG1478 inhibited the phosphorylation of ERK but not ROS generation following ET-1 exposure. We found that the catalytic cysteine of Src homology 2-containing phosphotyrosine phosphatase (SHP-2) was transiently oxidized by ET-1 treatment in a modified malachite green phosphatase assay. In EGFR co-immunoprecipitation, SHP-2 was also found to interact with EGFR following ET-1 treatment. In SHP-2 knockdown NRK-52E cells, ET-1-induced EGFR transactivation was dramatically elevated and not influenced by NAC. However, GM6001 (an MMP inhibitor) and heparin binding (HB)-EGF neutralizing antibody suppressed this elevation. Our data suggest that ROS-mediated oxidation of SHP-2 is essential for HB-EGF-mediated EGFR transactivation in ET-1 signaling pathway in NRK-52E cells.
Collapse
Affiliation(s)
- Chen Cheng-Hsien
- Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, No 111, Sing-Lung Road, Sec. 3, Wen-Shan District, Taipei City, 117, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Cheng TH, Shih NL, Chen SY, Lin JW, Chen YL, Chen CH, Lin H, Cheng CF, Chiu WT, Wang DL, Chen JJ. Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation. Mol Pharmacol 2005; 68:1183-1192. [PMID: 16049167 DOI: 10.1124/mol.105.014449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac hypertrophy is a compensatory mechanism in response to a variety of cardiovascular diseases. Recently, reactive oxygen species and nitric oxide (NO) have been demonstrated to be involved in the pathogenesis of atherosclerosis; however, the role of these free radicals in the development of cardiac hypertrophy remains unclear. In this study, we investigate NO modulation of cellular signaling in endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy in culture. ET-1 treatment of cardiomyocytes increased constitutive NO synthase activity and induced NO production via the stimulation of ET-receptor subtype ET(B). Using Northern blot analysis and chloramphenicol acetyltransferase assay, we found that NO suppressed the ET-1-induced increase in c-fos mRNA level and promoter activity. In contrast, ET-1 stimulation of c-fos expression was augmented by depletion of endogenous NO generation with the addition of NO scavenger PTIO into cardiomyocytes. Cells cotransfected with the dominant negative and positive mutants of signaling molecules revealed that the Ras/Raf/extracellular-signal regulated kinase (ERK) signaling pathway is involved in ET-induced c-fos gene expression. Furthermore, NO directly inhibited ET-1-induced ERK phosphorylation and activation in a cGMP-dependent manner, indicating that NO modulates ET-1-induced c-fos expression via its inhibitory effect on ERK signaling pathway. The ET-1-stimulated activator protein-1 (AP-1) DNA binding activity and AP-1-mediated reporter activity were attenuated by NO. In addition, NO also significantly inhibited ET-1-stimulated promoter activity of hypertrophic marker gene beta-myosin heavy chain and the enhanced protein synthesis. Taken together, our findings provide the molecular basis of NO as a negative regulator in ET-1-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Tzu-Hurng Cheng
- Department of Medicine, Taipei Medical University-Wan Fang Medical Center, Taipei, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee WS, Yang HY, Kao PF, Liu JC, Chen CH, Cheng TH, Chan P. Tetramethylpyrazine downregulates angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. Clin Exp Pharmacol Physiol 2005; 32:845-850. [PMID: 16173946 DOI: 10.1111/j.1440-1681.2005.04275.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Tetramethylpyrazine (TMP) is one of the active ingredients of the Chinese herb Ligusticum wallichii Franchat. It is well documented that TMP exerts a cardiovascular protective effect. The aims of the present study were to examine whether TMP alters angiotenisn (Ang) II-induced endothelin (ET)-1 gene expression and to identify the putative underlying signalling pathways in vascular endothelial cells. 2. Cultured vascular endothelial cells were pre-incubated with TMP, stimulated with AngII and ET-1 gene expression was then examined. The effects of TMP pretreatment on AngII-induced extracellular signal-regulated kinase (ERK) phosphorylation were investigated to elucidate the intracellular mechanism responsible for the effects of TMP on ET-1 gene expression. 3. Tetramethylpyrazine inhibited AngII-induced ET-1 gene expression, as revealed by nothern blotting and a promoter activity assay. Tetramethylpyrazine also inhibited the AngII-induced increase in intracellular reactive oxygen species (ROS), as measured by the redox sensitive fluorescent dye 2' 7'-dichlorofluorescin diacetate and ERK phosphorylation. 4. In summary, we have demonstrated, for the first time, that TMP inhibits AngII-induced ROS generation, ERK phosphorylation and ET-1 gene expression in vascular endothelial cells. Thus, the present study delivers important new insights into the molecular pathways that may contribute to the proposed beneficial effects of TMP in the cardiovascular system.
Collapse
Affiliation(s)
- Wen-Sen Lee
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang HY, Liu JC, Chen YL, Chen CH, Lin H, Lin JW, Chiu WT, Chen JJ, Cheng TH. Inhibitory effect of trilinolein on endothelin-1-induced c-fos gene expression in cultured neonatal rat cardiomyocytes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2005; 372:160-167. [PMID: 16184402 DOI: 10.1007/s00210-005-0003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
Trilinolein, isolated from the traditional Chinese herb Sanchi (Panax notoginseng), has been shown to have myocardial protective effects via its antioxidant ability. However, the cellular and molecular mechanisms of the protective effect of trilinolein in the heart remain to be elucidated. Oxidative mechanisms have been implicated in neonatal cardiomyocyte hypertrophy. We previously reported that ET-1 induces ROS generation via the ET(A) receptor and ROS modulates c-fos gene expression. We have therefore examined whether trilinolein attenuates ROS production and ET-1-induced c-fos gene expression in cardiomyocytes. Cultured neonatal rat cardiomyocytes were stimulated with ET-1 (10 nM), and c-fos gene expression was examined. Trilinolein (1 and 10 microM) inhibited ET-1-induced c-fos gene expression in cardiomyocytes. We also examined the effects of trilinolein on ET-1-increased NADPH oxidase activity and superoxide formation. Trilinolein inhibited ET-1-increased NADPH oxidase activity and superoxide formation in a concentration-dependent manner. This increase in superoxide production by ET-1 was significantly inhibited by trilinolein, diphenyleneiodonium, or N-acetylcysteine. Trilinolein also decreased ET-1- or H2O2-induced extracellular signal-regulated kinase (ERK) phosphorylation, c-Jun NH2-terminal kinase (JNK) phosphorylation, and activator protein-1 activation. These data indicate that trilinolein inhibits ET-1-induced ERK phosphorylation, JNK phosphorylation, and c-fos gene expression via attenuating superoxide production in cardiomyocytes.
Collapse
Affiliation(s)
- Hung-Yu Yang
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chao HH, Juan SH, Liu JC, Yang HY, Yang E, Cheng TH, Shyu KG. Resveratrol inhibits angiotensin II-induced endothelin-1 gene expression and subsequent proliferation in rat aortic smooth muscle cells. Eur J Pharmacol 2005; 515:1-9. [PMID: 15878161 DOI: 10.1016/j.ejphar.2005.03.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 03/31/2005] [Indexed: 02/07/2023]
Abstract
Resveratrol is a phytoestrogen naturally found in grapes and is the major constituent of wine thought to have a cardioprotective effect. The aims of this study were to examine whether resveratrol alters angiotenisn II-induced cell proliferation and endothelin-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with resveratrol then stimulated with angiotensin II, after which [3H]thymidine incorporation and endothelin-1 gene expression were examined. The intracellular mechanism of resveratrol in cellular proliferation and endothelin-1 gene expression was elucidated by examining the phosphorylation level of angiotensin II-induced extracellular signal-regulated kinase (ERK). The inhibitory effects of resveratrol (1-100 microM) on angiotensin II-induced DNA synthesis and endothelin-1 gene expression were demonstrated with Northern blot and promoter activity assays. Measurements of 2'7'-dichlorofluorescin diacetate, a redox-senstive fluorescent dye, showed a resveratrol-mediated inhibition of intracellular reactive oxygen species generated by the effects of angiotensin II. The inductive properties of angiotensin II and H2O2 on ERK phosphorylation and activator protein-1-mediated reporter activity were found reversed with resveratrol and antioxidants such as N-acetyl-cysteine. In summary, we speculate that resveratrol inhibits angiotensin II-induced cell proliferation and endothelin-1 gene expression, and does so in a manner which involves the disruption of the ERK pathway via attenuation of reactive oxygen species generation. Thus, this study provides important insight into the molecular pathways that may contribute to the proposed beneficial effects of resveratrol on the cardiovascular system.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Binding Sites/genetics
- Blotting, Northern
- Blotting, Western
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelin-1/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression/drug effects
- Hydrogen Peroxide/pharmacology
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphorylation/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Resveratrol
- Stilbenes/pharmacology
- Transcription Factor AP-1/metabolism
- Transfection
Collapse
Affiliation(s)
- Hung-Hsing Chao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC; Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
45
|
Chao HH, Chen JJ, Chen CH, Lin H, Cheng CF, Lian WS, Chen YL, Juan SH, Liu JC, Liou JY, Chan P, Cheng TH. Inhibition of angiotensin II induced endothelin-1 gene expression by 17-beta-oestradiol in rat cardiac fibroblasts. Heart 2005; 91:664-669. [PMID: 15831659 PMCID: PMC1768884 DOI: 10.1136/hrt.2003.031898] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2004] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To examine whether 17-beta-oestradiol (E(2)) may alter angiotensin II (Ang II) induced cell proliferation and to identify the putative underlying signalling pathways in rat cardiac fibroblasts. DESIGN Cultured rat cardiac fibroblasts were preincubated with E(2) then stimulated with Ang II. [(3)H]Thymidine incorporation and endothelin-1 (ET-1) gene expression were examined. The effect of E(2) on Ang II induced NADPH oxidase activity, reactive oxygen species (ROS) formation, and extracellular signal regulated kinase (ERK) phosphorylation were tested to elucidate the intracellular mechanism of E(2) in proliferation and ET-1 gene expression. RESULTS Ang II increased DNA synthesis, which was inhibited with E(2) (1-100 nmol/l). E(2), but not 17-alpha-oestradiol, inhibited Ang II induced ET-1 gene expression as shown by northern blotting and promoter activity assay. This effect was prevented by co-incubation with the oestrogen receptor antagonist ICI 182,780 (1 micromol/l). E(2) also inhibited Ang II increased NADPH oxidase activity, ROS formation, ERK phosphorylation, and activator protein-1 mediated reporter activity. CONCLUSIONS The results suggest that E(2) inhibits Ang II induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway through attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of oestrogen on the cardiovascular system.
Collapse
Affiliation(s)
- H-H Chao
- Graduate Institute of Medical Science, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng TH, Shih NL, Chen CH, Lin H, Liu JC, Chao HH, Liou JY, Chen YL, Tsai HW, Chen YS, Cheng CF, Chen JJ. Role of mitogen-activated protein kinase pathway in reactive oxygen species-mediated endothelin-1-induced beta-myosin heavy chain gene expression and cardiomyocyte hypertrophy. J Biomed Sci 2005; 12:123-133. [PMID: 15864745 DOI: 10.1007/s11373-004-8168-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/11/2004] [Indexed: 10/25/2022] Open
Abstract
Endothelin-1 (ET-1) has been found to increase cardiac beta-myosin heavy chain (beta-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced beta-MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced beta-MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and beta-MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and beta-MyHC gene expression. ET-1 increased 3H-leucine incorporation and beta-MyHC promoter activities, which were blocked by the specific ET(A) receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, beta-MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and beta-MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced beta-MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the beta-MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced beta-MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and beta-MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and beta-MyHC expression.
Collapse
Affiliation(s)
- Tzu-Hurng Cheng
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hong HJ, Liu JC, Chan P, Juan SH, Loh SH, Lin JG, Cheng TH. 17beta-estradiol downregulates angiotensin-II-induced endothelin-1 gene expression in rat aortic smooth muscle cells. J Biomed Sci 2004; 11:27-36. [PMID: 14730207 DOI: 10.1007/bf02256546] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 08/25/2003] [Indexed: 02/07/2023] Open
Abstract
It is well documented that 17beta-estradiol (E(2)) exerts a cardiovascular protective effect. A possible role of E(2) in the regulation of endothelin-1 (ET-1) production has been reported. However, the complex mechanisms by which E(2) inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E(2) may alter angiotensin II (Ang II)-induced cell proliferation and ET-1 gene expression and to identify the putative underlying signaling pathways in rat aortic smooth muscle cells. Cultured rat aortic smooth muscle cells were preincubated with E(2), then stimulated with Ang II, and [(3)H]thymidine incorporation and ET-1 gene expression were examined. The effect of E(2) on Ang-II-induced extracellular signal-regulated kinase (ERK) phosphorylation was tested to elucidate the intracellular mechanism of E(2) in proliferation and ET-1 gene expression. Ang II increased DNA synthesis which was inhibited with E(2) (1- 100 nM). E(2), but not 17alpha-estradiol, inhibited the Ang-II-induced ET-1 gene expression as revealed by Northern blotting and promoter activity assay. This effect was prevented by coincubation with the estrogen receptor antagonist ICI 182,780 (1 microM). E(2) also inhibited Ang-II-increased intracellular reactive oxygen species (ROS) as measured by a redox-sensitive fluorescent dye, 2',7'-dichlorofluorescin diacetate, and ERK phosphorylation. Furthermore, E(2) and antioxidants, such as N-acetyl cysteine and diphenylene iodonium, decreased Ang-II-induced cell proliferation, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1-mediated reporter activity. In summary, our results suggest that E(2) inhibits Ang-II-induced cell proliferation and ET-1 gene expression, partially by interfering with the ERK pathway via attenuation of ROS generation. Thus, this study provides important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.
Collapse
Affiliation(s)
- Hong-Jye Hong
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu JC, Chan P, Chen JJ, Lee HM, Lee WS, Shih NL, Chen YL, Hong HJ, Cheng TH. The inhibitory effect of trilinolein on norepinephrine-induced beta-myosin heavy chain promoter activity, reactive oxygen species generation, and extracellular signal-regulated kinase phosphorylation in neonatal rat cardiomyocytes. J Biomed Sci 2004; 11:11-8. [PMID: 14730205 DOI: 10.1007/bf02256544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/25/2003] [Indexed: 10/25/2022] Open
Abstract
The myocardial protective effects of trilinolein, isolated from the traditional Chinese herb Sanchi (Panax notoginseng), are thought to be related to its antioxidant activity. However, the intracellular mechanism underlying the protective effect of trilinolein in the heart remains unclear. In the present study, we investigated the effect of trilinolein on norepinephrine (NE)-induced protein synthesis in cardiomyocytes. Cultured neonatal rat cardiomyocytes were stimulated with NE, then protein content, [(3)H]-leucine incorporation, and beta-myosin heavy chain (beta-MyHC) promoter activity were examined. The effect of trilinolein on NE-induced intracellular reactive oxygen species (ROS) generation was measured with a redox- sensitive fluorescent dye (2',7'-dichlorofluorescin diacetate) and extracellular signal-regulated kinase (ERK) phosphorylation by Western blotting. Trilinolein inhibited NE-increased protein synthesis, beta-MyHC promoter activity, and intracellular ROS. Both trilinolein and the antioxidant, N-acetyl-cysteine, decreased NE- and H(2)O(2)-induced protein synthesis, beta-MyHC promoter activity, and ERK phosphorylation. These data indicate that trilinolein inhibits NE-induced protein synthesis via attenuation of ROS generation in cardiomyocytes.
Collapse
Affiliation(s)
- Ju-Chi Liu
- Graduate Institute of Medical Sciences, Taipei Medical University, Wan Fang Hospital, No. 111 Hsing-Lung Road, Sec. 3, Wen Shan District, Taipei 117, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Juan SH, Chen JJ, Chen CH, Lin H, Cheng CF, Liu JC, Hsieh MH, Chen YL, Chao HH, Chen TH, Chan P, Cheng TH. 17beta-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287:H1254-H1261. [PMID: 15130882 DOI: 10.1152/ajpheart.00723.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been well documented previously that 17beta-estradiol (E2) exerts a protective effect on cardiovascular tissue. The possible role of E2 in the regulation of endothelin (ET)-1 production has been previously reported, although the complex mechanisms by which E2 inhibits ET-1 expression are not completely understood. The aims of this study were to examine whether E2 was able to alter strain-induced ET-1 gene expression and also to identify the putative underlying signaling pathways that exist within endothelial cells. For cultured endothelial cells, E2 (1-100 nM), but not 17alpha-estradiol, inhibited the level of strain-induced ET-1 gene expression and also peptide secretion. This inhibitory effect elicited by E2 was able to be prevented by the coincubation of endothelial cells with the estrogen receptor antagonist ICI-182,780 (1 microM). E2 also inhibited strain-enhanced NADPH oxidase activity and intracellular reactive oxygen species (ROS) generation as measured by the redox-sensitive fluorescent dye 2',7'-dichlorofluorescin diacetate and the level of extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, the presence of E2 and antioxidants such as N-acetylcysteine and diphenylene iodonium were able to elicit a decrease in the level of strain-induced ET-1 secretion, ET-1 promoter activity, ET-1 mRNA, ERK phosphorylation, and activator protein-1 binding activity. In summary, we demonstrated, for the first time, that E2 inhibits strain-induced ET-1 gene expression, partially by interfering with the ERK pathway via the attenuation of strain-induced ROS generation. Thus this study delivers important new insight regarding the molecular pathways that may contribute to the proposed beneficial effects of estrogen on the cardiovascular system.
Collapse
Affiliation(s)
- Shu-Hui Juan
- Graduate Institute of Medical Sciences and Department of Physiology, School of Medicine, Taipei Medical University, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic Biol Med 2004; 37:208-15. [PMID: 15203192 DOI: 10.1016/j.freeradbiomed.2004.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/31/2004] [Accepted: 04/16/2004] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) have been shown to mediate the effects of several growth factors and vasoactive peptides, such as epidermal growth factor, platelet-derived growth factor, and angiotensin II (AII). Endothelin-1 (ET-1) is a vasoactive peptide which also exhibits mitogenic activity in vascular smooth muscle cells (VSMCs), and is believed to contribute to the pathogenesis of vascular abnormalities such as atherosclerosis, hypertension, and restenosis after angioplasty. However, a possible role for ROS generation in mediating the ET-1 response on extracellular signal-regulated kinases 1 and 2 (ERK1/2), protein kinase B (PKB), and protein tyrosine kinase 2 (Pyk2), key components of the growth-promoting and proliferative signaling pathways, has not been examined in detail. Our aim was to investigate the involvement of ROS in ET-1-mediated activation of ERK1/2, PKB, and Pyk2 in A-10 VSMCs. ET-1 stimulated ERK1/2, PKB, and Pyk2 phosphorylation in a dose- and time-dependent manner. Pretreatment of A-10 VSMCs with diphenyleneiodonium (DPI), an inhibitor of reduced nicotinamide adenine dinucleotide phosphate oxidase, attenuated ET-1-enhanced ERK1/2, PKB, and Pyk2 phosphorylation. In addition, in parallel with an inhibitory effect on the above signaling components, DPI also blocked ET-1-induced protein synthesis. ET-1 was also found to increase ROS production, which was suppressed by DPI treatment. N-Acetylcysteine, a ROS scavenger, exhibited a response similar to that of DPI and inhibited ET-1-stimulated ERK1/2, PKB, and Pyk2 phosphorylation. These results demonstrate that ROS are critical mediators of ET-1-induced signaling events linked to growth-promoting proliferative and hypertrophic pathways in VSMCs.
Collapse
Affiliation(s)
- Grace Bou Daou
- Research Center, Centre hospitalier de l'Université de Montréal - Hôtel-Dieu, Department of Medicine and Physiology, Université de Montréal, Quebec, Canada
| | | |
Collapse
|