1
|
Shiraishi R, Cancila G, Kumegawa K, Torrejon J, Basili I, Bernardi F, Silva PBGD, Wang W, Chapman O, Yang L, Jami M, Nishitani K, Arai Y, Xiao Z, Yu H, Lo Re V, Marsaud V, Talbot J, Lombard B, Loew D, Jingu M, Okonechnikov K, Sone M, Motohashi N, Aoki Y, Pfister SM, Chavez L, Hoshino M, Maruyama R, Ayrault O, Kawauchi D. Cancer-specific epigenome identifies oncogenic hijacking by nuclear factor I family proteins for medulloblastoma progression. Dev Cell 2024; 59:2302-2319.e12. [PMID: 38834071 DOI: 10.1016/j.devcel.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.
Collapse
Affiliation(s)
- Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Gabriele Cancila
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Irene Basili
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Owen Chapman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Maki Jami
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yukimi Arai
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Zhize Xiao
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Valentina Lo Re
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Véronique Marsaud
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Julie Talbot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Damarys Loew
- Institut Curie, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, Paris 75005, France
| | - Maho Jingu
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan; Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Masaki Sone
- Department of Biomolecular Science, Graduate School of Science, Toho University, Chiba 274-8510, Japan
| | - Norio Motohashi
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Lukas Chavez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan
| | - Reo Maruyama
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay 91400, France.
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan.
| |
Collapse
|
2
|
Liu YB, He LM, Sun M, Luo WJ, Lin ZC, Qiu ZP, Zhang YL, Hu A, Luo J, Qiu WW, Song BL. A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened. Cell Chem Biol 2024; 31:1264-1276.e7. [PMID: 38442710 DOI: 10.1016/j.chembiol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.
Collapse
Affiliation(s)
- Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Li-Ming He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Jun Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zi-Cun Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zhi-Ping Qiu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yu-Liang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
3
|
Kwon W, Choi DJ, Yu K, Williamson MR, Murali S, Ko Y, Woo J, Deneen B. Comparative Transcriptomic Analysis of Cerebellar Astrocytes across Developmental Stages and Brain Regions. Int J Mol Sci 2024; 25:1021. [PMID: 38256095 PMCID: PMC10816327 DOI: 10.3390/ijms25021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system, and they play a crucial role in normal brain function. While gliogenesis and glial differentiation occur during perinatal cerebellar development, the processes that occur during early postnatal development remain obscure. In this study, we conducted transcriptomic profiling of postnatal cerebellar astrocytes at postnatal days 1, 7, 14, and 28 (P1, P7, P14, and P28), identifying temporal-specific gene signatures at each specific time point. Comparing these profiles with region-specific astrocyte differentially expressed genes (DEGs) published for the cortex, hippocampus, and olfactory bulb revealed cerebellar-specific gene signature across these developmental timepoints. Moreover, we conducted a comparative analysis of cerebellar astrocyte gene signatures with gene lists from pediatric brain tumors of cerebellar origin, including ependymoma and medulloblastoma. Notably, genes downregulated at P14, such as Kif11 and HMGB2, exhibited significant enrichment across all pediatric brain tumor groups, suggesting the importance of astrocytic gene repression during cerebellar development to these tumor subtypes. Collectively, our studies describe gene expression patterns during cerebellar astrocyte development, with potential implications for pediatric tumors originating in the cerebellum.
Collapse
Affiliation(s)
- Wookbong Kwon
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael R. Williamson
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjana Murali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yeunjung Ko
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junsung Woo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Gold MP, Ong W, Masteller AM, Ghasemi DR, Galindo JA, Park NR, Huynh NC, Donde A, Pister V, Saurez RA, Vladoiu MC, Hwang GH, Eisemann T, Donovan LK, Walker AD, Benetatos J, Dufour C, Garzia L, Segal RA, Wechsler-Reya RJ, Mesirov JP, Korshunov A, Pajtler KW, Pomeroy SL, Ayrault O, Davidson SM, Cotter JA, Taylor MD, Fraenkel E. Developmental basis of SHH medulloblastoma heterogeneity. Nat Commun 2024; 15:270. [PMID: 38191555 PMCID: PMC10774283 DOI: 10.1038/s41467-023-44300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Many genes that drive normal cellular development also contribute to oncogenesis. Medulloblastoma (MB) tumors likely arise from neuronal progenitors in the cerebellum, and we hypothesized that the heterogeneity observed in MBs with sonic hedgehog (SHH) activation could be due to differences in developmental pathways. To investigate this question, here we perform single-nucleus RNA sequencing on highly differentiated SHH MBs with extensively nodular histology and observed malignant cells resembling each stage of canonical granule neuron development. Through innovative computational approaches, we connect these results to published datasets and find that some established molecular subtypes of SHH MB appear arrested at different developmental stages. Additionally, using multiplexed proteomic imaging and MALDI imaging mass spectrometry, we identify distinct histological and metabolic profiles for highly differentiated tumors. Our approaches are applicable to understanding the interplay between heterogeneity and differentiation in other cancers and can provide important insights for the design of targeted therapies.
Collapse
Grants
- R35 NS122339 NINDS NIH HHS
- U01 CA253547 NCI NIH HHS
- U24 CA220341 NCI NIH HHS
- R01 NS089076 NINDS NIH HHS
- R01 CA255369 NCI NIH HHS
- P50 HD105351 NICHD NIH HHS
- R01 NS106155 NINDS NIH HHS
- R01 CA159859 NCI NIH HHS
- P30 CA014089 NCI NIH HHS
- U01 CA184898 NCI NIH HHS
- EIF | Stand Up To Cancer (SU2C)
- The Pediatric Brain Tumour Foundation, The Terry Fox Research Institute, The Canadian Institutes of Health Research, The Cure Search Foundation, Matthew Larson Foundation (IronMatt), b.r.a.i.n.child, Meagan’s Walk, SWIFTY Foundation, The Brain Tumour Charity, Genome Canada, Genome BC, Genome Quebec, the Ontario Research Fund, Worldwide Cancer Research, V-Foundation for Cancer Research, and the Ontario Institute for Cancer Research through funding provided by the Government of Ontario, Canadian Cancer Society Research Institute Impact grant, a Cancer Research UK Brain Tumour Award, and the Garron Family Chair in Childhood Cancer Research at the Hospital for Sick Children and the University of Toronto. We also thank Yoon-Jae Cho, John Michaels, Koei Chin, Joe Gray, Connie New, and Ali Abdullatif for their help with the manuscript. Additionally, we appreciate support from the USC Norris Comprehensive Cancer Center Translational Pathology Core (P30CA014089), the Pediatric Research Biorepository at CHLA, and the Histology Core at the Koch Institute at MIT.
Collapse
Affiliation(s)
- Maxwell P Gold
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Winnie Ong
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Andrew M Masteller
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - David R Ghasemi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julie Anne Galindo
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Noel R Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Nhan C Huynh
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Veronika Pister
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Raul A Saurez
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Grace H Hwang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tanja Eisemann
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Laura K Donovan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam D Walker
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
| | - Joseph Benetatos
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Christelle Dufour
- Department of Child and Adolescent Oncology, Gustave Roussy, Villejuif, France
- INSERM U981, Molecular Predictors and New Targets in Oncology, University Paris-Saclay, Villejuif, France
| | - Livia Garzia
- Cancer Research Program, McGill University, Montreal, QC, Canada
- MUHC Research Institute, McGill University, Montreal, QC, Canada
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jill P Mesirov
- Department of Medicine, Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Andrey Korshunov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles (CHLA), Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, USA
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Okonechnikov K, Joshi P, Sepp M, Leiss K, Sarropoulos I, Murat F, Sill M, Beck P, Chan KCH, Korshunov A, Sah F, Deng MY, Sturm D, DeSisto J, Donson AM, Foreman NK, Green AL, Robinson G, Orr BA, Gao Q, Darrow E, Hadley JL, Northcott PA, Gojo J, Kawauchi D, Hovestadt V, Filbin MG, von Deimling A, Zuckermann M, Pajtler KW, Kool M, Jones DTW, Jäger N, Kutscher LM, Kaessmann H, Pfister SM. Mapping pediatric brain tumors to their origins in the developing cerebellum. Neuro Oncol 2023; 25:1895-1909. [PMID: 37534924 PMCID: PMC10547518 DOI: 10.1093/neuonc/noad124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mari Sepp
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | | | - Pengbo Beck
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kenneth Chun-Ho Chan
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sah
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Y Deng
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
- Children’s Hospital Colorado, Aurora, CO, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
- Children’s Hospital Colorado, Aurora, CO, USA
| | - Giles Robinson
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily Darrow
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jennifer L Hadley
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Johannes Gojo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Andreas von Deimling
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Solecki DJ. Neuronal Polarity Pathways as Central Integrators of Cell-Extrinsic Information During Interactions of Neural Progenitors With Germinal Niches. Front Mol Neurosci 2022; 15:829666. [PMID: 35600073 PMCID: PMC9116468 DOI: 10.3389/fnmol.2022.829666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Germinal niche interactions and their effect on developing neurons have become the subject of intense investigation. Dissecting the complex interplay of cell-extrinsic and cell-intrinsic factors at the heart of these interactions reveals the critical basic mechanisms of neural development and how it goes awry in pediatric neurologic disorders. A full accounting of how developing neurons navigate their niches to mature and integrate into a developing neural circuit requires a combination of genetic characterization of and physical access to neurons and their supporting cell types plus transformative imaging to determine the cell biological and gene-regulatory responses to niche cues. The mouse cerebellar cortex is a prototypical experimental system meeting all of these criteria. The lessons learned therein have been scaled to other model systems and brain regions to stimulate discoveries of how developing neurons make many developmental decisions. This review focuses on how mouse cerebellar granule neuron progenitors interact with signals in their germinal niche and how that affects the neuronal differentiation and cell polarization programs that underpin lamination of the developing cerebellum. We show how modeling of these mechanisms in other systems has added to the growing evidence of how defective neuronal polarity contributes to developmental disease.
Collapse
|
7
|
Yanardag S, Pugacheva EN. Primary Cilium Is Involved in Stem Cell Differentiation and Renewal through the Regulation of Multiple Signaling Pathways. Cells 2021; 10:1428. [PMID: 34201019 PMCID: PMC8226522 DOI: 10.3390/cells10061428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Signaling networks guide stem cells during their lineage specification and terminal differentiation. Primary cilium, an antenna-like protrusion, directly or indirectly plays a significant role in this guidance. All stem cells characterized so far have primary cilia. They serve as entry- or check-points for various signaling events by controlling the signal transduction and stability. Thus, defects in the primary cilia formation or dynamics cause developmental and health problems, including but not limited to obesity, cardiovascular and renal anomalies, hearing and vision loss, and even cancers. In this review, we focus on the recent findings of how primary cilium controls various signaling pathways during stem cell differentiation and identify potential gaps in the field for future research.
Collapse
Affiliation(s)
- Sila Yanardag
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Elena N. Pugacheva
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
8
|
Ong T, Trivedi N, Wakefield R, Frase S, Solecki DJ. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. Nat Commun 2020; 11:5312. [PMID: 33082319 PMCID: PMC7576183 DOI: 10.1038/s41467-020-19063-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence is lacking as to how developing neurons integrate mitogenic signals with microenvironment cues to control proliferation and differentiation. We determine that the Siah2 E3 ubiquitin ligase functions in a coincidence detection circuit linking responses to the Shh mitogen and the extracellular matrix to control cerebellar granule neurons (CGN) GZ occupancy. We show that Shh signaling maintains Siah2 expression in CGN progenitors (GNPs) in a Ras/Mapk-dependent manner. Siah2 supports ciliogenesis in a feed-forward fashion by restraining cilium disassembly. Efforts to identify sources of the Ras/Mapk signaling led us to discover that GNPs respond to laminin, but not vitronectin, in the GZ microenvironment via integrin β1 receptors, which engages the Ras/Mapk cascade with Shh, and that this niche interaction is essential for promoting GNP ciliogenesis. As GNPs leave the GZ, differentiation is driven by changing extracellular cues that diminish Siah2-activity leading to primary cilia shortening and attenuation of the mitogenic response. In neural development, progenitors transition from a proliferative to a differentiated state. Here, the authors show that cerebellar granule neurons retract primary cilia as they exit their proliferative niche upon decreased ECM engagement, enabling radial migration due to loss of Shh sensitivity.
Collapse
Affiliation(s)
- Taren Ong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Randall Wakefield
- Cell and Tissue Imaging Center-EM, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sharon Frase
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
10
|
|
11
|
Trim32 suppresses cerebellar development and tumorigenesis by degrading Gli1/sonic hedgehog signaling. Cell Death Differ 2019; 27:1286-1299. [PMID: 31527798 DOI: 10.1038/s41418-019-0415-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Sonic hedgehog (SHH) signaling is crucial for the maintenance of the physiological self-renewal of granule neuron progenitor cells (GNPs) during cerebellar development, and its dysregulation leads to oncogenesis. However, how SHH signaling is controlled during cerebellar development is poorly understood. Here, we show that Trim32, a cell fate determinant, is distributed asymmetrically in the cytoplasm of mitotic GNPs, and that genetic knockout of Trim32 keeps GNPs at a proliferating and undifferentiated state. In addition, Trim32 knockout enhances the incidence of medulloblastoma (MB) formation in the Ptch1 mutant mice. Mechanistically, Trim32 binds to Gli1, an effector of SHH signaling, via its NHL domain and degrades the latter through its RING domain to antagonize the SHH pathway. These findings provide a novel mechanism that Trim32 may be a vital cell fate regulator by antagonizing the SHH signaling to promote GNPs differentiation and a tumor suppressor in MB formation.
Collapse
|
12
|
Abstract
Medulloblastoma (MB) comprises a biologically heterogeneous group of embryonal tumours of the cerebellum. Four subgroups of MB have been described (WNT, sonic hedgehog (SHH), Group 3 and Group 4), each of which is associated with different genetic alterations, age at onset and prognosis. These subgroups have broadly been incorporated into the WHO classification of central nervous system tumours but still need to be accounted for to appropriately tailor disease risk to therapy intensity and to target therapy to disease biology. In this Primer, the epidemiology (including MB predisposition), molecular pathogenesis and integrative diagnosis taking histomorphology, molecular genetics and imaging into account are reviewed. In addition, management strategies, which encompass surgical resection of the tumour, cranio-spinal irradiation and chemotherapy, are discussed, together with the possibility of focusing more on disease biology and robust molecularly driven patient stratification in future clinical trials.
Collapse
|
13
|
Sonic Hedgehog Signaling is Blue: Insights from the Patched Mutant Mice. Trends Neurosci 2018; 41:870-872. [PMID: 30471664 DOI: 10.1016/j.tins.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/18/2022]
Abstract
The Hedgehog (Hh) pathway is a highly conserved signaling system regulating a range of developmental processes. A 1997 paper by Goodrich and colleagues provided major contributions to understanding the Hh pathway by mutating the gene encoding the Hh receptor, Patched, and thereby developing a mouse model for a human cancer predisposition syndrome, known as Gorlin syndrome. These studies provided one of the first genetically engineered mouse models for brain tumors.
Collapse
|
14
|
Martirosian V, Neman J. Medulloblastoma: Challenges and advances in treatment and research. Cancer Rep (Hoboken) 2018; 2:e1146. [PMCID: PMC7941576 DOI: 10.1002/cnr2.1146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/03/2023] Open
Abstract
Background Medulloblastoma (MB) is a pediatric brain tumor occurring in the posterior fossa. MB is a highly heterogeneous tumor, which can be grouped into four main subgroups: WNT, SHH, Group 3, and Group 4. Each subgroup is different both in its implicated pathways and pathology, as well as how they are treated in the clinic. Recent Findings Standard protocol for MB treatment consists of maximal safe resection, followed by craniospinal radiation (in patients 3 years and older) and adjuvant chemotherapy. Advances in clinical stratification of this tumor have allowed establishment of treatment de‐escalation trials aimed at reducing long‐term side effects. However, there have been few advances in identifying novel therapeutic strategies for MB patients due to difficulties in creating chemotherapeutics that can bypass the blood‐brain‐barrier—among other factors. On the other hand, with the help of whole genome sequencing technologies, molecular pathways involved in MB pathogenesis have become clearer and have helped drive MB research. Regardless, this advance in research has yet to translate to the clinic, which may be due to the inability of current in vivo and in vitro models to accurately recapitulate this heterogeneous tumor in humans. Conclusions There have been significant advances in knowledge and treatment of medulloblastoma over the last few decades. Whole genome sequencing has helped elucidate clear differences between the subgroups of MB, allowing physicians to better tailor treatments to each patient in an effort to reduce long‐term sequelae. However, there are still many more obstacles to overcome, including less cytotoxic therapies in the clinic and better modeling systems to accurately replicate this disease in the laboratory. Scientists and physicians must work in a more cohesive manner to create translatable results from the laboratory to the clinic—helping improve therapies for medulloblastoma patients.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Josh Neman
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Sankar S, Patterson E, Lewis EM, Waller LE, Tong C, Dearborn J, Wozniak D, Rubin JB, Kroll KL. Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors. Genes Cancer 2017; 8:725-744. [PMID: 29234490 PMCID: PMC5724806 DOI: 10.18632/genesandcancer.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ethan Patterson
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emily M Lewis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua Dearborn
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - David Wozniak
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
16
|
Wei W, Huang W, Lin Y, Becker EBE, Ansorge O, Flockerzi V, Conti D, Cenacchi G, Glitsch MD. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells. J Physiol 2017; 595:5525-5544. [PMID: 28627017 PMCID: PMC5556167 DOI: 10.1113/jp274659] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.
Collapse
Affiliation(s)
- Wei‐Chun Wei
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Wan‐Chen Huang
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei115Taiwan
| | - Yu‐Ping Lin
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Esther B. E. Becker
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordOX3 9DUUK
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburgGermany
| | - Daniele Conti
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor ScienceUniversity of BolognaItaly
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOX1 3PTUK
| |
Collapse
|
17
|
Di Pietro C, Marazziti D, La Sala G, Abbaszadeh Z, Golini E, Matteoni R, Tocchini-Valentini GP. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma. Cell Mol Neurobiol 2017; 37:145-154. [PMID: 26935062 DOI: 10.1007/s10571-016-0354-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.
Collapse
Affiliation(s)
- Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy.
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Zeinab Abbaszadeh
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Elisabetta Golini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Rafaele Matteoni
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| | - Glauco P Tocchini-Valentini
- Institute of Cell Biology and Neurobiology, Italian National Research Council (CNR), EMMA-INFRAFRONTIER-IMPC, 00015, Monterotondo Scalo, Rome, Italy
| |
Collapse
|
18
|
Ceccarelli M, Micheli L, Tirone F. Suppression of Medulloblastoma Lesions by Forced Migration of Preneoplastic Precursor Cells with Intracerebellar Administration of the Chemokine Cxcl3. Front Pharmacol 2016; 7:484. [PMID: 28018222 PMCID: PMC5159413 DOI: 10.3389/fphar.2016.00484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), tumor of the cerebellum, remains a leading cause of cancer-related mortality in childhood. We previously showed, in a mouse model of spontaneous MB (Ptch1+/-/Tis21-/-), that a defect of the migration of cerebellar granule neuron precursor cells (GCPs) correlates with an increased frequency of MB. This occurs because GCPs, rather than migrating internally and differentiating, remain longer in the proliferative area at the cerebellar surface, becoming targets of transforming insults. Furthermore, we identified the chemokine Cxcl3 as responsible for the inward migration of GCPs. As it is known that preneoplastic GCPs (pGCPs) can still migrate and differentiate like normal GCPs, thus exiting the neoplastic program, in this study we tested the hypothesis that pGCPs within a MB lesion could be induced by Cxcl3 to migrate and differentiate. We observed that the administration of Cxcl3 for 28 days within the cerebellum of 1-month-old Ptch1+/-/Tis21-/- mice, i.e., when MB lesions are already formed, leads to complete disappearance of the lesions. However, a shorter treatment with Cxcl3 (2 weeks) was ineffective, suggesting that the suppression of MB lesions is dependent on the duration of Cxcl3 application. We verified that the treatment with Cxcl3 causes a massive migration of pGCPs from the lesion to the internal granular layer, where they differentiate. Thus, the induction of migration of pGCPs in MB lesions may open new ways to treat MB that exploit the plasticity of the pGCPs, forcing their differentiation. It remains to be tested whether this plasticity continues at advanced stages of MB. If so, these findings would set a potential use of the chemokine Cxcl3 as therapeutic agent against MB development in human preclinical studies.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Genetic Control of Development, Institute of Cell Biology and Neurobiology – National Research Council, Fondazione Santa LuciaRome, Italy
| | | | - Felice Tirone
- Genetic Control of Development, Institute of Cell Biology and Neurobiology – National Research Council, Fondazione Santa LuciaRome, Italy
| |
Collapse
|
19
|
Tsuruoka C, Blyth BJ, Morioka T, Kaminishi M, Shinagawa M, Shimada Y, Kakinuma S. Sensitive Detection of Radiation-Induced Medulloblastomas after Acute or Protracted Gamma-Ray Exposures in Ptch1 Heterozygous Mice Using a Radiation-Specific Molecular Signature. Radiat Res 2016; 186:407-414. [PMID: 27690174 DOI: 10.1667/rr14499.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recently reported studies have led to a heightened awareness of the risks of cancer induced by diagnostic radiological imaging, and in particular, the risk of brain cancer after childhood CT scans. One feature of Ptch1+/- mice is their sensitivity to radiation-induced medulloblastomas (an embryonic cerebellar tumor) during a narrow window of time centered on the days around birth. Little is known about the dynamics of how dose protraction interacts with such narrow windows of sensitivity in individual tissues. Using medulloblastomas from irradiated Ptch1+/- mice with a hybrid C3H × C57BL/6 F1 genetic background, we previously showed that the alleles retained on chromosome 13 (which harbors the Ptch1 gene) reveal two major mechanisms of loss of the wild-type allele. The loss of parental alleles from the telomere extending up to or past the Ptch1 locus by recombination (spontaneous type) accounts for almost all medulloblastomas in nonirradiated mice, while tumors in irradiated mice often exhibited interstitial deletions, which start downstream of the wild-type Ptch1 and extend up varying lengths towards the centromere (radiation type). In this study, Ptch1+/- mice were exposed to an acute dose of either 100 or 500 mGy gamma rays in utero or postnatally, or the same radiation doses protracted over a four-day period, and were monitored for medulloblastoma development. The results showed dose- and age-dependent radiation-induced type tumors. Furthermore, the size of the radiation-induced deletion differed with the dose rate. The results of this work suggest that tumor latency may be related to the size of the deletion. In this study, 500 mGy exposure produced radiation-induced type tumors at all ages and dose rates, while 100 mGy exposure did not significantly produce radiation-induced type tumors. The radiation signature allows for unique mechanistic insight into the action of radiation to induce DNA lesions with known causal relationship to a specific tumor type, particularly for doses and dose rates that are relevant to both diagnostic and accidental radiological exposures.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Benjamin J Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
20
|
Martirosian V, Chen TC, Lin M, Neman J. Medulloblastoma initiation and spread: Where neurodevelopment, microenvironment and cancer cross pathways. J Neurosci Res 2016; 94:1511-1519. [DOI: 10.1002/jnr.23917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Vahan Martirosian
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
| | - Thomas C. Chen
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California; Los Angeles California
| | - Michelle Lin
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
| | - Josh Neman
- Department of Neurosurgery, Keck School of Medicine; University of Southern California; Los Angeles California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California; Los Angeles California
| |
Collapse
|
21
|
Stone S, Ho Y, Li X, Jamison S, Harding HP, Ron D, Lin W. Dual role of the integrated stress response in medulloblastoma tumorigenesis. Oncotarget 2016; 7:64124-64135. [PMID: 27802424 PMCID: PMC5325430 DOI: 10.18632/oncotarget.11873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023] Open
Abstract
In response to endoplasmic reticulum (ER) stress, activation of pancreatic ER kinase (PERK) coordinates an adaptive program known as the integrated stress response (ISR) by phosphorylating translation initiation factor 2α (eIF2α). Phosphorylated eIF2α is quickly dephosphorylated by the protein phosphatase 1 and growth arrest and DNA damage 34 (GADD34) complex. Data indicate that the ISR can either promote or suppress tumor development. Our previous studies showed that the ISR is activated in medulloblastoma in both human patients and animal models, and that the decreased ISR via PERK heterozygous deficiency attenuates medulloblastoma formation in Patched1 heterozygous deficient (Ptch1+/-) mice by enhancing apoptosis of pre-malignant granule cell precursors (GCPs) during cell transformation. We showed here that GADD34 heterozygous mutation moderately enhanced the ISR and noticeably increased the incidence of medulloblastoma in adult Ptch1+/- mice. Surprisingly, GADD34 homozygous mutation strongly enhanced the ISR, but significantly decreased the incidence of medulloblastoma in adult Ptch1+/- mice. Intriguingly, GADD34 homozygous mutation significantly enhanced pre-malignant GCP apoptosis in cerebellar hyperplastic lesions and reduced the lesion numbers in young Ptch1+/- mice. Nevertheless, neither GADD34 heterozygous mutation nor GADD34 homozygous mutation had a significant effect on medulloblastoma cells in adult Ptch1+/- mice. Collectively, these data imply the dual role of the ISR, promoting and inhibiting, in medulloblastoma tumorigenesis by regulating apoptosis of pre-malignant GCPs during the course of malignant transformation.
Collapse
Affiliation(s)
- Sarrabeth Stone
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Yeung Ho
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Xiting Li
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States,4 Department of Periodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Stephanie Jamison
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Heather P. Harding
- 5 Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- 5 Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wensheng Lin
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,2 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States,3 Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
22
|
Abstract
Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer.
Collapse
Affiliation(s)
- William H. Matsui
- The Matsui Laboratory, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Correspondence: William H. Matsui, The Johns Hopkins University School of Medicine, Baltimore, MD 21287 (e-mail: )
| |
Collapse
|
23
|
Ho Y, Li X, Jamison S, Harding HP, McKinnon PJ, Ron D, Lin W. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1939-1951. [PMID: 27181404 PMCID: PMC4929388 DOI: 10.1016/j.ajpath.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 12/26/2022]
Abstract
Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation.
Collapse
Affiliation(s)
- Yeung Ho
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xiting Li
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Periodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Stephanie Jamison
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Heather P Harding
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David Ron
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
24
|
Singh S, Howell D, Trivedi N, Kessler K, Ong T, Rosmaninho P, Raposo AA, Robinson G, Roussel MF, Castro DS, Solecki DJ. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition. eLife 2016; 5. [PMID: 27178982 PMCID: PMC4891180 DOI: 10.7554/elife.12717] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022] Open
Abstract
In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers. DOI:http://dx.doi.org/10.7554/eLife.12717.001 During the formation of the brain, developing neurons are faced with a logistical problem. After newborn neurons form they must change in shape and move to their final location in the brain. Despite much speculation, little is known about these processes. Neurons mature via the activity of several pathways that control the activity, or expression, of the neuron’s genes. One way of controlling such gene expression is through proteins called transcription factors. At the same time, the developing neurons go through a process called polarization, where different regions of the cell develop different characteristics. However, it was not known how the maturation and polarization processes are linked, or how the developing neurons actively regulate polarization. By studying the developing mouse brain, Singh et al. found that a transcription factor called Zeb1 keeps neurons in a immature state, stopping them from becoming polarized. Further investigation revealed that Zeb1 does this by preventing the production of a group of proteins that helps to polarize the cells. The most common type of malignant brain tumour in children is called a medulloblastoma. Singh et al. analyzed the genes expressed in mice that have a type of medulloblastoma that results from the constant activity of a gene called Sonic Hedgehog in developing neurons. This revealed that these tumour cells contain abnormally high levels of Zeb1, and so do not take on a polarized form. However, artificially restoring other factors that encourage the cells to polarize caused the neurons to mature normally. Further investigation is now needed to find out whether the activity of the Sonic Hedgehog gene regulates Zeb1 activity, and to discover whether inhibiting Zeb1 could prevent brain tumours from developing. DOI:http://dx.doi.org/10.7554/eLife.12717.002
Collapse
Affiliation(s)
- Shalini Singh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Danielle Howell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Niraj Trivedi
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | | | - Taren Ong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Pedro Rosmaninho
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - Alexandre Asf Raposo
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - Giles Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, United States
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Diogo S Castro
- Department of Molecular Neurobiology, Instituto Gulbenkian de Ciência Oeiras, Oeiras, Portugal
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
25
|
Leffler SR, Legué E, Aristizábal O, Joyner AL, Peskin CS, Turnbull DH. A Mathematical Model of Granule Cell Generation During Mouse Cerebellum Development. Bull Math Biol 2016; 78:859-78. [PMID: 27125657 DOI: 10.1007/s11538-016-0163-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/29/2016] [Indexed: 01/29/2023]
Abstract
Determining the cellular basis of brain growth is an important problem in developmental neurobiology. In the mammalian brain, the cerebellum is particularly amenable to studies of growth because it contains only a few cell types, including the granule cells, which are the most numerous neuronal subtype. Furthermore, in the mouse cerebellum granule cells are generated from granule cell precursors (gcps) in the external granule layer (EGL), from 1 day before birth until about 2 weeks of age. The complexity of the underlying cellular processes (multiple cell behaviors, three spatial dimensions, time-dependent changes) requires a quantitative framework to be fully understood. In this paper, a differential equation-based model is presented, which can be used to estimate temporal changes in granule cell numbers in the EGL. The model includes the proliferation of gcps and their differentiation into granule cells, as well as the process by which granule cells leave the EGL. Parameters describing these biological processes were derived from fitting the model to histological data. This mathematical model should be useful for understanding altered gcp and granule cell behaviors in mouse mutants with abnormal cerebellar development and cerebellar cancers.
Collapse
Affiliation(s)
- Shoshana R Leffler
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA.,Developmental Genetics Graduate Program, NYU School of Medicine, New York, NY, USA
| | - Emilie Legué
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Charles S Peskin
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA.
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA. .,Developmental Genetics Graduate Program, NYU School of Medicine, New York, NY, USA. .,Departments of Radiology and Pathology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
26
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
27
|
Yang R, Wang M, Wang J, Huang X, Yang R, Gao WQ. Cell Division Mode Change Mediates the Regulation of Cerebellar Granule Neurogenesis Controlled by the Sonic Hedgehog Signaling. Stem Cell Reports 2015; 5:816-828. [PMID: 26527387 PMCID: PMC4649382 DOI: 10.1016/j.stemcr.2015.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
Symmetric and asymmetric divisions are important for self-renewal and differentiation of stem cells during neurogenesis. Although cerebellar granule neurogenesis is controlled by sonic hedgehog (SHH) signaling, whether and how this process is mediated by regulation of cell division modes have not been determined. Here, using time-lapse imaging and cell culture from neuronal progenitor-specific and differentiated neuron-specific reporter mouse lines (Math1-GFP and Dcx-DsRed) and Patched ± mice in which SHH signaling is activated, we find evidence for the existence of symmetric and asymmetric divisions that are closely associated with progenitor proliferation and differentiation. While activation of the SHH pathway enhances symmetric progenitor cell divisions, blockade of the SHH pathway reverses the cell division mode change in Math1-GFP; Dcx-DsRed; Patched ± mice by promoting asymmetric divisions or terminal neuronal symmetric divisions. Thus, cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by SHH signaling.
Collapse
Affiliation(s)
- Rong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minglei Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jia Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai 200240, China.
| |
Collapse
|
28
|
Suero-Abreu GA, Praveen Raju G, Aristizábal O, Volkova E, Wojcinski A, Houston EJ, Pham D, Szulc KU, Colon D, Joyner AL, Turnbull DH. In vivo Mn-enhanced MRI for early tumor detection and growth rate analysis in a mouse medulloblastoma model. Neoplasia 2015; 16:993-1006. [PMID: 25499213 PMCID: PMC4309249 DOI: 10.1016/j.neo.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/03/2022] Open
Abstract
Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm3. Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - G Praveen Raju
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandre Wojcinski
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edward J Houston
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Diane Pham
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Kamila U Szulc
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Daniel Colon
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandra L Joyner
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Ransohoff KJ, Sarin KY, Tang JY. Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma. J Clin Oncol 2015. [PMID: 26195713 DOI: 10.1200/jco.2015.62.2225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors. Dev Cell 2014; 31:34-47. [PMID: 25263791 DOI: 10.1016/j.devcel.2014.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/25/2014] [Accepted: 08/07/2014] [Indexed: 12/23/2022]
Abstract
During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression.
Collapse
|
31
|
Zindy F, Kawauchi D, Lee Y, Ayrault O, Ben Merzoug L, McKinnon PJ, Ventura A, Roussel MF. Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development. Biol Open 2014; 3:597-605. [PMID: 24928431 PMCID: PMC4154296 DOI: 10.1242/bio.20146734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The miR-17∼92 cluster family is composed of three members encoding microRNAs that share seed sequences. To assess their role in cerebellar and medulloblastoma (MB) development, we deleted the miR-17∼92 cluster family in Nestin-positive neural progenitors and in mice heterozygous for the Sonic Hedgehog (SHH) receptor Patched 1 (Ptch1(+/-)). We show that mice in which we conditionally deleted the miR-17∼92 cluster (miR-17∼92(floxed/floxed); Nestin-Cre(+)) alone or together with the complete loss of the miR-106b∼25 cluster (miR-106b∼25(-/-)) were born alive but with small brains and reduced cerebellar foliation. Remarkably, deletion of the miR-17∼92 cluster abolished the development of SHH-MB in Ptch1(+/-) mice. Using an orthotopic transplant approach, we showed that granule neuron precursors (GNPs) purified from the cerebella of postnatal day 7 (P7) Ptch1(+/-); miR-106b∼25(-/-) mice and overexpressing Mycn induced MBs in the cortices of naïve recipient mice. In contrast, GNPs purified from the cerebella of P7 Ptch1(+/-); miR-17∼92(floxed/floxed); Nestin-Cre(+) animals and overexpressing Mycn failed to induce tumors in recipient animals. Taken together, our findings demonstrate that the miR-17∼92 cluster is dispensable for cerebellar development, but required for SHH-MB development.
Collapse
Affiliation(s)
- Frederique Zindy
- Department of Tumor Cell Biology, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Daisuke Kawauchi
- Department of Tumor Cell Biology, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA Present address: Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Youngsoo Lee
- Department of Genetics, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA Present address: Genomic Instability Research Center, Ajou University, School of Medicine, Suwon 443-749, South Korea
| | - Olivier Ayrault
- Department of Tumor Cell Biology, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA Present address: Institut Curie/CNRS UMR 3306/INSERM U1005 - Building 110 - Centre Universitaire, 91405 Orsay, Cedex, France
| | - Leila Ben Merzoug
- Department of Tumor Cell Biology, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Peter J McKinnon
- Department of Genetics, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, Danny Thomas Research Center, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
32
|
Anne SL, Govek EE, Ayrault O, Kim JH, Zhu X, Murphy DA, Van Aelst L, Roussel MF, Hatten ME. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 2013; 8:e81769. [PMID: 24303070 PMCID: PMC3841149 DOI: 10.1371/journal.pone.0081769] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors.
Collapse
Affiliation(s)
- Sandrine L. Anne
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
| | - Olivier Ayrault
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jee Hae Kim
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
| | - Xiaodong Zhu
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
| | - David A. Murphy
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Matsuo S, Takahashi M, Inoue K, Tamura K, Irie K, Kodama Y, Nishikawa A, Yoshida M. Thickened area of external granular layer and Ki-67 positive focus are early events of medulloblastoma in Ptch1⁺/⁻ mice. ACTA ACUST UNITED AC 2013; 65:863-73. [PMID: 23369240 DOI: 10.1016/j.etp.2012.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/26/2012] [Accepted: 12/14/2012] [Indexed: 01/29/2023]
Abstract
Patched1 (Ptch1) encodes a receptor for Sonic hedgehog (Shh) and is major gene related to human medulloblastoma (MB) in the Shh subgroup. MB is thought to arise from residual granule cell precursors (GCPs) located in the external granular layer (EGL) of the developing cerebellum. As the detailed preneoplastic changes of MB remain obscure, we immunohistochemically clarified the derived cell, early events of MBs, and the cerebellar developmental processes of Ptch1(+/-) (Ptch1) mice, an animal model of human MB of the Shh subgroup. In Ptch1 mice, the earliest proliferative lesions were detected at PND10 as focal thickened areas of outer layer of the EGL. This area was composed of GCP-like cells with atypia and nuclei disarrangement. In the latter cerebellar developmental period, GCP-like cell foci were detected at high incidence in the outermost area of the cerebellum. Their localization and morphological similarities indicated that the foci were derived from GCPs in the EGL. There were two types of the foci. A Ki-67-positive focus was found in Ptch1 mice only. This type resembled the GCPs in the outer layer of EGL characterized by having proliferating activity and a lack of neuronal differentiation. Another type of focus, Ki-67-negative, was observed in both genotypes and exhibited many of the same features of mature internal granule cells, suggesting that the focus had no preneoplastic potential. Due to morphological, immunohistochemical characteristics, our results indicate that the focal thickened area of EGL and Ki-67-positive foci are preneoplastic lesions of MB.
Collapse
Affiliation(s)
- Saori Matsuo
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tis21 knock-out enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons. J Neurosci 2013; 32:15547-64. [PMID: 23115191 DOI: 10.1523/jneurosci.0412-12.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A failure in the control of proliferation of cerebellar granule neuron precursor cells (GCPs), located in the external granular layer (EGL) of the cerebellum, gives rise to medulloblastoma. To investigate the process of neoplastic transformation of GCPs, we generated a new medulloblastoma model by crossing Patched1 heterozygous mice, which develop medulloblastomas with low frequency, with mice lacking the Tis21 gene. Overexpression of Tis21 is known to inhibit proliferation and trigger differentiation of GCPs; its expression decreases in human medulloblastomas. Double-knock-out mice show a striking increase in the frequency of medulloblastomas and hyperplastic EGL lesions, formed by preneoplastic GCPs. Tis21 deletion does not affect the proliferation of GCPs but inhibits their differentiation and, chiefly, their intrinsic ability to migrate outside the EGL. This defect of migration may represent an important step in medulloblastoma formation, as GCPs, remaining longer in the EGL proliferative niche, may become more prone to transformation. By genome-wide analysis, we identified the chemokine Cxcl3 as a target of Tis21. Cxcl3 is downregulated in Tis21-null GCPs of EGL and lesions; addition of Cxcl3 to cerebellar slices rescues the defective migration of Tis21-null GCPs and, remarkably, reduces the area of hyperplastic lesions. As Tis21 activates Cxcl3 transcription, our results suggest that Tis21 induces migration of GCPs through Cxcl3, which may represent a novel target for medulloblastoma therapy.
Collapse
|
35
|
Abstract
Recent evidence argues that the oncogenesis and growth of CNS tumors occurs through dysregulated molecular and cellular mechanisms of neural development. New insights have emerged that have had a significant impact on both research and treatment of these cancers.
Collapse
Affiliation(s)
- Scott L Pomeroy
- Program in Neuroscience, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Bodnarchuk TW, Napper S, Rapin N, Misra V. Mechanism for the induction of cell death in ONS-76 medulloblastoma cells by Zhangfei/CREB-ZF. J Neurooncol 2012; 109:485-501. [PMID: 22798206 DOI: 10.1007/s11060-012-0927-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/05/2012] [Indexed: 01/07/2023]
Abstract
Cells from medulloblastoma lines do not contain detectable amounts of the basic leucine-zipper protein Zhangfei. However, we have previously shown that expression of this protein in cells of the ONS-76 and UW228 medulloblastoma lines causes the cells to stop growing and develop processes that resemble neurites. Our objective was to determine the molecular mechanisms by which Zhangfei influences ONS-76 cells. We infected ONS-76 cells with adenovirus vectors expressing either Zhangfei or the control protein LacZ and then compared the following parameters in Zhangfei and LacZ-expressing cells: (a) markers of apoptosis, autophagy and macropinocytosis, (b) transcripts for genes involved in neurogenesis and apoptosis, (c) phosphorylation of peptide targets of selected cellular protein kinases, and (d) activation of transcription factors. Zhangfei-expressing cells appeared to succumb to apoptosis. Increased staining for autophagic vesicles and upregulated expression of autophagy response genes in these cells indicated that they were undergoing autophagy, possibly associated with apoptosis. Within our analysis, patterns of gene expression and phosphorylation-mediated signal transduction activity in Zhangfei-expressing cells indicated that the mitogen-activated protein kinase (MAPK) pathway was active. In addition, we found that the transcription factor Brn3a as well as factors implicated in differentiation were also active in Zhangfei-expressing cells. We tested the hypothesis that Zhangfei enhances the expression of Brn3a, a known inducer of TrkA, the high-affinity receptor for nerve growth factor (NGF). TrkA then engages NGF in an autocrine manner triggering the MAPK pathway and leading to differentiation of ONS-76 cells into neuron and glia-like cells-a process that eventually brings about cell death. We showed that: (a) Zhangfei could enhance transcription from the isolated Brn3a promoter, (b) ONS-76 cells produced NGF and (c) antibodies against NGF and inhibitors of TrkA and selected components of the MAPK pathway could partially restore the growth of Zhangfei-expressing ONS-76 cells.
Collapse
Affiliation(s)
- Timothy W Bodnarchuk
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | | | | | | |
Collapse
|
37
|
Buss MC, Read TA, Schniederjan MJ, Gandhi K, Castellino RC. HDM2 promotes WIP1-mediated medulloblastoma growth. Neuro Oncol 2012; 14:440-58. [PMID: 22379189 DOI: 10.1093/neuonc/nos001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Medulloblastoma is the most common malignant childhood brain tumor. The protein phosphatase and oncogene WIP1 is over-expressed or amplified in a significant number of primary human medulloblastomas and cell lines. In the present study, we examine an important mechanism by which WIP1 promotes medulloblastoma growth using in vitro and in vivo models. Human cell lines and intracerebellar xenografted animal models were used to study the role of WIP1 and the major TP53 regulator, HDM2, in medulloblastoma growth. Stable expression of WIP1 enhances growth of TP53 wild-type medulloblastoma cells, compared with cells with stable expression of an empty-vector or mutant WIP1. In an animal model, WIP1 enhances proliferation and reduces the survival of immunodeficient mice bearing intracerebellar xenografted human medulloblastoma cells. Cells with increased WIP1 expression also exhibit increased expression of HDM2. HDM2 knockdown or treatment with the HDM2 inhibitor Nutlin-3a, the active enantomer of Nutlin-3, specifically inhibits the growth of medulloblastoma cells with increased WIP1 expression. Nutlin-3a does not affect growth of medulloblastoma cells with stable expression of an empty vector or of mutant WIP1. Knockdown of WIP1 or treatment with the WIP1 inhibitor CCT007093 results in increased phosphorylation of known WIP1 targets, reduced HDM2 expression, and reduced growth specifically in WIP1 wild-type and high-expressing medulloblastoma cells. Combined WIP1 and HDM2 inhibition is more effective than WIP1 inhibition alone in blocking growth of WIP1 high-expressing medulloblastoma cells. Our preclinical study supports a role for therapies that target WIP1 and HDM2 in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Meghan C Buss
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
38
|
Malek R, Matta J, Taylor N, Perry ME, Mendrysa SM. The p53 inhibitor MDM2 facilitates Sonic Hedgehog-mediated tumorigenesis and influences cerebellar foliation. PLoS One 2011; 6:e17884. [PMID: 21437245 PMCID: PMC3060880 DOI: 10.1371/journal.pone.0017884] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/16/2011] [Indexed: 02/07/2023] Open
Abstract
Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.
Collapse
Affiliation(s)
- Reem Malek
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Jennifer Matta
- Laboratory Animal Sciences Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Natalie Taylor
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Mary Ellen Perry
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Susan M. Mendrysa
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 2010; 29:1424-30. [PMID: 21098324 DOI: 10.1200/jco.2010.28.5148] [Citation(s) in RCA: 529] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Medulloblastomas are heterogeneous tumors that collectively represent the most common malignant brain tumor in children. To understand the molecular characteristics underlying their heterogeneity and to identify whether such characteristics represent risk factors for patients with this disease, we performed an integrated genomic analysis of a large series of primary tumors. PATIENTS AND METHODS We profiled the mRNA transcriptome of 194 medulloblastomas and performed high-density single nucleotide polymorphism array and miRNA analysis on 115 and 98 of these, respectively. Non-negative matrix factorization-based clustering of mRNA expression data was used to identify molecular subgroups of medulloblastoma; DNA copy number, miRNA profiles, and clinical outcomes were analyzed for each. We additionally validated our findings in three previously published independent medulloblastoma data sets. RESULTS Identified are six molecular subgroups of medulloblastoma, each with a unique combination of numerical and structural chromosomal aberrations that globally influence mRNA and miRNA expression. We reveal the relative contribution of each subgroup to clinical outcome as a whole and show that a previously unidentified molecular subgroup, characterized genetically by c-MYC copy number gains and transcriptionally by enrichment of photoreceptor pathways and increased miR-183∼96∼182 expression, is associated with significantly lower rates of event-free and overall survivals. CONCLUSION Our results detail the complex genomic heterogeneity of medulloblastomas and identify a previously unrecognized molecular subgroup with poor clinical outcome for which more effective therapeutic strategies should be developed.
Collapse
Affiliation(s)
- Yoon-Jae Cho
- Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Teider N, Scott DK, Neiss A, Weeraratne SD, Amani VM, Wang Y, Marquez VE, Cho YJ, Pomeroy SL. Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma. Neuro Oncol 2010; 12:1244-56. [PMID: 20847082 DOI: 10.1093/neuonc/noq091] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuralized (Neurl) is a highly conserved E3 ubiquitin ligase, which in Drosophila acts upon Notch ligands to regulate Notch pathway signaling. Human Neuralized1 (NEURL1) was investigated as a potential tumor suppressor in medulloblastoma (MB). The gene is located at 10q25.1, a region demonstrating frequent loss of heterozygosity in tumors. In addition, prior publications have shown that the Notch pathway is functional in a proportion of MB tumors and that Neurl1 is only expressed in differentiated cells in the developing cerebellum. In this study, NEURL1 expression was downregulated in MB compared with normal cerebellar tissue, with the lowest levels of expression in hedgehog-activated tumors. Control of gene expression by histone modification was implicated mechanistically; loss of 10q, sequence mutation, and promoter hypermethylation did not play major roles. NEURL1-transfected MB cell lines demonstrated decreased population growth, colony-forming ability, tumor sphere formation, and xenograft growth compared with controls, and a significant increase in apoptosis was seen on cell cycle and cell death analysis. Notch pathway inhibition occurred on the exogenous expression of NEURL1, as shown by decreased expression of the Notch ligand, Jagged1, and the target genes, HES1 and HEY1. From these studies, we conclude that NEURL1 is a candidate tumor suppressor in MB, at least in part through its effects on the Notch pathway.
Collapse
Affiliation(s)
- Natalia Teider
- Department of Neurology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med 2010; 16:337-48. [PMID: 20696410 DOI: 10.1016/j.molmed.2010.05.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
The Hedgehog (Hh) cascade controls cell proliferation, differentiation and patterning of tissues during embryogenesis but is largely suppressed in the adult. The Hh pathway can become reactivated in cancer. Here, we assimilate data from recent studies to understand how and when the Hh pathway is turned on to aid the neoplastic process. Hh signaling is now known to have a role in established tumors, enabling categorization of tumors based on the role Hh signaling plays in their growth. This categorization has relevance for prognosis and targeted therapeutics. In the first category, abnormal Hh signaling initiates the tumor. In the second category, Hh signaling helps maintain the tumor. In the third category, Hh signaling is implicated but its role is not yet defined.
Collapse
Affiliation(s)
- Monique T Barakat
- Department of Developmental Biology, Howard Hughes Medical Institute, Clark Center West W252, 318 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | | |
Collapse
|
42
|
Castellino RC, Barwick BG, Schniederjan M, Buss MC, Becher O, Hambardzumyan D, Macdonald TJ, Brat DJ, Durden DL. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma. PLoS One 2010; 5:e10849. [PMID: 20520772 PMCID: PMC2877103 DOI: 10.1371/journal.pone.0010849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent publications have described an important role for cross talk between PI-3 kinase and sonic hedgehog signaling pathways in the pathogenesis of medulloblastoma. METHODOLOGY/PRINCIPAL FINDINGS We crossed mice with constitutive activation of Smoothened, SmoA1, with Pten deficient mice. Both constitutive and conditional Pten deficiency doubled the incidence of mice with symptoms of medulloblastoma and resulted in decreased survival. Analysis revealed a clear separation of gene signatures, with up-regulation of genes in the PI-3 kinase signaling pathway, including downstream activation of angiogenesis in SmoA1+/-; Pten +/- medulloblastomas. Western blotting and immunohistochemistry confirmed reduced or absent Pten, Akt activation, and increased angiogenesis in Pten deficient tumors. Down-regulated genes included genes in the sonic hedgehog pathway and tumor suppressor genes. SmoA1+/-; Pten +/+ medulloblastomas appeared classic in histology with increased proliferation and diffuse staining for apoptosis. In contrast, Pten deficient tumors exhibited extensive nodularity with neuronal differentiation separated by focal areas of intense staining for proliferation and virtually absent apoptosis. Examination of human medulloblastomas revealed low to absent PTEN expression in over half of the tumors. Kaplan-Meier analysis confirmed worse overall survival in patients whose tumor exhibited low to absent PTEN expression. CONCLUSIONS/SIGNIFICANCE This suggests that PTEN expression is a marker of favorable prognosis and mouse models with activation of PI-3 kinase pathways may be important tools for preclinical evaluation of promising agents for the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Robert C Castellino
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Taniguchi E, Cho MJ, Arenkiel BR, Hansen MS, Rivera OJ, McCleish AT, Qualman SJ, Guttridge DC, Scott MP, Capecchi MR, Keller C. Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatr Blood Cancer 2009; 53:136-44. [PMID: 19213072 PMCID: PMC2850215 DOI: 10.1002/pbc.21968] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tumor initiation has been attributed to haploinsufficiency at a single locus for a large number of cancers. Patched1 (Ptc1) was one of the first such loci, and Ptc1 haploinsufficiency has been asserted to lead to medulloblastoma and rhabdomyosarcoma in mice. PROCEDURE To study the role of Ptc1 in cerebellar tumor development and to create a preclinical therapeutic platform, we have generated a conditional Ptc1 haploinsufficiency model of medulloblastoma by inactivating Ptc1 in Pax7-expressing cells of the cerebellum. RESULTS These mice developed exclusively medulloblastoma. We show that despite the presence of transcription of Ptc1, Ptc1 protein is nearly undetectable or absent in tumors. Our results suggest that Ptc1 loss of function is complete, but achieved at the protein level rather than by the classic genetic two-hit mechanism or a strict half-dosage genetic haploinsufficiency mechanism. Furthermore, we found that bortezomib, a 26S proteasome inhibitor, had a significant anti-tumor activity in vitro and in vivo, which was accompanied by restoration of Ptc1 protein and downregulation of the hedgehog signaling pathway. The same effect was seen for both human and mouse medulloblastoma tumor cell growth. CONCLUSIONS These results suggest that proteasome inhibition is a potential new therapeutic approach in medulloblastoma.
Collapse
Affiliation(s)
- Eri Taniguchi
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Min Jung Cho
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Benjamin R. Arenkiel
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Mark S. Hansen
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Omar J. Rivera
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Amanda T. McCleish
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Stephen J. Qualman
- Children’s Research Institute, Department of Laboratory Medicine, Columbus Children’s Hospital, Columbus, OH 43205 USA
| | - Denis C. Guttridge
- Human Cancer Genetics Program, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Matthew P. Scott
- Howard Hughes Medical Institute and Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Mario R. Capecchi
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Charles Keller
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA,Corresponding author: Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, 8403 Floyd Curl Drive, MC-7784, San Antonio, TX 78229-3900 USA, Tel: (210)562-9062, Fax: (210)562-9014,
| |
Collapse
|
44
|
Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, Harper L, Austin R, Nieuwenhuis E, Clarke ID, Hui CC, Dirks PB. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 2009; 69:4682-90. [PMID: 19487286 DOI: 10.1158/0008-5472.can-09-0342] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Subpopulations of tumorigenic cells have been identified in many human tumors, although these cells may not be very rare in some types of cancer. Here, we report that medulloblastomas arising from Patched-1-deficient mice contain a subpopulation of cells that show a neural precursor phenotype, clonogenic and multilineage differentiation capacity, activated Hedgehog signaling, wild-type Patched-1 expression, and the ability to initiate tumors following allogeneic orthotopic transplantation. The normal neural stem cell surface antigen CD15 enriches for the in vitro proliferative and in vivo tumorigenic potential from uncultured medulloblastomas, supporting the existence of a cancer stem cell hierarchy in this clinically relevant mouse model of cancer.
Collapse
Affiliation(s)
- Ryan J Ward
- Developmental and Stem Cell Biology, Hospital for Sick Children, ON, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mao XG, Zhang X, Zhen HN. Progress on potential strategies to target brain tumor stem cells. Cell Mol Neurobiol 2009; 29:141-55. [PMID: 18781384 DOI: 10.1007/s10571-008-9310-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/25/2008] [Indexed: 01/11/2023]
Abstract
The identification of brain tumor stem cells (BTSCs) leads to promising progress on brain tumor treatment. For some brain tumors, BTSCs are the driving force of tumor growth and the culprits that make tumor revive and resistant to radiotherapy and chemotherapy. Therefore, it is specifically significant to eliminate BTSCs for treatment of brain tumors. There are considerable similarities between BTSCs and normal neural stem cells (NSCs), and diverse aspects of BTSCs have been studied to find potential targets that can be manipulated to specifically eradicate BTSCs without damaging normal NSCs, including their surface makers, surrounding niche, and aberrant signaling pathways. Many strategies have been designed to kill BTSCs, and some of them have reached, or are approaching, effective therapeutic results. Here, we will focus on advantages in the issue of BTSCs and emphasize on potential therapeutic strategies targeting BTSCs.
Collapse
Affiliation(s)
- Xing-gang Mao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | |
Collapse
|
46
|
Thomas WD, Chen J, Gao YR, Cheung B, Koach J, Sekyere E, Norris MD, Haber M, Ellis T, Wainwright B, Marshall GM. Patched1 deletion increases N-Myc protein stability as a mechanism of medulloblastoma initiation and progression. Oncogene 2009; 28:1605-15. [PMID: 19234491 DOI: 10.1038/onc.2009.3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Medulloblastoma tumorigenesis caused by inactivating mutations in the PATCHED1 (PTCH1) gene is initiated by persistently activated Sonic Hedgehog (Shh) signaling in granule neuron precursors (GNPs) during the late stages of cerebellar development. Both normal cerebellar development and Shh-driven medulloblastoma tumorigenesis require N-Myc expression. However, the mechanisms by which N-Myc affects the stages of medulloblastoma initiation and progression are unknown. Here we used a mouse model of Ptch1 heterozygosity and medulloblastoma to show that increased N-Myc expression characterized the earliest selection of focal GNP hyperplasia destined for later tumor progression. Step-wise loss of Ptch1 expression, from tumor initiation to progression, led to incremental increases in N-Myc protein, rather than mRNA, expression. Increased N-Myc resulted in enhanced proliferation and death resistance of perinatal GNPs at tumor initiation. Sequential N-Myc protein phosphorylation at serine-62 and serine-62/threonine-58 characterized the early and late stages of medulloblastoma tumorigenesis, respectively. Shh pathway activation led to increased Myc protein stability and reduced expression of key regulatory factors. Taken together our data identify N-Myc protein stability as the result of loss of Ptch1, which distinguishes normal cerebellar development from medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- W D Thomas
- Children's Cancer Institute Australia for Medical Research, Randwick, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Microenvironmental or stromal influences on tumor formation and growth have become an active area of research. The use of mouse models of human cancers to study the role of the microenvironment will yield unique insights into this aspect of tumor biology and should identify novel therapeutic targets for the treatment of human cancers. In the following, the author review the natural history of two pediatric brain tumors, optic pathway glioma in neurofibromatosis type 1 and medulloblastoma in Gorlin's Syndrome, whose patterns of growth suggest that microenvironmental factors are essential for tumor formation. Each of these brain tumors is faithfully modeled in genetically engineered mice and the use of these mouse models to investigate the role of the microenvironment should yield exciting new insights into this important field of study.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
48
|
Abstract
Studying the early stages of cancer can provide important insight into the molecular basis of the disease. We identified a preneoplastic stage in the patched (ptc) mutant mouse, a model for the brain tumor medulloblastoma. Preneoplastic cells (PNCs) are found in most ptc mutants during early adulthood, but only 15% of these animals develop tumors. Although PNCs are found in mice that develop tumors, the ability of PNCs to give rise to tumors has never been demonstrated directly, and the fate of cells that do not form tumors remains unknown. Using genetic fate mapping and orthotopic transplantation, we provide definitive evidence that PNCs give rise to tumors, and show that the predominant fate of PNCs that do not form tumors is differentiation. Moreover, we show that N-myc, a gene commonly amplified in medulloblastoma, can dramatically alter the fate of PNCs, preventing differentiation and driving progression to tumors. Importantly, N-myc allows PNCs to grow independently of hedgehog signaling, making the resulting tumors resistant to hedgehog antagonists. These studies provide the first direct evidence that PNCs can give rise to tumors, and demonstrate that identification of genetic changes that promote tumor progression is critical for designing effective therapies for cancer.
Collapse
|
49
|
Briggs KJ, Eberhart CG, Watkins DN. Just say no to ATOH: how HIC1 methylation might predispose medulloblastoma to lineage addiction. Cancer Res 2008; 68:8654-6. [PMID: 18974104 DOI: 10.1158/0008-5472.can-08-1904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypermethylated in cancer-1 (HIC1) is a tumor suppressor frequently targeted for promoter hypermethylation in medulloblastoma, an embryonal tumor of the cerebellum. Recently, we showed that HIC1 is a direct transcriptional repressor of ATOH1, a proneural transcription factor required for normal cerebellar development, as well as for medulloblastoma cell viability. Because demethylating agents can induce reexpression of silenced tumor suppressors, restoring HIC1 function may present an attractive therapeutic avenue in medulloblastoma by exploiting an apparent addiction to ATOH1.
Collapse
Affiliation(s)
- Kimberly J Briggs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
50
|
The molecular genetics of medulloblastoma: an assessment of new therapeutic targets. Neurosurg Rev 2008; 31:359-68; discussion 368-9. [DOI: 10.1007/s10143-008-0146-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 10/22/2022]
|