1
|
Amino Acid Substitutions at P1 Position Change the Inhibitory Activity and Specificity of Protease Inhibitors BmSPI38 and BmSPI39 from Bombyx mori. Molecules 2023; 28:molecules28052073. [PMID: 36903318 PMCID: PMC10004685 DOI: 10.3390/molecules28052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
It was found that silkworm serine protease inhibitors BmSPI38 and BmSPI39 were very different from typical TIL-type protease inhibitors in sequence, structure, and activity. BmSPI38 and BmSPI39 with unique structure and activity may be good models for studying the relationship between the structure and function of small-molecule TIL-type protease inhibitors. In this study, site-directed saturation mutagenesis at the P1 position was conducted to investigate the effect of P1 sites on the inhibitory activity and specificity of BmSPI38 and BmSPI39. In-gel activity staining and protease inhibition experiments confirmed that BmSPI38 and BmSPI39 could strongly inhibit elastase activity. Almost all mutant proteins of BmSPI38 and BmSPI39 retained the inhibitory activities against subtilisin and elastase, but the replacement of P1 residues greatly affected their intrinsic inhibitory activities. Overall, the substitution of Gly54 in BmSPI38 and Ala56 in BmSPI39 with Gln, Ser, or Thr was able to significantly enhance their inhibitory activities against subtilisin and elastase. However, replacing P1 residues in BmSPI38 and BmSPI39 with Ile, Trp, Pro, or Val could seriously weaken their inhibitory activity against subtilisin and elastase. The replacement of P1 residues with Arg or Lys not only reduced the intrinsic activities of BmSPI38 and BmSPI39, but also resulted in the acquisition of stronger trypsin inhibitory activities and weaker chymotrypsin inhibitory activities. The activity staining results showed that BmSPI38(G54K), BmSPI39(A56R), and BmSPI39(A56K) had extremely high acid-base and thermal stability. In conclusion, this study not only confirmed that BmSPI38 and BmSPI39 had strong elastase inhibitory activity, but also confirmed that P1 residue replacement could change their activity and inhibitory specificity. This not only provides a new perspective and idea for the exploitation and utilization of BmSPI38 and BmSPI39 in biomedicine and pest control, but also provides a basis or reference for the activity and specificity modification of TIL-type protease inhibitors.
Collapse
|
2
|
Saluja B, Li H, Desai UR, Voelkel NF, Sakagami M. Sulfated Caffeic Acid Dehydropolymer Attenuates Elastase and Cigarette Smoke Extract–induced Emphysema in Rats: Sustained Activity and a Need of Pulmonary Delivery. Lung 2014; 192:481-92. [DOI: 10.1007/s00408-014-9597-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
3
|
Berthelsen LO, Kristensen AT, Tranholm M. Animal models of DIC and their relevance to human DIC: a systematic review. Thromb Res 2011; 128:103-16. [PMID: 21215993 DOI: 10.1016/j.thromres.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/16/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a severe clinical condition with activation of coagulation and fibrinolysis. Its diagnosis is based on the International Society of Thrombosis and Haemostasis (ISTH) scoring system of DIC. Animal models of DIC, used to investigate pathophysiology and evaluate treatments, have not been developed in a standardized way, which impedes comparison between models and translation to the human setting. In the current review of animal models of DIC an overview of species, inducers, and dosing regimens is provided. Diagnostic approaches are compared in the light of the ISTH score and treatments tested in animal models of DIC are summarized. Systematic analysis revealed that the rat is by far the preferred species amongst animal models of DIC and lipopolysaccharides (LPS) the preferred inducer of DIC. An overview of the reporting of ISTH DIC score parameters elucidated that only about 25% of the studies measure all of the four parameters necessary for the implementation the ISTH scoring system. Furthermore, most therapeutic interventions tested in animal models of DIC are administered prophylactically, which may be irrelevant to the clinical setting and could explain why compounds effective in preclinical animal models often fail in clinical trials. It is concluded that Implementation of a scoring system in animal models of DIC may increase the ability to compare DIC amongst animal models and improve the translational aspect of treatment effect.
Collapse
|
4
|
Elder A, Couderc JP, Gelein R, Eberly S, Cox C, Xia X, Zareba W, Hopke P, Watts W, Kittelson D, Frampton M, Utell M, Oberdörster G. Effects of On-Road Highway Aerosol Exposures on Autonomic Responses in Aged, Spontaneously Hypertensive Rats. Inhal Toxicol 2010; 19:1-12. [PMID: 17127638 DOI: 10.1080/08958370600985735] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Epidemiological studies associate ambient particulate pollution with adverse health outcomes in elderly individuals with cardiopulmonary diseases. We hypothesized that freshly generated ultrafine particles (UFP) contribute to these effects, as they are present in high number concentrations on highways and vehicle passengers are exposed directly to them. Aged spontaneously hypertensive rats (9-12 mo) with implanted radiotelemetry devices were exposed to highway aerosol or filtered, gas-denuded (clean) air using an on-road exposure system to examine effects on heart rate (HR) and heart-rate variability (HRV). On the day of exposure, rats were pretreated with low-dose inhaled or injected lipopolysaccharide (LPS) to simulate respiratory tract or systemic inflammation, respectively. Exposures (6 h) in compartmentalized whole-body chambers were performed in an air conditioned compartment of a mobile laboratory on I-90 between Rochester and Buffalo, NY. HRV parameters were calculated from telemetric blood pressure signals and analyzed for the baseline period and for the first 32 h postexposure. The aerosol size (count median diameter = 15-20 nm; geometric standard deviation = 1.4-4.3) and number concentration (1.95-5.62 x 105/cm3) indicated the predominance of UFP. Intraperitoneal LPS significantly affected all of the parameters in a time-dependent manner; response patterns after inhaled or injected LPS pretreatment were similar, but more prolonged and greater in LPS-injected rats. A significant effect of highway aerosol was found, irrespective of pretreatment, which resulted in decreased HR in comparison to clean air-exposed rats. This effect was more persistent ( approximately 14 h) in those rats that received ip LPS as compared to saline. The highway aerosol also significantly affected short-term alterations in autonomic control of HR, as evidenced by elevations in normalized high frequency power and decreased vagosympathetic balance. These findings show that environmental exposure concentrations of mixed traffic-related UFP/gas-phase emissions can affect the autonomic nervous system.
Collapse
Affiliation(s)
- Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Venkatasamy R, Spina D. Protease inhibitors in respiratory disease: focus on asthma and chronic obstructive pulmonary disease. Expert Rev Clin Immunol 2010; 3:365-81. [PMID: 20477680 DOI: 10.1586/1744666x.3.3.365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a major health burden on society and current treatment modalities for these diseases have not significantly changed over the past 40 years. The only major pharmacological advancement for the treatment of these diseases has been to increase the duration of action of bronchodilators (asthma: salmeterol; COPD: tiotropium bromide) and glucocorticosteroids (asthma: fluticasone propionate) and, increasingly, to formulate these agents in the same delivery device. Despite our increasing understanding of the cell and molecular biology of these diseases, the development of novel treatments remains beyond the reach of the scientific community. Proteases are a family of proteins with diverse biological activity, which are found in abundance within the airways of asthma and COPD, and have been implicated in the pathogenesis of these diseases. The targeting of proteases, including mast cell tryptase, neutrophil elastase and matrix metalloprotease with low-molecular-weight inhibitors, has highlighted the potential role of these enzymes in mediating certain aspects of the disease process in preclinical studies. Several challenges remain regarding the development of protease inhibitors, including the synthesis of highly potent and specific inhibitors, and target validation in man.
Collapse
Affiliation(s)
- Radhakrishnan Venkatasamy
- King's College London, Sackler Institute of Pulmonary Pharmacology, School of Biomedical and Health Science, Pharmaceutical Science Research Division, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
6
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
7
|
Alison C. P. Elder, Jacob Finkelste. INDUCTION OF ADAPTATION TO INHALED LIPOPOLYSACCHARIDEEIN YOUNG AND OLD RATS AND MIC. Inhal Toxicol 2008. [DOI: 10.1080/089583700196257] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Abstract
Emphysema is recognized as the component of chronic obstructive airways disease that is responsible for airways obstruction. Different patterns of emphysema are, however, recognized, suggesting possible different pathogenetic processes within the lung. This, coupled with the associated idea of susceptibility factors to the development of emphysema, has led to studies of genes that may be involved in the defence of the lung from proteolytic and oxidative damage. These studies have been driven by the goal of finding a treatment for emphysema, but appear to have lost sight of the fundamental remodelling of the lung that has occurred in patients with emphysema and the fact that it is not a single morphological entity.
Collapse
Affiliation(s)
- R Blundell
- Directorate of Pathology, The Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | | | | |
Collapse
|
9
|
Tremblay GM, Vachon E, Larouche C, Bourbonnais Y. Inhibition of human neutrophil elastase-induced acute lung injury in hamsters by recombinant human pre-elafin (trappin-2). Chest 2002; 121:582-8. [PMID: 11834675 DOI: 10.1378/chest.121.2.582] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Pre-elafin, also known as trappin-2, is an elastase-specific inhibitor that could be an ideal candidate for the treatment of neutrophil elastase-driven lung diseases. The inhibitory activity of pre-elafin resides in the COOH-terminal region that can be released as mature elafin. The NH(2)-terminal moiety of pre-elafin is characterized by the presence of a specific repeating sequence, termed cementoin, believed to immobilize the inhibitor to lung protein components and restrict its diffusion from the desired sites of action. This property should confer an advantage to pre-elafin compared to elafin in the treatment of neutrophil elastase-driven lung diseases. MEASUREMENTS The inhibitory effect of recombinant human pre-elafin was assessed in a human neutrophil elastase-induced acute lung injury model in Golden Syrian hamsters. BAL fluid hemoglobin content was used as a marker of lung injury. RESULTS Recombinant human pre-elafin administered intratracheally 1 h prior to neutrophil elastase dose-dependently inhibited the lung hemorrhage with a calculated half-effective dose of 8.1 microg/kg (0.7 nmol/kg). Pre-elafin was equally efficient when administered 3 h before neutrophil elastase. In contrast to pre-elafin, commercial synthetic elafin was ineffective in inhibiting neutrophil elastase-induced lung hemorrhage even at a dose of 4.45 nmol/kg. CONCLUSIONS Our results suggest that pre-elafin may be eventually used in the treatment of neutrophil elastase-driven lung diseases.
Collapse
Affiliation(s)
- Guy M Tremblay
- Unité de recherche, Hôpital Laval, Institut universitaire de cardiologie et de pneumologie de l'Université Laval, Sainte-Foy, Quebec, Canada.
| | | | | | | |
Collapse
|
10
|
Bank U, Krüger S, Langner J, Roessner A. Review: peptidases and peptidase inhibitors in the pathogenesis of diseases. Disturbances in the ubiquitin-mediated proteolytic system. Protease-antiprotease imbalance in inflammatory reactions. Role of cathepsins in tumour progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 477:349-78. [PMID: 10849763 DOI: 10.1007/0-306-46826-3_38] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- U Bank
- Institute of Immunology, Otto-von-Guericke-University, Halle
| | | | | | | |
Collapse
|
11
|
Kuang R, Epp JB, Ruan S, Chong LS, Venkataraman R, Tu J, He S, Truong TM, Groutas WC. Utilization of the 1,2,5-thiadiazolidin-3-one 1,1 dioxide scaffold in the design of potent inhibitors of serine proteases: SAR studies using carboxylates. Bioorg Med Chem 2000; 8:1005-16. [PMID: 10882012 DOI: 10.1016/s0968-0896(00)00038-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of carboxylate derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide and isothiazolidin-3-one 1,1 dioxide scaffolds has been synthesized and the inhibitory profile of these compounds toward human leukocyte elastase (HLE), cathepsin G (Cat G) and proteinase 3 (PR 3) was then determined. Most of the compounds were found to be potent, time-dependent inhibitors of elastase, with some of the compounds exhibiting k(inact)/K1 values as high as 4,928,300 M(-1) s(-1). The inhibitory potency of carboxylate derivatives based on the 1,2,5-thiadiazolidin-3-one 1,1 dioxide platform was found to be influenced by both the pKa and the inherent structure of the leaving group. Proper selection of the primary specificity group (R(I)) was found to lead to selective inhibition of HLE over Cat G, however, those compounds that inhibited HLE also inhibited PR 3, albeit less efficiently. The predictable mode of binding of these compounds suggests that, among closely-related serine proteases, highly selective inhibitors of a particular serine protease can be fashioned by exploiting subtle differences in their S' subsites. This study has also demonstrated that the degradative action of elastase on elastin can be abrogated in the presence of inhibitor 17.
Collapse
Affiliation(s)
- R Kuang
- Department of Chemistry, Wichita State University, KS 67260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The incidence of chronic obstructive pulmonary disease (COPD) is increasing throughout the world. Much less is known about the pathogenesis of COPD than that of asthma and there is little response to current therapy. Most patients with COPD have acquired their lung disease through smoking cigarettes, and the major step in management is to minimise further damage by stopping this habit. A number of therapies are being developed for the treatment of COPD; including new bronchodilators such as tiotropium bromide, agents to block inflammation induced by neutrophils and macrophages, as well as strategies to combat proteases and oxidants. The long-term goal is to provide therapy that retards the accelerated loss of lung function occurring in COPD. Development of novel therapies for COPD requires reliable Phase II decision making before entering large scale Phase III studies. The patient with COPD is often overlooked compared to their asthmatic counterpart, who benefit from an urgent need to identify novel targets and better therapy.
Collapse
Affiliation(s)
- M J Leckie
- National Heart and Lung Institute, Royal Brompton Clinical Studies Unit, Imperial College, London, UK
| | | | | | | |
Collapse
|
13
|
Fujie K, Shinguh Y, Inamura N, Yasumitsu R, Okamoto M, Okuhara M. Release of neutrophil elastase and its role in tissue injury in acute inflammation: effect of the elastase inhibitor, FR134043. Eur J Pharmacol 1999; 374:117-25. [PMID: 10422648 DOI: 10.1016/s0014-2999(99)00268-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neutrophil elastase degrades extracellular matrix components and is involved in tissue destruction in several inflammatory states. We examined the inhibition of the elastase activity derived from activated neutrophils in vitro and in vivo by FR134043, disodium-(Z,1S,15S,18S,24S,27R,29S,34S,37R)-29-b enzyl-21-ethylidene-27-hydroxy-15-isobutyrylamino-34-isopropyl-31, 37-dimethyl-10,16,19,22,30,32,35,38-octaoxo-36-oxa-9,11,17,20,23,2 8,31,33-octaazatetracyclo[16.13.6.1(24,28).0(3,8)]octatriconta+ ++-3,5,7-trien-5,6-diyl disulfate, an elastase inhibitor with broad specificity, and elucidated the role of neutrophil elastase in pathogenesis of acute inflammation. In a culture of human neutrophils, phorbol myristate acetate (PMA) and calcium ionophore increased elastase activity in the supernatants, which was amplified by co-existing mononuclear leukocytes. Formyl-Met-Leu-Phe stimulated elastase release in the presence of, not without, mononuclear leukocytes. Intratracheal injection of lipopolysaccharide elevated the elastase activity in bronchoalveolar lavage fluid of rats. These elastase activities were significantly inhibited by FR134043. Intratracheal treatment with FR134043 in rats also inhibited the enzyme induced by lipopolysaccharide, though the maximum inhibition was 52%. Ear edema elicited by topical application of PMA in mice was significantly suppressed by pretreatment with FR134043 (38% inhibition at 1 mg/ear). In carrageenan-induced joint injury in rats, plasma extravasation into the synovial cavity was partially and significantly inhibited by FR134043 at 1 mg/knee, while an elastase-specific inhibitor showed no effect. These results suggest that neutrophil elastase is partially involved in tissue damage in acute inflammation provoked by irritants, but not in carrageenan-induced hyperpermeability.
Collapse
Affiliation(s)
- K Fujie
- Exploratory Research Laboratories, Fujisawa Pharmaceutical, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|